Tracking Moving Clutches in Streaming Graphs

Sudarshan S. Chawathe*

Computer Science Department
University of Maryland
College Park, Maryland 20742.
chaw@cs.umd.edu

May 2002

Abstract

We address the problem of tracking groups of interacting entities as they move in
a graph with vertices representing hosts or locations and edges representing interac-
tions between hosts. The graph of interactions is modeled as a stream of edges (with
the arrival of an edge signifying an interaction between the hosts it connects). This
problem arises in applications such as tracking groups of fraudulent callers in a tele-
phone network and tracking identities of malicious agents (programs or people) on a
data network. We present a formalization of this problem and a streaming solution
that uses bounded storage and provides real-time response. Qur solution is based on
maintaining, at each instant, an approximation of the streaming graph seen so far. We
present empirical results to quantify the effectiveness of our solution.

1 Introduction

Long-distance telephone companies need to monitor their networks for fraudulent calls. Em-
pirical evidence indicates that people who make fraudulent calls tend to communicate with
other people who make fraudulent calls. This characteristic leads to the formation of groups
of people with strong interconnections within the group. We refer to such groups as clutches
and their members as agents. Identifying fraud clutches and tracking their evolution is an
important component of fraud detection. By paying careful attention to the members of
such clutches, and those closely linked to them, future fraudulent activity can be prevented
or detected early.

Identifying fraudulent clutches is an interesting problem, but it is not the focus of this
paper. Instead, our focus is on tracking fraud clutches after they have been detected. The key
observation here is that we do not have any direct information about the identity of agents

*This work was supported by the National Science Foundation with grants 11S-9984296 (CAREER) and
11S-0081860 (ITR).

initiating a phone call. Calls are identified by the source and destination phone numbers.
However, we cannot identify the agents of a clutch naively using the phone numbers they
use because they switch phone numbers frequently in an attempt to circumvent blacklisting
by the phone companies. In effect, when a phone company detects fraudulent use of a phone
number and flags it, the agent moves to another phone number and resumes fraudulent
operations from there.

As the agents in a clutch move, the identity of the clutch needs to be updated to reflect the
new phone numbers (hosts, in general) that the agents are using. Obviously, the fraudulent
agents do not inform the phone company of a change in the phone number from which they
commit fraud! Instead, the phone company must infer such a change based on records of
calls being made on its network. In effect, the problem is one of identifying clutches, which
are groups of fraudulent agents (people), using information about communications between
hosts (phone numbers). The mapping between agents and hosts is dynamic and must be
inferred from the communications emanating from the hosts.

The basic idea behind inferring agents based on the hosts they use is as follows: If Alice is
known to call Bob every Sunday around 7:00PM and Cathy every evening at 10:00PM (and
so on), then if we find another phone number with a matching calling pattern, we may wish
to infer that Alice may be using that number. If agents in a clutch (say, Alice, Bob, Cathy,
and Dan) move one at a time, with plenty of intervening communications, the problem is
relatively straightforward (although still computationally intensive due to the large volumes
of call data that are involved). Suppose these four people are using phone numbers 1, 2,
3, and 4, respectively. If Alice starts using a new phone number, 101, we can detect the
similarity in the calling patterns of 1 and 101 and infer that Cathy is now also operating
from 101. Then, if we observe a number 102 which communicates with 101, 3, and 4 in
a manner similar to 2, we can infer that (since 101 and 1 are now known to both map to
Alice), that 102 may be a new number for Bob.

The problem becomes more complicated if (as is likely to happen in practice), two or
more agents simultaneously start using new phone numbers. (By simultaneously, we mean
close enough in time that there is not a significant amount of communication between agents
in the time interval between the two events.) In our simple example, if Alice and Bob start
using 101 and 102, respectively, on the same day, it is more difficult to detect their new
numbers. Essentially, we have to reason that 101 is similar in calling pattern to 1 if 102
can be identified with 2 (and similarly in the other direction). When dealing with three or
more simultaneous moves of this nature, we need to keep track of how mappings of agents
to phone numbers depend on other mappings in general.

Our focus in this paper is on tracking clutches of agents as they move in a (communi-
cation) network of hosts, by using the communication patterns. As shall become clear from
the general problem statement presented in the next section, this problem has applications
in domains other than fraud detection in phone networks. For example, a similar problem
arises in data networks, with computer hosts (say, identified using IP addresses) and worms
or other malicious programs that may be communicating to coordinate a distributed denial-
of-service attack. As another example, consider the banking domain. Here agents are people
or organizations that operate accounts, hosts are bank accounts, and the communications
of interest are transfers and other transactions between accounts. If a group of ten people

routinely sends money to one bank account and is later observed sending money to another,
the common pattern could suggest that the real recipient of the funds has moved to a new
account.

In many communication networks, certainly telephone and data networks, the rate at
which communications occur is extremely high, making it important to process the data
on-the-fly as much as possible. Storing the data and analyzing it offline, while sometimes
possible, has serious drawbacks. First, offline detection involves a (typically several hour)
delay between the occurrence of an interesting event and its detection. For many applications,
a near realtime response is important. Second, even with today’s rapidly falling storage
prices, the amount of storage needed to simply record all data as it is generated is simply
too large. For example, even with AT&T’s resources, researchers have found it beneficial to
maintain a abbreviated version of the data generated by the network. For these reasons, it
makes sense to treat the data obtained from a communication network as stream data.

We make two main contributions in this paper. The first is the formulation and formal-
ization of the problem of tracking moving clutches, informally described above. This problem
is interesting from both applications and research viewpoints. The second is a solution to
this problem for streaming data. Our solution adapts to the available storage and provides
near realtime response.

In the next section, we describe the problem more precisely, develop some of the ideas
used in the rest of the paper, and present a formal problem definition. In Section 3, we
describe our method for detecting moving clutches in streaming graphs. Section 4 presents
an experimental evaluation of our method. We discuss related work in Section 5 and conclude
in Section 6.

