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Abstract

XML permits documents with arbitrary
nested context (tag structure). We investi-
gate how this context may be used to aid the
task of searching and exploring XML text.
We describe the design and implementation of
the Cextor system, which includes a context-
sensitive text-search engine. Cextor also in-
cludes a novel technique for organizing and
exploring very large search results based on
context. A distinguishing feature of this tech-
nique is that it does not assume search results
are of modest size. Rather, it is designed to
cope with search results that are potentially
the size of the database. We present the re-
sults of an experimental evaluation of Cextor
on derived data from the Web.

1 Introduction

The ability to easily locate information on the Inter-
net is signi�cantly improving the eÆciency of scien-
ti�c and business activities. Given the size and rapid
growth of the Internet, especially in recent years, the
design of scalable systems for searching networked doc-
uments remains challenging. Nevertheless, the avail-
ability of commercial search engines such as Google
has considerably eased the task of locating documents
that can be accurately described using a few distin-
guishing terms. For example, it is not diÆcult to
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�nd information about the ide-scsi driver for Linux
using Google and the query linux ide-scsi. Our
task in this example was simpli�ed by our knowl-
edge (or assumption) that relevant documents con-
tain the term ide-scsi, which occurs infrequently in
the document collection. Unfortunately, this happy
circumstance is more an exception than the norm and
we must often search for documents that cannot be
discriminated this easily. Continuing our example,
suppose we are looking for information on monitors
that work well with Linux. Several of the obvious
Google queries (e.g., linux monitor) return a very
large (800 thousand) matches. Further, a high pro-
portion of the �rst few matches are not relevant to
monitor hardware, but use the term monitor in other
contexts (e.g., network monitor, diald monitor). Suc-
cessive re�nements (e.g., linux monitor -network,
linux monitor -network display hardware) yield
progressively more relevant results.

Such re�nement requires one to �rst examine the
early search results in order to determine the terms
that may help in �ltering out irrelevant results. This
task is often complicated by the presence of documents
that use the same word or phrase in di�erent contexts
(e.g., the use of the word monitor in our example).
Unless one is very careful, relevant documents may be
inadvertently eliminated from the result. In our ex-
ample, the addition of re�nement term -network (in-
tended to remove documents describing network mon-
itors and not computer displays) results in the elimi-
nation of several helpful documents from organizations
with the word network in their names (e.g., Maximum
Linux Network).

The importance of the context in which words ap-
pear in a document is well recognized in the Informa-
tion Retrieval literature, as is the need for e�ective
(eÆcient and usable) re�nement mechanisms. How-
ever, most documents on the Web are in HTML for-
mat, which is severely limited in its ability to encode
meaningful context. While a few �xed contexts (e.g.,
title, headings) are available, there is no way to de�ne
and use more meaningful contexts (e.g., hardware re-
view, price). Further, since HTML mixes content with
its presentation, many documents misuse HTML tags
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for formatting purposes, resulting in further complica-
tions. Therefore, the simple form of context-sensitivity
found in some search engines (e.g., title:review in
AltaVista) results in very limited improvements.

The emergence of XML and related technologies
promises to improve the situation by cleanly separat-
ing data from its presentation. In particular, XML
documents may de�ne and use their own context hi-
erarchies (by nesting user-de�ned tags). For exam-
ple, the word Stewart on line 10 of document 1 in
Figure 1 is marked with the tag name. Start and
end tags (e.g., <writer> and </writer> delimit an
element that we shall identify with the name of the
tag (lines 9{12 of document 1). Elements can be
nested (e.g., the above writer element has name subele-
ments on lines 10 and 11; the writer element is, in
turn, a subelement of the show element beginning on
line 7. The context depends on all the ancestors of
the element in which a word appears. For example,
the context of the name element on line 8 of docu-
ment 1 is di�erent from that of the name element on
line 10. We distinguish these contexts by using their
fully quali�ed forms: /guide/theater/show/name and
/guide/theater/show/writer/name, respectively.

The ability to de�ne document-speci�c (more com-
monly, application- and domain-speci�c) contexts
leads to both opportunities and challenges. On the
one hand, proper use of this added power can help al-
leviate the problems described earlier. On the other
hand, the unbridled use of user-de�ned contexts can
result in diÆculties in their interpretation. Con-
tinuing our example, an XML document containing
the fragment <Monitor>... <Size>18</Size>...

</Monitor> provides a more precise method for locat-
ing 18-inch computer monitors compared with what is
possible with HTML documents (e.g., a Google search
for monitor 18). However, while it is tempting to as-
sume the most obvious interpretation of the elements,
there is no guarantee that this interpretation is cor-
rect. In our example, the XML document could be
the con�guration �le for a network monitoring tool,
with the size element indicating the size, in bytes, of
test packets.

Similar observations have resulted in a urry of ac-
tivity on the standardization of XML tags in various
communities [?]. Recognizing that complete global
standardization for all domains is unlikely, there has
also been work on standardized speci�cation of seman-
tics and ontologies and on the integration of such spec-
i�cations [?]. Such work aims to at arriving at an inte-
grated, semantically consistent version of all relevant
XML documents (either by standardization or by rea-
soning with ontologies) and is not the focus of this
paper.

