
MANAGING CHANGE IN HETEROGENEOUSAUTONOMOUS DATABASES
a dissertationsubmitted to the department of computer scienceand the committee on graduate studiesof stanford universityin partial fulfillment of the requirementsfor the degree ofdoctor of philosophy

BySudarshan Sudhir ChawatheMarch 1999

c Copyright 1999 by Sudarshan Sudhir ChawatheAll Rights Reserved
ii

I certify that I have read this dissertation and that inmy opinion it is fully adequate, in scope and quality, asa dissertation for the degree of Doctor of Philosophy.H�ector Garc��a-Molina(Principal Adviser)I certify that I have read this dissertation and that inmy opinion it is fully adequate, in scope and quality, asa dissertation for the degree of Doctor of Philosophy.Jennifer WidomI certify that I have read this dissertation and that inmy opinion it is fully adequate, in scope and quality, asa dissertation for the degree of Doctor of Philosophy.Serge AbiteboulApproved for the University Committee on GraduateStudies: iii

iv

AbstractInformation relevant to a task at hand is often scattered across a collection of hetero-geneous, autonomous databases. Individual databases in such a collection are ownedand managed by independent, and often competing, entities that cooperate to onlya limited extent. For example, the collection of databases used in the constructionof a building includes databases owned by the architect, the construction company,the electrical contractor, and so on. Such autonomous database collections are alsocommon on the Internet. For example, the collection of Internet databases with infor-mation about San Francisco consists of databases operated by several competing enti-ties. Making e�ective use of such collections of heterogeneous, autonomous databasespresents several challenges due to the absence of traditional database facilities suchas locks, transactions, and standard query languages. In particular, understandingand controlling how such databases evolve is an important problem that traditionaldatabase techniques are ill-equipped to address.Managing evolving information in heterogeneous, autonomous databases requires(1) a method for detecting changes in data without access to traditional databasecontrol facilities such as triggers, transactions, and locks, and (2) a method for repre-senting and querying these changes in a uniform manner. To address the �rst issue,we present e�cient methods for detecting changes between snapshots of databases.Our methods are based on mapping the change detection problem to the problemof computing a concise representation of the di�erence between two labeled trees.We present the design and implementation of our algorithms for computing a concisedi�erence between two trees, and study their performance both analytically and ex-perimentally. An important distinguishing feature of our tree di�erencing algorithmsv

is that they model changes using a rich set of edit operations. In addition to oper-ations that insert and delete a node, and update node labels, our algorithms modelsubtree operations such as move and copy. Using a rich set of edit operations resultsin a more succinct and usable description of tree di�erences.To address the second issue, we present a data model, DOEM, and query language,Chorel, for representing and querying changes in structured and semistructured data.A key feature of DOEM and Chorel is that they represent and query changes directlyas �rst-class entities, instead of as the di�erence between database states. We de-scribe how we use these ideas to implement CORE, a database system for historicalsemistructured data. We also describe the design and implementation of QSS, a ser-vice that supports subscriptions to interesting changes in heterogeneous, autonomousdatabases. QSS uses a powerful subscription language to specify the changes of in-terest.Using the techniques of this dissertation, we have implemented the C3 system formanaging change in heterogeneous, autonomous databases. We describe the designand implementation of C3 and our experiences with the system.

vi

Dedicated to my parents, Sarala and Sudhir Chawathe.

vii

viii

AcknowledgementsMy advisor, Hector Garcia-Molina, deserves the �rst thank you. Not only did Hectorintroduce me to interesting topics in the database �eld, he was also always willingto discuss my ideas, not matter how strange they were. From him, I have hopefullylearned not only how to do research, but also how to interact e�ectively with studentsand colleagues. Jennifer Widom advised me on many technical topics throughout myStanford years and provided a model for organization, planning, and balancing workwith the rest of life. Serge Abiteboul helped me sort through my ideas on querylanguages and provided yet another great perspective on academic life. Thanks toJe� Ullman for serving on my oral committee and for many fruitful discussions overthe years. Gio Wiederhold, my academic grandfather, gave me the big picture onmany issues, including how to drive a Volkswagen in Kanpur. The examples set byHector, Jennifer, Serge, Je�, and Gio played an important part in my decision tocontinue in academia.I would like to thank all my other collaborators at Stanford. Anand Rajaramanwas receptive to my idea of implementing a new di�erence program as a weekendproject and made substantial contributions to the early work on LaDi�. (The projectmissed the time estimate by only a few years.) Vineet Gossain and Dan Liu madesubstantial contributions to the implementations of the CORE and QSS componentsof C3. Thanks are also due to all members, past and present, of the Lore and Tsimmisprojects.The Stanford Database Group provided a great environment for both work andplay. Among other things, I will miss the �ne food and company at the Friday lunchmeetings, the �ery discussions at the Thursday brownie meetings, and �eld tripsix

that often involved sex (elephant seals at A~no Nuevo) and violence (paint-ball inthe Santa Cruz mountains). My o�cemates, Brad Adelberg and Yue Zhuge, deservespecial mention for making sure I had something to do whenever I didn't feel likeworking. It's hard to imagine an o�ce that's more fun. Ramana Yerneni joinedour o�ce when Brad left, and continued the �ne tradition. Marianne Siroker wasinstrumental in making sure all o�cial business got done without much e�ort on mypart.I was fortunate to meet some great people during my stay at Stanford. A specialthank you to Amy McMullen for all the wonderful times. Thanks also go out toVenkat, Amy, Luca, Fran�coise, Jan, Dorothy, Cindy, and Melanie. The Stanfordexperience would have been much less enjoyable without friends like these. A numberof institutions helped make sure I didn't get too carried away with work: TGIF,CoHo, Ca�e Trieste, Cactus, F/X, SoFA, and Tahoe.I dedicate this work to my parents, Sarala and Sudhir Chawathe, to whom I owethe greatest debt. I am also indebted to my sister, Supriya Pappu. I could not havecome this far without their constant love, support, and sacri�ces. Thanks to Ameyaand Chamundeshwari for introducing me to the joys of being an uncle. Thanks arealso due to the rest of my family, especially my grandparents. A special thank yougoes out to my grandfather Manohar Goray.This research was sponsored by by the Air Force Rome Laboratories under DARPAContract F30602-95-C-0119, by the Air Force Wright Laboratory Aeronautical Sys-tems Center under DARPA Contract F33615-93-1-1339, and by equipment grantsfrom Digital Equipment Corporation and IBM Corporation. The conclusions andopinions in this dissertation are those of the author and are not necessarily endorsedby any of these sponsors. The author makes no warranty of any kind, either expressedor implied, with regard to the programs and results contained in this dissertation, andshall not be liable in any event for incidental or consequential damages in connectionwith, or arising out of, the furnishing, performance, or use of such material.This document was typeset by the author in a paperless environment using TEX,LaTEX, x�g, Applix, ghostview, and emacs.x

ContentsAbstract vAcknowledgements ix1 Introduction 11.1 Motivation : 21.2 Research Issues : 51.3 Application Domains : 71.4 Dissertation Organization : 92 Related Work 122.1 Change Detection : 122.1.1 Strings and Sequences : 132.1.2 Ordered Trees : 142.1.3 Unordered Trees : 172.2 Representing and Querying Changes : : : : : : : : : : : : : : : : : : 192.2.1 Heterogeneous Databases and Schemas : : : : : : : : : : : : : 202.2.2 Semistructured Databases : 212.3 Data Integration : 233 Overview 263.1 Integrating Heterogeneous Databases : : : : : : : : : : : : : : : : : : 273.2 Detecting Changes : 293.3 Managing Changes : 32xi

3.4 Summary : 334 Detecting Changes in Ordered Trees 354.1 Overview : 364.1.1 Edit Operations, Edit Scripts, and Costs : : : : : : : : : : : : 394.2 Generating the Edit Script : 434.2.1 Outline of Algorithm : 434.2.2 Aligning Children : 464.2.3 The Complete Algorithm : 484.3 Finding Good Matchings : 514.3.1 Matching Criteria for Keyless Data : : : : : : : : : : : : : : : 534.3.2 A Simple Matching Algorithm : : : : : : : : : : : : : : : : : : 564.3.3 A Faster Matching Algorithm : : : : : : : : : : : : : : : : : : 584.3.4 Analysis of Matching Algorithms : : : : : : : : : : : : : : : : 594.4 Delta Trees : 614.5 Implementation : 634.6 Empirical evaluation of FastMatch : : : : : : : : : : : : : : : : : : : 644.7 Summary : 715 Detecting Changes in Unordered Trees 745.1 Introduction : 755.2 Model and Problem De�nition : 775.2.1 Edit Operations and Edit Scripts : : : : : : : : : : : : : : : : 785.2.2 Cost Model : 815.3 Method Overview : 825.3.1 The Induced Graph : 845.3.2 Pruning the Induced Graph : : : : : : : : : : : : : : : : : : : 855.3.3 Finding an Edge Cover : 865.3.4 Generating the Edit Script : 875.4 Edge Covers and Edit Scripts : 905.4.1 Edge Cover Induced by an Edit Script : : : : : : : : : : : : : 905.4.2 Using Edge Covers : 94xii

5.4.3 Generating an Edit Script from an Edge Cover : : : : : : : : : 975.5 Finding the Edge Cover : 1195.5.1 An Edge-wise Cost Function : : : : : : : : : : : : : : : : : : : 1205.5.2 Bounds on Edge Costs : 1215.5.3 Pruning : 1245.5.4 Computing a Min-Cost Edge Cover : : : : : : : : : : : : : : : 1265.6 Implementation and Performance : 1275.7 Summary : 1316 Parallel Transformations 1336.1 Introduction and Overview : 1346.2 Transformation Model : 1386.3 Representative Signatures of Transformations : : : : : : : : : : : : : 1436.4 Computing Signatures : 1586.5 Summary : 1607 Representing and Querying Changes 1627.1 Introduction : 1627.1.1 Motivating Examples : 1637.1.2 Overview : 1647.1.3 Contributions : 1657.2 The Object Exchange Model : 1667.2.1 Changes in oem : 1687.2.2 oem Histories : 1707.3 Representation of Changes : 1727.3.1 doem Representation of an oem History : : : : : : : : : : : : 1737.3.2 Properties of doem Databases : : : : : : : : : : : : : : : : : : 1747.4 Querying Over Changes : 1767.4.1 Lorel Overview : 1767.4.2 Chorel : 1777.4.3 Chorel Semantics : 1807.5 Implementing doem and Chorel : 182xiii

7.5.1 Encoding doem in oem : 1837.5.2 Translating Chorel to Lorel : : : : : : : : : : : : : : : : : : : 1857.5.3 Implementation : 1877.6 Virtual Annotations and Snapshot-based Access : : : : : : : : : : : : 1897.6.1 Snapshot-based Access : 1897.6.2 Semantics of during : 1927.6.3 The at Construct : 1937.6.4 The snap Construct : 1947.6.5 Implementing during by translation : : : : : : : : : : : : : : 1967.6.6 Object Deletion and Garbage Collection : : : : : : : : : : : : 1987.7 A Query Subscription Service : 1997.7.1 qss Implementation : 2047.8 Summary : 2068 System Implementation 2088.1 User Interactions : 2088.1.1 Using TDi� : 2108.1.2 Using QSS : 2118.1.3 Using CORE : 2188.2 System Interactions : 2238.2.1 Polling : 2268.2.2 Filtering and Browsing : 2318.3 Summary : 2349 Experimental Evaluation 2379.1 Experiments Using Real Data : 2379.1.1 E�ectiveness of Pruning : 2389.1.2 Quality and Edge Cost Estimates : : : : : : : : : : : : : : : : 2419.1.3 Running Time : 2499.2 Experiments Using Synthetic Data : : : : : : : : : : : : : : : : : : : 2519.2.1 E�ectiveness of Pruning : 2539.2.2 Quality and Edge Cost Estimates : : : : : : : : : : : : : : : : 255xiv

9.3 Summary : 26010 Conclusion 26210.1 Summary of Dissertation Results : 26210.1.1 Change Management Framework : : : : : : : : : : : : : : : : 26210.1.2 Di�erencing Algorithms : 26310.1.3 Database System for Historical Semistructured Data : : : : : 26410.1.4 The C3 System : 26510.2 Future Work : 26610.2.1 Comparing Data : 26610.2.2 Managing Historical Semistructured Data : : : : : : : : : : : 26810.2.3 Extending the C3 System : 271Bibliography 277

xv

List of Tables4.1 Mark-up conventions used by LaDi�. : : : : : : : : : : : : : : : : : : 654.2 Mismatched paragraphs in FastMatch. : : : : : : : : : : : : : : : : : 71

xvi

List of Figures1.1 Heterogeneous, autonomous databases in the construction industry : 22.1 The need for exible label comparison functions : : : : : : : : : : : : 163.1 Conceptual architecture of the C3 system : : : : : : : : : : : : : : : : 283.2 Changes in autonomous databases : 303.3 Sample output from TDi� : 314.1 Running example (dashed edges represent matching) : : : : : : : : : 374.2 Edit operations on a tree : 404.3 Applying the edit script of Example 4.1.1 : : : : : : : : : : : : : : : : 414.4 Running example: after align phase : : : : : : : : : : : : : : : : : : : 444.5 Running example: after insert phase : : : : : : : : : : : : : : : : : : 444.6 Running example: after delete phase : : : : : : : : : : : : : : : : : : 454.7 A matching with misaligned nodes : : : : : : : : : : : : : : : : : : : 464.8 Algorithm EditScript : 484.9 Functions AlignChildren and FindPos used by Algorithm EditScript : 494.10 Algorithm Match : 564.11 Algorithm FastMatch : 584.12 Delta tree for edit script in Example 4.1.1 : : : : : : : : : : : : : : : 614.13 Old version of document : 654.14 New version of document : 664.15 Output document (marked up) : 674.16 Relation between the weighted and unweighted edit distances : : : : : 69xvii

4.17 Running time of FastMatch : 695.1 Edit operations on labeled trees : 815.2 The trees for the running example in Section 5.3. : : : : : : : : : : : 835.3 The Induced Graph for the trees in Figure 5.2 : : : : : : : : : : : : : 845.4 The induced graph of Figure 5.3 after pruning : : : : : : : : : : : : : 865.5 A minimum-cost edge cover of the induced graph in Figure 5.4 : : : : 875.6 Annotating edges in the edge cover of Figure 5.5 : : : : : : : : : : : : 885.7 Annotated edges of the edge cover of Figure 5.5 : : : : : : : : : : : : 895.8 Example 5.4.1: the initial edge cover : : : : : : : : : : : : : : : : : : 915.9 Example 5.4.1: the �nal edge cover : : : : : : : : : : : : : : : : : : : 925.10 CtoS: generating delete operations : 995.11 CtoS: generating copy-related operations : : : : : : : : : : : : : : : : 1005.12 CtoS: bookkeeping for free copies : 1015.13 CtoS: �nding spare images for copy : : : : : : : : : : : : : : : : : : : 1025.14 CtoS: bookkeeping for free images : 1025.15 CtoS: generating move operations : 1035.16 CtoS: generating update operations : : : : : : : : : : : : : : : : : : : 1035.17 CtoS: generating glue-related operations : : : : : : : : : : : : : : : : 1055.18 CtoS: bookkeeping for free glues : 1065.19 CtoS: �nding spare images for glue : : : : : : : : : : : : : : : : : : : 1065.20 CtoS: generating insert operations : 1075.21 Distributing edge costs fairly : 1205.22 Applying pruning rules : 1245.23 System Architecture : 1285.24 E�ectiveness of pruning : 1306.1 Applying a linear edit script. : 1356.2 Applying the transformation in Example 6.2.1 : : : : : : : : : : : : : 1426.3 The trees in Example 6.3.1 : 1527.1 The oem database in Example 7.2.1. : : : : : : : : : : : : : : : : : : 167xviii