2 Problem Development

The general setting for our problem is a communication network composed of hosts and
links. Intuitively, hosts are entities that can be unambiguously identified (see below) by the
communication network. Examples of hosts are phone numbers in telephone networks and
IP or MAC addresses in a data network. Links between hosts represent network interaction.
For example, in a telephone network, each phone call can be modeled as a link from the
calling host to the called host. Link labels (annotations) are used to model the salient
characteristics of the interaction (e.g., length of a phone call, number of packets sent on a
TCP connection). Consider the graph obtained by mapping hosts to vertices and links to
edges. We refer to this graph as the call graph. (More precisely, this mapping yields a
multigraph; see below.) In what follows, we shall often drop the distinction between a vertex
in this graph and the host it represents (and, similarly, between an edge in the graph and
the link it represents).

The call graph is continually changing as new interactions between hosts are recorded.
In its purest form, the call graph is a large, continually growing, historical database. In
the applications of interest (e.g., detecting fraudulent hosts in telephone networks, detecting
malicious agents in a data network) the rate at which edges are added to the call graph
is extremely high. Storing and analyzing the database in its entirety is not practicable.
Further, a timely response to fraudulent activity is of particular importance. (Detecting

3

clutches of fraudulent callers from a year ago is unlikely to yield much benefit, since the
agents typically do not use a phone number for very long.) Given these characteristics of
the data, it is best viewed as stream data. Specifically, we model our data as a stream of
graph edges. We assume that we are not interested in hosts that do not interact with others
(degree-0 vertices in the graph); therefore, we can infer the vertices from the edges.

The notion of unambiguous identification of hosts requires some explanation as it depends
on the level at which a network is modeled. For example, IP addresses can be spoofed
using well-known techniques [Bel89]. However, if we model the network at a higher level of
abstraction (say, at the TCP level), we assume that IP addresses are reliable. In effect, we
assume the standard layered network architecture in which each layer must trust the one
below it. It is possible to apply the techniques we describe in this paper to multiple levels
by changing the real-world entities to which hosts are mapped. However, the focus of this
paper is efficient detection of moving clutches in a single layer; therefore we do not develop
the multi-layer idea further. Further, we present our ideas for an undirected call graph for
ease of presentation only; they apply almost unchanged to directed graphs.

As described, the collection of hosts and links forms a labeled, weighted multigraph
[Bol98]; that is, there may be multiple edges between a pair of vertices (e.g., one correspond-
ing to each phone call between the hosts the vertices represent). For ease of presentation, our
description below assumes that this multigraph has been mapped to a graph by a method
such as thresholding on edge weights: We create an edge between two vertices only when the
collection of links between the corresponding hosts meets some criterion. Our description
does not depend on any particular mapping from multigraphs to graphs, although a natural
one for telephone networks is the aggregate cost or connection time of links between a pair of
hosts exceeding a threshold. Thus, instead of an edge representing an individual interaction
(e.g, phone call) between hosts, it represents a significant interaction (e.g., several phone
calls in one week, costing more than $100).

In more detail, we are given an infinite data stream consisting of a sequence of edges:
P = (e;)2, ={e,e9,...}, with e; = (u;,v;). Let Py, | < m, denote the restriction of P to
edges e; through e, (inclusive): P, = (e;)™,. We shall identify time with the indices of the
stream P. Thus, at time k, the sequence P;; has been seen while the remaining sequence
Prt1.0 is unavailable (as it denotes edges that become available in the future). It is also
useful view the sequence (Pyx)52; as a sequence of graphs (G)7,, where Gy, is the graph
induced by the edges in Pjx. We are also given a cutoff index c. Finally, we are given a
collection of fraud clutches S = {54, 5,,...,S;}, where each graph S; is a subgraph of
G1e. On receiving the k’th edge ex, we are required to detect all subgraphs G of Py that
match (as explained below) a clutch S € S. (Note that the we use the term clutch to refer
to an identifiable group of communicating agents that we wish to monitor. Fraud clutches
are clutches that have been specially flagged. That is, not all clutches are fraud clutches.)

We now make more precise the idea of finding a match to a clutch. An initial idea is
to say a that a graph G matches a clutch S if G is isomorphic to S (in a graph-theoretical
sense). There are, however, two problems with such a definition. First, since the definition
is based on only the interconnections among the hosts of a clutch, it is likely to give rise to
many false positive matches (i.e., matches that do not represent the agents in the matched
clutch). For example, the calling pattern of a clutch consisting of seven hosts is likely to

match, just by chance, that of some group of seven friends that is completely unrelated to
the clutch. Of course, given only the information in the call graph, no method can eliminate
such false positive matches while still detecting some matches. (An adversary could pick a
call graph with several subgraphs isomorphic to a clutch.) However, this definition would
essentially guarantee many false positives. For example, a clutch isomorphic to K5 will
match any group of five friends who call each other frequently. The second problem with
defining matches based purely on isomorphism is tractability. Subgraph isomorphism is a
celebrated NP-hard problem even in a simplified, offline (non-streaming) setting [GJ90]. A
streaming version of it that includes memory and processing constraints is not likely to admit
an effective solution.

We therefore amend our working definition as follows. A graph G matches a clutch S
if G is isomorphic to S and G and S have at least one vertex in common. Intuitively,
this definition is likely to result in fewer false positive matches because although subgraphs
isomorphic to a clutch may be common, the number of such subgraphs that share a vertex
with the clutch is likely to be small. More precisely, we are making a trade-off between
false positives and false negatives; by insisting on at least one common vertex, we will miss
detecting moves of clutches in which all agents in the clutch simultaneously move to new
hosts.

We make one more amendment to our working definition of matching graphs to account
for the likelihood of entities that move communicating with new entities not previously in
the clutch. (For example, in a telephone network, a fraudulent caller may graduate to a
broker who recruits new fraudulent callers. In a computer network, a worm preparing for
a distributed denial-of-service attack may communicate with newly infected hosts.) We
therefore permit G to include edges not present in S. More precisely, the notion of a match
is explicated by the following definitions:

Following standard terminology, the neighborhood of a vertex u is the set of vertices
v such that edge (u,v) exists. Intuitively, we say that a vertex u neighborhood-dominates
vertex u' in a graph if u’s neighborhood is a superset of the neighborhood of u'. However,
we modify the superset test by allowing some vertices to be mapped to others by a mapping
m' that parameterizes the neighborhood-domination relationship. More precisely, we have
the following:

Definition 1 (Neighborhood-domination for vertices) Given graphs G = (V, E) and
G' = (V', E'), and a partial one-to-one mapping m : V — V' a vertex v € V neighborhood-
dominates v' € V' (under m) if m/(n(v)) 2 n(v'), where m' : UUU' — UUU’ is the mapping
obtained by extending m to be the identity on vertices not mapped by m, and to sets of
vertices in the natural manner: m'({uy, us,...,u,}) = {m'(u1), m'(uz),...,m (u,)}. If v
dominates v' under a mapping m, we write v ~,, v'. We use the notation {z/2',y/y, ...}
for a mapping that maps z to 2/, y to y’, and so on. We refer to x/z’ as a substitution.