In this paper, we adopt a di�erent view: In the
near future, there are likely to be many XML docu-
ments that do not adhere to the kind of careful se-

mantic speci�cations that the standardization work
demands. Further, even in the long term, a diverse and
autonomous environment such as the Web will always
a contain a signi�cant amount of useful information in
documents that are semantically unconstrained or ill
formed (perhaps because the generator of such infor-
mation does not have the motivation or resources to
put it in a standard form). Of course, tools for search-
ing XML could always ignore such documents; how-
ever, they would then be rather limited in their reach.
In order to bene�t from the information in such docu-
ments, we believe it is important to study the follow-
ing problem, which is the focus of this paper: How
can we improve the e�ectiveness of XML search with-
out assuming anything other than well-formedness of
XML? (Intuitively, an XML document is well-formed
if it satis�es some very simple syntactic constraints,
such as proper nesting of elements.) Our work shares
this guiding principle with recent work in semistruc-
tured data: Structure is considered descriptive, but
not prescriptive. Our goal is to make the best use of
any available structure (context) without insisting on
any particular structure.

To address the above problem, we have designed
and implemented the
Cextor system. Cextor implements context-sensitive
boolean queries on XML documents. Intuitively, the
query fosse IN /guide/show/name AND NOT fosse

IN /guide/show/director/name matches XML doc-
uments containing the word fosse in the �rst context
context but not in the second. (Details appear in Sec-
tion 2.) This query language is implemented using
some simple and e�ective extensions to the standard
inverted �le data structures. Unlike common search
engines, the execution of a Cextor query results in
more than an annotated list of document identi�ers.
Instead, the matching documents (and matching loca-
tions and contexts within them) are organized in an
intuitive and eÆcient data structure, called the con-
text tree. Intuitively, the context tree groups the docu-
ments in a query result based on the contexts in which
they match the query terms. Cextor provides three
operations for exploring the query results through the
context tree: navigation (expanding and hiding tree
nodes), re�nement (�ltering results), and anchoring
(reorganizing the tree using a new node as root). The
context tree and the exploration operations serve as
eÆcient building blocks for expressive interfaces that
integrate search and exploration of a large XML doc-
ument collection. We do not assume that the result of
a query contains a modest number of documents. In-
stead, the context tree and the exploratory operations
are designed to eÆciently operate on query results that
are comparable in size to the entire document collec-
tion.

We have built a complete system, including a
user interface. However, our interest lies primarily
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1:<guide>
2: <city> New York </city> <state> New York </state>
3: <theater> Ford Center for Performing Arts
4: <address>
5: <street> 213 West 42nd Street </street>

6: </address>
7: <show>
8: <name> 42nd Street </name>
9: <writer>

10: <name> Michael Stewart </name>
11: <name> Mark Bramble </name>
12: </writer>
13: <director> Gower Champion </director>
14: </show>
15: </theater>

16: <theater> Broadhurst Theatre
17: <address>
18: <street> 235 West 44th Street </street>
19: </address>
20: <show>
21: <name> Fosse </name>
22: <director> Ann Reinking </director>
23: </show>
24: </theater>
25:</guide>

(a) Document 1

1:<guide>
2: <city> New York </city> <state> New York </state>
3: <broadway> <theater>
4: <name> Shubert Theatre </name>

5: <address> 225 West 44th Street </address>
6: <show>
7: <name> Chicago </name>
8: <writer>
9: <name>John Kander</name>

10: <name>Fred Ebb</name>
11: </writer>
12: <director> Bob Fosse </director>
13: </show>
14: </theater>

15: <theater>
16: <name>American Airlines Theatre </name>
17: <address> 227 West 42nd Street </address>
18: <show>
19: <name> Design for Living </name>
20: <playwright> Noel Coward </playwright>
21: <director> Joe Mantello </director>
22: </show>
23: </theater> </broadway>
24:</guide>

(b) Document 2

Figure 1: Sample XML Documents

in the data-centric query-and-exploration operations
that (through the Cextor application programming in-
terface) enable an expressive user interface, not in the
interface itself. Further, since the number of XML
documents on the public Web is much smaller than
the number of HTML documents, we have tested our
system by crawling and indexing HTML, not XML,
documents. While using such HTML (converted to
XML as XHTML) suÆces for testing our ideas, the
test system is not as intuitive to use as is one based on
XML. Our contribution is not the test system, but the
Cextor system that is capable of indexing any XML
(or HTML) collection. We have made the Cextor
source code publicly available (GNU GPL terms) at
http://www.cs.umd.edu/projects/cextor/.

In summary, our primary contributions in this
paper are (1) an index structure for XML that imple-
ments context-sensitive boolean queries; (2) an exten-
sion to this structure for speeding up XML queries in
languages similar to XML-QL; (3) methods for orga-
nizing and exploring very large search results; (4) an
experimental evaluation of our work; and (5) an imple-
mented system whose source code is publicly available.

2 The Cextor System

In this section, we describe our system for search and
exploration of XML documents. We begin with some
preliminary de�nitions followed by a description of the
syntax and semantics of our query language. Next, we
present the context tree that forms the basis of our the
Cextor application programming interface (API). We
describe our simple interface based on this API. We
then describe the exploration operations introduced

in the previous section. Finally, we discuss the imple-
mentation techniques for the indexing and exploratory
modules.