7.2 The oem database in Example 7.2.2 : : : : : : : : : : : : : : : : : : 1697.3 The doem object in Example 7.3.1. : : : : : : : : : : : : : : : : : : : 1747.4 Encoding a doem object in oem: node annotations : : : : : : : : : : 1847.5 Encoding a doem object in oem: arc annotations : : : : : : : : : : : 1857.6 System architecture : 1887.7 Encoding a doem object in oem: node annotations : : : : : : : : : : 1957.8 Encoding a doem object in oem: arc annotations : : : : : : : : : : : 1977.9 A Query Subscription Service based on doem and Chorel : : : : : : : 2007.10 System architecture of qss : 2048.1 Restaurant reviews from the Palo Alto Weekly : : : : : : : : : : : : : 2098.2 New version of reviews with changes marked : : : : : : : : : : : : : : 2098.3 Old version of reviews with changes marked : : : : : : : : : : : : : : 2108.4 The eGuide Web database: movie section : : : : : : : : : : : : : : : : 2128.5 The eGuide Web database: theater details : : : : : : : : : : : : : : : 2138.6 Menu of common polling queries for eGuide : : : : : : : : : : : : : : 2148.7 Some polling query templates from the eGuide wrapper : : : : : : : : 2148.8 Menu of common �lter queries : 2168.9 Specifying the polling frequency : 2168.10 QSS subscription review screen : 2178.11 A result for the subscription NR-titles : : : : : : : : : : : : : : : : : 2188.12 CORE query interface : 2198.13 Result of the query \select ViewRoot;" on the NR-titles database : 2208.14 Result of the query in Figure 8.12 on the NR-titles database : : : : : 2228.15 Architecture of the C3system : 2238.16 The eGuide database: query interface : : : : : : : : : : : : : : : : : : 2248.17 An OEM load �le : 2288.18 An incremental DOEM load �le : 2308.19 Browsing a �lter query result : 2339.1 E�ectiveness of pruning for eGuide data : : : : : : : : : : : : : : : : 2419.2 E�ect of pruning on quality for eGuide data : : : : : : : : : : : : : : 242xix

9.3 Comparison of edge cost estimation methods; tick = 1 : : : : : : : : 2469.4 Comparison of edge cost estimation methods; tick = 0.1 : : : : : : : : 2469.5 Comparison of edge cost estimation methods; tick = 0.05 : : : : : : : 2479.6 Comparison of edge cost estimation methods; tick = 0.01 : : : : : : : 2479.7 Running time for eGuide data : 2499.8 Running time for eGuide data : 2509.9 Components of total running time for eGuide data : : : : : : : : : : : 2519.10 E�ectiveness of conservative pruning for synthetic data : : : : : : : : 2549.11 E�ect of pruning on quality for synthetic data : : : : : : : : : : : : : 2549.12 Quality and edge cost estimates; D = 0 : : : : : : : : : : : : : : : : : 2569.13 Quality and edge cost estimates; D = 0.2 : : : : : : : : : : : : : : : : 2579.14 Quality and edge cost estimates; D = 0.4 : : : : : : : : : : : : : : : : 2579.15 Quality and edge cost estimates; D = 0.6 : : : : : : : : : : : : : : : : 2589.16 Quality and edge cost estimates; D = 0.8 : : : : : : : : : : : : : : : : 2589.17 Quality and edge cost estimates; D = 1 : : : : : : : : : : : : : : : : : 259

xx

Chapter 1IntroductionWe are witnessing a proliferation of databases that are heterogeneous in their designand content, and that are operated by independent, often competing, organizations.Managing a collection of such heterogeneous, autonomous databases as a coherent in-formation system necessitates a signi�cant rethinking of several database techniques.In particular, managing the evolution of information stored in such a system is animportant problem that is ill-addressed by conventional methods. In this dissertation,we present techniques for detecting, storing, querying, and monitoring changes in anenvironment of heterogeneous, autonomous databases.We begin by introducing heterogeneous, autonomous databases in Section 1.1. Us-ing an extended example, we describe how these databases di�er from those studiedin traditional database literature. We motivate the need for new database techniquesby describing the dependence of traditional techniques on assumptions that are in-valid for heterogeneous, autonomous databases. In Section 1.2, we briey discussthe key research issues raised by the need for managing change in heterogeneous,autonomous databases. In Section 1.3, we present some examples of heterogeneous,autonomous databases from diverse application domains. Finally, Section 1.4 outlinesthe organization of the rest of this dissertation.1

2 CHAPTER 1. INTRODUCTION
Public

face
Inter-

Proprietary
Application

Plumbing
Contractor

Public
Interface

DB3

Public

face
Inter- DB2

Architect

System
DOS file

Structural
Engineer

DB1
Relational

DBMS Cooperation
Limited

Figure 1.1: Heterogeneous, autonomous databases in the construction industry1.1 MotivationTraditional database research has focused on centralized database systems in whichall data resides in a single database. More recent work has addressed parallel anddistributed database systems, which store data in a collection of tightly coupleddatabases interconnected by a communication network. However, two key assump-tions underlying these techniques are homogeneity and centralized control of thedatabases in the system. As a result, they are not applicable to heterogeneous andautonomous collections of databases. We elaborate on these terms using an exampleof such a collection.Consider the collection of databases involved in the design and construction of abuilding. (Here, and in what follows, we use the term database to mean any organizedcollection of data. In addition to conventional relational and object databases, weinclude data from sources such as bibliographic information systems, �le systems,world-wide web servers, and proprietary application systems.) A large number ofindependent parties are involved in the design and construction e�ort; Figure 1.1depicts three such parties: the architect, the structural engineer, and the plumbingcontractor. Each of these parties typically maintains one or more private databases.Since these databases developed over time, in di�erent organizations, and for dif-fering goals, they are heterogeneous; that is, they di�er widely in characteristics such

1.1. MOTIVATION 3as data models, query languages, access restrictions, and support for transactions,concurrency control, and locking. In our example, the structural engineer's databaseis stored in a relational database system, while the architect's database is simply acollection of �les in a format used by a program for computer-aided design. Theplumbing contractor's database is part of a proprietary application.Traditional database techniques typically assume that the component databasesin a distributed database system are homogeneous, making such techniques inappli-cable to a heterogeneous database environment. In particular, such databases areassumed to be homogeneous in features such as the data models they support, thequery language used to access their data, and the transaction and control primitivesthey support. Often, the assumptions of homogeneity are even more stringent. Forexample, many commercial products assume not only that the component databasesare relational databases supporting the SQL2 query language [DD93], but also thatthey are identical versions of the same product from the same database system vendor.Since the databases we study are typically owned by independent organizations,they are also autonomous; that is, they cooperate to only a limited extent, and donot expose sensitive or critical information to each other. Such database autonomyis most often motivated by business and legal reasons. Thus, even if facilities suchas transactions, locks, and triggers exist in a database system (such as the structuralengineer's relational database system in our example), they are typically not madeavailable to the other databases in the collection. As shown in Figure 1.1, eachdatabase in the collection has a private interface that is available only to internalusers, and a separate, and typically much more restricted, public interface that ispresented to external users.Prior work in distributed and federated databases typically assumes that thedatabases are centrally administered, making such work inapplicable in an autonomousenvironment. In particular, distributed or federated databases are assumed to be de-signed in a top-down fashion with the objective of supporting a group of applicationse�ciently. For example, techniques used for query processing in distributed databasesassume that the data has been partitioned across the databases based on a carefulanalysis of the data, functional dependencies, and expected query mix. In contrast,

4 CHAPTER 1. INTRODUCTIONthe environment we study consists of databases that were not designed to facilitateinteroperation. They are preexisting databases designed for di�ering purposes thatwe now wish to interconnect and use as a coherent system. In our ongoing con-struction example for instance, the architect's database is designed to facilitate andoptimize the operations the architect is most likely to make, and may not supportthe operations of interest to a structural engineer.Another reason traditional techniques are inapplicable to heterogeneous, au-tonomous databases is their assumption of a high level of trust amongst the com-ponent databases. The component databases are often required to perform a numberof critical, and potentially dangerous, operations on behalf of each other. Theseoperations include holding locks on data, exposing transaction commit states, andexecuting triggers. In an autonomous environment such sharing of critical resourcesbetween the component databases, which may belong to competing companies, isnot plausible. Even if the owner of a database does not expect the owners of otherdatabases to be malicious, the need to maintain organizational independence andaccountability precludes sharing of critical database resources. For example, it isvery unlikely that the structural engineer in our ongoing example would permit thearchitect to hold locks on the structural database, since such sharing of locks riskscorrupting the structural database by factors beyond the structural engineer's control.In addition to the di�erences in methods used by component databases to managetheir data, there are also signi�cant di�erences in the database contents themselves.The database contents are often mutually incompatible and inconsistent. For exam-ple, the plumbing contractor's database contains the locations, sizes, and types ofpipes in the building; this information may be missing from the structural engineer'sdatabase. Similarly, the structural engineer's database may contain information onthe physical properties of the beams and columns used in the building, but this in-formation may be absent from the plumbing contractor's database. The architect'sdatabase may contain information about decorative features that is absent from theother databases. Further, since the architect may be working on a slightly newerversion of the design than that used by the structural engineer, the two databasesmay disagree, for example, on the heights of some windows.

1.2. RESEARCH ISSUES 5Despite all these di�erences among the component databases, a collection of het-erogeneous, autonomous databases, such as the one in our ongoing construction ex-ample, represents a common reality, giving rise to the need to manage the collectionas an integrated information system. For example, the �nal design of the building, asdescribed by the collection of databases in our example, must be consistent. Thus,the location and thickness of a wall in the architect's database must be identical tothe corresponding information in the structural engineer's database. In addition tothis requirement of �nal consistency, the design databases of the parties involved inthe construction need to be periodically synchronized with each other, and changesmade by one party need to be propagated to a�ected parties in a timely manner. Forexample, if the architect modi�es her database to reduce the clearance above a ceiling,the plumbing contractor may need to reroute pipes that no longer �t in the availablespace. Note that although such consistency requirements are similar to those foundin traditional databases, there are important di�erences due to the autonomous en-vironment in which the databases operate. Complete global consistency at all timesis neither required nor practicable. We elaborate on these issues in Chapter 3.1.2 Research IssuesIn the above discussion, we motivated the need for a system to manage change inheterogeneous, autonomous databases. We also explained the reasons conventionaldatabase techniques cannot be used for this purpose. We now summarize the researchissues raised by the design and implementation of a change management system forheterogeneous, autonomous databases. We present only a brief description of theissues here, with details deferred to Chapter 3.Data Integration: Users of heterogeneous, autonomous database collections �ndit very cumbersome to learn and use the interface o�ered by each componentdatabase. They prefer a single, integrated interface to all the information inthe database collection, irrespective of which database a particular data itemresides in. The need to provide an integrated view over heterogeneous databasecollections raises several issues: First, we need a common data model that is

6 CHAPTER 1. INTRODUCTIONgeneral enough to encompass a wide variety of database types. Next, we needa method to translate queries over this general data model to queries on theunderlying database, and similarly, to translate the results from the underlyingdatabase to the integrating model. Further, we need a query language thatallows us to access and combine data from multiple sources, and methods forimplementing and optimizing such queries. Although such data integration isnot a focus of this dissertation, our work is designed to mesh well with such work,and our change management system makes use of data integration techniquesin addition to the techniques of this dissertation.Data that has been integrated from several diverse sources is typically semi-structured, meaning it has structure, but the structure may be irregular andincomplete, and may not conform to a �xed schema. This semistructured na-ture of the data in heterogeneous, autonomous databases introduces additionalchallenges in managing change in these databases. Most existing database tech-niques rely heavily on the existence of a stable and precise schema, and are thusinapplicable in a semistructured context.Detecting Changes: A basic requirement of the change management system sug-gested in Section 1.1 is a method for detecting changes in heterogeneous, au-tonomous databases. Since we do not, in general, receive noti�cations of changesbefore or after they are made, we must use methods that detect changes by com-paring snapshots of data. Although the problem of comparing data has beenstudied before, the characteristics of the data in a heterogeneous collection ofdatabases pose challenges that require the development of new techniques forthis purpose. We need data comparison techniques that can cope with thesemistructured nature of the data, making e�ective use of the structure whenavailable, but without assuming its presence in all cases. In Chapter 3, we de-scribe how we map this problem to the problem of �nding a concise descriptionof the di�erence between two trees. In later chapters, we present the design,analysis, implementation, and experimental evaluation of tree di�erencing al-gorithms.

1.3. APPLICATION DOMAINS 7Representing and Querying Changes: Once we have detected changes using ourdi�erencing techniques, we need a method to systematically store and querythese changes. Again, as a result of the semistructured nature of the data, wecannot use existing database techniques for this purpose. In this dissertation, wepresent a data model, called DOEM, for storing changes in semistructured datatogether with the data itself. We also present the design and implementation ofa language, called Chorel, that allows us to query over historical semistructureddata stored in a DOEM database.Monitoring Changes: A system to manage change in heterogeneous, autonomousdatabases should include a facility for monitoring changes that are of inter-est. In order to implement such subscriptions to changes, we need a general-purpose language for specifying interesting changes. Further, we need tech-niques to implement subscriptions expressed in this language. The autonomyof the databases we consider makes these tasks particularly challenging.1.3 Application DomainsCollections of heterogeneous, autonomous databases are becoming increasingly com-mon. The principal reason for this increase is a proliferation of databases due to theirfalling costs. As the number of databases grows, administering them centrally quicklybecomes impracticable. In Section 1.1, we presented an example of heterogeneous,autonomous databases from the domain of distributed design and construction. Wenow discuss a few other scenarios where such databases are found.Consider the collection of databases found in large organizations such as multi-national companies or major universities. These databases often number in the hun-dreds, and are designed, managed, and operated by relatively independent groupswithin the organizations. One group may operate a legacy IMS database, anothermay operate a modern relational database system, while a third group may use its ownproprietary database system. For example, contact information for people in the Com-puter Science department at Stanford is stored in several separate databases, including

8 CHAPTER 1. INTRODUCTIONa proprietary database designed and maintained by the department, a university-widedatabase maintained by the registrar's o�ce, and the private databases of research,teaching, and recreational groups within the department. These databases di�erwidely in their data models, user interfaces, query facilities, reliability, and cover-age. Currently, there is no systematic method used to manage the evolution of thiscollection of databases. Instead, people are expected to maintain consistent informa-tion in all these databases manually. As a result, these databases are often mutuallyinconsistent. The use of techniques in this dissertation would permit, for example,automatic noti�cation when changes of a certain kind are made in one or more ofthese databases. Further, using DOEM and Chorel, one could query past states ofthese databases in order to generate a list of people whose database entries have beeninconsistent for more than a week, so that these people could be noti�ed to correctthe situation.Recent technical and market developments have led to an explosive growth inthe number and variety of networked databases, especially on the World-Wide Web[BLCG92, W3C98]. The thousands of databases available on the Web are operatedby independent, often competing, organizations, and vary widely in their design,data model, query facilities, accessibility, reliability, and consistency. Further, thesedatabases rarely support the kinds of low-level access mechanisms required by tra-ditional data management techniques. Using the techniques in this dissertation inthis environment yields signi�cant bene�ts. As a simple example, suppose we areinterested in three Web sites. The �rst contains listings of show times in local movietheaters, the second contains movie reviews from a newspaper, and the third containstra�c reports from a television channel [PAW98, EG98, KRO98]. These three Webdatabases are operated by three separate organizations, and therefore exhibit a highdegree of heterogeneity and autonomy. Further, the information contained in thesedatabases changes frequently. Movie reviews and listings are updated once or twicea week, and tra�c reports are updated every ten minutes. Monitoring and react-ing to these changes is often of interest. For example, we may wish to be noti�edwhenever a local theater adds a matinee show for any movie that has been receivedgood reviews from the newspaper. Further, we may wish to be noti�ed of any tra�c

1.4. DISSERTATION ORGANIZATION 9problems near the theater. In Chapter 8, we describe a detailed example from thisdomain, illustrating how the techniques of this dissertation implement the desiredfunctionality.As another example, consider the increasingly common Web sites that sell books,compact discs, and other merchandise [AMA98, BN98, MBL98, CDN98, LND98].Comparison shopping by visiting each of these Web sites is extremely tedious be-cause such Web sites have vastly di�erent interfaces. Often, these di�erences areintentional, since the parent organizations wish to distinguish themselves from theircompetitors. Using data integration techniques such as those developed in the Tsim-mis project at Stanford [CGMH+94], a convenient comparison shopping service canbe implemented [JUN98]. Such a service asks a shopper for the desired product char-acteristics, such as the name of a book's author or the genre of music, and presentsthe shopper with a list of products that qualify, along with their prices and sources.Using the techniques in this dissertation, we can go even further. For example, ifwe are interested in a at-panel computer monitor with a price less than $1000, butthere are no such monitors currently on sale, we can set up a subscription that au-tomatically monitors the relevant Web sites and noti�es us when qualifying productsbecome available. Our change management system, described in Chapter 8, supportssuch noti�cations and other, more complex, subscriptions to interesting changes inheterogeneous, autonomous databases.1.4 Dissertation OrganizationIn Chapter 2, we discuss prior work in related �elds. We focus on high-level similari-ties and di�erences between prior work and our work, deferring detailed comparisonsto later chapters that present our techniques in detail. In Chapter 3, we presentan overview of our framework for managing change in heterogeneous, autonomousdatabases. We present the conceptual architecture of the C3 change managementsystem, and identify its key modules and the subproblems they address. (The nameC3 suggests the three principal facets of change management: Changes, Con�gura-tions, and Consistency.)