The neighborhood domination relation is extended to graphs in the natural manner:

Definition 2 (Neighborhood-domination for graphs) A graph G = (V, E) neighborhood-
dominates a graph G' = (V', E’) under a partial mappingm : V. — V'ifVo € V : v ~,, m(v).
We write G ~,, G'.

The size of a mapping is the number of vertices it maps nontrivially (to a vertex other
than the vertex itself). The size of the smallest mapping that satisfies the conditions in the
definition of neighborhood domination is a measure of dissimilarity. We specify graphs with
small dissimilarity using the following definition:

Definition 3 (t-matching) A graph G ¢-matches a graph G’ if there exists a partial map-
ping m’ of size at most ¢t such that G ~,,, G'.

Recall our earlier discussion on requiring that a fraud clutch and a subgraph deemed its
match have at least one common vertex:

Definition 4 (ot-Matching) A graph G = (V, E) ot-matches a graph G' = (V' E") if G
t-matches G' and VNV’ # (). A graph G = (V, E) ot-matches a graph G' = (V', F') if G

Using the idea of an ot-matching, we can now state our problem definition formally as
follows:

Definition 5 (Formal Problem Definition) Given an infinite stream of edges P = (¢e;)$2,,
an integer ¢ (called the old-vertex cutoff), a collection of graphs & = {51, Ss,..., S} such
that each S; is a subgraph of Pj., and a threshold %, find, for each position £ in the stream,
the subgraphs G of P, that ot-match some S € § without using any information from
Pi+1,00, and using only a fixed amount M of storage.

Note that the maximum amount of storage available is part of the problem definition.
That is, we need solutions that work well over a range of available storage sizes. Implicit
in the definition is the requirement that each match be detected as soon as possible (i.e., at
the point in the stream at which there is enough information to confirm the match). This
timeliness requirement may not be critical for all applications. For example, in detecting
fraud in telephone networks, a delay of up to several days may be acceptable, in which case
some of the processing can be done offline. However, our focus is on problems that require
online detection. For example, for detecting suspicious connections on a data network in
order to prevent a distributed network attack, we need real-time or near real-time response
time.

The problem definition does not explicitly mention the rate at which the stream of edges
must be consumed. However, it is clear that the ability to process the stream rapidly (high
throughput) is important. For many applications, the required throughput rates preclude
any substantial number of disk accesses. Thus, the M in the problem definition is of the
order of RAM sizes (few Gigabytes), not disk sizes.

Since the stream of edges is infinite, any solution that is based on storing all data will
eventually run out of space, assuming bounded space. In practice, even if we assume space
is infinite (as we can buy additional storage over time), the amount of storage that can be
accessed quickly remains bounded. Thus, a high processing throughput requires storing only
part of the edge stream seen so far. Any solution that does not store all the information
in the data stream for eternity cannot find all matches. (For example, a solution based on
storing only the edges seen in the last seven days will miss detecting a match with a subgraph

whose edges appear spaced more than a week apart. It is easy to observe that, no matter
what scheme is chosen for deleting some of the edges seen so far, an adversary can pick a
sequence of edges that includes a match that cannot be detected.) Thus, strictly speaking,
the problem as stated admits solutions only for stream indices up to a certain limit (based
on the amount of storage, M). In practice, we are rarely interested in detecting matches for
eternity. Instead, the stream history of interest is moved forward in time. In our problem
definition, this history moving operation corresponds to moving the origin (index 1) of the
stream forward in time. Although such considerations are obviously necessary, they are not
the focus of this paper. Our assumption is that they occur rarely and that the runtime
performance depends primarily on solution for a fixed historical origin. We therefore do not
discuss them further in this paper.

3 Clutch Tracking Method

Our method for tracking clutches is based on two main ideas. The first is a case analysis
of matching subgraphs of the call graph, given the requirements of ot-matching described in
Section 2. The second is an incremental, lossy compression method for reducing the storage
requirements of the call graph seen so far.

3.1 Case analysis of matching

Let i(x) denote the index of the first occurrence of vertex z in the stream P. That is,
i(z) is the smallest stream index i such e; = (z,y) or e; = (y,x). We use the indices of
first occurrence to classify vertices into three sets: (1) The set of old vertices consists of
vertices that first no later than the old-vertex cutoff ¢; that is, N, = {z : i(x) € [1,¢]}. (2)
The set of new vertices consists of vertices that first occur after the old-vertex cutoff but
before the current index k; that is, N, = {x : i(z) € [c+ 1,k — 1]}. (3) Finally, the set of
unseen vertices consists of vertices that first occur at or beyond the current index; that
is N, = {z : i(xz) € [k, 00]}. Given our problem formulation, old vertices that are not also
clutch vertices can be ignored for the purposes of detecting moving clutches. We therefore
assume that the set of old vertices is identical to the set of clutch vertices, N;. (If detecting
moving clutches is the only application of interest, all information about non-clutch old
vertices can be deleted. In the more likely scenario where such information has other uses,
we simply preprocess the old vertex data to filter out the unnecessary vertices.)

We now describe the actions performed on the arrival of an edge e = (u,v) on the edge
stream. Since each endpoint of e belongs to one of the three sets described above (old, new,
and unseen), we have six cases to analyze. We present these below.

Case 1: u unseen; v old.