2.1 Context and Context Expression

The context of an element in a document is the string
formed by concatenating, in order, the =-pre�xed tags
of elements on the path from the document root to the
node corresponding to the element. The context of
a word or phrase in a document is the context of the
element containing it. For example, the context of the
word \fosse" in line 21 of Document 1 (Figure 1) is the
string /guide/theater/show/name.

A context expression is a string that identi-
�es one or more contexts, each of which is said to
match the context expression. A context expression
is formed by concatenating tags, separated by either
= or ==. The separators = and == specify parent-child
and ancestor-descendant nesting relationships, respec-
tively, that must hold between tags in contexts that
match the context expression.

Example 2.1 The context expression /guide//show

/director speci�es that, in a context matching the
context expression, a show element must be a de-
scendant of a guide element (because of == sep-
arating guide and show tags) that is the docu-
ment's root. In addition, the show element must
have a director element as its child (because of
= seperating show and director tags). The con-
text /guide/theater/show/director is a context that
matches the context expression. However, the context
/guide/city does not match the context expression.
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In this paper, strings representing contexts are type-
set using italic font (e.g., /guide/theater/show/name)
whereas strings representing context expressions are
typeset using typewriter font (e.g., /guide//show/
director).

2.2 Query Language

A query consists of one or more query terms, combined
using the boolean connectives AND, OR, and NOT. A
query term is either a word or a phrase. It can be
optionally quali�ed with a context expression, using
keywords IN (denoting containment) or DIN (denot-
ing direct containment). The context expression is said
to qualify the query term.

The context expression that quali�es a query term
identi�es interesting instances of the query term in the
document repository. If a query term and the con-
text expression that quali�es it are connected using
DIN (e.g., 42nd DIN /guide//show), an instance of
the query term in a document is interesting if it is
contained within an element whose context matches
the context expression. If a query term and its con-
text expression are connected using IN (e.g., fosse
IN /guide//show), an instance of the query term in
a document is interesting if it is contained within an
element or within the descendant of an element whose
context matches the context expression. The boolean
connectives combine constraints in the usual manner.

Example 2.2 Consider the query fosse DIN /guide

//show/director on the two documents in Fig-
ure 1. The instance of the query term \fosse" in
line 12 of Document 2 is interesting because it has
the context /guide/broadway/theater/show/director,
which matches /guide//show/director. However,
the instance of the query term \fosse" in line 21
of Document 1 is not interesting because it has the
context /guide/theater/show/name, which does not
match /guide//show/director.

Example 2.3 Consider the query fosse IN /guide

//show on the two documents in Figure 1. The in-
stance of \fosse" in line 12 of Document 2 is interest-
ing because it is contained within a director element,
whose parent's context (/guide/broadway/theater/sh
ow) matches the context expression /guide//show.
The instance of \fosse" in line 21 of Document 1 is also
interesting because it is contained within a name el-
ement, whose parent's context (/guide/theater/show)
matches the context expression.

The result of a query consists of a set of documents
and a set of contexts. We de�ne the document set

of a query term as the set of documents that have at
least one interesting instance of the query term. The
set of documents in the result is formed by combining
the document sets of the query terms using union, in-
tersection, and di�erence, corresponding to OR, AND,

Root

/theater

n5

/guide

/address/street/show/director /show/name/address

[ 2 ] [ 2 ]

[ 2 ]

[ 1 ] [ 1 ][ 1 ] [ 1 ]

n7n6n4n3

n2

n1

/broadway/theater

Figure 2: Example of a Context Tree.

and NOT, respectively. The context set of a docu-
ment is the set containing the contexts of all interesting
query term instances that are present in the document.
The set of contexts in the result of a query is the union
of the context sets of documents in the result. We call
this set of contexts the span of the query.

Example 2.4 Consider the Cextor query (42nd IN

/guide//theater/address) AND (fosse IN /guid

e//show) on the two documents in Figure 1. Doc-
ument 1 contains one interesting instance of \42nd"
(line 5, context /guide/theater/address/street). Docu-
ment 2 also contains one interesting instance of \42nd"
(line 17, context /guide/broadway/theater/address).
The document set of the query term \42nd" con-
tains both documents 1 and 2. The document set
of the query term \fosse" also contains both the
documents. The set of documents in the result
of the query is the intersection (corresponding to
AND) of the document sets of \42nd" and \fosse."
Document 1 contains two interesting query term in-
stances (\42nd" in line 5 and \fosse" in line 21).
Its context set contains the contexts of these inter-
esting instances: /guide/theater/address/street and
/guide/theater/show/name. The context set of Docu-
ment 2 contains contexts /guide/broadway/theater/ad
dress and /guide/broadway/theater/show/director.
The span of the query is the union of the context
sets of documents 1 and 2. It contains four contexts:
/guide/theater/address/street, /guide/theater/show/
name, /guide/broadway/theater/address, and /guide/
broadway/theater/show/director.