10 CHAPTER 1. INTRODUCTIONChapter 4 presents our techniques for detecting changes by comparing snapshotsof data modeled using ordered trees. In this chapter, we model changes using nodeinsertion, deletion and update, and subtree move operations. We present an algo-rithm that uses domain characteristics to yield e�cient, optimal solutions for a largeclass of data. Our ability to model subtree moves in addition to the node operationsused by prior work leads to a more compact, and intuitively more desirable, descrip-tion of di�erences between trees. Some of the work in this chapter is reported in[CRGMW96].Chapter 5 studies a similar change-detection problem for data that is modeledusing unordered trees. In this chapter, we model changes using not only the earlierinsert, delete, move, and update operations, but also subtree copy and uncopy opera-tions. These additional operations allow us to describe changes more succinctly, andin a manner that is typically more useful to an application. We illustrate the bene�tsof our rich set of change operations, and describe the challenges in detecting suchchanges. We show how certain unintuitive descriptions of changes can be avoided bysuitably restricting edit scripts, and present algorithms based on these ideas. Someof the work in this chapter is reported in [CGM97].In Chapter 6, we present an alternative method of modeling transformations ontree-structured data. Instead of using a procedural description of changes, we intro-duce a declarative description that is roughly analogous to applying edit operations inparallel. This method of modeling transformations not only results in simpler changedetection algorithms, but also produces change descriptions that are typically easierto understand compared to those that use the procedural model.Chapter 7 describes how we store and query changes detected using the techniquesfrom earlier chapters. We describe the OEM model for representing semistructureddata, and the Lorel language for querying it. We then present our extension to OEM,called DOEM, that allows us to store the history of a semistructured database togetherwith its content. We also present the syntax and semantics of our language, calledChorel, for querying semistructured data and its history. We describe how Chorelis implemented using a translation-based technique that allows us to take advan-tage of existing databases for semistructured and object data. Further, we illustrate

1.4. DISSERTATION ORGANIZATION 11the application of these ideas by describing the design and implementation of a ser-vice that supports subscriptions to interesting changes in heterogeneous, autonomousdatabases. Some of the work in this chapter is reported in [CAW98, CAW99].In Chapter 8, we describe our implementation of the C3 system for managingchange in heterogeneous, autonomous databases. We describe the three major mod-ules of our system: TDi�, which implements our di�erencing algorithms; CORE,which implements Chorel, and QSS, which implements subscriptions to changes. We�rst describe the facilities provided by C3, and illustrate their use with the help of anextended example. We then describe how the C3 modules interact with each otherand with modules from related projects in order to implement these facilities. Wealso discuss the experiences we have had in using the C3 system to monitor somedatabases on the Web.In Chapter 9 we present the results of the experimental evaluation of our treedi�erencing algorithms. We study both the running time of our algorithms, and thequality of the solution they produce, presenting results for synthetically generatedinputs as well as real inputs from the C3 system. We conclude in Chapter 10 bysummarizing the contributions of this dissertation and discussing promising directionsfor future work in related �elds.

Chapter 2Related WorkIn this chapter we discuss prior work in topics related to this dissertation. In Sec-tion 2.1, we summarizework related to the problem of detecting changes by comparingsnapshots of data, indicating how it di�ers from our work presented in Chapters 4{6and 9. Section 2.2 discusses how prior work in temporal and hypothetical databases,and recent work on semistructured databases, relates to our design and implementa-tion of a database system for historical semistructured data presented in Chapter 7.In Section 2.3, we briey describe work in the �eld of data integration, indicatinghow our implementation of a change management system, described in Chapter 8,builds on this work. This chapter provides a high-level overview of related work;detailed comparisons with our techniques are found in the chapters describing thosetechniques.2.1 Change DetectionThe research literature contains a substantial body of work on the topic of comparingsnapshots of data for detecting changes. We begin by discussing work on the problemof comparing strings and sequences, which has received the most attention in theliterature. We then discuss work on the problem of comparing data that is morestructured, such as data represented using ordered and unordered trees.12

2.1. CHANGE DETECTION 132.1.1 Strings and SequencesEarly interest in the problem of string comparison was motivated by applications suchas spelling correction, and focused on relatively short strings (words). Later workhas focused on comparing larger data for applications such as text comparison andversion control. For example, [WF74] de�nes a string-to-string correction problemas the problem of �nding the best sequence of insert, delete, and update operationsthat transform one string to another. The problem is developed further in [Wag75],which adds the \swap" operation to the list of edit operations. These papers alsointroduce the structure of a \trace" or a matching between the characters of thestrings being compared as a useful tool for computing an edit script. A simpler changedetection problem for strings, using only insertions and deletions as edit operationshas been studied extensively [Mye86, Ukk85, WMG90]. The idea of a longest commonsubsequence (LCS) replaces the idea of a trace in this simpler problem.A variant of the algorithm presented in [Mye86, Ukk85] for computing the longestcommon subsequence is implemented as the UNIX di� utility [HHS+98]. This di�program adds a number of features to the basic LCS algorithm to make it more usable.For example di� has options for grouping neighboring di�erences in hunks, ignoringwhitespace and blank lines, ignoring the case of letters, and ignoring lines matchinga speci�ed regular expression. The di� program also includes a number of heuristicsthat improve performance at a small risk of producing a non-minimal solution. Theoutput produced by di� can also be postprocessed in a variety of ways to make itmore usable. For example, the edi� program highlights the di�erences computed bydi� in the contexts of the two �les being compared [Kif95]. It also selectively re�nesthe di�erences by invoking di� on matching groups of lines to detect �ner-graineddi�erences which are then highlighted.Given our goal of detecting changes in structured and semistructured data foundin heterogeneous, autonomous databases, the biggest shortcoming of the work on com-paring sequence data is that such algorithms do not take the hierarchical structure ofthe data into account. For example, when comparing documents, the structure im-posed by paragraphs, sections, itemized lists, chapters, and so on, is ignored. Thus, aline in one �le containing a section heading may be matched to a list item in the other,

14 CHAPTER 2. RELATED WORKor a sentence may be matched to a sentence in a di�erent paragraph although there isa reasonable match for it in its own paragraph. Furthermore, these algorithms cannotdetect subtree operations such as moves and copies. Moves are reported as deletionsand insertions, and copies simply as insertions. Thus, if a paragraph is moved fromone section to another, it is reported as a deletion of some lines in the �rst sectionand an insertion of some lines in the other. Change detection facilities found in someapplication programs su�er from similar shortcomings. For example, Microsoft Wordhas a revisions feature that can detect simple updates, inserts, and deletes of text.However, it cannot detect moves or other subtree operations. WordPerfect has a markchanges facility that can detect some simple move operations. However, there are re-strictions on how documents can be compared (on either a word, phrase, sentence,or paragraph basis). These approaches also do not generalize to non-document data.In brief, all the algorithms mentioned above work with strings or sequences, and arenot suitable for computing changes in the structured and semistructured data foundin the environments motivated in Chapter 1.2.1.2 Ordered TreesWe can think of strings as ordered trees of height 1. When we consider more generalordered trees, the problem of detecting changes is more challenging than the stringcomparison problem because, intuitively, we need to �nd changes that account for notonly the order among siblings, but also the ancestor relation. However, some simplerformulations of the ordered tree change detection problem can be solved e�ciently.For example, if the only edit operations are insertions and deletions of subtrees,[Sel77] presents an e�cient solution that is similar in spirit to the algorithm in [WF74].Another formulation, using insertion, deletion, and label-update operations is studiedin [ZS89], which presents a dynamic programming algorithm to solve the problem.The algorithm can be further improved if we assume all edit operations to have unitcost [SZ90].Our algorithm for change detection in ordered trees, presented in Chapter 4, di�ersfrom prior work such as [ZS89] in three major ways: First, we use a di�erent set of

2.1. CHANGE DETECTION 15tree edit operations. In particular, in addition to node insertions, deletions, andlabel updates, we also permit subtree moves. As we will see in Chapter 4, subtreemoves signi�cantly improve the usability of the changes detected between trees, andalso make the problem more challenging. Although we may attempt to detect movesusing a postprocessing step, the results of such techniques can be far from optimal,especially when the number of di�erences is large [WZS95]. Further, in our workinsertion and deletion operations operate only on leaf nodes, while in [ZS89] they arepermitted to operate on interior nodes. The two sets of edit operations are equivalentin the sense that any state reachable using one set is also reachable using the other.The application domain usually determines which edit operations are more natural.In a general tree structure, the delete operation of [ZS89], which makes the childrenof the deleted node the children of its parent, is natural. However, in an objecthierarchy, this may be undesirable due to restrictions on types and composite-objectmemberships. (For example, an object representing a library may have a number ofbook objects as subobjects. If a book is deleted, it is unnatural to have the subobjectsof book (such as author, title, etc.) become subobjects of the library object.)The second major di�erence between the work in Chapter 4 and prior work isthat we make some assumptions about the nature of the data being represented. Ouralgorithm always yields correct results, but if the assumptions do not hold it mayproduce suboptimal results. Because of our assumptions, we are able to design analgorithm with a lower running-time complexity. In particular, our algorithm runsin time O(ne + e2), where n is the number of tree leaves and e is the \weightededit distance" (typically, e � n). The algorithm in [ZS89] has time complexityO(n2log2n) for balanced trees, and higher for unbalanced trees. The assumptionsmade by the algorithm in Chapter 4 are particularly well suited to documents andordered semistructured data in formats such as HTML and XML commonly foundon the Web [RHe98, BPSM98].The third major di�erence between our change detection work in both Chapter 4and 5 and prior work is a more subtle one: All prior work that we are aware of as-sumes that the function used to compare node labels satis�es the triangle inequality.That is, for any three labels a, b, and c, a label-comparison function f that returns

16 CHAPTER 2. RELATED WORK
restaurant

name
ph

menu

entreeentree

t2

SF

BayGolden Gate

traffic

north bay bridges

t1

Figure 2.1: The need for exible label comparison functionsthe cost of updating one label to another must satisfy f(a; c) � f(a; b)+ f(b; c). Nowthis requirement alone may sometimes cause problems. For example, in an applica-tion merging two structured databases containing personnel records, we may wish topermit two ten-digit phone numbers to match provided either the �rst six digits (areacode and exchange) match or the last seven digits (exchange and extension) match.If both these conditions are false, the comparison function returns a very high valueto e�ectively prevent the nodes from matching. Thus we have the following situationthat does not satisfy the triangle inequality: f(415.723.0587; 415.723.6805) = 0:3,f(415.723.6805; 650.723.6805) = 0:1, f(415.723.0587; 650.723.6805) = 10.A more serious problem caused by the triangle inequality assumption of priorwork is that most such work also requires the label comparison function to satisfyan extended form of the triangle inequality involving special labels � and 	. Fornotational convenience, insertion of a node with label l is often modeled as the editoperation upd(�; l); similarly, deletion is modeled using upd(l;). The extendedtriangle inequality assumption then requires that f(l1; l2) � f(l1;) + f(�; l2); thatis, the cost of updating label l1 to l2 cannot be greater than the cost of deleting anode with label l1 and inserting a node with label l2. In e�ect, techniques relyingon this assumption do not o�er any way for the application to indicate that certainnodes must never be matched to one another. For example, consider matching thetwo trees T1 and T2 that contain, respectively, the subtrees t1 and t2 suggested by

2.1. CHANGE DETECTION 17Figure 2.1. (This example is an abstraction of the eGuide database used in ourimplementation described in Chapter 8.) Given the semantics suggested by the labelsof t1 and t2, it is clearly undesirable to match one to the other. However, if the twosubtrees occur in similar positions in their respective trees, techniques that rely onthe triangle inequality assumption will always match them to each other. In contrast,our techniques in Chapters 4, 5, and 6 allow us to use a more exible label comparisonfunction that assigns an arbitrarily high cost to updating the labels in t1 to those int2. Unfortunately, allowing a more exible label-comparison function, while leadingto more usable results, also makes it di�cult to use traditional approaches based ondynamic programming to solve the change detection problem. Informally, dynamicprogramming solutions to the tree change detection problem use the following ar-gument: Since the triangle inequality described above holds, it is not necessary toconsider matching nodes that are \too far away." In particular, using the triangleinequality assumption, it is possible to derive results that constrain the kinds of nodematchings that need to be considered. For example, it is often possible to rule outmatchings that do not preserve the ancestor relation or the order among siblings[ZS89]. Without the triangle inequality assumption, we need to consider other tech-niques to simplify the problem; our techniques are presented in Chapters 4, 5, and 6.2.1.3 Unordered TreesThe problem of detecting changes in unordered trees by computing a minimum-costedit script that transforms one tree to another is inherently harder than the analo-gous problem for ordered trees. Even very simple formulations of this problem areextremely hard to solve. For example, [ZWS95] presents a proof of the NP-hardnessof a formulation that uses insertion, deletion, and label-update operations. The proofis by reduction from the exact cover by three-sets problem, which is known to be NP-hard. Similar techniques can be used to show that most general formulations of thisproblem are hard.Given the hardness of the problem, it seems necessary to explore techniques that

18 CHAPTER 2. RELATED WORKrely on substantially restricting the problem, and heuristic techniques. An example ofthe former strategy is [ZWS95], which formulates a restricted version of the problem inwhich one can only insert and delete nodes with zero or one children. (This algorithmis also generalized to unrooted trees.) An example of the latter strategy is [SWZS94],which explores the e�ectiveness of standard search techniques such as probabilistichill climbing.As was the case for ordered trees, a major di�erence between prior work and ourwork presented in Chapters 4 and 5 is that we consider a much richer set of editoperations. In addition to the standard node insertion, deletion, and label updateoperations, we also permit subtree operations such as moves and copies. For example,when we compare documents, our techniques detect changes such as moved sectionsand copied paragraphs. Prior techniques detect such changes only as their componentinsertions and deletions, thus losing valuable information.Another distinguishing feature of our work, also similar to the case for orderedtrees, is that we do not insist that the function used to compare labels satisfy thetriangle inequality. Note that when we consider unordered trees, assuming the triangleinequality does not lead to any signi�cant simpli�cation of the problem. In particular,the hardness result mentioned above still holds.In general, there are several formulations of the problem of detecting changes insnapshots of data. In addition to being useful for managing change in autonomousdatabases, such techniques have applications in many other domains. For example,[Yan91] describes the application of a technique similar to that in [Sel77] to identifysyntactic di�erences between versions of a program. The formulation that is mostpro�table to use depends on the application at hand. In an application with a smallamount of data (e.g., structured catalogue entries), or when we are willing to spendmore time (e.g., biochemical structures), more thorough search algorithms may bepreferred. However, in applications with large amounts of data (e.g., object hier-archies, database dumps), or with strict running-time requirements, we would useour algorithm. The e�ciency of our method is based on exploiting certain domaincharacteristics. Even in domains where these characteristics may not hold for all ofthe data, it may be preferable to get a quick, correct, but not guaranteed optimal,

2.2. REPRESENTING AND QUERYING CHANGES 19solution using our approach. The variations we have explored in this dissertation arethose we have found well-suited to our purpose of managing change in autonomousdatabases.2.2 Representing and Querying ChangesConsider the general problem of representing and querying the history of a databasein addition to its current state. Prior work on this topic takes one of the followingtwo approaches. The �rst approach, which we call the snapshot-collection approach,models the history of a database as a collection of database states, or snapshots. Inthis model, a change operation takes a database from one state to the next. Thestates are ordered, usually linearly, based on some parameter, usually time or versionnumber. In addition to permitting queries on the current database state, this modelpermits any other state of the database to be queried. This approach is used bytemporal databases [SA86, Soo91]. The second approach, which we call the snapshot-delta approach, models the history of the database using a single database snapshotand a collection of deltas. In this model, we obtain various states of the database bystarting with a single snapshot and applying some sequence of deltas to it. We usethe snapshot-delta approach in our work. An early, simple example of this approachis the use of delta relations in active databases and trigger languages [Buc96, WC96a,Mel96]. In such work, changes to a relation R are represented using two relations,R+ and R�, where R+ = Rnew � Rold, and R� = Rold � Rnew. More recently, thisapproach has been used by work on hypothetical database systems, which permitqueries over database states obtained by applying a set of deltas to the current state[GHJ96, DHR96, GH97].The traditional approach to representing and querying changes in a databasemodels changes to only the content of a database, not its schema, which is assumed tobe �xed. That is, only those database changes that are consistent with the schema aremodeled. For example, in relational databases such techniques model the insertion,deletion, and update of tuples in a relation. They do not model other kinds of changesto the database, such as creation and removal of relations, addition and removal of

