© 2022 Sudarshan S. Chawathe

Today Introduction; preliminaries. $\S 0.*.^1$

Next class Finite-state automata (FSAs). §§ 1.{0,1} (thoroughly); § 6.1 (best effort). **Reminders** Newsgroup. **aturing** accounts. Homework soon.

- 1. Write your name in the space below.
- 2. 1000 keys to success:
 - (a) Remove ______; this work needs undivided attention and sharp focus.
 - (b) Read assigned material _____ and after class.
 - (c) Read in ______ -mode, not in fiction-mode or speed-mode.
 - (d) Mathematical reading is a _____ activity.
 - (e) Use the _____ for questions and discussions outside class.
 - (f) Do not be _____ by difficulties.
 - (g) You should be very _____ if everything seems easy.
 - (h) Go back and forth between intuitive and ______ statements.
- 3. Let $A = \{1, 2, 4, 8, 16, \dots, 1024\}$ and $B = \{n \in \mathbb{Z} \mid 0 < n \le 100 \land \sqrt{n} \in \mathbb{Z}\}.$
 - (a) Provide a compact implicit definition of A.
 - (b) Enumerate (provide an explicit listing of) the elements of B.
 - (c) Enumerate each of the following. You may abbreviate if the result is clear and unambiguous.
 - i. $A \cup B$
 - ii. $A \cap B$
 - iii. $A \setminus B$
 - iv. $A \times B$
 - v. $\mathcal{P}(B)$

¹Throughout this course, section numbers such as these will, by default, refer to the textbook: Michael Sipser. *Introduction to the Theory of Computation*. Cengage Learning, 3rd edition, 2013.

- 4. With all variables ranging over the set Z, for each of the following logical sentences, (1) provide a brief but precise English equivalent, (2) provide a prenex normal form equivalent, and (3) either prove or disprove it.
 - (a) $\forall y \exists x [\nexists w [w = x^2] \land \exists z [x < y < z]]$
 - (b) $\exists x \forall y [\nexists w [w = x^2] \land \exists z [x < y < z]]$