2.3 Result Presentation and Exploration

Cextor presents the result of a query as a rooted, la-
beled tree, called the context tree, which represents
the span of the query. The context tree is a trie that
is built using strings of the alphabet of tags [Knu00].
Each context in the span maps to a root-leaf path in
the tree. The string formed by concatenating the node
labels along any root-leaf path is a context in the span.
Contexts that share a pre�x map to paths that share
nodes in the context tree. (If there is no pre�x com-
mon to all paths, the context tree has a dummy root
with the empty string as its label.)
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/show/director/address

[ 1 ]

[ 1 ] [ 1 ]

n3n2

n1

/guide/broadway/theater Root

Figure 3: Context Tree Re�nement.

Example 2.5 Figure 2 illustrates the context tree
that is presented as output of the query (42nd IN

/guide//theater/address) AND (fosse IN /guid

e//show) on the two documents in Figure 1. The con-
text corresponding to the root-leaf path n1�n5�n7 is
/guide/theater/show/name, obtained by concatenat-
ing the labels of nodes n1, n5, and n7.

We de�ne the path set of a node in the context
tree to be the set of contexts whose paths include that
node. We de�ne the document set of a node in the
context tree to be the set of result documents whose
context sets have a non-empty intersection with the
path set of the node. The number next to a node
is the size of the node's document set, which can be
viewed by clicking the node.

Since contexts that share a common pre�x map to
paths that share nodes in the context tree, the con-
text tree represents the span of a query more com-
pactly than a linear list. However, if the span is large,
its context tree can be too large to display within the
available screenspace. In Cextor, we limit the num-
ber of displayed nodes based on three parameters de-
rived from a user speci�ed screensize: their depths, the
number of contexts in their path sets, and the num-
ber of documents in their document sets. By clicking
on a node at which the tree is truncated (such a node
is identi�able by its color), the user may expand the
subtree that is rooted at that node. In this expanded
view of the subtree, the user can also see the path that
leads to the root of the subtree. Other nodes can also
be clicked to turn on or o� the display of the subtrees
rooted at them.

Inspite of the ability to selectively control the dis-
play of subtrees, navigation of the context tree to ex-
plore the query result can be cumbersome if the span of
the query is very large. We introduce two operations|
re�nement and anchoring|to address this de�ciency.

Re�nement: Often, a user may not know the tags
used in a document corpus and may be unable to spec-
ify context expressions. Therefore, the initial query re-
sult may be too large (low precision). However, after
viewing the query's context tree either in its entirety
or in its truncated form, the user may gather enough
information about tags to be able to specify more pre-
cise context expressions for one or more terms in the
query.

The re�nement operation takes as input context ex-
pressions for one or more query terms. It uses the
context expression input for a query term to further
constrain contexts of interesting instances of the query
term. Based on the new set of interesting instances of
a query term, it updates the document set of the query
term. It uses the new document sets to update the doc-
uments in the result and the span of the query. The
output of re�nement is the context tree built using the
new span.

Example 2.6 Consider the query (42nd IN /gu

ide//theater/address) AND (fosse IN /guide//

show) on the documents in Figure 1. Fig-
ure 2 illustrates the initial context tree displayed
after execution of the query. The user may
choose to re�ne the term \fosse" using the con-
text expression /guide//show/director. The re-
sult of re�nement is the same as the result
of the query (42nd IN /guide//theater/address)

AND (fosse IN /guide//show/director), and the
corresponding context tree is shown in Figure 3.

Anchoring: Among contexts in the span of a query
(Section 2.2), a user may sometimes be interested only
in those that include a speci�c tag (e.g., theater).
Using simple pattern matching, contexts that do not
include the tag can be eliminated from the span. How-
ever, the remaining contexts may have the tag at dif-
ferent depths (e.g., /guide/broadway/theater/address
and /guide/theater/address/street). Even if all con-
texts have the tag at the same depth, they may not
have a common pre�x that includes the tag. As a con-
sequence, the context tree built using these contexts
has the tag scattered across multiple nodes, making
it diÆcult to visualize the nesting of relevant tags.
For example, in the context tree built using the span
of the query (42nd IN /guide//theater/address)

AND (fosse IN /guide//show) on the two docu-
ments of Figure 1, the theater tag appears on the
labels of nodes n2 and n5 (Figure 2). Although in this
toy example it is not diÆcult to visualize tag nesting,
the problem is a serious one in a typical context tree
containing hundreds of nodes.

The anchoring operation takes a tag and a context
tree as inputs. First, it removes from the tree contexts
that do not include the tag. Next, it aligns the re-
maining contexts at the positions of the tag in them.
It splits each context into two parts: an outer con-
text and an inner context. The outer context of a
context is the context pre�x that ends at the position
of the input tag in the context. The inner context
of a context is the context suÆx that begins at the
position of the input tag in the context. For exam-
ple, if the input tag is theater, the outer context and
the inner context of /guide/broadway/theater/address
are /guide/broadway/theater and /theater/address, re-
spectively. We reverse each outer context by ipping
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Figure 4: Context Tree Anchoring.

the order of tags in it. For example, the reverse of
/guide/broadway/theater is /theater/broadway/guide.
We use all inner contexts and all outer contexts to
build two context trees: an inner tree and an outer
tree. The inner tree is the context tree built using
the set of all inner contexts. The outer tree is the
context tree built using the set of all reversed outer
contexts. We reverse the labels of nodes of the outer
tree, and collapse the roots of the outer tree and the
inner tree, to generate the result of anchoring. We dis-
play the result with the outer tree drawn upside down.