20 CHAPTER 2. RELATED WORKrelation attributes, and changes in key constraints. Similarly, for object databases,traditional techniques model only changes that are consistent with the schema. Forexample, changes such as modifying a class by adding or removing a data member,de�ning a new class, and changing the subtype hierarchy are not modeled. Therefore,traditional techniques for representing change in a database cannot model any changethat causes an explicit (by design of the administrator) or implicit (as a result of newdata with di�erent characteristics) change in the schema.2.2.1 Heterogeneous Databases and SchemasThe reliance of traditional work on a �xed schema causes serious di�culties whenworking with heterogeneous, autonomous databases. First, designing a relationalor object schema for the data found in heterogeneous databases is extremely di�-cult. For example, consider trying to design a schema for the Web site of a news-paper [NYT98, WP98]. These databases are more similar to structured documentsthan they are to traditional databases, and they rarely adhere to a strict code ofpresentation and semantics. Intuitively, the reason for the di�culties in modelingheterogeneous databases using a schema is the following: Every schema relies on aset of assumptions. For example, relational database schema design is guided bythe presence and absence of functional dependencies [Arm74, Ull88]. Heterogeneousdatabases by their very nature lack the consistency, stability, and structure impliedby these assumptions. These di�culties are exacerbated when the data of interestcomes from not one but several databases that have been integrated because, as thenumber of integrated databases grows, the likelihood of any assumption being validfor all the databases drops sharply. Further, even if we are fortunate enough to �nd aschema that works for the collection of heterogeneous databases under consideration,there is no guarantee that we will not soon encounter new data that does not conformto this schema, since any assumptions the schema makes are not guaranteed to holdin the source data. (This problem is analogous to the problems one may expect iffunctional dependencies in a relational database are guessed by observing only thecurrent state of the database. Although the current state of the database may not

2.2. REPRESENTING AND QUERYING CHANGES 21contradict the guessed dependencies, it is likely that a future database state will.)As a result of these di�culties in schema design for heterogeneous databases, manysystems that work with such data are forced to use a degenerate schema of the form(id; type; value), e�ectively reducing a database system to a storage system. Usingsuch a degenerate schema results in complex queries for even simple retrieval tasksand adversely a�ects the performance of the database system.The di�culties caused by changes in schema have been noted in earlier work,and techniques have been proposed for managing schema evolution. For example,the ORION object database system includes facilities that allow the class hierarchyde�ning the database schema to be modi�ed [BKKK87]. However, an importantassumption made by such work is that schema changes are made only rarely (e.g.,once a year). Consequently, such techniques often rely on some manual interventionand perform a signi�cant amount of database restructuring for each schema change.Therefore, these techniques are not useful if the schema is expected to change morerapidly, as is the case for heterogeneous databases.2.2.2 Semistructured DatabasesOne may observe that the above arguments about the disadvantages of relying ona �xed schema when working with heterogeneous databases are valid even if we areinterested in modeling a simple, non-historical database. Indeed, similar observationshave led to recent work on the topic of semistructured databases [AQM+96, MAG+97,BDHS96, Abi97]. Informally, semistructured databases are databases that have somestructure; however, this structure is irregular, incomplete, and subject to frequentchanges. Such databases are often described as schema-less. In contrast to conven-tional database systems that �rst de�ne a schema and then populate the database,semistructured database systems �rst populate a database using a very general datamodel and then try to infer and use the regularities in the data. The greatest advan-tage of using such a semistructured data model with heterogeneous databases is thatwe do not need to perform the di�cult and tedious task of designing and maintainingan integrating schema.

22 CHAPTER 2. RELATED WORKThe disadvantage of a semistructured data model is that the implementation ofcommon database system functions becomes more challenging. For example, thetasks of data layout, query processing and optimization, and indexing can no longerrely on a �xed schema and therefore require new techniques. There has been recentpreliminary work on such topics. For example, techniques for inferring structure andregularity in semistructured databases are studied in [NUWC97, GW97], and [MW98]describes the application of query optimization techniques to the Lorel language forquerying semistructured data [AQM+96]. However, much work remains to be donein the emerging topic of semistructured databases. In particular, representing andquerying changes in semistructured databases is signi�cantly more challenging thanit is in databases with a �xed schema. To our knowledge, our work presented inChapter 7 is the �rst to address this important problem.We now summarize the major di�erences between our work presented in Chapter 7and prior work. The �rst di�erence is the data model used. Most prior work usesthe relational data model in which there is a simple notion of changes: tuples ina relation may be inserted, deleted, or updated. Such changes are modeled usingone of the two approaches (snapshot-collection and snapshot-delta) mentioned above.However, these are not the only changes that can be made to a relational database.We can also create new relations, destroy existing ones, modify the de�nitions ofrelations, add or remove key constraints, and so on. Such changes, which are ignoredby traditional work on representing and querying changes in relational databases, arecaptured by our work.Another major di�erence between our work and prior work is that we treat changesas �rst-class entities, not only in data representation, but also in our query language.Prior work, such as [DHR96], adopts the following strategy for querying a historicalor hypothetical database: Some subset of the changes represented in the databaseare selected and applied to the current state of the database, producing another(historical or hypothetical) state. This state is then queried in the standard manner.In contrast, our query language presented in Chapter 7 allows a �ner-grained mixingof the application of changes and querying.Yet another distinguishing feature of our work is that our data model and query

2.3. DATA INTEGRATION 23language use very few primitives. In addition to simplifying the implementation anduse of our system, a smaller number of primitives imposes fewer requirements on thekinds of data we can represent. For example, it is extremely tedious to coerce dataobtained from the Web into a regular structure, relational or object based. Even withadvances in standards such as XML, the structure of the data remains unreliable anduid. Thus, using a simple graph-based model that makes very few assumptionsabout the structure of the data being modeled has signi�cant advantages.2.3 Data IntegrationAlthough data integration is not the focus of this dissertation, our framework formanaging change in heterogeneous, autonomous databases, described in Chapter 3,includes modules that rely on data integration techniques. In particular, our im-plementation of the C3 change management system, described in Chapter 8, usesmodules from the Tsimmis project on data integration [CGMH+94, LYV+98].The goal of data integration is to shield a casual user of multiple heterogeneousdatabases from the intricacies of the di�erences in data models, query languages,and access methods supported by these databases. For example, an integrated viewover two personnel databases, one relational and the other object-oriented, presentsall employee records in the same manner irrespective of the database to which anindividual record belongs. One can �nd, for example, employees hired in the pastyear by posing a single query over the integrated view without worrying about detailsof the underlying relational and object query languages and schemas.We need to address the problem of data integration at several levels, ranging fromsimple, syntactic integration to complex, semantic integration. Although the bound-ary between syntactic and semantic integration depends on the representation used,it is useful to intuitively position integration tasks on a continuum ranging from tasksrequiring only simple translation to those requiring complex reasoning. For example,the task of integrating design databases that store measurements using di�erent units(e.g., inches and centimeters) requires only simple translation. Integrating productcatalogs that list prices using di�erent currencies is a more di�cult task, since the

24 CHAPTER 2. RELATED WORKconversion rates between currencies depend on a number of complex factors. As anexample of di�cult semantic integration, consider the task of integrating the account-ing databases of two companies. This task requires a detailed understanding of theaccounting principles used by the companies in order to design a suitable mappingbetween the databases. For instance, a person considered as a consultant by onecompany may be treated as an employee by another. Thus, answering even a simplequery asking for the names of employees in the two companies is di�cult.Given the complexity of semantic integration, an integration strategy that usesonly fully automated techniques is not likely to succeed. Most recent work in dataintegration has therefore focused on designing techniques that facilitate and partiallyautomate the task of integrating diverse sources. A common strategy is to use modulescalled wrappers to translate data from the data model used by a source database to thedata model used for integration [HBGM+97]. Further integration is achieved usingmediators, which are modules that interact with wrappers and other mediators inorder to support an integrated view of data from multiple sources [Wie92]. The workdescribed in this dissertation builds on this framework of wrappers and mediatorsused for data integration. Chapters 3 and 8 describe how the C3 system interactswith wrappers and mediators.We may classify data integration techniques into two broad categories: lazy andeager [Wid96]. The lazy approach, which we also call the virtual integration ap-proach, performs query translation, query execution, and data translation and inte-gration only when it is needed to execute a query. As described above, this approachuses wrappers and mediators to integrate data from diverse sources. The Tsimmisproject has developed methods for rapid implementation of wrappers and mediators.Wrappers are generated by specifying query and data translation using a high-levellanguage based on pattern-matching [PGGMU95, HGMC+97, HBGM+97]. Similarly,mediators are generated from high-level speci�cations using a language that is similarto Datalog [PGMU96, PAGM96, LYV+98, UW97]. Similar techniques for integratingdata using wrappers and mediators have been developed in several other projects,including Rufus [SLS+93], Garlic [CHS+95], SIMS [ACHK93], Pegasus [ADD+94],and the Information Manifold [KLSS95].

2.3. DATA INTEGRATION 25In contrast to the lazy approach to data integration, the eager approach, which wealso call the materialized integration or data warehousing approach, captures all thedata of interest from the source databases in advance of any query execution. Thisdata is translated, integrated, and stored in a central database called the warehouse.User queries over the integrated view are then answered by simply querying the ware-house. This approach is taken by the Whips project at Stanford [HGMW+95] andother data warehousing projects [Inm92]. The task of translating and integrating datausing the eager approach is quite similar to that using the lazy approach. Materializedintegration uses modules called grabbers to extract data from the source databases.Many of the wrapper implementation techniques based on pattern-matching are ap-plicable to grabbers. However, unlike wrappers, grabbers extract data when thewarehouse is set up, without waiting for any queries.The lazy and eager approaches to integration have the advantages and disadvan-tages that are characteristic of lazy and eager strategies in general. For example, thelazy approach avoids performing work not required for query execution, while theeager approach permits faster and more reliable query execution after initial ware-house set-up. The eager approach also requires techniques for keeping the integrateddata stored in the warehouse up-to-date. This problem is similar to the material-ized view maintenance problem [BLT86]; however, the heterogeneity and autonomyof the source databases introduce additional complications and there has been recentwork to address these issues [ZGMHW95, HZ96]. As we will describe in Chapters 3and 8, the C3 system uses a combination of the virtual and materialized integrationapproaches.

Chapter 3OverviewIn this chapter, we present a brief overview of our strategy for managing change inheterogeneous, autonomous databases. We sketch the architecture of the C3 changemanagement system and briey describe its key components. The details of thetechniques used to implement these components are deferred to later chapters. (Asindicated in Chapter 1, whe name C3 suggests the three principal facets of changemanagement: Changes, Con�gurations, and Consistency.) Recall from Chapter 1that throughout this dissertation we use the term databases to denote heterogeneous,autonomous collections of data. In addition to the well studied relational and object-oriented database systems, we use the term databases to denote collections of un-structured or semistructured data in various data formats. For example, we includedata stored in formats such as plain text, HTML, XML, SGML, ASN.1, Bibtex, Referand MIF, and data that is accessible through protocols such as SMTP, FTP, NNTP,HTTP, Finger, and WHOIS [RHe98, BPSM98, Gol90, Uni93, Lam94, Pos82, PR85,KL86, FGM+97, Zim90, HSF85]. Our interest lies in managing a collection of suchdiverse databases as a coherent information system; in particular, we are interested inmanaging change in these databases. In what follows, we refer to the heterogeneous,autonomous databases that we wish to manage as the source databases.26

3.1. INTEGRATING HETEROGENEOUS DATABASES 273.1 Integrating Heterogeneous DatabasesGiven the heterogeneity in the data models, query languages, and access methodsof the source databases, we �rst need a strategy to avoid the proliferation of specialtechniques needed to interact with each di�erent kind of database. We would like topresent the users of our system a uni�ed view of the data in all the source databases,irrespective of the characteristics of the source database from which a particulardata item is obtained. For this purpose, we need an integrating data model that issimple and general enough to encompass a wide variety of source data models. Asdiscussed in Chapter 2, semistructured data models are particularly well suited tothis purpose. We use the Object Exchange Model (OEM), which was devised as partof the Tsimmis project, as our integrating model [PGMW95, CGMH+94]. In OEM, adatabase is simply a rooted, labeled, directed graph. Nodes in this graph have labelsdenoting data content, and arcs have labels denoting the relationship between thenodes they connect.We would also like to present our users with a single query language to query overthe data integrated from all the source databases, irrespective of the particular querylanguages supported by the databases containing data relevant to the query. We usethe Lorel query language, designed as part of the Lore project to query over integrateddata represented in OEM [AQM+96, MAG+97]. The central idea in Lorel is the use ofgeneral path expressions. These are sequences of labels, including optional wildcardsand regular expressions, that intuitively match certain paths in the OEM graph. (Wedescribe OEM and Lorel in detail in Chapter 7.) Thus our strategy is to support auniform abstraction, in OEM, of the source databases, and to support Lorel queriesover this abstraction.In order to implement the above strategy for accessing heterogeneous databasesusing OEM and Lorel, we need the ability to translate Lorel queries to the nativequery languages of the source databases, and to translate the results of the nativequery (in the native data format) to OEM. The modules that implement the abovefunctionality are called wrappers. Wrapper implementation techniques have beenstudied in several works, including [PGGMU95, AK97, HGMC+97, HBGM+97], and

28 CHAPTER 3. OVERVIEWQSS TDiff COREWrapper Autonomous DBs WrapperMediatorSubscribe to Changes Browse changes Query andBrowse DOEMuser
Figure 3.1: Conceptual architecture of the C3 system

3.2. DETECTING CHANGES 29we do not describe them in this dissertation. Briey, there is one wrapper for eachsource database. This wrapper accepts a Lorel query, and translates it into a suitablequery in the native query language of the source database. Often, the translated queryis one that returns a superset of the desired results since the exact query may not besupported by the source. The native query is executed by sending it to the sourcedatabase, and the results are �ltered if needed, and translated to OEM. In order tocombine data from multiple heterogeneous databases, we use mediators, which aremodules that interact with wrappers and other mediators [Wie92, PGMU96]. Anexample of a simple mediator is a fusion mediator that combines data from two ormore databases [PAGM96]. Wrappers and mediators thus provide the rest of thesystem with a simple abstraction of source databases: Source databases accept aLorel query and return OEM results.3.2 Detecting ChangesIn order to manage changes in the source databases, we must �rst detect them. Theautonomy and heterogeneity of these databases necessitates special techniques for thispurpose. Consider the comparison depicted in Figure 3.2. In a traditional databasesystem, the only way to access the database is through the database managementsystem (DBMS). In particular, the database can be modi�ed only through the DBMS.Thus detecting changes to the database is a matter of simple bookkeeping. In contrast,an autonomous database system may or may not be stored using a DBMS. Even ifa database uses a DBMS, the DBMS interface is private and accessible only to theowner of the database (for autonomy reasons). An external user of such a databasecan access the database only through a restricted public interface that accepts queriesand returns results. As discussed above, a data integration system typically accessessuch databases through a wrapper. Thus we need techniques to detect changes in thesource databases using only the wrapper interface.In some cases, a source database provides some additional functionality that isuseful for detecting changes. For example, a Web site listing books for sale mayo�er a feature to notify users when books of a certain type arrive. Such trigger and

30 CHAPTER 3. OVERVIEWDBMSChanges PrivateDBMS? WrapperQuery ResultPublicInterfaceChanges?Changes?User UserOwnerDB ADBChangesOwner Autonomous databaseTraditional databaseFigure 3.2: Changes in autonomous databasesnoti�cation mechanisms, when supported, can be used to aid the change detectionprocess. However, in general we cannot rely on the existence of such facilities, andneed a method for detecting changes based only on the query interface provided bywrappers.Thus, in order to detect changes in the source databases, we need to poll thesedatabases and detect changes by comparing the old and new data snapshots. Moreprecisely, we periodically send a query to the wrapper of a source database, resultingin a sequence of query results over time. We compare each pair of successive resultsand detect any di�erences between them. The query results returned by Tsimmiswrappers are tree structured. Therefore, we need a method to compare two snapshotsof tree structured data and detect changes between them. In order to make this treecomparison more precise, we need to de�ne the type of trees we consider, the editoperations used to modify them, the manner in which such edit operations are applied,and the properties desired of the detected changes. For example, a trivial way todescribe the di�erence between any two trees is to indicate that all the nodes in onetree are deleted, followed by the insertion of the nodes in the second tree. Althoughtechnically correct, such a description is not very useful if, for example, the two trees

