
COS 451 Fall 2024 HW01 100 pts.; 3 pages. Due 2024-09-27 09:05 a.m.

© 2024 Sudarshan S. Chawathe.

The main task for this homework assignment is implementing an interpreter for the lan-
guage Lexaard (language for exploring automata and related doodads), outlined below. The
description covers the main points but is not exhaustive. Using discussions in class and on
the class discussion forum for clarifications and further details is part of the required work,
as is proper packaging and submission.

The language consists primarily of newline-terminated statements, with exceptions noted
below. Each statement, and each line of the input, consists of whitespace-separated tokens,
where whitespace is a nonempty sequence of any mix of spaces and tabs. Whitespace at the
beginning and end of a line is permitted but not required. The first token of each statement
is a verb that determines how the rest of the statement is interpreted. The language uses
only an easily printable subset of the 7-bit ASCII character set (letters, digits, punctuation,
space, tab, newline) and is case sensitive.

The language has three types of objects: symbols, strings, and automata. Symbols
are unquoted strings (sequences of characters) that follow the typical rules for identifiers
in a language such as Java or C. Examples: x, m101, my first automaton. Strings use
the familiar quoted representation. Examples: "x", "am I a string?". Automata are
represented as suggested by the following two equivalent representations of the automaton
M1 from page 36 of the textbook.1 (For clarity, we use to denote a space character. There
is a single newline character terminating each line, and a single blank line that terminates
each representation.)

fsa

m101

 0 1

 q1 q1 q2

*q2 q3 q2

 q3 q2 q2

fsa

m101 a rather pointless comment

 0 1

q1 q1 q2

*q2 q3 q2

q3 q2 q2

An FSA’s representation always begins with the literal fsa followed by a newline. The
first token on the next line (m101 above) is a descriptive identifier associated with the au-
tomaton. Any further tokens on this line are ignored. The next line lists the alphabet of
the automaton ({0, 1} above). These lines are followed by one line for each state of the
automaton (three lines for states q1, q2, and q3 above) in turn followed by a blank line.
The state listed first (q1) is the start state of the automaton. An accepting state is denoted
by adorning its line with a * prefixed to the state’s name in the leftmost column. The
representation suggested above is intentionally very similar to the usual tabular description
of an automaton’s state-transition table, such as the one on page 36 of the textbook. For
example, δ(q3, 1) = q2 above. The intuitive formatting illustrated on the left is required in
the output, but not required in the input.

The interpreter must produce output exactly when and as described below for each state-
ment. In particular, it must not produce extraneous output such as prompts and informative

1Michael Sipser, Introduction to the Theory of Computation, 3rd edition (Cengage Learning, 2013).

1

feedback unless noted below. The descriptions use typewriter font for literal text and italic
font for meta-variables.

quit Terminate the interpreter gracefully (even if there is additional data on standard in-
put). The end of standard input is treated as an implicit quit statement.

print x Print the external representation of the object named x. It is not an error if x is
undefined; print nothing in this case. Automata should be printed in the well-formatted
manner illustrated by the first depiction m101 earlier.

define x v Define the name x to be the object represented by v.

run x i Run the automaton named x on the input string literal i. It is an error if x is not
defined to be an automaton. The output is a single line containing accept or reject
depending on whether the automaton accepts or rejects the input.

run x n As above, except n is the name of a previously defined string that is used as input
to the automaton.

Blank lines, i.e., lines composed of only whitespace, are ignored, except when they are used
in representations of objects. For this submission, you may assume that all test input will
be valid; however, you are encouraged to implement at least rudimentary error checking.

define x "01011"

print x

define x "1101011"

print x

define m1 fsa

m1

 0 1

 q1 q1 q2

*q2 q1 q2

print m1

run m1 "000101010010"

run m1 "0001010100101"

run m1 "0001010100100"

run m1 x

quit

01011

1101011

m1

 0 1

 q1 q1 q2

*q2 q1 q2

reject

accept

reject

accept

Figure 1: Sample input (left) and output (right).

The submission consists of an single electronic package that contains the source code,
following the submission procedure described in class and on the class discussion forum.
Using the discussion forum to clarify details of both the main program and the submission
format and procedures is an important part of this homework. Packaging and documentation
of code are worth a very significant portion of the grade. Use the gzipped tar (strongly
preferred) or zip formats to package your submission. Name the electronic submission using

2

the template
cos451-hw01-lastname -firstname -pqrs.tgz

where lastname and firstname are replaced by the obvious and pqrs is replaced by a
4-digit string of your choosing. (Replace .tgz with .zip if you use zip instead of tar for
packaging.) The submission should be designed so that the command

tar zxf cos451-hw01-lastname -firstname -pqrs.tgz

results in the creation of a directory cos451-hw01-lastname -firstname -pqrs . In that
directory should be all the source code (organized in further sub-directories as needed) as
well as a README file with the usual semantics. Do not submit any kind of non-source
files (results of compilation, etc.). Running make in the above directory should result in
the creation of an executable file called lexaard that implements the Lexaard interpreter
described here.

The interpreter should read from standard input and write to standard output (and
optionally standard error). Please be sure to understand what these terms mean (they do
not mean “terminal”) and to ensure that your programs do not make additional assumptions
(such as interactive input/output at a terminal).

You are welcome to use any inanimate resources (e.g., books, Web sites, publicly avail-
able code) to help you with your work. However, all such help must be clearly noted in your
submissions. Further, no matter what you use, you must be able to explain, in detail, how it
works. (You may be called upon to explain your homework individually.) Refer to the class
policy for details, and ask for clarifications if you are unsure if something is allowed.

The README file should be a plain text file (not PDF, .docx, etc.) that includes, at
a minimum, the following:
◦ Class information (University of Maine, COS 451, Fall 2024).
◦ Author information (your name)
◦ Primary (@maine.edu) email address.
◦ Date in an unambiguous format
◦ A brief summary of the contents of the submitted package (file-wise).
◦ A brief description of what the submitted code does.
◦ Instructions for compiling the code. (Ideally, just typing ’make’ should work, but any

special requirements or wrinkles should be noted here.)
◦ Instructions for running and testing the code.
◦ Known bugs, limitations, etc.
◦ Any other information that will help someone understand the submitted material.

3

