
Beacon Placement for Indoor Localization using Bluetooth

Sudarshan S. Chawathe

Abstract— We describe a method for determining the location
of a mobile device, such as a handheld computer or mobile
phone, in an indoor environment using Bluetooth beacons. Since
it uses inexpensive commodity devices, this method is inexpen-
sive to deploy. The limited range of Bluetooth reception is used
to advantage. Another important advantage of this method is
that it allows the mobile device to determine its location while
remaining anonymous, unidentified to the beacons or other
nearby devices. In such a deployment, an important design
task is the placement of beacons. Signal propagation in indoor
environments is complex, affected by factors such as floor-plans

and duct-work, varying transmission and reflection properties
of building materials and furniture, and interference from other
devices. Therefore, the area from which a beacon is visible is
very irregular and not well approximated by simple models
such as ellipsoids. Our solution permits complex reception
characteristics to be accurately modeled and provides a simple
method for choosing beacon locations.

I. INTRODUCTION

L
OCALIZATION refers to the task of determining the

location of a traveler in a specified coordinate system,

which is subject to topological constraints, using a mobile

device carried by the traveler. Perhaps the most common

example is terrestrial localization in the WGS84 reference

frame using a mobile GPS receiver and the infrastructure

of GPS satellites [1]. Recent years have witnessed a rapid

commoditization of GPS hardware and related products, as

well as other similar technologies, so that outdoor localiza-

tion is now inexpensive and accessible. Indoor localization

refers to the task of localizing a traveler, using a suitable

mobile device, in typical indoor environments, such as office

buildings, airports, and railway stations. Although there have

been notable advances in this area as well, the progress in

indoor localization has lagged that in outdoor localization.

For example, while it is possible to purchase a device for less

than 100 USD that provides not only location information

over several countries but also features such as mapping and

navigation, no such option exists for localization in major

airports, railway stations, and large office buildings.

In some aspects, indoor localization is simpler than out-

door localization. For instance, the geographical area covered

is much smaller, and the expected speeds of travel are much

lower. However, other aspects make indoor localization much

more challenging. Chief among these is the unsuitability

of GPS and related technologies. In addition to problems
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receiving reliable signals from satellites, or other outdoor

beacons, in complex indoor environments, the requirements

of indoor localization are also more stringent. For example,

a vertical positioning uncertainty of several meters does not

pose much of a problem for outdoor GPS applications such

as route guidance for cars. However, inside a building, that

uncertainty translates into uncertainty in the floor of the

building. More generally, topological constraints in indoor

environments are much more complex than those in outdoor

environments. For these and other reasons, prior work on

indoor localization has looked to several alternative methods,

such as the use of visual markers that are detected by mobile-

phone cameras, ultrasonic signals, RFID, and 802.11. Each

of these methods has its strengths and weaknesses and, in

this paper, our focus is on using Bluetooth signals for indoor

localization.

The Bluetooth standard was devised for short-range (few

meters) communication and therefore most Bluetooth devices

have very limited range. The short range, compared to

alternatives such as 802.11, has some disadvantages: For

instance, a much larger number of devices must be deployed

in order to provide adequate coverage. However, the short

range is also a significant advantage. One of the problems

identified by prior work on 802.11-based localization is that

it is extremely difficult to accurately judge the distance from

a beacon, using signal strength or other properties, due to

complex signal propagation artifacts. With the short range

of Bluetooth devices, this problem is significantly mitigated.

In effect, if a mobile device detects a Bluetooth beacon then

it is very likely that the beacon is only a few meters away. In

contrast, an 802.11 beacon may be detected even if it is two

buildings away. Our work takes advantage of this feature

to yield an indoor localization scheme that is inexpensive

and easy to deploy. Another benefit of Bluetooth is that the

transceivers are extremely inexpensive, costing less than 3

USD in bulk.

Our method is based on deploying a large number of

very inexpensive Bluetooth-based beacons (costing roughly

5 USD each). Localization is performed using a cell-based

method that determines the region of intersection of visible

beacon ranges. We describe this process in Section II. An

important question that arises in this situation is where the

beacons should be placed in order to achieve the most accu-

rate localization for a given number of beacons. We describe

this problem in Section III and model it formally as the

problem of finding a maximum-resolution sub-hypergraph.