3.2. DETECTING CHANGES 31
Figure 3.3: Sample output from TDi�di�er only in a single node. In Chapters 4, 5, and 6, we present di�erent formulationsof the tree di�erencing problem, and present techniques for solving them.Using our tree di�erencing techniques, we have implemented the TDi� moduleof the C3 system. This module takes two data snapshots as input and presents asoutput a concise description of the di�erences between them. We have also developeda graphical interface that presents the computed di�erences as mark-up on the inputdata. For example, a version of TDi� specialized for HTML data takes two Web pagesas input and produces as output a marked-up HTML document in which inserted,deleted, updated, and moved textual units are indicated using icons. Figure 3.3shows an excerpt from the output of TDi� on two versions of a Web page listingrestaurant reviews from the Palo Alto Weekly [PAW98]. Each icon represents anedit operation, with the color indicating the type of the operation, and the shapeindicating the textual unit (sentence, paragraph, or section). Clicking on an iconreveals more information about the edit operation. For example, clicking on a reddot, which signi�es a deleted sentence, results in the display of a marked-up copy of

32 CHAPTER 3. OVERVIEWthe old version of the document, with the deleted sentence highlighted. We describeour implementation in more detail in Chapter 8. Of course, generating a specializedversion of TDi� for every new kind of source data we encounter is not practical.Instead, as described above, the C3 system uses wrappers to translate such data intoOEM, and a single version of TDi� that operates on OEM data.3.3 Managing ChangesThe graphical interfaces to the C3 system allow us to browse the changes between twoOEM snapshots. However, just as browsing a database is not practical once the sizeof the database grows beyond a few kilobytes, browsing changes becomes impracticalwhen we are dealing with large amounts of data. We need a method for systematicallystoring and querying these changes. Note that we need the ability to store and querychanges over several versions of the data, not just the two most recent ones. Inparticular, since we use OEM as our integrating data model, we need techniques torepresent, store, and query historical OEM data, that is, OEM data and the changesmade to it over time. In Chapter 7 we present our extension to OEM that allows usto model data and changes in a simple and general manner. We call this extensionDOEM, for Delta-OEM. DOEM is well suited to browsing marked-up versions of OEMdata using a method similar to the one in Figure 3.3 for HTML data. In addition,DOEM is well suited to querying using a general-purpose, powerful, query language.We have designed a query language, called Chorel, for historical data represented inDOEM. Chapter 7 describes the syntax, semantics, and implementation of Chorel.Chorel extends Lorel to permit querying not only the current state of a semistructureddatabase, but also its history of changes. For example, we can write a query overthe history of a Web database with movie listings to �nd horror movies that beganshowing in one theater within one week of when they stopped showing in another[EG98]. Using the techniques in Chapter 7, we have implemented a database systemfor historical semistructured data. This database system is called CORE, for ChangeObject Repository, and is implemented by extending the Lore database system forOEM data. Thus changes detected by our TDi� module are stored in a DOEM

3.4. SUMMARY 33database in the CORE module, which permits browsing and querying.The last major component of the C3 change management system is QSS, whichstands for Query Subscription Service. Using the TDi� and CORE modules, QSSsupports subscriptions to changes in the source databases. For example, a QSS sub-scription over a Web site with movie listings may request that it be noti�ed whenevera new action movie starts showing at a theater in Palo Alto. The syntax, semantics,and implementation of such subscriptions are described in Chapter 7. The QSS mod-ule also acts as a driver for the rest of the C3 system. It polls the source databasesat appropriate times by sending a query to the wrapper, sends the new and previousresult to TDi�, and installs any changes detected by TDi� in the appropriate DOEMdatabase in CORE. Further, it executes Chorel queries over the DOEM databasesstored in CORE in order to detect changes that satisfy some subscription, and sendsany such changes to the subscription owner. Our implementation of the C3 system isdescribed in more detail in Chapter 8.3.4 SummaryIn this chapter, we outlined our high-level strategy for addressing the problem ofmanaging change in heterogeneous, autonomous databases. We presented the con-ceptual architecture of the C3 system, including the modules we use from the relatedprojects Tsimmis and Lore. In order to limit the amount of special-purpose designrequired due to the heterogeneity of source databases, we use a simple graph-basedintegrating model called OEM, and conceptually map all data to this format. Weuse template-based wrappers from the Tsimmis project to translate queries and databetween the OEM model and the models used by the source databases. Further inte-gration is achieved using a network of mediators that support powerful mechanisms tocombine and transform data. Although the design and implementation of wrappersand mediators, along with other topics in data integration, are interesting researchissues, they are not the focus of this dissertation; therefore we do not discuss themin detail.Since we cannot assume the availability of sophisticated noti�cation facilities,

34 CHAPTER 3. OVERVIEWdetecting changes in autonomous databases requires techniques to compute changesby comparing snapshots of data. We briey described how we formalize these ideasby de�ning a tree di�erencing problem. In Chapters 4, 5, and 6, we study in detailthe formulation and solution of such tree di�erencing problems.Since we use a semistructured data model, OEM, as our integrating model, thetasks of representing, storing, and querying the changes detected by our di�erencingtechniques present some unique challenges. We have developed a data model, DOEM,and a query language, Chorel, for historical semistructured data to address these chal-lenges. We present DOEM and Chorel in Chapter 7, which also describes a powerfulsubscription service called QSS. An important feature of our work on representingand querying changes is the treatment of changes as �rst class concepts.In this chapter, we described only briey the manner in which the work to bedescribed in later chapters contributes to the task of building a change managementsystem for heterogeneous, autonomous databases. We present the details in Chap-ter 8, which describes the C3 system from both user and implementor standpoints.

Chapter 4Detecting Changes in OrderedTreesIn Chapter 3 we described the high-level architecture of our change managementsystem, and noted that a key component of our system is a module that detectschanges by comparing snapshots of structured or semistructured data. In the nextthree chapters, we describe techniques for detecting changes in this manner. In thischapter, we focus on algorithms for detecting changes in data that is modeled usinglayered, ordered trees. We formalize the change detection problem as the problem ofcomputing a minimum-cost edit script that transforms the tree modeling one snapshotto the tree modeling the other. In order to detect changes that are more meaningfulto an application or end user, we permit our edit scripts to contain not only thetraditional node insertion, deletion, and update operations, but also operations thatmove entire subtrees. We use domain characteristics to simplify the problem, andpresent an e�cient algorithm that is optimal for data with these characteristics. Weintroduce a convenient representation of an edit script as a delta tree, and describeour implementation of a di�erencing program based on these ideas. In summary, themain contributions of this chapter are the following:� a formal de�nition of the problem of detecting changes in structured and semi-structured data given the old and new versions of the data;35

36 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES� e�cient algorithms for computing a minimumcost edit script between two trees;� analytical and empirical performance studies of our algorithms;� a general scheme, called a delta tree, to represent changes in hierarchicallystructured information.� a powerful LaDi� system for detecting and representing changes in hierarchi-cally structured Latex documents that demonstrates the utility of our approach.The remainder of this chapter is organized as follows. Section 4.1 describes ourgeneral approach, divides our problem into two distinct subproblems, and providespreliminary de�nitions. Our algorithms for solving the two subproblems are discussedin Sections 4.2 and 4.3. Section 4.4 describes delta trees. In Section 4.5 we describe theapplication of our techniques to hierarchically structured documents. Our empiricalperformance study is described in Section 4.6, and are followed by a chapter summaryin Section 4.7.4.1 OverviewIn this section, we formulate the change detection problem and split it into the fol-lowing two subproblems which are discussed in later sections:� Finding a \good" matching between the nodes of the two trees;� Finding a minimum\conforming" edit script for the two trees given a computedmatching.We �rst introduce these problems informally using an example. The formal de�nitionsfollow in Section 4.1.1, which also introduces some notation and terms used in therest of the chapter.Recall, from Section 7.1, that we wish to detect changes between snapshots ofdata represented using ordered trees|trees in which the children of each node havea designated order. Hereafter, when we use the term \tree" we mean an orderedtree. We consider trees in which each node has a label and a value. These trees are

4.1. OVERVIEW 37
S(g)

1

2 3 4

5 6 7 8 9 10

11

12 13 14

15 16 17 18 19 20

D D

P P P P P P

T2T1

S(a) S(b) S(c) S(d) S(e) S(f) S(a) S(c) S(f) S(d) S(e)Figure 4.1: Running example (dashed edges represent matching)natural abstractions of the OEM data model that we briey introduced in Chapter 3.(Details of how OEM data is mapped to ordered trees are in Chapter 7.) We alsoassume that each tree node has a unique identi�er; identi�ers may be generated byour algorithms when they are not provided in the data itself. Note that the nodesthat represent the same real-world entity in di�erent versions may not have the sameidenti�er. We refer to the node with identi�er x as \node x" for conciseness.As a running example, consider trees T1 and T2 shown in Figure 4.1, and ignorethe dashed lines for the moment. The number inside each node is the node's identi�erand the letter beside each node is its label. All of the interior nodes have null values,not shown. Leaf nodes have the values indicated in parentheses. (These trees couldrepresent two structured documents, where the labels D, P, and S denote Document,Paragraph, and Sentence, respectively. The values of the sentence nodes are thesentences themselves.) We are interested in �nding the delta between these two trees.We will assume that T1 represents the \old" data and T2 the \new" data, so we wantto determine an appropriate transformation from tree T1 to tree T2.Our �rst task in �nding such a transformation is to determine nodes in the twotrees that correspond to one another. Intuitively, these are nodes that either remainunchanged or have their value updated in the transformation from T1 to T2 (ratherthan, say, deleting the old node and inserting a new one). For example, node 5 in T1has the same value as node 15 in T2, so nodes 5 and 15 should probably correspond.Similarly, nodes 4 and 13 have one child node each, and the child nodes have the samevalue, so nodes 4 and 13 should probably correspond. The notion of a correspondence

38 CHAPTER 4. DETECTING CHANGES IN ORDERED TREESbetween nodes that have identical or similar values is formalized as a matching be-tween node identi�ers. Matchings are one-to-one. We say that a matching is partialif only some nodes in the two trees participate, while a matching is total if all nodesparticipate. Hereafter, we use the term \matching" to mean a partial matching unlessstated otherwise.Hence, one of our problems is to �nd an appropriate matching for the trees we arecomparing. We call this problem the Good Matching problem. In some applicationdomains the Good Matching problem is easy, such as when data objects containobject identi�ers or unique keys. In other domains, such as structured documents,the matching is based on labels and values only, so the Good Matching problem ismore di�cult. Furthermore, not only do we want to match nodes that are identical(with respect to the labels and values of the nodes and their children), but we alsowant to match nodes that are \approximately equal." For instance, node 3 in Figure4.1 probably should match node 14 even though node 3 is missing one of the childrenof 14. Details of the Good Matching problem|including what constitutes a \good"matching|are addressed in Section 4.3. A matching for our running example isillustrated by the dashed lines in Figure 4.1.We say that two trees are isomorphic if they are identical except for node identi-�ers. For trees T1 and T2, once we have found a good (partial) matchingM , our nextstep is to �nd a sequence of \change operations" that transforms tree T1 into a tree T 01that is isomorphic to T2. Changes may include inserting (leaf) nodes, deleting (leaf)nodes, updating the values of nodes, and moving nodes along with their subtrees.Intuitively, as T1 is transformed into T 01, the partial matching M is extended into atotal matching M 0 between the nodes of T 01 and T2. The total matching M 0 thende�nes the isomorphism between trees T 01 and T2. We call the sequence of changeoperations an edit script, and we say that the edit script conforms to the originalmatching M provided that M 0 � M . (As will be seen, an edit script conforms topartial matchingM as long as the script does not insert or delete nodes participatingin M .) Edit scripts are de�ned in more detail shortly.We would like our edit script to transform tree T1 as little as possible in orderto obtain a tree isomorphic to T2. To capture minimality of transformations, we

4.1. OVERVIEW 39introduce the notion of the cost of an edit script, and we look for a script of minimumcost. Thus, our second main problem is the problem of �nding such a minimum costedit script; we refer to this as theMinimum Conforming Edit Script (MCES) problem.The remainder of this section formally de�nes edit operations and edit scripts. Ouralgorithm for the MCES problem is presented in Section 4.2, and Section 4.3 presentsour algorithm for the Good Matching problem. Note that we consider the MCESproblem before the Good Matching problem, despite the fact that our method requires�nding a matching before generating an edit script. As will be seen, the de�nition ofa good matching relies on certain aspects of edit scripts, so for presentation purposeswe consider the details of our edit script algorithms �rst.4.1.1 Edit Operations, Edit Scripts, and CostsWe now formalize the concepts we introduced informally above. We de�ne the op-erations we use for editing trees, describe how a sequence of such edit operations isused to transform a tree, and de�ne the cost of such a sequence of edit operations.Edit OperationsIn an ordered tree, if nodes v1; : : : ; vm are the children of node u, then we call vi theith child of u. For a node x, we let l(x) denote the label of x, v(x) denote the valueof x, and p(x) denote the parent of x if x is not the root. We assume that labels arechosen from a �xed but arbitrary set. In the de�nitions of the edit operations, T1refers to the tree on which the operation is applied, while T2 refers to the resultingtree. The four edit operations on trees are the following:Insert: The insertion of a new leaf node x into T1, denoted by ins((x; l; v); y; k). Anode x with label l and value v is inserted as the kth child of node y of T1.More precisely, if u1; : : : ; um are the children of y in T1, then 1 � k � m+1 andu1; : : : ; uk�1; x; uk; : : : ; um are the children of y in T2. The value v is optional,and is assumed to be null if omitted.Delete: The deletion of a leaf node x of T1, denoted by del (x). The result T2 is thesame as T1, except that it does not contain node x. del (x) does not change the

40 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES
3

5 6

1

2 4

1

A(foo)

2 3 4

5 6

1

2 3 4

5

INS((6,A,foo),3,2)

DEL(6)

MOV(3,1,3)

MOV(3,1,2)Figure 4.2: Edit operations on a treerelative ordering of the remaining children of p(x). This operation deletes onlya leaf node; to delete an interior node, we must �rst move its descendents totheir new locations or delete them.Update: The update of the value of a node x in T1, denoted by upd(x; val). T2 isthe same as T1 except that in T2, v(x) = val .Move: The move of a subtree from one parent to another in T1, denoted bymov(x; y; k). T2 is the same as T1, except x becomes the kth child of y. Theentire subtree rooted at x is moved along with x.Figure 4.2 shows examples of edit operations on trees. In the �gure, node 6 has labelA and value foo. The labels and values of the other nodes are not shown.Edit ScriptsInformally, an edit script gives a sequence of edit operations that transforms onetree into another. Formally, we say T1 e1! T2 when T2 is the result of applying theedit operation e1 to T1. Given a sequence E = e1; : : : ; em of edit operations, we sayT1 E! Tm+1 if there exist T2; : : : ; Tm such that T1 e1! T2 e2! : : : em! Tm+1. A sequenceE of edit operations transforms T1 into T2 if T1 E! T 01 and T 01 is isomorphic to T2.(Recall that two trees are isomorphic if they di�er only in the identi�ers of theirnodes.) We call such a sequence of edit operations an edit script of T1 with respectto T2. Notice that an edit script does not tell us how the original matching between

4.1. OVERVIEW 41
5

6 7

1

2 3 8

4 9 10

11

5

6

T2

1

2 3 8

4 5

6 7

9 10

1

2 3 8

4 5

6 7

9 10

11

7

1

3 8

4 9 10

11

DEL(2)

Mov(5,11,1)

P

S(l) Sec P

S(m) S(n)S(x)

S(a) S(b)

D D

S(l) Sec P

S(x) P

S(a) S(b)

S(m) S(n)

INS((11,Sec,foo),1,4)

Sec(foo)

P

Sec(foo)

S(b)S(a)

S(n)S(m)

P

D

S(l) Sec

S(x)

Sec

S(x)

D

P

S(m) S(n) P

S(b)S(a)

T1

Figure 4.3: Applying the edit script of Example 4.1.1T1 and T2 should be modi�ed to obtain the total matching between T 01 and T2. Thiswill be done as the edit script is generated; see Section 4.2.Example 4.1.1 Consider the trees T1 and T2 shown in Figure 4.3. The followingedit script below transforms T1 into T2:ins((11;Sec; foo); 1; 4);mov(5; 11; 1); del (2); upd(9; baz)Figure 4.3 also shows the intermediate trees in the transformation speci�ed by theabove edit script. (The last update is not shown in order to save space.)A Cost Model for Edit ScriptsGiven two trees, in general there are many edit scripts that transform one tree to theother. Even when an edit script must conform to a given matching, there may bemany correct scripts. (Recall that we de�ned the concept of an edit script conformingto a matching in Section 4.1.) For example, the following edit script, when applied

42 CHAPTER 4. DETECTING CHANGES IN ORDERED TREESto the initial tree in Example 4.1.1, produces the same �nal tree as that produced bythe edit script in the example:ins((11;Sec; foo); 1; 4); del (6); del (7); del (5);ins((12; S; a); 11; 1); ins((13; S; b); 11; 2); upd (9; baz)Intuitively, this edit script does more work than necessary, and is thus an undesirablerepresentation of the delta between the trees. To formalize this idea, we introducethe cost of an edit script.We �rst de�ne the costs of edit operations and then use these costs to de�ne thecost of edit scripts. The cost of an edit operation depends on the type of operation andthe nodes involved in the operation. Let cD(x), cI(x), and cU (x) denote respectivelythe cost of deleting, inserting, and updating node x, and let cM(x) denote the costof moving the subtree rooted at node x. In general, these costs may depend on thelabel and the value of x, as well as its position in the tree. In this chapter, we adopta simple cost model where deleting and inserting a node, as well as moving a subtree,are considered to be unit cost operations. That is, cD(x) = cI(x) = cM(x) = 1 for allx. Now consider the cost cU(x) of updating the value of a node x. We assume thatthis cost is given by a function, compare, that evaluates how di�erent x's old valuev is from its new value v0. This compare function takes two nodes as arguments andreturns a number in the range [0; 2]. Although the nature of the compare functionis arbitrary, it should be consistent with the costs of the other edit operations in thefollowing sense: Suppose x is moved, and its value v is updated so that v is verysimilar to v0. Then compare(v; v0) should be less than 1, so that the cost of movingand updating x is less than the cost of deleting x and replacing it with a new nodewith value v0. If v and v0 are very di�erent, we would rather have the edit scriptcontain a delete/insert pair, so the update cost should be greater than 1. Finally, thecost of an edit script is the sum of the costs of its individual operations. We can nowstate our problem succinctly as follows:Problem De�nition: Given two trees T1 and T2, �nd a minimum-cost edit scriptthat transforms T1 into T2.