Since u has not been seen before, the current edge e = (u,v) is the only edge incident on
it (so far). Further, the common vertex requirement implies that u can only match some
vertex in the neighborhood of v. Now since n(u) = {v}, a vertex u' € n(v) matches u if
and only if n(u’) = {v}. In other words, we need only examine the neighborhood of v for
degree-1 vertex, all of which match w.

if X' = () then return m; fi
if r < || X'|| then return L; fi
for 2’ € X' do
My :=A{z € n(w) : [n(z') — m(n(z))|| < r};
found := false;
for z € M, do
m' ;= nMatch(r — 1,n(z") — m(n(z)), z, {z/z'} Um);
if m # | then begin
found := true;

re=r+ || = [[ml];
m:=m';
end
fi;
end
if found = false then return 1; fi
end
return m;

Figure 1: Pseudo-code for function nMatch

Case 2: u unseen; v new.

In this case, both v and v must be mapped to old vertices. Therefore, if the matching
threshold ¢ is smaller than two, no match is possible. If ¢ > 2, we seed the search for
matching vertices using u: Since the degree of u is one, we search over the degree-1 vertices
in the clutch sets in S. For each such vertex u' with n(u') = {v'}, we try to generate
a match by mapping v to v’ and v to v'. The matching condition for mapping u to u'
(viz., m(n(u)) D n(u')) is satisfied since m(n(u)) = m({v}) = {v'} = n(v'). However, we
need to check the matching condition for mapping v to v’. In particular, all vertices in the
neighborhood of v" must be mapped to some vertices (recursively, satisfying the mapping
conditions). This recursive expansion of a mapping to satisfy the mapping conditions is
outlined as function nMatch below (and will be useful in other cases to0o).

Algorithm 3.1 (Function nMatch)

Input:

r: maximum number of elements that can be added to the mapping m

X': set of vertices to be matched

w: anchor; the mate of each vertex in X’ must be in n(w)

m: current mapping (which is extended by at most 7 elements)

Output:

m': mapping (superset of m) such that Vo € X' : 3{z/z'} € m'; L if no such mapping exists.
Method: The psuedo-code is displayed in Figure 1. The code iterates over each vertex z’
that is to be matched. If it fails to find a match for any one, it returns null immediately. For
matching a vertex ', the simple case is when there is a vertex x in w’s neighborhood such that
the m maps z’s neighborhood to a superset of z’. However, if a vertex z in w’s neighborhood

does not meet this requirement, we cannot dismiss it since it may be possible to map some of
the vertices in z’s neighborhood to those in 2’ neighborhood, by extending the given mapping
m. Determining whether the vertices in z’s neighborhood can be mapped in this manner
is accomplished by making recursive calls to nMatch. The rest of the code is arithmetic to
keep track of how many more substitutions we can add to m, based on the original limit r.
As an optimization, we skip exploring vertices x whose mapped neighborhoods differ from
the neighborhood of v’ by an amount that exceeds r (since the unifying these neighborhoods
would require extending m by more than r, which is not permitted).

Using the function nMatch, the expansion of the mapping as required in Case 2 can be
accomplished as follows:

for S € S do

for v' € S do
if n(u') = {v'} then nMatch(r,n(v") — m(n(v)),v,{u/v',v/v'}); fi;
end;

end;
Case 3: u unseen; v unseen.
In this case, the subgraph of the current call graph induced by {u,v} (with the single edge
(u,v)) is disconnected from the rest of the call graph. Given the common vertex requirement
in the problem definition, this edge cannot lead to any matches yet. (However, a match using
this edge at a later point in the stream is possible: as edges are added to the graph, v and
v may become connected to a clutch.)
Case 4: u new; v old.
This case is similar to Case 1 in that since v is an old vertex that can be used to seed the
search for a matching. However, unlike Case 1, the neighborhood of u contains vertices other
than v. (The degree of u is at least two since its classification as new implies the occurrence
of an earlier edge incident on u.) Therefore, in mapping u to a vertex »’ in the neighborhood
of v, we need to ensure that the neighborhoods of u and v’ satisfy the mapping condition:
m(n(u)) 2 n(u'). The nMatch function is used to expand the mapping m as needed to satisfy
this condition. More precisely, we evaluate nMatch(t — 1,n(u') — m(n(u)), v, {u/u',v/v'})
for each u' € n(v).
Case 5: u new; v new.
In this case, both v and v have occurred before, and their neighborhoods contain several
vertices in general. We must find a pair of adjacent vertices v’ and v’ in some clutch that
match v and v, respectively. That is, we must find a mapping that simultaneously matches
the neighborhoods of both u and v. Put another way, we must extend m, if needed, to map
the vertices in the neighborhood of u' to vertices in u’s neighborhood, and similarly for v’
and v. These tasks are accomplished by calls to the nMatch function. We pass the mapping
as modified by one call to the other in order to make sure we find a consistent mapping.

for S € S,v' € S do
for v' € n(v') N N, do
m' := nMatch(t — 2,n(u') — m(n(w)), u, {u/u',v/v'};
if m' # | then begin
m == nMatch(t — ', n(u') — m(n(u)), u, {u/u', v/v'};
end;
fi
end;
end;

Case 6: u old; v old.
Since both u and v are already old (hence, clutch) vertices, this edge cannot give rise to
any new matches. However, the neighborhoods of u and v are updated to include the other.
These updated neighborhoods will be used in future matches. With such a neighborhood
update, it is possible that matches detected earlier are no longer valid. For example, a match
that mapped u and v to vertices u’ and v', where the edge (u,v) does not belong to the call
graph, will no longer be valid. However, given the streaming, online nature of the problem,
we do not consider the issue of retroactively invalidating matches made earlier. Further, if u
and v belong to different clutches this edge may suggest that the clutches be merged. Such
considerations are orthogonal to the problem of detecting moving clutches and we do not
consider them further in this paper. For the problem at hand, the only action required is
the updating of the neighborhoods of u and v.

3.2 Neighborhood Store

We store the graph Gy (determined from the stream Pj; seen at time k) by storing the
neighborhoods of each vertex. As described above, retrieval of vertex’s neighborhoods is an
operation frequently used by our method for detecting moving clutches; therefore we organize
the neighborhoods using a hash table keyed by vertex identifiers. We refer to this collection
of indexed neighborhoods as the neighborhood store. However, given the fixed storage
requirement in the problem definition (Section 2), a simple strategy that simply records all
neighborhoods is not feasible. We limit the amount of storage required for the neighborhood
store by compressing the store when it gets too large. Our compression method, described
below, reduces the number of neighborhoods in half.