Section IV addresses the solution of this problem. We



describe some implementation issues in Section V, including

a description of our beacons. We discuss related work in

Section VI and conclude in Section VII.

II. LOCALIZATION USING BLUETOOTH BEACONS

Localization using beacons may be achieved using a

variety of techniques, such as triangulation, trilateration, mul-

tilateration, and cell-based methods. Triangulation requires

the measurement of angles between the line connecting two

beacons and the line of sight from each of the beacons to

the traveler. It is therefore not suitable for Bluetooth and

other radio frequency technologies, but may be successfully

applied for a system of visual beacons. The related rho-theta

method, based on measuring the distance and angle to a

single beacon, suffers from a similar drawback for Bluetooth.

We note that sometimes the term triangulation is used as a

synonym for trilateration, described next, but the two are

quite different.

Trilateration requires the computation of the distance of

the traveler from each of three beacons. The traveler’s posi-

tion is then uniquely determined as the point of intersection

of three circles, each centered at one of the beacons. The

radius of each of these circles is the computed distance of the

traveler from that beacon. Computing the distance between

Bluetooth devices is problematic. Prior work has explored

the use of signal strength as a proxy for distance, but the

results are not encouraging [2], [3], [4], [5], [6], [7]. In

general, the correlation between distance and signal strength

is not sufficiently high because of a variety of radio artifacts,

as well implementation features such as automatic power

management by the hardware based on signal strength. By

very carefully controlling the transmit power management

features, it may be possible to obtain a mean absolute

positioning accuracy 1.2 m [8]. However, a similar accuracy

may also be achieved using simpler cell-based methods and

we therefore do not discuss that method further in this paper.

Multilateration-based localization is based on measuring

the time intervals between the transmission of a pulse from

the traveler and its and reception at multiple receivers. Such

measurements require features not supported in the low-cost

commodity devices we wish to use. Further, even if such

features are available, the Bluetooth specification permits

a clock jitter of 10 microseconds, which translates into

a measurement error of roughly three kilometers, making

it unsuitable for most localization applications. However,

multilateration is an attractive alternative when using slower

signals, such as sound.

Cell-based methods determine the location of the traveler

based on only the visibility of beacons, without using any

distance or angle measurements. Localization is based on

the knowledge of the limited range of each of the beacons,

allowing the traveler to be localized to the region of intersec-

tion of the ranges of all visible beacons. Given the problems

with many of the other methods, cell-based methods are quite

popular for Bluetooth, as well as for RFID and infrared (IR)

technologies.

For example, consider five beacons, A, B, C, D, and E,

with ranges of varying shapes and sizes, as suggested by

Figure 1. Now suppose the traveler is at some location from

which beacons B, C, and D are visible, while beacons A

and E are not visible. We may conclude that the traveler is

located in the shaded region. Note that we use information

on both visibility and non-visibility of beacons to determine

the region of the traveler.

D
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Fig. 1. Cell-based localization: A mobile receiver that is in the ranges of
beacons B, C, and D but not in the range of A and E must be located in
the shaded region.

An important consideration in cell-based methods is the

shape and size of each cell, i.e., the range of each beacon.

In outdoor applications, it is often reasonable to assume

cells of a regular shape, such as a ellipsoid. However,

in indoor applications, such an assumption is not realistic

due to channeling and other artifacts of buildings and their

contents. For example, it is common for Bluetooth signals

to travel along hallways for large distances, but to attenuate

rapidly in a transverse direction due to intervening walls and

equipment. Similarly, interior windows and doorways, and

details such as the construction material, all significantly

affect the range of Bluetooth beacons in different directions.

The irregular shapes of the cells in the example suggested by

Figure 1 are motivated by this observation. For this reason, in

this paper we do not assume Bluetooth cells of any particular

geometric shape or size. As we will see in the next section,

our combinatorial formulation of the problem allows us to

model completely arbitrary cell shapes, including ones with

holes and other complex features.

