
COS 451 Fall 2024 HW03 100 pts.; 2 pages. Due 2024-12-13 23:59

© 2024 Sudarshan S. Chawathe.

fsa

n101 see textbk p54

 0 1 ..

 q1 q1 q1 ,q2 ..

 q2 q3 .. q3

 q3 .. q4 ..

*q4 q4 q4 ..

The goal of this assignment is to solidify our understanding
of finite-state automata and their properties. We have studied
these concepts abstractly in class and in readings, and worked
out a few small concrete examples by hand as well. We will
now study them in a more exhaustively concrete setting by
implementing the algorithms and transformations described in
proofs and elsewhere. As a vehicle for this study, we will ex-
tend the Lexaard language of the previous assignment. Follow
earlier guidelines for packaging, submission, and allowable use of resources, using the tag
hw03 instead of hw01 in the appropriate places.

1. Extend Lexaard to support nondeterministic finite-state automata (NFAs). In partic-
ular, extend the define, print, and run statements to work with NFAs. The syntactic
representation of NFAs in Lexaard is very similar to the representation used for de-
terministic automata (DFAs) earlier, as illustrated by the above representation of the
NFA N1 from page 54 of the textbook. The representation of NFAs extends the earlier
representation of DFAs as follows:

� The alphabet row may include the token .. (two adjacent periods) to represent
the empty string ε. Entries in each subsequent row in the column corresponding
to this token denote the destinations of ε-transitions from the state in the first
column of that row. In the example above, the last entry in the fifth row denotes
an ε-transition from q2 to q3.

� In the transition rows which follow the alphabet row, each entry denoting a tran-
sition’s set of destination states represents those states as a comma-separated list.
There is a single comma between adjacent states in this representation, with no
whitespace or other delimiters. The empty set of states is represented by the to-
ken .. (two adjacent periods). Although this token is identical to that used for ε
in the alphabet row, the meaning is clear from the context (transition rows v. al-
phabet row). The states in each entry should be listed in lexicographic order by
name, but Lexaard should accept lists in other orders too. In the example above,
the third column of the fourth row denotes the transition δ(q1, 1) = {q1, q2} and
the third column of the fifth row denotes δ(q2, 1) = ∅.

A nice feature of this representation is that an NFA that does not use any nondeter-
ministic features is syntactically identical to the corresponding DFA.

2. Extend Lexaard with a function nfa2dfa that converts NFAs to equivalent DFAs by
implementing the algorithm described in the proof of Theorem 1.39 in the textbook.
The function is invoked in the language by listing its name followed by its argument,
which must be the name of an FSA defined earlier. Applying nfa2dfa to a DFA is
not an error. For example, if n4 is a name bound to the NFA N4 on page 57 of the

1

textbook then the following binds n4dfa to the DFA of Figure 1.43 on page 58:
define n4dfa nfa2dfa n4

3. Extend Lexaard with a function dfaUnion that implements the algorithm described
in the proof of Theorem 1.25 on page 45 of the textbook. This function is invoked by
listing its name followed by the names of two DFAs. If d1 and d2 are bound to DFAs
then the following statement binds d1ord2 to a DFA that recognizes the union of the
languages of d1 and d2:
define d1or2 dfaUnion d1 d2

4. Extend Lexaard with functions that implement the NFA union, concatenation, and star
operations using the algorithms described in the proofs of Theorems 1.45, 1.46, and
1.47 in the textbook. These functions are named nfaUnion, nfaConcat, and nfaStar,
respectively, and are invoked using a syntax similar to that used by functions nfa2dfa
and dfaUnion above. For example, if nn1 and nn2 are bound to the NFAs N1 and N2

of Figure 1.48 on page 61 of the textbook then the following statement binds nn1nn2

to the NFA N suggested by that figure:
define nn1nn2 nfaConcat nn1 nn2

2