4.2. GENERATING THE EDIT SCRIPT 43We solve this problem in two steps:1. We �nd a (partial) matching M between the nodes of T1 and T2.2. We then �nd a Minimum Conforming Edit Script (MCES) for T1, T2 and M ;that is, an edit script that conforms to M , and that transforms T1 into T2 suchthat there is no other edit script conforming to M that transforms T1 into T2and has a lower cost.Of course, this two-step procedure will result in the desired minimum-cost edit scriptonly if we select an appropriate matching in the �rst step. We discuss how that isdone in Section 4.3. For presentation purposes, it is more convenient to discuss thesecond step �rst, in the next section.4.2 Generating the Edit ScriptIn this section we describe how we solve the Minimum Conforming Edit Script prob-lem motivated in the previous section: Given a tree T1 (the old tree), a tree T2 (thenew tree), and a (partial) matchingM between their nodes, generate a minimum costedit script that conforms to M and transforms T1 to T2. Our algorithm starts withan empty edit script E and appends edit operations to E as it proceeds. To explainthe working of the algorithm, we apply each edit operation to T1 as it is added toE. When the algorithm terminates, we will have transformed T1 into a tree that isisomorphic to T2. In addition, the algorithm extends the given partial matching Mby adding new pairs of nodes to M as it adds operations to E. When the algorithmterminates,M is a total matching between the nodes of T1 and T2.4.2.1 Outline of AlgorithmThe algorithm is most easily described as consisting of �ve phases: the update phase,the align phase, the insert phase, the move phase, and the delete phase. We describeeach phase in turn. Let us call a node that is not matched in M an unmatched node.The partner of a matched node is the node to which it is matched in M . We use our

44 CHAPTER 4. DETECTING CHANGES IN ORDERED TREESrunning example from Figure 4.1. We are required to �nd a minimum cost edit scriptthat transforms T1 into T2, given the matching M shown by the dashed lines in the�gure.The Update Phase: In the update phase, we look for pairs of nodes (x; y) 2Msuch that the values at nodes x and y di�er. For each such pair (in any order) we addthe edit operation upd(x; v(y)) to E (recall that for a node x, v(x) denotes the valueof x), and we apply the update operation to T1. At the end of the update phase, wehave transformed T1 such that v(x) = v(y) for every pair of nodes (x; y) 2M .
4

10

P

S(f)

3

8 9

P

S(d) S(e)

T1 1

2

5 6 7

11

12 13 14

15 16 17 18 19 20

D D

P P P P

S(a) S(b) S(c) S(a) S(c) S(f) S(d) S(e) S(g)

T2Figure 4.4: Running example: after align phase
4

10

P

S(f)

11

12 13 14

15 16 17 18 19 20

D

P P P

S(a) S(c) S(f) S(d) S(e) S(g)

T2

S(g)

1

2

5 6 7

D

P

S(a) S(b) S(c)

T1

3

8 9

P

S(d) S(e)

21Figure 4.5: Running example: after insert phaseThe Align Phase: Let the partner of a node denote the node to which it ismatched (by a given matching). Suppose (x; y) 2 M . We say that the children of xand y are misaligned if x has matched children u and v such that u is to the left of vin T1 but the partner of u is to the right of the partner of v in T2. In Figure 4.1, thechildren of the root nodes 1 and 11 are misaligned. In the align phase we check each

4.2. GENERATING THE EDIT SCRIPT 45pair of matched internal nodes (x; y) 2 M (in any order) to see if their children aremisaligned. If we �nd that the children are misaligned, we append move operationsto E to align the children. We explain how the move operations are determined inSection 4.2.2 below. In our running example, we append mov(4; 1; 2) to E, and weapply the move operation to T1. The new T1 is shown in Figure 4.4.The Insert Phase: We assume, without loss of generality, that the roots of T1and T2 are matched in M . (If the roots of T1 and T2 are not matched in M , thenwe add new dummy roots that are matched.) In the insert phase, we look for anunmatched node z 2 T2 such that its parent is matched. Suppose y = p(z) (i.e.,y is the parent of z) and y's partner in T1 is x. We create a new identi�er w andappend ins((w; l(z); v(z)); x; k) to E. The position k is determined with respect tothe children of x and z that have already been aligned with respect to each other;details are in Section 4.2.3. We also apply the insert operation to T1 and add (w; z)to M . In our running example we append ins((21; S; g); 3; 3). The transformed T1and the augmentedM are shown in Figure 4.5. At the end of the insert phase, everynode in T2 is matched but there may still be nodes in T1 that are unmatched.
4

10

P

S(f)

11

12 13 14

15 16 17 18 19 20

D

P P P

S(a) S(c) S(f) S(d) S(e) S(g)S(g)

T21

2

5 7

D

P

S(a) S(c)

T1

3

8 9

P

S(d) S(e)

21Figure 4.6: Running example: after delete phaseThe Move Phase: In the move phase we look for pairs of nodes (x; y) 2M suchthat (p(x); p(y)) 62M . (Recall from Section 4.1.1 that p(x) denotes the parent of x.)Suppose v = p(y). We know that at the end of the insert phase, v has some partner uin T1. We append the operation mov(x; u; k) to E, and we apply the move operationto T1. Here the position k is determined with respect to the children of u and v thathave already been aligned, as in the insert phase. At the end of the move phase T1 is

46 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES
B

1

2

A11

124 65 14 15 163

A

B B B B B 13B B B BFigure 4.7: A matching with misaligned nodesisomorphic to T2 except for unmatched nodes in T1. In our running example, we donot need to perform any actions in this phase.The Delete Phase: In the delete phase we look for unmatched leaf nodes x 2 T1.For each such node we append del (x) to E and apply the delete operation to T1. (Notethat this process will result in a bottom-up delete|descendents will be deleted beforetheir ancestors.) At the end of the delete phase T1 is isomorphic to T2, E is the �naledit script, and M is the total matching to which E conforms. Figure 4.6 shows thetrees and the matching after the delete phase.4.2.2 Aligning ChildrenThe Problem: The align phase of the edit script algorithm presents an interestingproblem. Suppose we detect that for (x; y) 2 M , the children of x and y are mis-aligned. In general, there is more than one sequence of moves that will align thechildren. For instance, in Figure 4.7 there are at least two ways to align the childrenof nodes 1 and 11. The �rst consists of moving nodes 2 and 4 to the right of node 6,and the second consists of moving nodes 3, 5, and 6 to the left of node 2. Both yieldthe same �nal con�guration, but the �rst one is better since it involves fewer moves.To ensure that the edit script generated by the algorithm is of minimum cost,we must �nd the shortest sequence of moves to align the children of x and y. Ouralgorithm for �nding the shortest sequence of moves is based on the notion of a longestcommon subsequence, described next.Longest Common Subsequence: Given a sequence S = a1a2 : : : an, a sequence

4.2. GENERATING THE EDIT SCRIPT 47S 0 is a subsequence of S if it can be obtained by deleting zero or more elements fromS. That is, S 0 = ai1 : : : aim where 1 � i1 < i2 < : : : < im � n. Given two sequences S1and S2, a longest common subsequence (LCS) of S1 and S2, denoted by LCS (S1; S2),is a sequence S = (x1; y1) : : : (xk; yk) of pairs of elements such that1. x1 : : : xk is a subsequence of S1;2. y1 : : : yk is a subsequence of S2;3. for 1 � i � k, equal (xi; yi) is true for some prede�ned equality function equal ;and4. there is no sequence S 0 that satis�es conditions 1, 2, and 3 and is longer thanS.The length of an LCS of S1 and S2 is denoted by jLCS (S1; S2)j. 2We use an algorithm due to Myers [Mye86] that computes an LCS of two sequencesin time O(ND), where N = jS1j+ jS2j and D = N�2jLCS (S1; S2)j. We treat Myers'LCS algorithm as having three inputs: the two sequences S1 and S2 to be compared,and an equality function equal (x; y) used to compare x 2 S1 and y 2 S2 for equality.That is, we treat it as the procedure LCS (S1; S2; equal).The Solution: The solution to the alignment problem is now straightforward.Compute an LCS S of the matched children of nodes x and y, using the equalityfunction equal(u; v) that is true if and only if (u; v) 2M . Leave the children of x thatare in S �xed, and move the remaining matched children of x to the correct positionsrelative to the already aligned children. In Figure 4.7, the LCS is 3; 5; 6 (matching thesequence 12; 13; 14). The moves generated aremov(2; 1; 5) andmov(4; 1; 5). Lemma 1below shows that our LCS-based strategy always leads to the minimum number ofmoves.Lemma 1 For sequences S1 and S2 and an equality function equal such that eachelement in S1 is equal to exactly one element in S2 and vice versa, the minimumnumber of moves of elements of S1 required to align the elements of S1 and S2 isjS1j � jLCS(S1; S2)j. 2

48 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES1. E �, M 0 M2. Visit the nodes of T2 in breadth-�rst order/* this traversal combines the update, insert, align, and move phases */(a) Let x be the current node in the breadth-�rst search of T2 and let y = p(x). Let z bethe partner of y in M 0. (*)(b) If x has no partner in M 0i. k FindPos(x)ii. Append ins((w; a; v(x)); z; k) to E, for a new identi�er w.iii. Add (w; x) to M 0 and apply ins((w; a; v(x)); z; k) to T1.(c) else if x is not the root /* x has a partner in M 0 */i. Let w be the partner of x in M 0, and let v = p(w) in T1.ii. If v(w) 6= v(x)A. Append upd (w; v(x)) to E.B. Apply upd (w; v(x)) to T1.iii. If (y; v) 62M 0A. Let z be the partner of y in M 0. (*)B. k FindPos(x)C. Append mov(w; z; k) to E.D. Apply mov(w; z; k) to T1.(d) AlignChildren(w; x)3. Do a post-order traversal of T1. /* this is the delete phase */(a) Let w be the current node in the post-order traversal of T1.(b) If w has no partner in M 0 then append del(w) to E and apply del(w) to T1.4. E is a minimum cost edit script, M 0 is a total matching, and T1 is isomorphic to T2.Figure 4.8: Algorithm EditScriptProof. Suppose we can use fewer moves. Then consider the elements of S1 thatwere not moved and their \partners" in S2. They would form a common subsequencelonger than jLCS (S1; S2)j, a contradiction. 24.2.3 The Complete AlgorithmWe now present the complete algorithm to compute a minimum cost edit script Econforming to a given matching M between trees T1 and T2. In the algorithm, wecombine the �rst four phases of Section 4.2.1 (the update, insert, align, and movephases) into one breadth-�rst scan on T2. The delete phase requires a post-order

4.2. GENERATING THE EDIT SCRIPT 49Function AlignChildren(w; x)1. Mark all children of w and all children of x \out of order."2. Let S1 be the sequence of children of w whose partners are children of x and let S2 be thesequence of children of x whose partners are children of w.3. De�ne the function equal(a; b) to be true if and only if (a; b) 2M 0.4. Let S LCS (S1; S2; equal).5. For each (a; b) 2 S, mark nodes a and b \in order."6. For each a 2 S1, b 2 S2 such that (a; b) 2M but (a; b) 62 S(a) k FindPos(b)(b) Append mov(a;w; k) to E and apply mov(a;w; k) to T1.(c) Mark a and b \in order."Function FindPos(x)1. Let y = p(x) in T2 and let w be the partner of x (x 2 T1).2. If x is the leftmost child of y that is marked \in order," return 1.3. Find v 2 T2 where v is the rightmost sibling of x that is to the left of x and is marked \inorder."4. Let u be the partner of v in T1.5. Suppose u is the ith child of its parent (counting from left to right) that is marked \in order."Return i + 1.Figure 4.9: Functions AlignChildren and FindPos used by Algorithm EditScripttraversal of T1 (which visits each node after visiting all its children). The order inwhich the nodes are visited and the edit operations are generated is crucial to thecorrectness of the algorithm. (For example, an insert may need to precede a move, ifthe moved node becomes the child of the inserted node.) The algorithm applies theedit operations to T1 as they are appended to the edit script E. When the algorithmterminates, T1 is isomorphic to T2. The algorithm also uses a matching M 0 that isinitiallyM , and adds matches to it so thatM 0 is a total matching when the algorithmterminates.The algorithm is shown in Figure 4.8. It uses two procedures, AlignChildrenand FindPos, shown in Figure 4.9. The two statements in Algorithm EditScriptthat are marked with (*) claim that certain nodes have partners. These claims aresubstantiated in the proof of the following theorem about the correctness and running

50 CHAPTER 4. DETECTING CHANGES IN ORDERED TREEStime of our algorithm:Theorem 1 Algorithm EditScript computes the minimum cost edit script that con-forms to the given matching M , and it does so in time O(ND) where N is the numberof nodes in the two trees and D is the number of misaligned nodes. (Typically D ismuch smaller than N .) 2Proof. We �rst show that the edit script E that is generated transforms T1 to T2and conforms to M . The proof is in two stages.In the �rst stage we show that at the end of the breadth-�rst traversal of T2, thesubtree of T1 corresponding to only its matched nodes (underM 0) is isomorphic to T2.The proof is by induction on the number of nodes visited so far by the breadth-�rstsearch. The induction hypothesis is the following: Consider the subtree T s2 of T2 thatcontains only nodes that have already been visited by the breadth-�rst search. LetT s1 be the subtree of T1 that contains only partners of the nodes in T s2 . Then T s1 isisomorphic to T s2 . Moreover, every node in T s2 is matched to some node in T s1 in M 0.The details of the induction are straightforward and are omitted.In the second stage we show that the post-order traversal of T1 deletes all theunmatched nodes in T1, so that T1 becomes isomorphic to T2. The only problem wemay face is that some node that we wish to delete has children and so the deletion isnot a legal operation. Suppose some unmatched nodes in T1 are not deleted. Let xbe a \lowest" such node in T1, i.e., a node that occurs before all other such nodes inthe post-order numbering. Then it follows from the �rst part of the proof that x doesnot have any children in T1. Hence x could have been deleted during the post-ordertraversal of T1, a contradiction.Thus E transforms T1 to T2. It is also clear that E conforms to M because Enever deletes any nodes that are matched by M . We also note that the inductiveproof used in the �rst stage shows that the claims made by the statements markedwith a (*) in Algorithm EditScript are indeed correct.We now show that E is a minimum cost edit script. Any edit script conformingto M must contain at least:� one insert operation corresponding to each unmatched node in T2;

4.3. FINDING GOOD MATCHINGS 51� one delete operation corresponding to each unmatched node in T1; and� one move operation corresponding to each pair of matched nodes (x; y) 2 Msuch that (p(x); p(y)) 62M (call these inter-parent moves).It is clear that Algorithm EditScript generates precisely the above inserts, deletes,and inter-parent moves. All that remains is to show that the algorithm also generatesthe fewest possible intra-parent moves (moves that change the relative ordering ofsiblings). Such moves are generated only in Function AlignChildren. That the min-imum possible number of such moves is generated is an immediate consequence ofLemma 1. Hence E is a minimum cost edit script.We �rst de�ne the notion of misaligned nodes. Suppose x 2 T1 and y = p(x). Amove of the formM(x; y; k) for some k is called an intra-parent move of node x; suchmoves are generated in the align phase of the algorithm. The number of misalignednodes of T1 with respect to T2 is the minimum number of intra-parent moves amongall minimumcost edit scripts. Other than in Function AlignChildren, the breadth-�rstsearch and post-order traversal perform a constant amount of work for each node in T1and T2. Let jxj denote the number of children of node x. For matched nodes w 2 T1and x 2 T2, let d(x;w) denote the number of misaligned children of x and w. ThenFunction AlignChildren aligns the children of w and x in time O((jwj + jxj)d(w; x)).Hence the total running time is O(ND). 24.3 Finding Good MatchingsIn this section we consider the Good Matching problem, motivated in Section 4.1. Wewant to �nd an appropriate matching between the nodes of trees T1 and T2 that canserve as input to Algorithm EditScript.As discussed in the introduction, if the data has object ids, then the matchingproblem is trivial. However, our focus here is on applications where informationmay not have keys or object-ids that can be used to match \fragments" of objectsin one version with those in another. For example, the objects we are comparing,

