Programming Languages: Syntax

Sudarshan S. Chawathe

2025-09-24

School of Computing and Information Science & Climate Change Institute
University of Maine

Announcements and Reminders

- Sound and visuals check.
- Main online resource: Class Web site:
 - http://chaw.eip10.org/cos301/
 - also linked from my Web page, etc.
 - Includes (is) syllabus.
 - Brightspace for some things only.
- PLY: Install, study examples, modify, experiment, etc.
- Quiz 1 Friday.
 - Topics:
 - Everything discussed in class, and/or
 - Sections 2.0–2.6.
 - focus on:
 - material discussed in class
 - class exercises
 - Practice problems. (2 parses.)

Plan for today

- (Review) Quick wrap-up of tokenization part of PLY example.
 - and very quick introduction to rest.
- Material from Chapter 2 of the textbook.
- Review: CFG, rules, derivations,
- Review: Parse trees (2.5) and abstract syntax trees (AST) (2.6).
- (Reminder) Bigger picture question (related to homework):
 - How to implement a simple language like:
 - x = 5 + 3
 - y = 48 / (4 * 4)
 - z = x + 2 * y
 - if-then-else, function definitions, loops, ...

Show me the code!

- PLY example (continued).
 - calc.py from the examples in the PLY package/sources.
 - If your package doesn't include the examples, grab them from PLY's Github page.
- (Review) Precedence in PLY v using purely CFG rules.
- Reminder: experiment.
 - Don't just download and install and forget.
- Switch to code.

(Review) CFG formally

- G = (N, T, P, S)
 - N: a set of symbols (nonterminals)
 - T: another set of symbols (terminals)
 - $N \cap T = \emptyset$
 - *P*: set of *productions*
 - each of form $n \to \alpha$ where
 - where $n \in N$ and $\alpha \in \{N \cup T\}^*$
 - $S \in N$: special nonterminal called *start*

(Review) CFG for infix expressions

• example from the textbook

(Review) Derivations

- Main question: Can a given string of tokens (terminals) be generated by a given grammar?
 - If so, how? Show the steps starting with the start symbol.
 - Is the derivation unique?
 - Is the leftmost derivation unique?
- Switch to example and practice in textbook.

(Review) Parse Trees

- Informally, a tree that has S as root and the children of each node are the items on the RHS of the rule that was used to replace the corresponding nonterminal. (Leaves correspond to terminals.)
- Example for infix expressions.
- Switch to practice problems.

(Review) Abstract Syntax Trees

- closely related to, but different from, parse trees.
- abstract away unimportant details such as order in which a sequence of nonterminals is expanded.
- Two main changes:
 - Nonterminal nodes are replaced by corresponding parts of the input sentence.
 - Unit productions are collapsed.
- Example for infix expressions.
- Practice problems in textbook.

Summary

- (E)BNF, CFGs, derivations, parse trees, ASTs.
- CFG formal definition.
- Practical examples of CFGs.
- PLY, lex and yacc.
- Bigger picture:
 - Process source code into AST
 - then we can interpret or compile it etc.
- Class Web site: http://chaw.eip10.org/cos301/