Example 2.7 Figure 4 illustrates the tree that is the
result of anchoring the tree in Figure 2 using the
theater tag. The outer contexts are /guide/theater
and /guide/broadway/theater. The outer tree nodes
have labels /guide, /theater, and /broadway/guide.
The outer tree is inverted, its node labels are reversed
(See nodes n1, n2, and n3 in Figure 4), and its root
is collapsed with the root of the inner tree, which is
displayed without modi�cation.

2.4 Implementation

Figure 5 illustrates the high-level architecture of Cex-
tor. Cextor consists of three main subsystems. The
gathering and cleaning subsystem is responsible for
crawling the Web, downloading all HTML documents
at depth below a given value (parameter, set to 40 in
our experiments), and cleaning them using the Tidy
software to heuristically remove faulty HTML and in-
sert closing tags to convert HTML to XHTML. The
querying subsystem is responsible for building the in-
verted �le indexes described earlier and using them to
implement the Cextor query language. We describe it
more detail below. responsible for implementing the
context tree along with the API operations of naviga-
tion, re�nement, and anchoring.
The Context Index The context index includes a
dictionary that contains all words in the document
repository, except those that occur only as tags. The
context list for a word in the dictionary is a sorted list

....

Context Lists
42nd

...
.

fosse

street

...
.

/guide/broadway/theater/address/street

/guide/broadway/theater/address

/guide/broadway/theater/show/name

/guide/broadway/theater/show/director

/guide/broadway/theater/show/name

1:59

2:42

1:22

2:562:20

1:28

1:54

Dictionary

Inverted Lists

Figure 6: The Context Index.

containing the contexts of all instances of the word
in the document collection. The dictionary contains
a pointer to the context list for each word in it. For
each context, the context list contains a pointer to an
inverted list, which is a sorted list of postings. Each
posting is a pair of integers: the identi�er of a docu-
ment containing an instance of the word within that
context and the o�set of the instance within the doc-
ument.

Example 2.8 In Figure 6, we show a portion of the
context index for the two documents in Figure 1. The
word \street" occurs in Document 1 (lines 5, 7, and
17) and Document 2 (lines 6 and 16). Its context list
has three contexts: /guide/broadway/theater/address,
/guide/broadway/theater/address/street, and
/guide/broadway/theater/show/name, and its postings
are grouped into three lists based on these contexts.

Index File Construction The Indexer module
parses the repository in phases, where each phase in-
volves the construction of main memory structures
that are written to disk at the end of the phase. Dur-
ing a phase, it builds in main memory a trie contain-
ing words encountered in that phase [Knu00]. The
instances of a word that are encountered in a phase
are called the phase instances of the word. For each
word in the trie, the Indexer module builds a sorted
list of the contexts of its phase instances. We call this
list the context list of the word. For each context in
the list, the Indexer module builds a sorted list of the
locations of the phase instances that have that con-
text. We call this list the location list of the context
and the word.
Dictionary Creation The index �le contains all con-
text lists and all inverted lists that comprise the con-
text index (Section 2.4) for the document repository.
The Indexer module constructs the dictionary by per-
forming a scan of the index �le. It inserts into the
dictionary each word present in the index �le, along
with the o�set in the index �le of the start of its con-
text list. In order to better test our system, we do
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Figure 5: Cextor Architecture.

not eliminate stop-words or perform stemming during
this step. The presence of all words also allows us to
answer queries (e.g., \The Who") that are composed
of stop words (e.g., \the" and \who").

We have implemented the dictionary as an external
hash table using a �le, in which buckets (each with
a �xed number of slots) are written contiguously in
increasing order of their bucket numbers. When a
bucket is full (all its slots are occupied), we rehash (us-
ing a new hash function) the contents of all buckets,
distributing the contents of each bucket between the
original bucket and a newly created one. We append
all newly created buckets to the �le. We load dictio-
nary values in batches, each batch sorted according the
buckets of the values. Our hashing scheme is likely to
create a larger hash table than that created by linear
hashing or extendible hashing for identical insertions.
However, our scheme leads to a simpler implementa-
tion. (e.g., In linear hashing, one has to worry about
the position of the bucket pointer while bulk loading
the hash table.)

3 The Augmented Index

XML query languages like XML-QL permit more
sophisticated querying than is possible using Cex-
tor [FSW+99]. In Figure 7, we illustrate a query ex-
pressed using a syntax that is quite similar to that
of XML-QL. The WHERE clause speci�es constraints
on elements and the CONSTRUCT clause uses ele-
ments satisfying the constraints to build the query re-
sult. The \*" following IN in the WHERE clause indi-
cates that the query has to be evaluated over all doc-
uments in the collection. The query in the �gure asks
for all elements with context /guide/broadway/theater,

WHERE <guide> <broadway> <theater> $t </> </> </>

IN ``*'',

<address> $a </>

<show> fosse </> IN $t

CONSTRUCT <result> <theater> $t </> </>

Figure 7: Sample query.

broadway

guide

e1

e2

theater

e3 e4

address show

fosse
e5

Figure 8: Tree Pattern.

and having an address subelement and a show subele-
ment. In addition, the show subelement must contain
the word \fosse." The context index cannot be used
to locate subelements of an element (e.g., theater),
and so cannot be used to evaluate such queries. We
present an enhancement to the context index that can
be used to speed up evaluation of such queries. We
call this enhanced index an augmented index.