52 CHAPTER 4. DETECTING CHANGES IN ORDERED TREESsay sentences or paragraphs, may simply be characters with no meaningful object-id. In other cases the objects may have database identi�ers but the ids may not beconsistent between the two versions. For instance, the record representing a pillarin the architect's database may have id 778899, but the same pillar in a subsequentversion may have id 12345. Here again, we need to match the pillars based on thevalue of the record (e.g., location and height of the pillar), as well as by its relationshipto other objects (e.g., are the two pillars in the same room?). We use the term keylessdata for hierarchical data that may not have identifying keys or object-ids. (Note thatwe are not ruling out keys for some objects; if they exist they can be used to matchthose objects quickly.)When comparing versions of keyless data, there may be more than one way tomatch objects. Thus we need to de�ne matching criteria that a matching mustsatisfy to be considered \good" or appropriate. In general, the matching criteria willdepend on the domain being considered. One way of evaluating matchings that isdesirable in many situations is to consider the minimum cost edit scripts that conformto the matchings (and transform T1 into T2). Intuitively, a matching that allows usto transform one tree to the other at a lower cost is a better matching. Formally, formatchingsM and M 0, we say that M is better than M 0 if a minimum cost edit scriptthat conforms to M is cheaper than a minimum cost edit script that conforms toM 0.Our goal is to �nd a best matching, that is, a matching M that satis�es the givenmatching criteria and such that there is no better matchingM 0 that also satis�es thecriteria.Unfortunately, if our matching criterion only requires that matched nodes have thesame label, then �nding the best matching has two di�culties. The �rst di�culty isthat manymatchings that satisfy only this trivial matching criterion may be unnaturalin certain domains. For example, when matching documents, we may only want tomatch textual units (paragraphs, sections, subsections, etc.) that have more than acertain percentage of sentences in common. The second di�culty is one of complexity:the only algorithm known to us to compute the best matching as de�ned above (basedon post-processing the output of the algorithm in [ZS89]) runs in time O(n2) where nis the number of tree nodes [Zha95]. To solve the �rst di�culty, we restrict the set of

4.3. FINDING GOOD MATCHINGS 53matchings we consider by introducing stronger matching criteria, as described below.These criteria also permit us to design e�cient algorithms for matching. In the restof this section, we describe some matching criteria for keyless data, using structureddocuments as an example.4.3.1 Matching Criteria for Keyless DataOur goal in this section is to augment the trivial label-matching criterion with addi-tional criteria that simultaneously yield matchings that are meaningful in the domainsof the data being considered, and that make possible e�cient algorithms to computea best matching.Our �rst matching criterion states that nodes that are \too dissimilar" may notbe matched with each other. For leaf nodes, this condition is stated as follows.Matching Criterion 1 For leaf nodes x 2 T1 and y 2 T2, (x; y) can be in a matchingonly if l(x) = l(y) and compare(v(x); v(y)) � f for some parameter f such that0 � f � 1. (Recall that l(x) and v(x) denote the label and value of node x, andthat compare is de�ned in Section 4.1.1 as a function used for determining the costof updating a leaf node.) 2We also want to disallow matching internal nodes that do not have much in com-mon. Here a more natural notion than the value (which is often null in the label-valuemodel) is the number of common descendants. Let us say that an internal node xcontains a node y if y is a leaf node descendent of x, and let jxj denote the number ofleaf nodes x contains. The following constraint allows internal nodes x and y to matchonly if at least a certain percentage of their leaves match (where t is a parameter):Matching Criterion 2 Consider a matching M containing (x; y), where x is aninternal node in T1 and y is an internal node in T2. De�necommon(x; y) = f(w; z) 2M jx contains w; and y contains zg

54 CHAPTER 4. DETECTING CHANGES IN ORDERED TREESThen in M we must have l(x) = l(y) andjcommon(x; y)jmax(jxj; jyj) > tfor some t satisfying 12 � t � 1. 2Recall, from the introduction to this chapter, that one of the features of our workis that we use domain characteristics to design e�cient algorithms. We now introducethese domain characteristics and formalize them by stating two assumptions that theylet us make.The hierarchical keyless data we are comparing has labels, and these labels usuallyfollow a structuring schema, such as the one de�ned in [ACM95]. Many structuringschemas satisfy an acyclic labels condition, formalized in the following assumption:Assumption 2 There is an ordering <l on the labels in the schema such that a nodewith label l1 can appear as the descendent of a node with label l2 only if l1 <l l2.In schemas where this condition is not satis�ed, we can use domain semantics tomerge labels that form a cycle, so that the resulting schema satis�es this condition.Our next assumption states (informally) that the compare function is a gooddiscriminator of leaves. It states that given any leaf s in the old document, thereis at most one leaf in the new document that is \close" to s, and vice versa. Forexample, consider a world-wide web \movie database" source listing movies, actors,directors, etc. A tree representation of this data may contain movie titles as leaves.This assumption says that, when comparing two snapshots of this data, a movie titlein one snapshot may \closely resemble" at most one movie title in the other.Assumption 3 For any leaf x 2 T1, there is at most one leaf y 2 T2 such thatcompare(v(x); v(y)) � 1. Similarly, for any leaf y 2 T2, there is at most one leafx 2 T1 such that compare(v(x); v(y)) � 1. 2This assumption may not hold for some domains. For example, legal documentsmay have many sentences that are almost identical. The algorithms we describe

4.3. FINDING GOOD MATCHINGS 55below are guaranteed to produce an optimal matching when Assumption 3 holds.When Assumption 3 does not hold, our algorithm may generate a suboptimal, butstill correct, solution. However, we can often post-process such a suboptimal solutionto obtain an optimal solution. We discuss this issue further in Section 4.6.Matching Criteria 1 and 2 and the assumptions that we have introduced above al-low us to simplify the best matching problem as follows. (Recall that a best matchingis a matching that can be used to produce an edit script of the lowest cost among allmatchings satisfying the Matching Criteria.) We say that a matching is maximal if itis not possible to augment it without violating the Matching Criteria. We can showthat our Matching Criteria imply that there is a unique maximal matching. Further-more, given our assumptions, we can show that this unique maximal matching is alsothe best matching. These statements are formalized in Theorem 4 stated below aftera couple of preliminary lemmas.Lemma 2 For matchings M and M 0 that satisfy Matching Criterion 1 if M � M 0then M is not better than M 0. 2Proof. For matchings M and M 0 satisfying the value constraint, the cost of movingand then updating a node is no more than the cost of deleting and inserting a node.SupposeM 0 is obtained fromM by adding toM the match (x; y). Then any edit scriptconforming to M will contain operations that delete the node x and insert anothernode corresponding to y, whereas an edit script conforming to M 0 can replace theinsertion and deletion by a move and an update and be no more expensive. 2Lemma 3 Suppose T1 and T2 satisfy the acyclicity condition for labels and Assump-tion 3 holds. For any internal node x 2 T1, there is at most one internal node y 2 T2such that the pair (x; y) satis�es the match threshold constraint. Similarly, for anyinternal node y 2 T2, there is at most one internal node x 2 T1 such that the pair(x; y) satis�es the match threshold constraint. 2Proof. Suppose that node x 2 T1 has two \partners" y and z in T2 satisfying thematch threshold constraint. Then we must havejcommon(x; y)jmax(jxj; jyj) > t

56 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES1. M �2. Mark all nodes of T1 and T2 \unmatched."3. Proceed bottom-up on tree T1For each unmatched node x 2 T1, if there is an unmatched node y 2 T2 such thatequal (x; y) theni. Add (x; y) to M .ii. Mark x and y \matched."Figure 4.10: Algorithm Matchand jcommon(x; z)jmax(jxj; jzj) > t:The acyclicity condition implies that y and z can have no common descendents, sowe must have jcommon(x; y)j+ jcommon(x; z)j > 2tjxjwhich is impossible since t � 1=2. A symmetric argument holds, reversing T1 and T2.2Theorem 4 (Unique Maximal Matching) If T1 and T2 are trees satisfying Match-ing Criteria 1 and 2 and Assumptions 2 and 3, then there is a unique maximal match-ing M of the nodes of T1 and T2. Moreover,M is also the unique best matching thatsatis�es the matching criteria. 2Proof. Follows directly from Lemmas 2 and 3. 24.3.2 A Simple Matching AlgorithmTheorem 4 allows us to construct a straightforward algorithm to obtain the bestmatching that satis�es our matching criteria. For each node x 2 T1, we simplycompare x with each unmatched node y 2 T2 that has the same label as x. Weuse the following function equal for leaf nodes, where f is a parameter such that

4.3. FINDING GOOD MATCHINGS 570 � f � 1:equal (x; y) = 8<: true if l(x) = l(y) and compare(v(x); v(y)) � ffalse otherwiseWe use the following function equal for internal nodes (t > 12 is a parameter):equal (x; y) = 8<: true if l(x) = l(y) and jcommon(x;y)jmax(jxj;jyj) > tfalse otherwiseThe algorithm must match leaves before matching internal nodes to ensure that theequality function for internal nodes can be evaluated. Figure 4.10 shows this simplematching algorithm, which we call Algorithm Match.Example 4.3.1 We illustrate our simple matching algorithm on the trees from ourrunning example in Figure 4.1. The algorithm �rst examines each leaf node of T1in turn, and attempts to pair it with a leaf node of T2. This process produces thefollowing matching of leaf nodes:M = f(5; 15); (7; 16); (8; 18); (9; 19); (10; 17)gThe algorithm then tries to pair nodes with the label P, and adds the pairs (2; 12),(3; 14), and (4; 13) to the matching. Finally, pairing nodes with label D yields the pair(1; 11). The �nal matching that results is shown in Figure 4.1 using dashed lines. 2In Section 4.3.4 we show that the running time of AlgorithmMatch is proportionalto n2c+mn (4.1)where n is the total number of leaf nodes in T1 and T2, m is the total number ofinternal nodes in T1 and T2, and c is the average cost of executing compare(x; y) fora pair of leaf nodes x and y. (Section 4.5 describes how we compare sentences in ourimplementation.)

58 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES1. M �2. For each leaf label l do(a) S1 chainT1(l).(b) S2 chainT2(l).(c) lcs LCS (S1; S2; equal).(d) For each pair of nodes (x; y) 2 lcs, add (x; y) to M .(e) Pair unmatched nodes with label l as in Algorithm Match, adding matches to M .3. Repeat steps 2a through 2e for each internal node label l.Figure 4.11: Algorithm FastMatch4.3.3 A Faster Matching AlgorithmWe can signi�cantly reduce the number of comparisons in AlgorithmMatch when T1and T2 are nearly alike, which is often the case in practice. We modify AlgorithmMatch to Algorithm FastMatch, shown in Figure 4.11. Algorithm FastMatch usesthe longest common subsequence (LCS) routine, introduced earlier in Section 4.2.2,to perform an initial matching of nodes that appear in the same order. Nodes stillunmatched after the call to LCS are processed as in Algorithm Match. The functionequal in the LCS call is as de�ned in Section 4.3.2.In Algorithm FastMatch we assume that all nodes with a given label l in tree Tare chained together from left to right. Let chainT (l) denote the chain of nodes withlabel l in tree T . Node x occurs to the left of node y in chainT (l) if x appears beforey in the in-order traversal of T when siblings are visited left-to-right.To help us analyze the running time of Algorithm FastMatch, we de�ne theweighted edit distance e between trees T1 and T2 as follows. Let E = e1e2 : : : enbe the shortest edit script that transforms T1 to T2. Then the weighted edit distanceis given by e = X1�i�nwi

4.3. FINDING GOOD MATCHINGS 59where wi, for 1 � i � n, is de�ned as follows:wi = 8>>><>>>: 1 if ei is an insert or a deletejxj if ei is a move of the subtree rooted at node x0 if ei is an updateRecall that jxj denotes the number of leaf nodes that are descendants of node x.Intuitively, the weighted edit distance indicates how structurally di�erent the twotrees are, where the degree of di�erence associated with moving a subtree is given bythe number of leaves in that subtree.In Section 4.3.4 below we show that the running time of Algorithm FastMatch isproportional to (ne+ e2)c+ 2lne (4.2)where n and c are the same as in Formula (4.1) of Section 4.3.2, l is the numberof internal node labels, and e is the weighted edit distance between T1 and T2. Acomparison of Formula (4.2) with Formula (4.1) shows that Algorithm FastMatchis substantially faster than Algorithm Match when e is small compared to n, as istypically the case. Section 4.6 presents results from our empirical performance studyof Algorithm FastMatch.4.3.4 Analysis of Matching AlgorithmsFor a label a, let na be the total number of nodes with label a in T1 and T2. Let cabe the average cost of computing equal (x; y) for nodes x and y with label a. ThenAlgorithm Match takes time O(n2aca) to match nodes with label a. Thus, the totaltime taken by the algorithm is proportional to Pa2L n2aca, where L is the set of alllabels that appear in T1 or T2.To simplify our analysis, let us assume that L is made up two disjoint subsets oflabels|P , the set of labels of leaf nodes, and Q, the set of labels of internal nodes.Further, let us assume that all leaf node comparisons have the same average cost,that is, ca = c for all a 2 P . Let n be the total number of leaf nodes in T1 andT2. Then matching leaf nodes takes time O(n2c). For an internal node label b 2 Q,

60 CHAPTER 4. DETECTING CHANGES IN ORDERED TREEScomputing equal (x; y) for nodes x and y with label b requires us to intersect the leafnodes they contain, which takes time proportional to min(jxj; jyj). If we assume that,on average, jxj = n=nb for nodes x with label b, then we may approximate cb by n=nb,and so matching nodes with label b takes time O(nbn). Thus, the total time takenby Algorithm Match is proportional ton2c+ nXb2Qnb:If we denote by m the total number of internal nodes in T1 and T2, then m = Pb2Q nb,and so the running time of Algorithm Match is O(n2c+mn).For a label a, let da = na � lcsa. Then Algorithm FastMatch takes time propor-tional to (nada+d2a)ca to match nodes with label a. Let us make the same assumptionsas in the analysis of Algorithm Match. Then matching leaf nodes takes time that isproportional to (nd+d2)c, where d =Pa2P da. For internal nodes with label b, let usonce again assume that cb = n=nb. Now, remembering that db � nb and so d2bcb � ndb,the time taken to match nodes with label b is proportional to 2ndb. Hence the totaltime taken by Algorithm FastMatch is proportional to(nd+ d2)c+Xb2Q 2ndb:Now let e be the weighted edit distance between trees T1 and T2, as de�ned in Section4.3.3. It is clear that for any label b, we have db � e. Hence the running time ofAlgorithm FastMatch is bounded by(ne+ e2)c+ 2lnewhere l = jQj is the number of labels of internal nodes in T1 and T2.