If we assume that the location and range of each Bluetooth

beacon in an indoor environment is known, then it is simple

to determine the location of a traveling mobile device based

on the visibilities of beacons using the method illustrated

by the example above. Some questions remain, such as

how to efficiently store and access the beacon data, and

how to provide higher level services, such as mapping and

navigation, based on the low-level location information;

however, they are not the focus of this paper. Instead, in

the next section we turn our attention to the design problem

of where to place beacons in order to achieve effective

localization.



III. BEACON PLACEMENT

The cell-based method outlined in the previous section is

based on computing the region of intersection of the ranges

of the visible beacons and the complements of the ranges

of the non-visible beacons. Intuitively, a higher density of

beacons is likely to result in smaller intersections, providing

more accurate localization. However, the maximum density

of beacons for a given application is limited by the total

number of beacons that can be deployed, which in turn is

limited by constraints on the budget and deployment effort.

Therefore, the main question addressed by this section is:

Given a limited number of beacons, how should they be

placed, in a specified indoor environment, in order to achieve

the best results? We make this question more precise below,

after covering some preliminaries.

In order to easily model beacon ranges of arbitrary shapes

and sizes, we model the problem combinatorially instead of

geometrically. In this model, each location that we wish to

distinguish is assigned a unique name, or identifier. We refer

to these names as interesting locations or, for brevity, simply

locations. Our work does not make any assumptions on the

manner in which interesting locations are determined and

named, and these tasks may be completed in a variety of

ways. For instance, we may divide an indoor space into

a regular grid, with each grid point being an interesting

location. Alternately, we may use the floor-plan of a building

and assign an interesting location to each room and hallway.

For example, consider the simple floor plan suggested

by Figure 2, composed of a large room in the center, a

hallway all around it, and smaller rooms along the perimeter.

Each of the letters a through o corresponds to an interesting

location. We note that some rooms may be deemed to be

not interesting for localization, such as the one in the top

right corner, perhaps because they are accessible only to very

few people. Other rooms, such as the one in the lower right

corner, may include multiple locations, perhaps because they

are large rooms with multiple zones for different purposes.

Similarly, hallways may include multiple locations.
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Fig. 2. A simple floor plan, indicating rooms, entrances, and hallways.
The letters mark interesting locations for localization purposes.

We model beacon positions in a similar manner, by

assigning a name to each potential beacon position. In order

to avoid confusion between the points used for localization of

the traveler (i.e., the interesting locations) and the points used

for beacons, we reserve the use of the term location for the

former, and refer to the latter as candidate beacon positions

or, briefly, beacon positions. We associate a range with each

beacon position. This range is the set of locations from

which a beacon placed at that position is visible. The range

associated with each beacon position depends on several

complex factors, such as the geometric relationships between

the position and various locations, the presence of obstacles,

reflections, and construction materials. However, our com-

binatorial model allows us to abstract away these complex

factors and to focus on their net effect, as determined by

empirical observations. All we need is an enumeration of

the locations from which each beacon position is visible. For

example, we may consider eight candidate beacon positions

for the simple floor plan of Figure 2. The corresponding

ranges are suggested in Figure 3 using closed curves: The

set of locations enclosed within each of the curves in the

figure represents the range of a beacon position; the beacon

position itself is not depicted.
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Fig. 3. A representative collection of beacon ranges for the floor plan of
Figure 2. The range of each beacon is indicated by a closed curve enclosing
the locations (labeled with letters) from which it is visible. The beacon
positions are not depicted. The figure is naturally interpreted as a beacon
hypergraph.

We model the design space of candidate beacon positions

using a hypergraph, called the beacon hypergraph, whose

vertices represent interesting locations and whose hyperedges

represent candidate beacon positions. The hyperedge repre-

senting a candidate beacon position p contains the vertices

representing the interesting locations from which a beacon

placed at p is visible.