The constraints on elements expressed in the
WHERE clause of a query in many XML query lan-
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Context Dictionary
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1:15:45 1:46:62 2:11:45 2:46:65

1:17:24 1:49:56 2:16:21 2:52:57

2:58:641:57:61 2:22:441:25:44

Inverted Lists

Figure 9: Augmented Index.

guages can be viewed as a tree pattern, Each node
in the tree pattern represents a tag or a term in the
WHERE clause and each edge represents direct con-
tainment or containment. We use a single edge to rep-
resent direct containment and a double edge to repre-
sent containment. Evaluation of the WHERE clause
can be viewed as �nding trees (i.e., XML documents)
that match the tree pattern. Figure 8 illustrates the
tree pattern for the query in Figure 7. The edge e1 in
Figure 8 speci�es that a broadway element has to be
a subelement of a guide subelement.

The augmented index includes two dictionaries: a
word dictionary and a context dictionary. The word
dictionary contains all words in the document repos-
itory, excluding those that occur only as tags or as
names of attributes. For each word, it stores a pointer
to a sorted list of word postings. A word posting

consists of three integers: the identi�er of a document
containing an instance of the word, the o�set of the in-
stance in the document, and the depth of the context
of the instance. The context dictonary contains all
contexts that occur in some document of the reposi-
tory. For each context, it stores a pointer to a sorted
list of context postings. A context posting consists
of three integers: the identi�er of a document contain-
ing an element with that context, and the o�sets start
and end of the element in the document.

Example 3.1 Figure 9 illustrates a portion of the
augmented index for the two documents in Fig-
ure 1. We describe one way in which the
query suggested by the tree pattern in Fig-
ure 8 can be evaluated using the augmented in-
dex. First, we �nd all theater elements with the
context /guide/broadway/theater and containing the

address subelement by merging the inverted lists
for the contexts /guide/broadway/theater/address and
/guide/broadway/theater. While merging, we use o�-
sets in postings with identical document identi�ers to
locate theater elements having an address subele-
ment, and we output the postings of theater elements
that qualify. This merge completes the evaluation of
edge e3 in Figure 8. We evaluate edges e4 and e5 in
a similar manner. Note that edges e1 and e2 need
not be evaluated since the constraints they represent
are subsumed by the context /guide/broadway/theater.
If we modify the tree pattern by replacing edge e2
with a containment operator, during evaluation, we
use the dictionary to �rst �nd all contexts matching
the context expression /guide/broadway//theater.
We compute the union of the inverted lists for the
contexts that match, and merge it with the inverted
list for the context /guide/broadway/theater/address.
The rest of the evaluation is una�ected.

Our augmented index is similar in spirit to the index
used by the Niagara system [NDM+00]. The Niagara
index consists of two dictionaries: a word dictionary
and a tag dictionary. The word dictionary contains all
words in the document repository, except those that
occur only as tags or as names of attributes.For each
word, the word dictionary stores a pointer to a sorted
list of postings. Each posting is a pair of integers: the
identi�er of a document containing an instance of the
word and the o�set of the instance within the doc-
ument. The tag dictionary contains all tags in the
document collection. For each tag, the tag dictionary
stores a pointer to a sorted list of tag postings. Each
tag posting consists of three integers: the identi�er of
a document containing an element with the tag, and
the o�sets start and end of the element in the docu-
ment.Matching a tree pattern to documents using the
Niagara index involves merging two lists for each edge
in the tree pattern. The lists that are merged are the
inverted lists corresponding to the tags and words an
edgeconnects in the tree pattern.

The relative performance of the augmented index
and the Niagara index depends on the type of query.
If the Niagara index is used to match a tree pattern
having containment operators, one does not have to
perform a union, as is necessary with the augmented
index (See example evaluation using the augmented
index). The inverted lists for the tags and words con-
nected by an edge representing a containment operator
can be merged to locate relevant elements. However,
since the Niagara index does not store depth informa-
tion, it cannot be used to match tree patterns that
have direct containment operators. A depth-enhanced
Niagara index needs to have the depth (an integer)
stored with each tag posting. If the augmented index
is used to match a tree pattern that consists of a chain
of direct containment operators (e1 � e2 � e3 in Fig-
ure 8), one or more edges need not be evaluated (See
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Figure 10: Query Execution Time.

example).
The Niagara index can be used to match tree pat-

terns to XML documents, if the patterns do not have
direct containment operators. A context expression is
a simple instance of a tree pattern. Therefore, the Ni-
agara index can be used to �nd documents with inter-
esting query term instances of query terms in a query,
provided that the context expressions in the query do
not involve direct containment operators. However,
since the index does not store contexts, it cannot re-
turn contexts that match a context expression. There-
fore, it cannot be used to explore documents that a
search returns.