The basic idea behind this compression method is to replace the neighborhoods of two
vertices with a single neighborhood that is an approximation of both. We have a few vari-
ations based on the manner in which vertices to be merged are selected, and the manner in
which neighborhoods are merged. We discuss these below: If the vertices being merged have
identical neighborhoods, the merging process consists of simply replacing the neighborhood
of one with a pointer to the neighborhood of the other. Further, this merging results in no
loss of information and yields space savings proportional to the size of the neighborhoods
being merged. Unfortunately, most of the vertices that are merged do not have identical
neighborhoods and we need to select a common neighborhood that, after compression, will
be used as the neighborhood for both vertices. We consider two simple options for this com-
mon neighborhood: the intersection and the union of the individual neighborhoods. When

10

individual neighborhoods are replaced by their intersection, we risk missing matches since
neighbors of one vertex that are not neighbors of the other will be absent from the neighbor-
hoods of both vertices after the compression step. In the extreme case, if the neighborhoods
being merged are disjoint, the merging process leaves both vertices with empty neighbor-
hoods. Analogously, replacing individual neighborhoods with their union can lead to many
spurious matches because the merging step in effect adds the vertices that are in the neigh-
borhood of a vertex to the neighborhood of its partner, irrespective of whether they occur
in the partner’s neighborhood.

Suppose we are merging neighborhoods by substituting the union of the neighborhoods for
both. That is, when vertices z and y are merged, n(x) and n(y) are replaced by n(z) Un(y).
(We use the term merging of vertices to mean merging their neighborhoods.) Using the
union instead of n(z) may result in the use of the spurious edges in n(y) — n(z). We refer to
these as erroneous edges. We use the normalized number of erroneous edges introduced for
n(zx), i.e., (n(y) —n(z))/n(z) to determine the desirability of merging = and y, from z’s point
of view. The similar quantity from y’s side is (n(z) — n(y))/n(y). Thus, accounting for both
x and y, we have the following metric for the normalized error of merging the neighborhoods
of x and y with their union:

aloy) =5 T)

1 <n(y) —n(z)) — n(l/))

A similar reasoning for the case in which we use the intersection of neighborhoods as the
replacement for the individual neighborhoods indicates (n(z) — n(y))/n(z) as the relative
error for x and (n(y) — n(z))/n(y) as the relative error for y, yielding the following as the
metric for normalized error of merging using intersection:

1 (n(x)—n(y) n(y)—n(x))

S B N R)

The above error functions range from 0 (no error) to 1 (maximum error). We use s,(z,y) =
1 —eu(z,y) and s;(z,y) =1 — e;(z,y) as similarity measures.

Given the potential for information loss when neighborhoods are merged, pairing up
vertices in a manner that minimizes such loss during compression is important. We can
formulate this subproblem as a maximum-weight matching problem in the complete graph
consisting of the vertices of the neighborhood store. In this auziliary graph (which is distinct
from the call graph), there is an edge connecting each vertices pair; the weight of this edge is
the similarity of the two vertices. A solution of this matching problem yields a pairing of of
vertices that results in the minimum loss of information, as measured by the metrics e, and e;.
Although this reduction to the maximum weight matching problem is conceptually attractive,
it suffers from a serious practical drawback. In contrast to bipartite weighted matching,
which admits very efficient solutions, nonbipartite weighted matching algorithms run in
roughly O(n?) time, where n denotes the number of vertices [Law76, Gab73]. (Algorithms
that improve slightly on this asymptotic complexity exist, but they are complex and unlikely
to yield implementations that run faster than the O(n®) algorithm on typical instances of
the problem.)

11

In addition to the high running time of weighted matching algorithms, these algorithms
have O(n?) space requirements on dense graphs (since every edge must be read). Using
such an algorithm to compress a neighborhood would thus require working space that is
quadratic in the size of the neighborhood. If we avoid using external memory, then the
need for this working storage in RAM effectively reduces the maximum permissible size of
a compressed neighborhood quadratically. As a result, the neighborhood store will have
to be compressed more aggressively. Since, in general, the greater the compression, the
higher the information lost, this option is not attractive. An alternative strategy is to
use external memory as working storage for the compression algorithm. However, such
an external memory algorithm for weighted matching is orders of magnitudes slower than
RAM-based algorithms and will cause a drastic reduction in the rate at which the data
stream can be processed. More precisely, using such an algorithm for compression would
result in unacceptably long stalls in the stream processing while the neighborhood store is
being compressed using external memory. The weighted matching problem admits efficient
greedy 1/2-approximation algorithms (guaranteed to give a solution of weight at least half
the weight of the optimal solution) [Pre99]. Computationally, this algorithm is simpler than
the exact matching algorithm. However, the space requirement is still quadratic in the size
of the neighborhood store.

An alternative to the greedy algorithm is a heuristic that pairs a vertex u with the first
vertex v (in some order) such that s,(u,v) > s (for some threshold s € [0, 1]) or the vertex
most similar to u (if no vertex passes the similarity threshold check). This method has the
attractive property of requiring only a small, constant amount of working storage. This
method also potentially avoids examining a large number of edges in the auxiliary graph; as
a result, its running time can be sub-quadratic. Further, if each vertex is paired with a vertex
that passes the similarity threshold check, then the resulting pairing of vertices provides an
upper bound on the information lost due to merging vertices (based on the lower bound on
the similarity). However, it does not provide any guarantees relative to the optimal solution.
Further, the similarity threshold must be carefully chosen in order to avoid quadratic running
time. We evaluate these methods in Section 4.

After neighborhoods have been merged in this manner, all the (new) neighborhoods are
updated by replacing references to the unmerged vertices with references to the merged
vertices (since the unmerged vertices are now indistinguishable based on neighborhoods).
This process results in a reduction in the size of neighborhoods because multiple vertices
are potentially replaced by the same vertex (representing all of them, and mapping to the
common neighborhood).

