COS 301 Spring 2024 Midterm Exam 2 45 minutes; 45 pts; 5 questions; 4 pgs. 2024-04-10 09:00 a.m.

© 2024 Sudarshan S. Chawathe

Name:

Solutions

(

o Read all material carefully.

o If in doubt whether something is allowed, ask, don’t assume.

o You may refer to your books, papers, and notes during this test.

o E-books may be used.

o Computers are permitted but discouraged.

o Electronic and network resources must only be used as a passive library.
o Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.

o Use class and textbook conventions for notation, algorithmic options, etc.

Write your name in the space provided above.
Do not write anything else on this page.

2. (14 pts.) Consider the JCoCo assembly language program listed below.

(a) (7 pts.) Explain what the program does as precisely as possible. (Recall recent
classroom discussion of similar questions.) In particular, describe its output as a
function of its input.

(b) (7 pts.) Provide a complete JCoCo assembly language program that ex-
hibits the same input-output behavior as this one but whose code is shorter by
at least one instruction, or explain why no such shorter program is possible. If
your shorter program reuses parts of this program then you may indicate so in-
stead of rewriting those parts but only if the result is completely obvious and
unambiguous. Explain why your answer is correct.

Function: main/0

Constants: > 7’
Locals: x
Globals: print, input, split, len
BEGIN # operand stack states below, TOS is leftmost.
LOAD_GLOBAL 1 # [input]
LOAD_CONST 0 # [’ 7 7, input]
CALL_FUNCTION 1 # ["he lo wrld"] # assuming I = "he lo wrld" on stdin
DUP_TOP # ["he lo wrld", I]
LOAD_ATTR 2 # ["he lo wrld".split, II
CALL_FUNCTION O # [["he", "lo", "wrld"l, I] Let J = ["he", "lo", "wrld"]
DUP_TOP # [J, J, I
#

SETUP_LOOP label2 no change to op stack but block stack set up

GET_ITER # [iter(J), J, I]
labelO: FOR_ITER labell # ["he", iter(["lo", "wrld"l), J, I]
LOAD_CONST O # [7 7, "he", iter(["lo", "wrld"l), J, I
BUILD_LIST 2 # [["he", * 7 °], iter(["lo", "wrld"l), J, Il
LOAD_GLOBAL 0 # [print, ["he", > 7 °], iter(["lo", "wrld"l), J, I]
ROT_TWO # [["he", > ? ’], print, iter(["lo", "wrld"l), J, I]
CALL_FUNCTION 1 # [None, iter(["lo", "wrld"l), J, I]
POP_TOP # [iter(["1lo", "wrld"]), J, Il
JUMP_ABSOLUTE 1labelO # other iterations similar until iter is exhausted, then...
labell: POP_BLOCK # block stack popped, op stack: [J, I]
label2: RETURN_VALUE # J = ["he", "lo", "wrld"] returned from main

END

(®) The code has been commented to depict the state of the operand stack and a few
other details that explain the effect of each instruction, assuming (for illustration) that
the string he lo wrld followed by a newline is provided on standard input. (The
comments abbreviate it to I in some cases.) The program prints the string > ? ’ to
standard output and waits for input on standard input. Assuming the sample input
described above, the program then prints three lines to standard output:

[’he’, > P ;]
[)101’ > ? ;]
[Pwrld’, > 7]

In general, the program prints the initial prompt string > ? ’ and waits for input
terminated by a newline on standard input. It splits the read string into tokens sep-
arated by on white-space (e.g., tokens he, 1o, wrld). The resulting list is called J in
the comments. It then creates a two-element list for each token with the string > ?
> as the second item of that list (and the token as the first item), and prints that list
followed by a newline to standard output.

The program may be shortened in several ways. One simple way is deleting the first
DUP_TOP instruction (with no other changes). The resulting program will operate in
a manner very similar to above but the operand stack will not contain the rightmost
"he lo wrld" string. The lack of this string at the bottom of the stack does not
change the input-output behavior of the program because that string is never accessed
by the original program and remains on the operand stack of that program just before
it terminates (and so is useless).