4 Experimental Results

Except for the augmented index, we have implemented
the Cextor system as described in Section ??. The
document repository built by crawling the umd.edu

domain contained about 210 thousand HTML �les
amounting to 10 GBytes of data. After cleaning the
�les, we parsed them using a SAX-based parser. We
built contexts using tags contained even in documents
that could not be cleaned by Tidy, generating very
deep contexts. (We observed a maximum depth of
200.) We evaluated our system on a Sun Ultra 5
workstation with a 270 MHz Sparc processor and 128
MBytes of RAM, and running Solaris version 3:6. Our
experimental results are grouped into three sets. The
�rst set of experiments evaluates the context index.
The second set evaluates our algorithm for context tree
construction. In the third set, we study some proper-
ties of our corpus.

4.1 Index Construction and Query Processing

We used 22 queries (Table 1), chosen to cover a wide
range of result sizes, to study the time to execute
queries in Cextor. Figure 10 shows for each query, its
execution time, which includes the time to compute
(1) the query's span, (2) the set of documents in its
result, and (3) the association between contexts and
documents in the result (i.e., what documents have

QID Query

Q0 thesaurus

Q1 catholic

Q2 workstation

Q3 germany

Q4 sport basketball

Q5 china

Q6 \graduate school" rank

Q7 joint appointment

Q8 database

Q9 service \parking permit"

Q10 system

Q11 theory group

Q12 that

Q13 \computer science" faculty

Q14 computer science

Q15 this

Q16 research thomas

Q17 health center

Q18 a

Q19 edu

Q20 and

Q21 the

Table 1: Sample Queries.

interesting query term instances that have a speci�c
context?). The execution time shown for each query
does not include the time to construct the context tree
using the span.

Queries having a single word (Q12, Q15, Q18, Q19,
Q20, Q21) take time roughly proportional to the num-
ber of instances of the word. For queries with multiple
query terms where each query term is a single word
(Q14, Q16, Q17), their execution times depend on
three factors: (1) the number of query terms, (2) the
total number of query term instances that are inter-
esting, and (3) the skew in the number of instances of
the di�erent query terms. For example, Q17 (727811
instances) takes more time than either Q14 (157609 in-
stances) or Q16 (172957 instances) because it selects
a larger number of interesting query instances. By the
same argument, one would expect that Q16 take more
time than Q14. However, the words \computer" and
\science" have about the same number of interesting
instances (84; 976 for \computer" and 72; 633 for \sci-
ence"), but the words \research" and \thomas" have
a disproportionate number of instances (161; 361 for
\research" and 11; 596 for \thomas"). During evalua-
tion of the OR, merge of these unequally sized lists for
the query terms in Q16 takes less time than the merge
of the roughly equal sized lists for the query terms
in Q14. Query Q13 has a moderate number (109135)
of interesting query term instances, but it takes more
time compared to queries with similar number of in-
teresting query term instances. This high execution
time is because the evaluation of Q13 involves merg-
ing lists for \computer" and \science", which are both
very common words in our corpus (gathered from a
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Run Size (No. of Word Instances) 1000000

No. of Runs 173

Run Generation Time 49 min. 56 sec.

Run Merge Time 35 hrs. 40 min. 13

Dictionary Creation Time 27 min. 26 sec.

Table 2: Context Index Creation Statistics.
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Figure 11: Context Tree Creation Time.

university domain).
The execution times for some of the queries (Q13,

Q20, Q21) are quite high. These high execution times
are due to the fact that we need to carry context infor-
mation along with each document, through all stages
of query evaluation, in order to support operations
such as re�nement and anchoring. As a result, the
context-enhanced list returned by the context index is
larger than the inverted list returned by a traditional
inverted �le. For example, for query Q21, the number
of context-document pairs (33806) in its result is more
than twice the number of documents (140307) in the
result.

In Table 2, we present the execution times of di�er-
ent phases in the creation of the context index.

4.2 Exploration of Query Results

We studied the time to construct a context tree by
executing queries that covered a wide range of span
sizes (from 28 contexts to 11655 contexts). Figure 11
shows that the time to construct a context tree is linear
in the number of contexts it represents.

We studied the time to anchor a context tree by
using the a tag to anchor the initial context tree out-
put by each of the 22 queries (Q0 � Q21). Figure 12
plots the time to (1) read the span of the query from
a �le (old session state), (2) �nd contexts in the span
that contain the a tag, (3) write the remaining con-
texts (new span) to a new �le (new session state), and
(4) split each remaining context into an outer con-
text and an inner context. We do not show the time
to construct the output tree. The anchoring time is
dominated by the I/O times to read and write ses-
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Figure 12: Anchoring Time.

Property Avg. Max.

Context Depth 7.06 200

Context Length (bytes) 29.29 995

Contexts per Word 5.99 12298

Instances of a Word 146.80 5830831

Documents Containing a Word 44.64 190871

Words in the Collection 1102478

Contexts in the Collection 106016

Documents in the Collection 209020

Table 3: Some Properties of our Corpus.

sion state information, which are proportional to the
number of contexts in the input (old span) and output
(new span), respectively. Anchoring the context tree
of Query Q19 took the longest time because it had the
highest number of contexts in the input (8736) and
output (5623) combined.

Using the context expression //a, we studied the
time to re�ne the initial context tree output after eval-
uation of each of the 22 queries. We used the context
expression to constrain the contexts of interesting in-
stances of the �rst query term in each query (the �rst
query term in health center is \health"). We ob-
served that the times were I/O dominated, similar to
what we observed for anchoring. The re�nement of
each query took less than one second, and query Q19
took the longest.

