
COS 301 Spring 2023 HW02 100 ? pts.; 2 pages. Due 2023-03-09 09:35 a.m.

© 2023 Sudarshan S. Chawathe

This homework is about implementing a compiler for the calculator language that we
have been studying, including the div and mod extensions (but not the list extensions). The
input is source code in the calculator language and the output is the corresponding JCoCo
assembly language program.

Please refer to the previous homework for important details on submission; discussion
forum; elicitation of additional details; resources; clean, portable Python code;
and standard input, output, and error streams; they apply here too. In particular, it
is important to ask for clarifications for any unclear details (using the discussion forum).

The input consists of the calculator language of calc.py as discussed in class, extended to
support the div and mod operators from the previous homework (but not the list operations).
The output consists of (only) a well-formatted (using the textbook’s conventions) JCoCo
assembly language program such that, when that program is executed (say, using the coco
command), it performs the actions specified by the input calculator program. In particular,
the output of such an execution (of the output of this homework’s compiler) should be exactly
equal to the output of the program from the previous homework on the same input.

Unlike the program of the previous homework, this homework’s program (the compiler)
does not have a uniquely specified correct output for a given input, since there are several
assembly language programs that are equivalent (in the above sense) to a given calculator
language program.

The following sample input and output il-
lustrates some of these details. (The format-
ting of the outputs should be improved if pos-
sible but the presented form is acceptable.)

Sample input 1:

xyzzy = -300000 + 5 * 7 - 3

xyzzy

Sample Output 1:

Function: main/0

Constants: 300000, 0, 5, 7, 3, None

Locals: xyzzy

Globals: print

BEGIN

LOAD_CONST 0

LOAD_CONST 1

ROT_TWO

BINARY_SUBTRACT

LOAD_CONST 2

LOAD_CONST 3

BINARY_MULTIPLY

BINARY_ADD

LOAD_CONST 4

BINARY_SUBTRACT

STORE_FAST 0

LOAD_FAST 0

LOAD_FAST 0

LOAD_GLOBAL 0

ROT_TWO

CALL_FUNCTION 1

POP_TOP

LOAD_CONST 5

RETURN_VALUE

END

Sample input 2:

tri = 1 + 2 + 3 + 4 + 5

pin = 1 * 2 * 3 * 4 * 5

ssq = 1*1 + 2*2 + 3*3 + 4*4 + 5*5

scb = 1*1*1 + 2*2*2 + 3*3*3 + 4*4*4 + 5*5*5

tri

pin

ssq

scb

1



Sample Output 2:

Function: main/0

Constants: 1, 2, 3, 4, 5, None

Locals: tri, pin, ssq, scb

Globals: print

BEGIN

LOAD_CONST 0

LOAD_CONST 1

BINARY_ADD

LOAD_CONST 2

BINARY_ADD

LOAD_CONST 3

BINARY_ADD

LOAD_CONST 4

BINARY_ADD

STORE_FAST 0

LOAD_FAST 0

LOAD_CONST 0

LOAD_CONST 1

BINARY_MULTIPLY

LOAD_CONST 2

BINARY_MULTIPLY

LOAD_CONST 3

BINARY_MULTIPLY

LOAD_CONST 4

BINARY_MULTIPLY

STORE_FAST 1

LOAD_FAST 1

LOAD_CONST 0

LOAD_CONST 0

BINARY_MULTIPLY

LOAD_CONST 1

LOAD_CONST 1

BINARY_MULTIPLY

BINARY_ADD

LOAD_CONST 2

LOAD_CONST 2

BINARY_MULTIPLY

BINARY_ADD

LOAD_CONST 3

LOAD_CONST 3

BINARY_MULTIPLY

BINARY_ADD

LOAD_CONST 4

LOAD_CONST 4

BINARY_MULTIPLY

BINARY_ADD

STORE_FAST 2

LOAD_FAST 2

LOAD_CONST 0

LOAD_CONST 0

BINARY_MULTIPLY

LOAD_CONST 0

BINARY_MULTIPLY

LOAD_CONST 1

LOAD_CONST 1

BINARY_MULTIPLY

LOAD_CONST 1

BINARY_MULTIPLY

BINARY_ADD

LOAD_CONST 2

LOAD_CONST 2

BINARY_MULTIPLY

LOAD_CONST 2

BINARY_MULTIPLY

BINARY_ADD

LOAD_CONST 3

LOAD_CONST 3

BINARY_MULTIPLY

LOAD_CONST 3

BINARY_MULTIPLY

BINARY_ADD

LOAD_CONST 4

LOAD_CONST 4

BINARY_MULTIPLY

LOAD_CONST 4

BINARY_MULTIPLY

BINARY_ADD

STORE_FAST 3

LOAD_FAST 3

LOAD_FAST 0

LOAD_GLOBAL 0

ROT_TWO

CALL_FUNCTION 1

POP_TOP

LOAD_FAST 1

LOAD_GLOBAL 0

ROT_TWO

CALL_FUNCTION 1

POP_TOP

LOAD_FAST 2

LOAD_GLOBAL 0

ROT_TWO

CALL_FUNCTION 1

POP_TOP

LOAD_FAST 3

LOAD_GLOBAL 0

ROT_TWO

CALL_FUNCTION 1

POP_TOP

LOAD_CONST 5

RETURN_VALUE

END

2