We now describe a simple improvement to this method (which we have incorporated in
our implementation). Since the definition of an ot-matching requires a vertex in common
with a fraud clutch, vertices that are at a distance greater than ¢ (the mapping size threshold)
from the nearest fraud vertex cannot be part of a match. This information can thus allow us
to prune the search process in the nMatch function. We simply maintain with each vertex
a record of the distance from the vertex to the nearest fraud vertex. This information can
be easily updated as new edges arrive. (For example, if an edge connects a new vertex to
an old vertex the new vertex’s distance is set to 1; if it connect two new vertices, we update
the larger distance to be no more than 1 plus the smaller distance, etc.)

12

To summarize, when the space used by the neighborhood store exceeds a limit (based
on the parameter M in the problem definition), our method compresses it by merging pairs
of vertices, thus reducing in half the number of stored neighborhoods. Over time, as new
data is added, the neighborhood store will grow and again exceed the storage limit, at which
point it is compressed again. Note that in this compression step, the merged neighbor-
hoods generated by the earlier compression get compressed again, while newly added data
is only compressed once. As this process continues, with repeated compressions, older data
is compressed (exponentially) more than newer data. This bias of representing recent data
more accurately than older data is advantageous given the greater importance of detecting
matches in recent data. Finally, we do not compress any neighborhoods belonging to fraud
clutches. The reason for this decision is twofold: First, since the fraud clutches are fixed
(and typically few in number), storing them as is does not impose a large overhead. Second,
it is important to represent them accurately because any error in their representation will
affect all subsequent operations (unlike errors in the neighborhoods of other vertices, which
remain localized).

4 Experimental Evaluation

We have implemented our methods for detecting moving clutches using the JDK 1.3.1 en-
vironment. Our experiments were performed on a Pentium III based workstation with 512
MB or RAM, running the Redhat 7.1 distribution of GNU/Linux (kernel version 2.4.2) and
build 1.3.1-b24, mixed mode, of the Java HotSpot Server virtual machine.

4.1 Dataset Generation

The streams of edges used as input data for evaluating our method are based on an underlying
random graph model, which we now describe: Our data generation program first generates
a large random graph. The edges of this graph are ordered randomly and stored in a list
which forms the basis for the data stream. In choosing a model for the random graphs in
our experiments, our main goal was to make a trade off between a simple model that is easy
to interpret and a complex model that better reflects application characteristics.

The literature in graph theory focuses mainly on two random graph models: G(n,p) and
G(n,m). In the G(n, p) model, a random graph of n vertices is obtained as follows: Consider
K,, the complete graph of order n. For each of the n(n — 1)/2 edges of K, a biased coin
having p as the probability of head is tossed; this edge is in the random graph iff the result
of the toss is heads. The G(n,m) model generates graphs of order n and size m assuming
that all such graphs are equi-probable. The simplicity of these models permits many elegant
results. Unfortunately, neither model is realistic for the applications of interest. In fact, the
highly skewed nature of a calling graph and the existence of clutches of vertices is the basis
for the problem we study.

Therefore, our random graph model starts by generating clutches of densely connected
vertices, distinguishing between fraud and regular clutches. Cross-clutch edges are added
with a lower probability than the in-clutch edges. More precisely, a chosen number of fraud
clutches is generated using the G(n,p) model. The edge probability p is fixed, while the

13

Parameter Typical Values
Number of fraud clutches 10-100
Number of regular clutches 40-400
Minimum number of vertices per clutch 5-15
Maximum number of vertices per clutch 15-25
Intra-clutch edge probability 0.2-0.8
Inter-clutch edge probabilities 0.2-0.8
Minimum number of edges crossing regular clutches 0-3
Maximum number of edges crossing regular clutches 5-10
Minimum number of edges between clutches and regular clutches | 0-3
Maximum number of edges between clutches and regular clutches | 5-10
Probability that a fraud clutch moves 0.5
Maximum number of vertices moved per clutch 4

Figure 2: Data generation parameters

number of vertices, n, is selected uniformly randomly from a fixed range. Regular clutches are
generated in an analogous manner. Recall that we assume that there are no edges connected
vertices of different fraud clutches. However, edges that connect two regular clutches or a
regular clutch to a fraud clutch do exist. These are inserted between randomly selected
qualifying vertices with a fixed probability. The main parameters guiding this generation
process are summarized in Figure 2. After the graph is generated, we randomly select some of
the fraud clutches for moves. For each selected clutch, the vertices to be moved are selected
at random. For each vertex that is to be moved, we generate a new vertex that has the same
neighborhood as the original. The last two parameters in Figure 2 control this behavior in
the obvious manner. Finally, all the edges in the graph thus obtained are permuted to a
random order, which is the order in which they appear in the test streams.

In our experimental setup, the fraud clutches generated by the above method were passed
from the data generation phase to the detection phase. The experiments were all run to com-
pletion on the input data stream. That is, when numbers are quoted as totals (e.g., the total
number of compressions in an experimental trial), they refer to the sum over the entire data
stream generated by the above process. In all experiments except those specifically studying
variations in the data generation parameters, the same (randomly generated) dataset was
used for all trials. Note that our main interest is in the steady-state behavior of our method,
with throughput and size of working storage being the most important considerations. Since
the data stream is assumed infinite in the applications (e.g., a stream of phone calls), the
total length of the stream used in our experiments is not of much significance. However, some
properties of the random graph underlying the stream are significant to establish baselines
(e.g., in the discussion of errors due to compression below).

For the experiments, described below, related to Figures 3, 4 and 5, we used the following
dataset parameters: 20 fraud clutches, 100 regular clutches, clutch sizes in [5,20] (uniformly
random), inter-clutch edge probability 0.5, number of cross-clutch edges in each clutch in
[0,5] (uniformly random). Further, each fraud clutch was moved with probability 0.5. The

14

8192 |

t=1
4096 - t=2 e
t=3 oxo
2048 | t=4 oo
1024 | 1
B 12t 1
% 2% T T .
R S K |
2 1m]
32 64f o s i
< 16 - : g
: W
4t o 1
2 =]

50 100 200 400 800 1600 3200 6400
maximum number of stored neighborhoods

Figure 3: Effect of maximum transition size (t)

number of vertices moved per group was in [1, 4] (uniformly random).