4.3 Data Statistics

Table 3 summarizes some properties of our document
collection.

It is well known that frquencies of words in text
documents follow the Zipf distribution [BYRN99]. As
expected, we observed the same behavior in our cor-
pus. However, we found it interesting to study the
distribution of the number of distinct contexts across
words. Figure 13, plotted using logarithmic scales on
both axes, illustrates that this distribution follows the
Zipf distribution, if we ignore a few words of high rank.
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Figure 14: Contexts across Documents.
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The dotted line in the �gure represents the Zipf curve
31630:06=(x:5633). We also studied the distribution of
the number of distinct contexts in a document. Fig-
ure 14 illustrates that this distribution also follows the
Zipf distribution. The straight line in the �gure rep-
resents the Zipf curve 56:55=(x:2610).

When indexing an HTML corpus, one may choose
to limit the depths of the contexts stored in the in-
dex, since many deep contexts are a result of missing
end tags in documents. Even if documents are well-
formed, one may choose to limit the depth to avoid
displaying deep contexts in the context tree. We stud-
ied the distribution of words across various levels of the
document hierarchy. Figure 15, which plots the num-
ber of word instances (excluding tags) whose contexts
have a certain depth, shows that most of the word in-
stances are located at depth 2 (due to /html/body). It
also shows that there are fewer than 10; 000 words in
the repository for all depth greater than 20. We also
studied the number of contexts that have depth below
a certain value, and found that most contexts have
very low (< 10) depths (Figure 16).
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5 Related Work

Several index structures have been developed by the
Information Retrieval community for search over full
text documents [BYRN99]. They include signature
�les [FC84], inverted �les [SM83] and suÆx arrays
[MM90]. The traditional inverted �le stores the post-
ings for each word in a document collection, but does
not store the contexts within which the word occurs.
The context index augments the traditional inverted
�le to store the contexts of the occurrences of each
word in a document collection.

Some search engines (e.g., Google, HotBot) allow
searching for words attached to speci�c tags (e.g., the
title) in a document. They extend the inverted �le
to include meta-words that encode information about
tags. For example, the word president attached to
the tag title in a document is treated as an occur-
rence of the meta-word \title:president," and its post-
ing is stored in the inverted list for \title:president."
If the word president is attached to another tag, say
location, the posting for this occurrence is stored in
the inverted list for \location:president." The meta-
words \title:president" and \location:president" are
inserted into a dictionary. This approach can be ex-
tended to encode words in arbitrarily deep contexts.
However, each word appears in several meta-words,
as many as there are tags attached to the word. In
our toy example, the string \president" occurs twice
in the dictionary: once as \title:president" and once
as \location:president." The context index stores each
word only once in the dictionary, and thus scales better
when the number of contexts for a word is large.

Recent work on querying XML may be classi�ed
into two broad and complementary categories based
on the type of XML data they study: The �rst cate-
gory adopts a data-centric view in which XML encodes
a database that may be structured or semistructured.
Query languages in this category (e.g., Lorel, We-
bOQL, XML-QL) resemble OQL and other database
query languages [FK99, STZ+99, YA94, MAG+97,
DFS99]. The second category adopts a document-
centric view in which XML is standardized syntax for
structured documents such as technical reports, legal
briefs, and equipment manuals. Query languages in
this category resemble those used in information re-
trieval (e.g., boolean queries, vector space queries).
Our work in this paper falls in the second category
and our query language is an extension of the boolean
query model.

Zhao and Joseph propose an index structure for fast
search and retrieval of XML documents from moder-
ately sized data collections such as a local area direc-
tory service [Zha00]. Their index structure is designed
for main memory, and does not scale well to a large
document collection such as the Web. Our approach
has more in common with the Niagara system, which
allows querying of documents on the Web [NDM+00].

A comparison between the indexing schemes used in
our system and the scheme used in Niagara is given
in Section 3. Schemes similar to the Niagara index-
ing scheme have also been used to index structured
documents [Nav95, SM00].

6 Conclusion

In this paper, we addressed the following problem:
How can we use the rich context information inherent
in the tag structure of XML documents to improve
search and exploration? We motivated the need for
methods that improve XML search without assuming
anything beyond well-formedness of XML documents.
We stressed the need for an exploratary interface that
enables users unfamiliar with the corpus to discover
its structure and content. Our main contributions are
(1) methods for context-sensitive search in XML (2)
extensions with applications to query processing in
XML-QL; (3) methods for exploring very large search
results; (4) an experimental evaluation; and (5) an im-
plemented system whose source code is publicly avail-
able. All the methods described in this paper, except
the augmented index, have been fully implemented.

We are currently incorporating the augmented in-
dex into Cextor. We are also working on further im-
proving the eÆciency of index construction by evalu-
ating alternate encoding techniques and implementa-
tions on a distributed architecture. We are studying
methods to improve the scalability of context trees.
Although we did not focus on the user interface itself
in this paper, we are working on an innovative, Java-
based user interface that uses zooming and other ideas
to concisely present a large number of objects (such as
large query results). Finally, we are planning a full-
scale deployment of a search engine based on Cextor
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