
Programming Languages: Syntax

Sudarshan S. Chawathe
2025-09-08

School of Computing and Information Science
& Climate Change Institute
University of Maine



Announcements and Reminders

• Sound and visuals check.
• Introductions (continued).
• Read the textbook:

• Kent D. Lee. Foundations of Programming Languages. Undergraduate Topics in
Computer Science. Springer Nature, 2nd edition, December10 2017

• Sections as announced.
• Syllabus.

• will be posted on (and is most of) main Web site:
• http://chaw.eip10.org/cos301/

• also linked from my Web page, etc.
• Brightspace for some things only.

• discussion forum.
• homework and other submissions.
• not yet active.

Sudarshan S. Chawathe, Programming Languages: Syntax 1

http://chaw.eip10.org/cos301/


Plan for today

• Scanning (lexing) and parsing (yaccing).
• huh? what? why? how?

• Material mostly from beginning of Chapter 2 of the textbook.
• What is syntax (for programming languages)?
• What are some standard ways of specifying syntax?
• Regular expressions, [E]BNF, CFG.
• Theory of CFGs etc.
• Parse trees and abstract syntax trees (AST).

• Bigger picture question (related to homework):
• How to implement a simple language like:

• x = 5 + 3
• y = 48 / (4 * 4)
• z = x + 2 * y
• etc.

Sudarshan S. Chawathe, Programming Languages: Syntax 2



Show me the code!

• Example: lexing and yaccing in python using PLY.
• Just a peek/teaser today; more a bit later.

• Switch to code.

Sudarshan S. Chawathe, Programming Languages: Syntax 3



The semantics of syntax and semantics

• syntax
• appearance
• superficial structure
• examples

• foo(42); v. (foo 42)
• if foo then bar; else baz; v. (if foo bar baz)

• can be statically checked
• statically = without running the program, usually at compile time.

• semantics
• meaning
• deep structure
• examples

• (f0 (f1) (f2)) in Common Lisp v. Scheme.
• may not be statically checkable

• more complex than above, but OK for now.
Sudarshan S. Chawathe, Programming Languages: Syntax 4



Specifying syntax: context-free grammars (CFG)

• A formal method for specifying syntax
• not the only way, but most widely used.
• because it has just about the right amount of expressive power

• regular expressions: not enough (for typical PLs)
• context-sensitive grammars, Turing machines, etc.: too much

• A PL’s syntax is specified by a CFG
• but how is the CFG specified?
• and then how is that specified?
• . . . ?

• A metalanguage specifies a language.
• a meta meta language specifies a metalanguage
• . . .
• at some point it is simple enough that we can stop (we hope!)

• "It’s turtles all the way down!"

Sudarshan S. Chawathe, Programming Languages: Syntax 5



Context-free grammars (CFG)

• Contrast with context-sensitive grammars.
• informally, those can say things like whether "blue" qualifies as a "color" depends on

the context in which "color" is used.
• very interesting but we won’t pursue here.

• In a CFG whether "blue" is a "color" cannot depend on the context in which
"color" is used.

• Specified using (E)BNF
• Extended Backus-Naur Form
• not the only way, but most common

Sudarshan S. Chawathe, Programming Languages: Syntax 6