Figure 3 summarizes some results of our experiments studying the effect of two impor-
tant parameters on the throughput of our method: The first is the maximum number of
neighborhoods stored by our method. Recall that by bounding this parameter, we can con-
trol the amount of working space required for our method. The second parameter is that
maximum size ¢ of a mapping discovered by our method. Recall that our method looks for
moved clutches that have at most t vertices different from the known clutch. The four lines
suggest the effects of increasing the size of the neighborhood store on throughput for values
one through four of ¢. The throughput is measured as the average number of edges from
the data stream processed per second, and the neighborhood store size is measured in the
number of neighborhoods stored. Note that both axes of Figure 3 have a logarithmic scale.
We note that throughput falls rapidly with increasing values of . This behavior is to be
expected, given the hardness of graph isomorphism.

Figure 3 also indicates that as the neighborhood store is made larger, throughput falls at
first, then rises, and finally levels off. This trend is interesting, because at first glance it may
appear that increasing the size of the neighborhood store should simply reduce throughput
because of the potentially larger amount of data that must be searched when processing an
edge. A larger neighborhood store means fewer compressions since the spare capacity created
by each compression—half the store size—is larger an thus fills up less often for a given data
stream. On the other hand, the task of compression itself is more resource intensive for larger
neighborhood stores. Recall that for a neighborhood store of size n, the greedy compression
method requires ©(n?) space and ©(n?logn) time. The reduction in the number of times
compression is invoked is, by contrast, only linear. This effect explains the initial reduction in
the throughput. Beyond a certain value of neighborhood store size, however, another effect
dominates: Larger neighborhood stores can store more discriminating information about
neighborhoods of vertices. As a result, our method’s search for a match is better guided

15

8192

t=1
4096 t=2 e
i t=3 x|
2048 t=4 8

1024 ‘—‘\'R’\'\/ ,
g 512 X]

e O . «»—””""_///
B 2O eI
T 128 e 1

= L a
8. 64 Heoe X g K]
§ R+ | . i
£ 16 | = k
8 I o b

B
4+ i
o

2 i

50 100 200 400 800 1600 3200 6400
maximum number of stored neighborhoods

Figure 4: Effect of maximum transition size (t)

(specifically, pruning based on the checks on neighborhoods is more effective). Since the cost
of the search dominates other costs in our methods, this effect is ultimately the dominant
one as neighborhood store size is increased. This reason is also why the curves level off:
Once the neighborhood store is large enough to hold the entire working set, further increases
in size yield no benefit. Finally, this effect is also the reason why the shape of the curve is
more pronounced at higher values of the parameter ¢ (maximum mapping size): The cost of
search (as a fraction of the total cost of the method) rises rapidly with rising ¢, making less
important all factors other than those directly affecting the cost of the search.

Figure 4 presents results very similar to those in Figure 3. Both experiments used the
same datasets and methods except that in the latter experiment, neighborhoods were merged
using the intersection method instead of the union method used in the former. We note that
the general trend with regards to increasing ¢ (maximum mapping size) values similar to that
in Figure 3: As t increases, throughput falls rapidly. The effect of increasing neighborhood
store sizes on throughput is, however, different in an interesting way: We note that the
early dips in throughput with increasing neighborhood store size are much less pronounced
or absent in Figure 4. This difference is explained by the fact that the search pruning effect
discussed earlier is much more pronounced when the merged neighborhoods are intersections
of the originals. When neighborhoods are merged, they often end up with far fewer vertices
than the originals. As a result, when the nMatch function (Section 3) searches for potential
matches for neighborhoods in the fraud clutches, the search terminates quickly. (Recall that
fraud clutches are not compressed, so there is no reduction in the vertices that must be
matched in the fraud clutches.) As an aside we note that, although not quantified in the
figure, using the intersection method of merging neighborhoods has another advantage: since
intersection shrinks the size of neighborhoods, the total storage used, measured in bytes, is
likely to be lower than that used by a neighborhood store that uses the union method of
merging.

16

50

t:]_‘—»—

7 =2 e
i et ——
i} - t=4 =] i
g 40
e
8
2 30Ff .
g
:
2 20}t .
B
=
[S]
£

10 + E
T
s
1S

0

50 100 200 400 800 1600 3200 6400
maximum number of stored neigborhoods

Figure 5: Missed matches due to intersection compression loss

The benefits of the intersection method of merging neighborhoods comes at the cost of
potentially missing matches. (In contrast, the union method does not miss any matches,
but may generate spurious matches.) Figure 5 illustrates these misses for the same set
of experiments described in Figure 4. The horizontal axis is identical to that in Figure 4
and the vertical axis plots the percentage of the generated moves that went undetected
by our method, for each of four values of the parameter ¢ (maximum mapping size, which
corresponds to the maximum number of simultaneously moving vertices that are detectable).
Recall that the dataset includes moved clutches in which as many as four vertices move at a
time. Therefore, it is not surprising that there is a significant percentage of misses for ¢t < 4.
What is perhaps surprising is that there is a high number of misses for ¢ = 4, especially at
high compression levels (small neighborhood store sizes). This phenomenon is caused by the
neighborhoods of the moved vertices being compressed and losing critical edges. Recall that
we do not compress the (known) neighborhoods that participate in fraud clutches. However,
this courtesy cannot be extended to the moved vertices, since we don’t know the identity of
those vertices (it being part of the problem we seek to solve).

Figure 6 summarizes the results of some experiments studying the two heuristics used
for compressing the neighborhood store. (Both axes have a logarithmic scale.) We observe
that the threshold heuristic does not perform very well, overall, compared with the greedy
heuristic. It’s performance depends strongly on how often the threshold for similarity of
neighborhoods is met (thereby speeding up the matching process), which in turn depends
on the threshold (in addition to the data). For these experiments, the threshold was set to
-0.5, which is aggressive (since it means we cut short the search for a similar neighborhood
when we find one that differs by no more than 50%. (The dataset for this experiment is the
same one used for those in Figures 3 and 4.) If the threshold is not met in a large number
of cases, the threshold heuristic is less efficient than the greedy because it makes a greater
number of neighborhood lookups.

17

512

*hedwig/expts-204/d1’ using ($1):($2/$3) —
"buckbeak/expts-203/d1’ using ($1):($2/$3) -

256
,X—”»/

128

32+

throughput (edges/sec)

16 | 1

8F « / .

