
Programming Languages: Syntax

Sudarshan S. Chawathe
2025-09-12

School of Computing and Information Science
& Climate Change Institute
University of Maine

Announcements and Reminders

• Sound and visuals check.
• Main online resource: Class Web site:

• http://chaw.eip10.org/cos301/
• also linked from my Web page, etc.

• Homework HW01 posted on class Web site.
• Work early, work often.

• Syllabus:
• Posted on (and is most of) main Web site.
• Gen AI policy.

• Brightspace for some things only.
• discussion forum: Please use!
• homework and other submissions.

Sudarshan S. Chawathe, Programming Languages: Syntax 1

http://chaw.eip10.org/cos301/

Plan for today

• Continuing where we left off.
• (Recall) Material mostly from beginning of Chapter 2 of the textbook.

• (Review) What is syntax (for programming languages)?
• (Review) What are some standard ways of specifying syntax?
• Regular expressions, [E]BNF, CFG.
• Theory of CFGs etc.
• Parse trees and abstract syntax trees (AST).

• (Review) Bigger picture question (related to homework):
• How to implement a simple language like:

• x = 5 + 3
• y = 48 / (4 * 4)
• z = x + 2 * y
• etc.

Sudarshan S. Chawathe, Programming Languages: Syntax 2

(Review) The semantics of syntax and semantics

• syntax
• appearance
• superficial structure
• examples

• foo(42); v. (foo 42)
• if foo then bar; else baz; v. (if foo bar baz)

• can be statically checked
• statically = without running the program, usually at compile time.

• semantics
• meaning
• deep structure
• examples

• (f0 (f1) (f2)) in Common Lisp v. Scheme.
• may not be statically checkable

• more complex than above, but OK for now.
Sudarshan S. Chawathe, Programming Languages: Syntax 3

(Review) Specifying syntax: context-free grammars (CFG)

• A formal method for specifying syntax
• not the only way, but most widely used.
• because it has just about the right amount of expressive power

• regular expressions: not enough (for typical PLs)
• context-sensitive grammars, Turing machines, etc.: too much

• A PL’s syntax is specified by a CFG
• but how is the CFG specified?
• and then how is that specified?
• . . . ?

• A metalanguage specifies a language.
• a meta meta language specifies a metalanguage
• . . .
• at some point it is simple enough that we can stop (we hope!)

• "It’s turtles all the way down!"

Sudarshan S. Chawathe, Programming Languages: Syntax 4

(Review) Context-free grammars (CFG)

• Contrast with context-sensitive grammars.
• informally, those can say things like whether "blue" qualifies as a "color" depends on

the context in which "color" is used.
• very interesting but we won’t pursue here.

• In a CFG whether "blue" is a "color" cannot depend on the context in which
"color" is used.

• Specified using (E)BNF
• Extended Backus-Naur Form
• not the only way, but most common

Sudarshan S. Chawathe, Programming Languages: Syntax 5

(Review) Terminals and nonterminals

• terminals or tokens
• ≈ granules of the program source that are not analyzed internally by the CFG

• but may be analyzed internally by the lexer.
• examples

• =
• ;
• avonum
• 6.022E23

• nonterminals or syntactic categories
• have components that are specified and analyzed by a CFG
• examples

• assignment statement: avonum = 6.023;
• return statement: return 42;
• predicate: avonum > 42

Sudarshan S. Chawathe, Programming Languages: Syntax 6

(Review) BNF: Backus-Naur Form(at)

• BNF spec = set of rules
• N.B.: above spec is in a meta meta language.

• Each rule has the form:
• nonterminal ::= sequence of terminals and nonterminals

• again a meta-meta-language spec.
• ::= = "is" or "is composed of" or "can be replaced by"

• Examples
• assignment-statement ::= variable-name assignment-operator rval ; ;

• meta-language (BNF): ::=, ;
• language: (C-like): ;

• assignment-operator ::= = ;
• statements ::= statement statements | ;

• | is short-hand for multiple rules with same LHS.

Sudarshan S. Chawathe, Programming Languages: Syntax 7

(Review) BNF example

• from textbook
<primitive-type> ::= boolean | char | byte | short | int | long | float | ...
<argument-list> ::= <expression> | <argument-list> , <expression>
<selection-statement> ::= if (<expression>) <statement>
^^I^^I^^I| if (<expression>) <statement> else <statement>
^^I^^I^^I| switch (<expression>) <block>
^^I^^I^^I;

• Exercises
• For each component above: Is it in language or meta-language?
• Describe in English as precisely as possible.
• Provide illustrative examples (in the language) making reasonable assumptions.

Sudarshan S. Chawathe, Programming Languages: Syntax 8

EBNF = Extended BNF

• BNF + some convenience features
• foo? or [foo] = optional foo

• exercise: language v. metalanguage elements above

• foo* or {foo} = a sequence of zero or more foo
• foo+ = a sequence of one or more foo
• parentheses (in metalanguage; language may have them too!)

• (foo bar)+ = sequence of one or more instances of foo bar
• (())+ = sequence of one or more ().

• !!

Sudarshan S. Chawathe, Programming Languages: Syntax 9

CFG formally

• G = (N, T , P, S)
• N: a set of symbols (nonterminals)
• T : another set of symbols (terminals)

• N ∩ T = ∅
• P: set of productions

• each of form n → α where
• where n ∈ N and α ∈ {N ∪ T}∗

• S ∈ N: special nonterminal called start

Sudarshan S. Chawathe, Programming Languages: Syntax 10

CFG for infix expressions

• example from the textbook

Sudarshan S. Chawathe, Programming Languages: Syntax 11