. (15 pts.) Provide a complete JCoCo assembly language program that

(a) Reads two newline-terminated string from standard input (one string per line).
(b) Writes a single integer n followed by a newline to standard output, where n is the
product of the lengths (in characters) of the two input strings.
Explain why your program is correct.

(®) [There are several correct answers.] The code appears below, with material after a
on each line representing a comment for a human (not part of the program). Within
that comment, the state of the operand stack is depicted before the second #, as a list

with the top-of-stack leftmost. The general plan of action of the program is to loads
the print function in preparation for the final printing. Then it reads the first line from
stdin and compute its length (leaving it on the stack). This sequence of instructions is
repeated to read the second line and compute the length, also leaving it on the stack.
The two lengths on the stack are next multiplied to give the integer to be printed. The
comments assume that the input lines are foo and barbaz for illustration.

Function: main/0

Constants: ""

Globals: print, input, len

BEGIN
LOAD_GLOBAL
LOAD_GLOBAL
LOAD_CONST
CALL_FUNCTION
LOAD_GLOBAL
ROT_TWO
CALL_FUNCTION
LOAD_GLOBAL
LOAD_CONST
CALL_FUNCTION
LOAD_GLOBAL
ROT_TWO
CALL_FUNCTION 1
BINARY_MULTIPLY
CALL_FUNCTION 1
RETURN_VALUE

END

[print] # (0) Pushes print fn for use at the end (1).

[input, print] # (2) Pushes input function.

["", input, print] # (3) Pushes arg for input function.

["foo", print] # (4) Invokes input("") to read string from stdin.
[len, "foo", print] # (5) Pushes the len function.

["foo", len, print] # (6) Puts len’s arg is above it.

[3, print] # (7) Invokes len("foo")

[input, 3, print] # Similar to (2).
#
#
#
#
#
#
#
#

N =, O+~ O

["", input, 3, print] # Similar to (3).

["barbaz", 3, print] # Similar to (4).

[len, "barbaz", input, 3, print] # Similar to (5).

["barbaz", len, 3, print] # Similar to (6).

[4, 3, print] # Similar to (7).

[12, print] # args to multiply are TOS and TOS1.

[None] # Print function loaded at (0) called with above as arg.
[1 # Above None returned from main.

N = O = =

. (6 pts.) For each of the following Standard ML expressions, provide the response when
that expression is evaluated by the sm1 REPL (read-eval-print loop). Assume that the
expressions are evaluated in the order listed. In your response, draw a box around the
type and oval around the value. (If there is an error then clearly explain the error.)

(a) (2 pts.) 42.42 / 2.0; &) val it = :

(b) (2pts.) 42 / 2; (&) Error because operator / requires real operands but the ones
in the expression are int. [However, for grading, we will accept 21, int or 21.0,
real as answers for this exam (only!) since this topic was only lightly covered.]

(c) (2 pts.) 42 / 2.0; (&) Error because operator / requires real operands but the
numerator in the expression is int.

®

. (8 pts.) For each of the following SML expressions: (1) State its type and (2) explain
how that type is inferred (using the recent classroom discussion type inference as a
model).

() (4 pts)
fun £f101(x) = x + 101; (&) The type is (a function) int -> int. Inference:

3

101 is an int, so x must also be an int in order for x + 101 to be valid. So the
domain of the function is int. The result of x + 101 is also an int and so the
codomain of the function is also an int.

(4 pts.)

fun £301 (i, j) =
if i < j then
2*x1i+ 3j+1
else
j * £301(1 - 1, j + 1);

(&) The type is (a function) int * int -> int. [For this exam we will also
accept int, int -> int.] Inference: In the true arm of the if expression, the
function returns the result of an arithetic expression with 2 and 1, which are ints,
and i and j, which must therefore also be ints. So the domain of the function
(whose arguments are i and j) is int * int. Similarly, in that case, the result is
also an int, so the codomain of the function is int (in all cases, because it cannot
change based on the predicate of the if expression).

