
COS 301 Spring 2024 HW04 Points: 100. Pages: 2. Due 2024-04-03 09:05 a.m.

© 2024 Sudarshan S. Chawathe

Please follow the guidelines and submission procedure from the previous homework, replacing
the appropriate tags with hw04. (Reminder: Include a README file and sample inputs and
outputs as outlined there.) The rules for using outside resources are also similar to those
used earlier, as are other guidelines on code and input-output. As before, use of the class
discussion forum for elucidating the details is expected and strongly encouraged.

The main task for this homework is implementing a compiler for the extended
calculator language of HW02. (The program implemented for HW02 is an interpreter for
the extended calculator language.)

In more detail, the input consists of a valid program in the calculator language of calc.py
as discussed in class, extended to support the div and mod operators from HW02 (but not
the list operations of HW03). The output consists of (only) a well-formatted (using the
textbook’s conventions) JCoCo assembly language program such that, when that program
is executed (say, using the coco command), it performs the actions specified by the input
calculator program. In particular, the output of such an execution (of the output of this
homework’s compiler) should be exactly equal to the output of the interpreter from HW02
on the same input.

Unlike the previous homeworks, this homework’s program (the compiler) does not have a
uniquely specified correct output for a given input, since there are several assembly language
programs that are equivalent (in the above sense) to a given calculator language program.

The following sample inputs and outputs
illustrate some of these details. (The format-
ting of the outputs should be improved if pos-
sible but the presented form is acceptable.)

Sample Input 1:

xyzzy = -300000 + 5 * 7 - 3

xyzzy

Sample Output 1:

Function: main/0

Constants: 300000, 0, 5, 7, 3, None

Locals: xyzzy

Globals: print

BEGIN

LOAD_CONST 0

LOAD_CONST 1

ROT_TWO

BINARY_SUBTRACT

LOAD_CONST 2

LOAD_CONST 3

BINARY_MULTIPLY

BINARY_ADD

LOAD_CONST 4

BINARY_SUBTRACT

STORE_FAST 0

LOAD_FAST 0

LOAD_FAST 0

LOAD_GLOBAL 0

ROT_TWO

CALL_FUNCTION 1

POP_TOP

LOAD_CONST 5

RETURN_VALUE

END

Sample Input 2:

tri = 1 + 2 + 3 + 4 + 5

pin = 1 * 2 * 3 * 4 * 5

ssq = 1*1 + 2*2 + 3*3 + 4*4 + 5*5

scb = 1*1*1 + 2*2*2 + 3*3*3 + 4*4*4 + 5*5*5

tri

pin

ssq

scb

1



Sample Output 2:

Function: main/0

Constants: 1, 2, 3, 4, 5, None

Locals: tri, pin, ssq, scb

Globals: print

BEGIN

LOAD_CONST 0

LOAD_CONST 1

BINARY_ADD

LOAD_CONST 2

BINARY_ADD

LOAD_CONST 3

BINARY_ADD

LOAD_CONST 4

BINARY_ADD

STORE_FAST 0

LOAD_FAST 0

LOAD_CONST 0

LOAD_CONST 1

BINARY_MULTIPLY

LOAD_CONST 2

BINARY_MULTIPLY

LOAD_CONST 3

BINARY_MULTIPLY

LOAD_CONST 4

BINARY_MULTIPLY

STORE_FAST 1

LOAD_FAST 1

LOAD_CONST 0

LOAD_CONST 0

BINARY_MULTIPLY

LOAD_CONST 1

LOAD_CONST 1

BINARY_MULTIPLY

BINARY_ADD

LOAD_CONST 2

LOAD_CONST 2

BINARY_MULTIPLY

BINARY_ADD

LOAD_CONST 3

LOAD_CONST 3

BINARY_MULTIPLY

BINARY_ADD

LOAD_CONST 4

LOAD_CONST 4

BINARY_MULTIPLY

BINARY_ADD

STORE_FAST 2

LOAD_FAST 2

LOAD_CONST 0

LOAD_CONST 0

BINARY_MULTIPLY

LOAD_CONST 0

BINARY_MULTIPLY

LOAD_CONST 1

LOAD_CONST 1

BINARY_MULTIPLY

LOAD_CONST 1

BINARY_MULTIPLY

BINARY_ADD

LOAD_CONST 2

LOAD_CONST 2

BINARY_MULTIPLY

LOAD_CONST 2

BINARY_MULTIPLY

BINARY_ADD

LOAD_CONST 3

LOAD_CONST 3

BINARY_MULTIPLY

LOAD_CONST 3

BINARY_MULTIPLY

BINARY_ADD

LOAD_CONST 4

LOAD_CONST 4

BINARY_MULTIPLY

LOAD_CONST 4

BINARY_MULTIPLY

BINARY_ADD

STORE_FAST 3

LOAD_FAST 3

LOAD_FAST 0

LOAD_GLOBAL 0

ROT_TWO

CALL_FUNCTION 1

POP_TOP

LOAD_FAST 1

LOAD_GLOBAL 0

ROT_TWO

CALL_FUNCTION 1

POP_TOP

LOAD_FAST 2

LOAD_GLOBAL 0

ROT_TWO

CALL_FUNCTION 1

POP_TOP

LOAD_FAST 3

LOAD_GLOBAL 0

ROT_TWO

CALL_FUNCTION 1

POP_TOP

LOAD_CONST 5

RETURN_VALUE

END

2