Following standard definitions [9], a hypergraph G =
(V, E) consists of a finite set V of vertices and a set E ⊆ 2V

of hyperedges, with ∅ 6∈ H . Intuitively, hypergraphs are

generalizations of graphs: In a graph, an edge (excluding

loops) is incident on exactly two vertices, while in a hyper-

graph, a hyperedge may be incident on the vertices of any

nonempty set. In pictorial representations of a hypergraph,

we use dots or labels for the vertices; each hyperedge is

represented by a closed curve that encloses its incident



vertices. If we interpreting the closed curves in Figure 3

as hyperedges in this manner then that figure represents a

hypergraph G1 = (V1, E1) with vertices V1 = {a, b, . . . , o}
and hyperedges

E1 =

{

{a, b, c}, {c, d}, {f, g}, {c, d, e, f, g},
{e, f, h, i}, {a, i}, {j, k}, {l, m, n, o}

}

The complement ē of a hyperedge e of a hypergraph G =
(V, E) is the hyperedge containing the vertices in V that are

not in e: ē = V \ e. Let F = {f1, f2, . . . , fk} ⊆ E be an

arbitrary subset of the hyperedges of G = (V, E) and let

∅ ( X ⊆ V be an arbitrary nonempty subset of the vertices

of G. We say that X is a region induced by F , and F induces

region X , if X = V ∩g1∩g2∩· · ·∩gk where each gi is either

fi or f̄i. It follows that the empty set of hyperedges induces

only one region: the set of all vertices in V . We use R(F )
to denote the set of all regions induced by F . In the above

definition, each set of k choices, fixing either fi or f̄i for gi

with 1 ≤ i ≤ k, yields at most one region. Therefore, R(F )
is composed of at most 2k regions, where k is the number

of hyperedges in F . In general, R(F ) contains fewer than

2k regions because some of the choices for gi lead to empty

sets which, by definition, are not regions.

The regions induced by a set of hyperedges representing

beacon ranges correspond exactly to the regions to which a

traveler may be localized based on beacon visibility using

the method of Section II. Therefore, we may formalize the

problem of selecting n most advantageous beacon positions

as the problem of selecting a set of n hyperedges of the

beacon hypergraph to maximize the number of induced

regions:

Maximum-Resolution Sub-Hypergraph (MRSH):

Given a hypergraph G = (V, E) and a non-

negative integer n, find a subset F ⊆ E such

that |F | ≤ n and, for all subsets F ′ ⊆ E, if

|R(F ′)| > |R(F )| then |F ′| > n, where R(F )
is the set of regions induced by F .

IV. MAXIMUM-RESOLUTION SUB-HYPERGRAPHS

In this section, we discuss how to solve the maximum-

resolution sub-hypergraph problem motivated and formalized

above. Perhaps the simplest methods are those based on

enumerating the choices for beacon positions. However, if we

are to choose n beacon positions from m candidate positions,

examining the
(

m

n

)

possibilities is completely impracticable

for even modest values of m and n. We must therefore seek

alternate, more efficient, methods.

Algorithm G1: This simple, greedy algorithm selects hy-

peredges one at a time. At each step, it selects a hyperedge

that maximizes the number of induced regions. Any ties are

broken arbitrarily, say, be selecting the position with the

smallest identifier.

At each step, the hyperedge that maximizes the number

of induced regions is one that divides the largest number

of currently induced regions. We refer to the number of

currently induced regions that are divided by a hyperedge

as its score.

Returning to the example suggested by Figure 3, suppose

we wish to select three hyperedges out of the eight depicted

there; i.e., n = 3 and m = 8. For convenience, let

each hyperedge be identified by the string obtained by

concatenating its incident vertices in alphabetical order. Thus

the eight hyperedges are abc, cd, fg, cdefg, efhi, ai, jk,

and lmno. In the first step, all hyperedges have the same

score, 1, since each divides only the single region induced

by the empty set of hyperedges. We select the one with the

smallest identifier: abc. In the second step, hyperedges cd,

cdefg, and ai have score 2 because each divides both the

regions induced by abc (the regions inside and outside abc).

The rest of the hyperedges have score 1. We therefore select

ai as the next hyperedge. In a similar manner, cd is the third

and final hyperedge selected by Algorithm G1.