4 Il Il 1 1 1 1 1
50 100 200 400 800 1600 3200 6400

maximum number of stored neighborhoods

Figure 6: Effect of neighborhood store compression heuristics

5 Related Work

The problem studied in this paper is influenced by the work of Cortes, Pregibon, and
Volinsky on Communities of Interest, based on experiences with call-graph data at AT&T
[CPV01, CP01]. Those paper describe in detail the characteristics of the call graph data
and applications, data structures, methods for it. In particular, the idea of “guilt by asso-
ciation” is similar to our definition of fraud clutches. The focus of that work is efficiently
detecting fraudulent patterns over very large datasets. In contrast, our focus in this paper
has been on keeping track of groups of fraudulent users after they have been detected. The
two problems are thus complementary. These papers describe a method for maintaining a
(relatively) small history of the call graph by adding a new graph to the weighted-down ver-
sion of the current graph. Thus the effect of an edge decreases exponentially with time. This
property is our method for compressing the neighborhood store, although the particulars are
very different. The method of [CPVO01] is useful for compressing the sequence of changing
weights on edges of a known graph structure. Our neighborhood compression method is
based on compressing an unknown graph as it streams in. Their method has been tested
with datasets that are several orders of magnitude larger than those in our experiments. On
the other hand, our method has the ability to work with the given amount of storage by
using a lossy representation scheme.

As described in Section 3, maximum weight matching is a subproblem of our method.
Related work on the problem includes classic algorithms [Law76] and more recent work on
efficient approximation algorithms [Pre99]. A fast (but O(n?)) implementation of nonbipar-
tite weighted matching is the wmatch program by Rothberg [Rot], based on Gabow’s thesis
[Gab73].

Our problem formulation is closely related to the graph isomorphism problem, on which
there is large amount of work. The nauty program is a fast program for computing auto-

18

morphism groups, based on the methods in [McK81].

The streaming data model has received much attention recently in the context of sen-
sor data [MF02], continuous queries [BW01, CDTWO00], and query processing [DGGR02].
In [GMMOO0], the authors present a streaming algorithm for clustering datapoints with
guarantees on the quality of the clustering of points seen so far.

The general idea of using a succinct summary of a graph for various purposes has a
large body of work associated with it. For example, this idea is developed in semistruc-
tured databases as graph schemas, representative objects, and data guides, which are used
for constraint enforcement, query optimization, and query-by-example interfaces [BDFS97,
NUWC97, GW97]|. There is related work in mathematics on the topic of graph minors,
which are obtained from a graph by contracting and deleting some edges [Bol98]. It should
be interesting to investigate if some of these ideas can be adapted to this problem.

6 Conclusion

We described the problem of tracking groups (clutches) of agents as they move in a network of
hosts. We presented our motivation for this problem based on applications to detecting fraud
in telephone networks, detecting distributed denial-of-service attacks in computer networks,
and illegal banking activities. We formalized this problem using the idea of a restricted
graph isomorphism with the requirement of a common vertex between matched graphs. We
presented a method that uses these restrictions to yield a method for detecting moving
clutches in streaming graph data. Our method can cope with a small amount of working
storage, and can dynamically adapt to changes in the available storage. It is based on using
a lossy compression method to store a large graph in a given amount of space. We presented
an experimental evaluation of our methods. As continuing work, we are exploring alternate
definitions of the problem. In particular, we are working on generalizing our definition of
a moving clutch of agents. We also plan to explore links with work in other fields on the
general problem of lossy compression of graphs.

References

[BDFS97] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure to
unstructured data. In Proceedings of the International Conference on Database
Theory, 1997.

[Bel89] S.M. Bellovin. Security problems in the TCP/IP protocol suite. Computer
Communication Review, 19(2):32-48, April 1989.

[Bol9g| Béla Bollobas. Modern Graph Theory, volume 184 of Graduate Texts in Math-
ematics. Springer, New York, 1998.

[BWO01] S. Babu and J. Widom. Continuous queries over data streams. SIGMOD Record,
September 2001.

19

[CDTWO0]

[CPO1]

[CPV01]

[DGGRO2]

[GabT3]

[GJ90]

[GMMOO0]

[GW97]

[Law76]

[McKS81]

IMF02]

[NUWC97]

[Pre99)

Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: A
scalable continuous query system for internet databases. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, 2000.

Corinna Cortes and Daryl Pregibon. Signature-based methods for data streams.
Data Mining and Knowledge Discovery, 5:167-182, 2001.

Corinna Cortes, Daryl Pregibon, and Chris Volinsky. Communities of interest.
In Fourth International Symposium on Intelligent Data Analysis (IDA 2001),
Lisbon, Portugal, 2001.

A. Dobra, M. Garofalakis, J. E. Gehrke, and R. Rastogi. Processing complex
aggregate queries over data streams. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Madison, Wisconsin, June
2002. To appear.

Hal Gabow. Implementation of Algorithms for Maximum Matching on Nonbi-
partite Graphs. PhD thesis, Stanford University, 1973.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman Company, November 1990.

S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams.
In Proceedings of the Annual Symposium on Foundations of Computer Science,
November 2000.

R. Goldman and J. Widom. DataGuides: Enabling query formulation and
optimization in semistructured databases. In Proceedings of the Twenty-third
International Conference on Very Large Data Bases, Athens, Greece, 1997.

E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, 1976.

Brendan McKay. Practical graph isomorphism. Congressus Numerantim, 30:45—
87, 1981.

Sam Madden and Michael J. Franklin. Fjording the stream: An architecture for
queries over streaming sensor data. In Proceedings of the International Confer-
ence on Data Engineering, 2002.

S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe. Representative objects:
Concise representations of semistructured, hierarchial data. In Proceedings of
the International Conference on Data Engineering, pages 79-90, 1997.

Robert Preiss. Linear time %—approximation algorithm for maximum weighted

matching in general graphs. In STACS, number 1563 in LNCS, page 248, March
1999.

20

[Rot] E. Rothberg. The wmatch program for finding a maximum-weight
matching for undirected graphs. Live OR collection. Available at
http://www.orsoc.org.uk/home.html.

21

