Programming Languages: Syntax

Sudarshan S. Chawathe

2025-09-15

School of Computing and Information Science

& Climate Change Institute

University of Maine

Announcements and Reminders

- Sound and visuals check.
- Main online resource: Class Web site:
 - http://chaw.eip10.org/cos301/
 - also linked from my Web page, etc.
 - Includes (is) syllabus.
- Brightspace for some things only.
 - discussion forum.
 - homework and other submissions.
- Homework HW01 due soon, not trivial.
- Rules for use of Gen Al.

Plan for today

- Homework HW01 Q&A.
- (Continuing) Material from Chapter 2 of the textbook.
 - (Review) [E]BNF, CFG.
 - Theory of CFGs etc.
 - Parse trees and abstract syntax trees (AST).
- (Review) Bigger picture question (related to homework):
 - How to implement a simple language like:
 - x = 5 + 3
 - y = 48 / (4 * 4)
 - z = x + 2 * y
 - etc.

(Review) Terminals and nonterminals

- terminals or tokens
 - pprox granules of the program source that are not analyzed internally by the CFG
 - but may be analyzed internally by the *lexer*.
 - examples
 - =
 - :
 - avonum
 - 6.022E23
- nonterminals or syntactic categories
 - have components that are specified and analyzed by a CFG
 - examples
 - assignment statement: avonum = 6.023;
 - return statement: return 42;
 - predicate: avonum > 42

(Review) BNF: Backus-Naur Form(at)

- BNF spec = *set* of rules
 - N.B.: above spec is in a meta meta language.
- Each rule has the form:
 - nonterminal ::= sequence of terminals and nonterminals
 - again a meta-meta-language spec.
 - ::= = "is" or "is composed of" or "can be replaced by"
- Examples
 - assignment-statement ::= variable-name assignment-operator rval ; ;
 - meta-language (BNF): ::=, ;
 - language: (C-like): ;
 - assignment-operator ::= = ;
 - statements ::= statement statements | ;
 - | is short-hand for multiple rules with same LHS.

(Review) BNF example

from textbook

Exercises

- For each component above: Is it in language or meta-language?
- Describe in English as precisely as possible.
- Provide illustrative examples (in the language) making reasonable assumptions.

(Review) EBNF = Extended BNF

- BNF + some convenience features
- foo? or [foo] = optional foo
 - exercise: language v. metalanguage elements above
- foo* or {foo} = a sequence of zero or more foo
- foo+= a sequence of one or more foo
- parentheses (in metalanguage; language may have them too!)
 - (foo bar)+ = sequence of one or more instances of foo bar
 - (())+= sequence of one or more ().
 - !!

(Review) Discussion from end of previous class

- $(a b)^* \stackrel{?}{=} (a b) + ?$
- $(a b)+? \stackrel{?}{=} (a b)?+$
- etc.
- Elements of language, metalanguage, meta-metalanguage.
- Practice proving and disproving such statements.

CFG formally

- G = (N, T, P, S)
 - N: a set of symbols (nonterminals)
 - T: another set of symbols (terminals)
 - $N \cap T = \emptyset$
 - *P*: set of *productions*
 - each of form $n \to \alpha$ where
 - where $n \in N$ and $\alpha \in \{N \cup T\}^*$
 - $S \in N$: special nonterminal called *start*

CFG for infix expressions

example from the textbook

Derivations

- Main question: Can a given string of tokens (terminals) be generated by a given grammar?
 - If so, how? Show the steps starting with the start symbol.
 - Is the derivation unique?
 - Is the leftmost derivation unique?
- Switch to example and practice in textbook.

Parse Trees

- Informally, a tree that has S as root and the children of each node are the items on the RHS of the rule that was used to replace the corresponding nonterminal. (Leaves correspond to terminals.)
- Example for infix expressions.
- Switch to practice problems.

Abstract Syntax Trees

- closely related to, but different from, parse trees.
- abstract away unimportant details such as order in which a sequence of nonterminals is expanded.
- Two main changes:
 - Nonterminal nodes are replaced by corresponding parts of the input sentence.
 - Unit productions are collapsed.
- Example for infix expressions.
- Practice problems in textbook.

Summary

- (E)BNF, CFGs, derivations, parse trees, ASTs.
- Bigger picture:
 - Process source code into AST
 - then we can interpret or compile it etc.
- Class Web site: http://chaw.eip10.org/cos301/