In the above example, we may verify, by enumeration,

that the solution composed of hyperedges abc, ai, and cd,

which induces six regions, is optimal, although, as is typical,

it induces fewer than the maximum, 23 regions. However,

as illustrated by the following example, the optimality is

not guaranteed in the general case. Consider the hypergraph

suggested by Figure 4. Each region of that figure is assumed

to contain at least one vertex, but the vertices are otherwise

unimportant and are omitted from the diagram. Suppose we

wish to select five beacon positions from the six candidate

positions; i.e., n = 5 and m = 6. Algorithm G1 selects, in

order, hyperedges b1, b2, b3, b4, and b5, yielding a solution

that induces 15 regions. However, the alternate solution

{b1, b2, b4, b5, b6} induces 16 regions.

b3

b1 b2

b6

b5

b4

Fig. 4. A hypergraph illustrating the need for non-greedy hyperedge
selections. The vertices of the hypergraph are not important and are omitted
for simplicity. There is at least one vertex in each of the geometric regions
depicted above.

In the example of Figure 4, the difference between number

of regions induced by the output of Algorithm G1 and

the optimal solution is only one. However, that example

is easily generalized into one that results in an arbitrarily

large difference. As suggested by Figure 5, we may replace

hyperedge b5 in Figure 4 with any number of hyperedges

that divide regions in a manner similar to b5, to yield an



example with N hyperedges in all. Consider the case of

selecting n = N − 1 hyperedges from these N . It is

easy to verify that Algorithm G1 selects the hyperedges

F1 = {b1, b2, b3, . . . , bN−1}. We may count the number of

regions induced by this set of hyperedges by adding to 1 the

score of each hyperedge as it is added to the set: Hyperedges

b1, b2, and b3 give a total of 8 regions, as they form a 3-

Venn diagram. Hyperedge b4 has a score 3, as it divides the

outer region and the regions of b1 and b2. Hyperedge b5 has

a score of 4, since it also divides b4. In general, hyperedge

bk has a score of k − 1, for 4 ≤ k ≤ N − 1. Thus the total

number of regions induced by the output of Algorithm G1

is R1 = 8+3+4+ · · ·+(N − 2) = 5+ (N − 1)(N − 2)/2.

Using similar reasoning, the number of regions induced by

the (N − 1)-set of hyperedges F2 = {b1, b2, b4, b5, . . . , bN}
is R2 = 4+3+4+5+ · · ·+(N − 1) = 1+N(N − 1)/2 =
1 + (N − 1)(N − 2)/2 + (N − 1) = R1 + N − 5. Thus the

output of Algorithm G1 yields at least N − 5 fewer regions

than the optimal solution.

b4

b2

b3

b1

b
n

b5, . . . , bn−1

Fig. 5. The example of Figure 4 generalized to n beacons.

Although the above examples illustrate that arbitrarily

suboptimal solutions may result from Algorithm G1, in

many practical situations, the algorithm may be expected

to perform well. We note that an important feature of the

example of Figure 5 is that there is a high degree of overlap

among hyperedges. More precisely, the maximum degree of

a vertex, i.e., the maximum number of hyperedges incident

on a vertex, is high. In commonplace scenarios, this number

is likely to be small, in turn limiting the worst case sub-

optimality of the algorithm. Finally, we note that this sub-

optimality does not affect the correctness of the overall

method of localization using Bluetooth beacons. Rather, it

affects only the granularity of localization, resulting in the

possibility that some of the regions to which the traveler is

localized may be larger than those possible with an optimal

placement of beacons.

V. IMPLEMENTATION

Recall that one of the important design criteria for our

indoor localization system is the use of inexpensive, com-

modity devices for the beacons, so that they may be easily

deployed in large numbers, thereby increasing the accuracy

of localization. To that end, each of our beacons consists

of essentially a commodity USB Bluetooth adapter attached

to a power source. For the power source, we typically use

batteries, but line power may be used where convenient. The

total cost of each beacon in this setup is under 5 USD:

roughly 4 USD for the USB Bluetooth adapter and 1 USD

for batteries and connectors.

