© 2021 Sudarshan S. Chawathe

Name: _

- 1. (1 pt.)
 - Read all material carefully.
 - If in doubt whether something is allowed, ask, don't assume.
 - $\circ\,$ You may refer to your books, papers, and notes during this test.
 - E-books may be used *subject to the restrictions* noted in class.
 - Computers are not permitted, except when used strictly as ebooks.
 - Network access of any kind (cell, voice, text, data, ...) is not permitted.
 - Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
 - Use class and textbook conventions for notation, algorithmic options, etc.

Write your name in the space provided above.

WAIT UNTIL INSTRUCTED TO CONTINUE TO REMAINING QUESTIONS.

Q	Full	Score
1	1	
2	9	
3	20	
4	10	
total	40	

Do not write in the following table.

2. (9 pts.) Draw the subproblem graph for MEMOIZED-CUT-ROD(p, n) with n = 10 and the following array p.

length i :	0	1	2	3	4	5	6	7	8	9	10
price p_i :	0	2	3	7	8	9	14	15	16	17	20

3. (10 pts.) Recall the following algorithm for the cut-rod problem that was briefly discussed in class: Compute the value of price per unit length (v(i)) for each integer value of length $i \leq n$ (where n is the length of the rod given as input). Then repeatedly cut the remaining portion m of the rod at length $i \leq m$ with maximum v(i).

Does this algorithm always produce the correct (optimal) solution?

If so, provide at least an informal proof or detailed explanation.

If not, provide and explain a small counterexample.

4. (20 pts.) Trace the execution of the MEMOIZED-CUT-ROD(p, n) algorithm for n = 10 and the following pricing array of Question 2, repeated below.

Depict the state of the array r at least at three points during the execution:

- (a) The first time MEMOIZED-CUT-ROD-AUX(p, n, r) returns when invoked with n = 3.
- (b) As above, but with n = 7.
- (c) At the very end.

length i :	0	1	2	3	4	5	6	7	8	9	10
price p_i :	0	2	3	7	8	9	14	15	16	17	20

[additional space for answering the earlier question]

[additional space for answering the earlier question]