Unfortunately, this setup is not currently easy to deploy

due to a peculiarity of the Bluetooth devices we use:

Each time such a device is powered up, putting it into a

discoverable mode requires that it be tethered to a USB

host such as a desktop computer. Since the devices are

untethered in deployment, we need a setup that allows

them to be untethered without losing power. To meet this

requirement, our current implementation powers the USB

Bluetooth device through a USB hub. A representative setup

is depicted in Figure 6. Although the addition of the USB

hub increases both size and cost of the beacons, the overall

cost is still low, at around 10 USD. Further, for a production

deployment, the USB Bluetooth devices may be modified so

that they do not need the hub.

Fig. 6. Prototype Bluetooth beacon.

Another important aspect of our localization method is we

perform all the computations required for localization only

on the traveler’s mobile device, such as a mobile phone or

PDA. Apart from deploying the beacons as described above,

no other infrastructure support is required. Not only is no

computation required at the beacons, no general purpose

computation is even possible, since each beacon is simply a

powered USB Bluetooth adapter with no host connected to it.

Apart from the obvious cost and deployment advantages, this

strategy has important ramifications for location privacy [10].

Our implementation requires the traveler’s mobile device

only to detect the beacons, which advertise themselves in

discoverable mode. No Bluetooth connection is made. The

Bluetooth hardware in the traveler’s mobile device does not

need to be in discoverable mode and thus does not need to

advertise its presence.

One drawback of Bluetooth-based localization methods is

that device discovery is inherently a slow process. The dis-

covery process prescribed by the Bluetooth standard requires



a total of 10.24 seconds for completion. We may mitigate

this problem by terminating discovery early, especially after

a few beacons have been discovered. However, doing so risks

a loss of location accuracy, since some beacons may be slow

to respond. A promising possibility here is to use an adaptive

scheme that mixes long discovery periods with shorter ones

in a ratio determined by the number of recently encountered

beacons.

VI. RELATED WORK

Our work on indoor localization has been motivated by

recent work on marker-based localization for pedestrians

in indoor and outdoor settings, notably M-CubITS [11],

[12], [13], [14], [15]. Several authors have studied indoor

localization using Bluetooth and related technologies, but

have not addressed the placement problem of this paper [2]

[8] [4] [16] [3] [5] [6] [7] . In prior work, we have presented a

marker-based localization method that uses a short sequence

of recently encountered markers, instead of only the currently

visible markers [17]. A similar method may be profitably

combined with the methods of this paper to yield further

improvements in localization.

Problems similar to the maximum-resolution sub-

hypergraph problem of Section III have been studied for

graphs; however, those results are not directly applicable

to our problem because they assume visibility based on

graph distance. The problem of placing the fewest possible

landmarks in a graph so that each node is uniquely iden-

tified by its distance from the landmarks, essentially the

problem of identifying a metric basis, has been shown to

be approximable to a logarithmic factor [18]. Minimum-size

t-Identifying Codes and t-Locating-Dominating Codes are

known to be approximable to a logarithmic factor, with sub-

logarithmic approximation ratios being intractable [19]. The

related problem of identifying codes based on neighborhoods

is also known to be NP-complete and approximable to a

logarithmic factor [20].

VII. CONCLUSION

We motivated the problem of indoor localization in

general, and indoor localization using Bluetooth beacons

in particular. Our localization scheme is based on two

important features of Bluetooth devices: First, they are very

inexpensive; therefore, it is practicable to deploy them in

large numbers in an indoor environment. Second, they have

a range of only a few meters; therefore, the simple visibility

of a beacon can be used effectively for localization. We then

addressed the problem of beacon placement. We formalized

this problem combinatorially as the problem of finding a

maximum-resolution sub-hypergraph. An important feature

of our formalization is that it does not assume beacon

ranges have a simple geometric shape; the shape and size

of the range of each beacon is completely arbitrary and

may be specified based on the observed characteristics. We

presented a simple solution to the problem based on a greedy

approach. In continuing work, we are conducting field tests

and studying alternate beacon placement algorithms.
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