4.4. DELTA TREES 61
Sec(foo)

DEL

MRK

UPD(baz)

MOV()

D

P M

P
S(l)

S(b)

S(m) S(n)

Sec

S(x)

S(a)Figure 4.12: Delta tree for edit script in Example 4.1.14.4 Delta TreesIn this section we describe a representation for deltas in hierarchically structured datathat is more natural and useful than edit scripts for certain scenarios. As we have seenabove, an edit script gives us the sequence of operations needed to transform one treeto another, and thus is a simple \operational" representation of deltas. One problemwith edit scripts is that they refer to tree nodes using node identi�ers. Node identi�ersmay be system-generated and thus not meaningful to the user. Furthermore, the at,sequential structure of an edit script may make it di�cult to use for querying andbrowsing hierarchical deltas.In a relational database, deltas usually are represented using delta relations: Fora relation R, delta relations inserted(R) and deleted(R) contain the tuples inserted toand deleted from R, while delta relations old-updated(R) and new-updated(R) containthe old and new values of updated tuples [GHJ+93, WC96b]. One can contrast thisrepresentation with the relational version of an edit script, which would (presum-ably) be a list of tuple-level inserts, deletes, and updates, possibly based on tupleidenti�ers. We are interested in a representation comparable to delta relations butfor hierarchically structured data.We de�ne a structure called a delta tree for representing deltas. Intuitively, onecan think of a delta tree as \overlaying" an edit script onto the data using nodeannotations. (In this sense, a delta tree di�ers from a delta relation in that delta

62 CHAPTER 4. DETECTING CHANGES IN ORDERED TREESrelations are kept separate from the original data. In practice delta relations often arejoined with their corresponding relation [WC96b], and we are e�ectively representingthis join explicitly.) As an example, the delta tree corresponding to the edit scriptfrom Example 4.1.1 is shown in Figure 4.12. Note that we do not need node identi�erssince the annotated nodes are at the appropriate positions in the delta tree.More formally, let T1 and T2 be two trees. A delta tree for T1 with respect T2 isa tree �T such that, in addition to a label and value, each node in �T has exactlyone of the following annotations:� IDN, indicating that the node corresponds to a node in the original tree. (InFigure 4.12, IDN annotations appear as blanks.)� UPD(v), indicating that the value of the node is updated to v.� INS(l,v), indicating that the node is inserted with label l and value v.� DEL, indicating deletion of the subtree rooted at the node.� MOV(x), indicating that the node is moved to the position of the \marker node"x.� MRK, indicating that the node is the destination of a move operation.A correct delta tree for T1 with respect to T2 must have the property that there is atleast one edit script E such that:1. E transforms T1 to T2.2. There is a total order over the nodes of �T such that outputting the editoperations corresponding to the node annotations in this order yields edit scriptE.Note that there may be more than one such edit script. In general, we are interestedin correct delta trees corresponding to minimum cost edit scripts.In our implementation of the algorithms described in Sections 4.2 and 4.3, weconstruct the delta tree directly as a side-e�ect of producing an edit script. Essentially,

4.5. IMPLEMENTATION 63this is achieved by modifying algorithm EditScript (Section 4.2) to emit a call to adda node to the delta tree every time an operation is added to the edit script beingcomputed. Our implementation uses the delta tree representation rather than theedit script in order to produce meaningful output, as described in the next section.4.5 ImplementationTo validate our method for computing and representing deltas, as well as to havea vehicle for studying the performance of our algorithms, we have implemented aprogram for computing and representing changes in structured documents. Below,we describe the implementation of this program, called LaDi�. We focus on Latexdocuments, but the implementation can easily handle other kinds of structured doc-uments (e.g., HTML) by changing the parsing routines. Our performance study ispresented in Section 4.6.LaDi� takes as input two �les containing the old and new versions of a Latexdocument. These �les are �rst parsed to produce their tree representations (the oldtree and new tree, respectively). Currently, we parse a subset of Latex consistingof sentences, paragraphs, subsections, sections, lists, items, and document. It is easyto extend our parser to handle a larger subset of Latex , and we plan to do so inthe future. Next, the edit script and delta tree are computed using the algorithms ofSections 4.2{4.3. Our program takes the match threshold t (Section 4.3) as a parame-ter. Our comparison function for leaf nodes|which are sentences|�rst computes theLCS (recall Section 4.2.2) of the words in the sentences, then counts the number ofwords not in the LCS. Interior nodes (paragraphs, items, sections, etc.) are comparedas described in Section 4.3. Finally, a preorder traversal of the delta tree is performedto produce an output Latex document with annotations describing the changes.We now illustrate a sample run of LaDi�. We show only a short example, basedon an excerpt from the TEXbook [Knu86], that illustrates some of the change detec-tion features. Our implementation uses a modi�ed version of the LCS algorithm from[Mye86]. Note that we cannot use the LCS algorithm used by the standard UNIX

64 CHAPTER 4. DETECTING CHANGES IN ORDERED TREESdi� program, because it requires inequality comparisons in addition to equality com-parisons.Figures 4.13 and 4.14 show the old and new versions of the example document. Wetried the unix di� program on these documents, and the output was not very useful.Figure 4.15 shows the output of LaDi�. The conventions used by LaDi� for mark-ing various changes in the output document are shown in Table 4.1. Sentence levelchanges are marked using changes in font: inserted sentences are in bold font, whiledeleted and updated sentences are in small and italic fonts respectively. Sentencemoves are marked by putting the sentence in small font, labeling it, and referencingthe label with a footnote at the new position of the sentence. (See the �rst and lastsentences in the third section in Figure 4.15, for example.) Paragraph changes aremarked using marginal notes indicating whether the paragraph is inserted, deleted,moved, or updated. In the case of paragraph moves, the old position of the para-graph is marked with a label which is referenced from the marginal note in its newposition. (See the third paragraph in Figure 4.15, for example.) Changes in sections,subsections, and itemized lists are marked using similar schemes, as summarized bythe table.Note that sentences, as well as other textual units, may be moved and updatedat the same time. The mark-up conventions used by LaDi� allow us to mark thesechanges simultaneously. For example, the �rst sentence in Figure 4.15 is in italic font,indicating that it was updated, and also has a footnote telling us that it was movedfrom position S1 (near the end of the document).We can see that LaDi� properly detects insertions, deletions, updates, and movesof sentences and paragraphs. Representing the changes in an intuitive manner is achallenging problem, and we plan to work on it further.4.6 Empirical evaluation of FastMatchIn Section 4.3 we presented Algorithm FastMatch to �nd a matching between twotrees, and we stated that its running time is given by an expression of the form r1c+r2.In this expression, r1 represents the number of leaf node comparisons (invocations of

4.6. EMPIRICAL EVALUATION OF FASTMATCH 651 First things �rstComputer system manuals usually make dull reading, but take heart: This onecontains JOKES every once in a while, so you might actually enjoy reading it.(However, most of the jokes can only be appreciated properly if you understanda technical point that is being made|so read carefully.)Another noteworthy characteristic of this manual is that it doesn't alwaystell the truth. When certain concepts of TEX are introduced informally, generalrules will be stated; afterwards you will �nd that the rules aren't strictly true.In general, the later chapters contain more reliable information than the earlierones do. The author feels that this technique of deliberate lying will actuallymake it easier for you to learn the ideas. Once you understand a simple butfalse rule, it will not be hard to supplement that rule with its exceptions.2 Another way to look at itIn order to help you internalize what you're reading, exercises are sprinkledthrough this manual. It is generally intended that every reader should try everyexercise, except for questions that appear in the \dangerous bend" areas. If youcan't solve a problem, you can always look up the answer. But please, try �rst tosolve it by yourself; then you'll learn more and you'll learn faster. Furthermore,if you think you do know the solution, you should turn to Appendix A and checkit out, just to make sure.3 ConclusionThe TEX language described in this book is similar to the author's �rst attemptat a document formatting language, but the new system di�ers from the oldone in literally thousands of details. Both languages have been called TEX; buthenceforth the old language should be called TEX78, and its use should rapidlyfade away. Let's keep the name TEX for the language described here, since it isso much better, and since it is not going to change any more.Figure 4.13: Old version of documentTextual Unit Edit OperationInsert Delete Update MoveSentence Bold font Small font Italic font Footnote, labelParagraph Marginal note Marginal note, labelItem Marginal note Marginal note, labelSubsection Annotation(ins,del,upd,mov) in headingSection Annotation(ins,del,upd,mov) in headingTable 4.1: Mark-up conventions used by LaDi�.

66 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES
1 IntroductionThe TEX language described in this book has a predecessor, but the new systemdi�ers from the old one in literally thousands of details. Computer manuals usu-ally make extremely dull reading, but don't worry: This one contains JOKESevery once in a while, so you might actually enjoy reading it. (However, most ofthe jokes can only be appreciated properly if you understand a technical pointthat is being made|so read carefully.)2 The detailsEnglish words like `technology' stem from a Greek root beginning with letters���...; and this same Greek work means art as well as technology. Hence thename TEX, which is an uppercase of ���.Another noteworthy characteristic of this manual is that it doesn't always tellthe truth. This feature may seem strange, but it isn't. When certain conceptsof TEX are introduced informally, general rules will be stated; afterwards youwill �nd that the rules aren't strictly true. The author feels that this techniqueof deliberate lying will actually make it easier for you to learn the ideas. Onceyou understand a simple but false rule, it will not be hard to supplement thatrule with its exceptions.3 Moving onIt is generally intended that every reader should try every exercise, except forquestions that appear in the \dangerous bend" areas. If you can't solve aproblem, you can always look up the answer. But please, try �rst to solve itby yourself; then you'll learn more and you'll learn faster. Furthermore, if youthink you do know the solution, you should turn to Appendix A and check itout, just to make sure. In order to help you better internalize what you read,exercises are sprinkled through this manual.4 ConclusionBoth languages have been called TEX; but henceforth the old language shouldbe called TEX78, and its use should rapidly fade away. Let's keep the name TEXfor the language described here, since it is so much better, and since it is notgoing to change any more.Figure 4.14: New version of document

4.6. EMPIRICAL EVALUATION OF FASTMATCH 671 (upd) Introduction[The TEX language described in this book is similar to the author's �rst attemptat a document formatting language, but the new system di�ers from the old onein literally thousands of details.]1 Computer manuals usually make extremelydull reading, but don't worry: This one contains JOKES every once in a while,so you might actually enjoy reading it. (However, most of the jokes can only beappreciated properly if you understand a technical point that is being made|soread carefully.) P12 (ins) The details Inserted paraEnglish words like `technology' stem from a Greek root beginning with letters���...; and this same Greek work means art as well as technology. Hence thename TEX, which is an uppercase of ���. Moved from P1Another noteworthy characteristic of this manual is that it doesn't alwaystell the truth. This feature may seem strange, but it isn't. Whencertain concepts of TEX are introduced informally, general rules will be stated;afterwards you will �nd that the rules aren't strictly true. In general, the laterchapters contain more reliable information than the earlier ones do. The author feels thatthis technique of deliberate lying will actually make it easier for you to learnthe ideas. Once you understand a simple but false rule, it will not be hard tosupplement that rule with its exceptions.3 Moving onS2:[In order to help you internalize what you're reading, exercises are sprinkled through this manual.]It is generally intended that every reader should try every exercise, except forquestions that appear in the \dangerous bend" areas. If you can't solve aproblem, you can always look up the answer. But please, try �rst to solve itby yourself; then you'll learn more and you'll learn faster. Furthermore, if youthink you do know the solution, you should turn to Appendix A and check itout, just to make sure. [In order to help you better internalize what you read,exercises are sprinkled through this manual.]24 ConclusionS1:[The TEX language described in this book is similar to the author's �rst attempt at a documentformatting language, but the new system di�ers from the old one in literally thousands of details.]Both languages have been called TEX; but henceforth the old language shouldbe called TEX78, and its use should rapidly fade away. Let's keep the name TEXfor the language described here, since it is so much better, and since it is notgoing to change any more.1Moved from S12Moved from S2 Figure 4.15: Output document (marked up)

68 CHAPTER 4. DETECTING CHANGES IN ORDERED TREESfunction compare), c is the average cost of comparing leaf nodes, and r2 represents thenumber of node partner checks. Partner checks are implemented in LaDi� as integercomparisons. We know that r1 is bounded by (ne + e2), and that r2 is bounded by2lne, where n is the number of tree nodes, e is the weighted edit distance betweenthe two trees, and l is the number of internal node labels. The parameter e dependson the nature of the di�erences between the trees (recall the de�nition of weightededit distance in Section 4.3.3).There are two reasons for studying the performance of FastMatch empirically.The �rst reason is that the formula for the running time contains the weighted editdistance, e, which is di�cult to estimate in terms of the input. A more naturalmeasure of the input size is the number of edit operations in an optimal edit script,which we call the unweighted edit distance, d. We can show analytically that theratio e=d is bounded by log n for a large class of inputs, but we believe that in realcases, its value is much lower than log n. We therefore study the relationship betweene and d empirically. The second reason is that we would like to test our conjecturethat the analytical bound on the running time of FastMatch is \loose," and in mostpractical situations the algorithm runs much faster.For our performance study, we used three sets of �les. The �les in each setrepresent di�erent versions of a document (a conference paper). We ran FastMatchon pairs of �les within each of these three sets. (Comparing �les across sets is notmeaningful because we would be comparing two completely di�erent documents.) InFigure 4.16 we indicate how the weighted edit distance (e) varies with the unweightededit distance (d), for each of the three document sets. Recall that n is the numberof tree leaves, that is, the number of sentences in the document. We see that therelationship between e and d is close to linear. Furthermore, the variance with respectto the three document sets is not high, suggesting that e=d is not very sensitive tothe size of the documents (n). The average value of e=d is 3.4 for these documents.In Figure 4.17 we plot how the running time of FastMatch varies with the weightededit distance e. The vertical axis is the running time as measured by the number ofcomparisons made by FastMatch and the horizontal axis is the weighted edit distance.Note that the analytical bound on the number of comparisons made by FastMatch

4.6. EMPIRICAL EVALUATION OF FASTMATCH 69
0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40

W
ei

gh
te

d
ed

it
di

st
an

ce
 (

e)

(Unweighted) edit distance (d)

n=485
n=600
n=325

Figure 4.16: Relation between the weighted and unweighted edit distances
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80 100 120

N
um

be
r

of
 c

om
pa

ris
on

s

Weighted edit distance (e)

n=485
n=600
n=325

Figure 4.17: Running time of FastMatch

70 CHAPTER 4. DETECTING CHANGES IN ORDERED TREESis much higher than the numbers depicted in Figure 4.17; on the average, FastMatchmakes approximately 20 times fewer comparisons than those predicted by the analyt-ical bound, supporting our conjecture that the analytical bound on the running timeis a loose one. We also observe that Figure 4.17 suggests an approximately linearrelation between the running time and e, although there is a high variance. Thisvariance may be explained by our �rst observation that the actual running time is farbelow the predicted bound.Another issue that needs to be addressed is the e�ect of Assumption 3 on the qual-ity of the solution produced by FastMatch. Recall from Section 4.3 that FastMatchis guaranteed to produce an optimal matching only when Assumption 3 holds. WhenAssumption 3 does not hold, the algorithm may produce a suboptimal matching. Wedescribe a post-processing step that, when added to FastMatch, enables us to convertthe possibly suboptimal matching produced by FastMatch into an optimal one inmany cases: Proceeding top-down, we consider each tree node x in turn. Let y be thepartner of x according to the current matching. For each child c of x that is matchedto a node c0 such that parent(c0) 6= y, we check if we can match c to a child c00 of y,such that compare(c; c00) � f , where f is the parameter used in Matching Criterion 1.If so, we change the current matching to make c match c00. This post-processing phaseremoves some of the suboptimalities that may be introduced if Assumption 3 doesnot hold for all nodes.Even with post-processing, it is still possible to have a suboptimal solution, asfollows: Recall that FastMatch begins by matching leaves, and then proceeds to matchhigher levels in the tree in a bottom-up manner. With this approach, a mismatch ata lower level may \propagate," causing a mismatch at one or more higher levels. Ourpost-processing step will correct all mismatches other than those that propagatedfrom lower levels to higher levels. It is di�cult to evaluate precisely those casesthat in which this propagation occurs without performing exhaustive computations.However, we can derive a necessary (but not su�cient) condition for propagation, andthen measure that condition in our experiments. Informally, this condition states thatin order to be mismatched, a node must have more than a certain number of childrenthat violate Assumption 3, where the exact number depends on the match threshold

4.7. SUMMARY 71Match threshold (t): 0.5 0.6 0.7 0.8 0.9 1.0Upper bound on mismatches (%): 0.4 1 3 7 9 10Table 4.2: Mismatched paragraphs in FastMatch.t. Actually, this condition is weak; a node must satisfy many other conditions for thepossibility of a mismatch to exist, and even then a mismatch is not guaranteed.For the same document data analyzed earlier, Table 4.2 shows some statisticson the percentage of paragraphs that may be mismatched for a given value of thematch threshold t. For example, we see that with t = 0:6, we may mismatch atmost 1% of the paragraphs. A lower value of t results in a lower number of possiblemismatches. We see that the number of mismatched paragraphs is low, supportingour claim. Since the condition used to determine when a mismatch may occur is aweak one, the percentage of mismatches is expected to be much lower than suggestedby these numbers. Furthermore, note that a suboptimal matching compromises onlythe quality of an edit script produced as the �nal output, not its correctness. In manyapplications, this trade-o� between optimality and e�ciency is a reasonable one. Forexample, when computing the delta between two documents, it is often not critical ifthe edit script produced is slightly longer than the optimal one.4.7 SummaryIn this chapter, we studied the problem of detecting changes from snapshots of struc-tured or semistructured data that is represented using ordered trees. We formalizedthe change detection problem as the problem of �nding a minimum-cost edit scriptthat transforms one given tree to the other. We de�ned an edit script to be a sequenceof operations that may insert or delete a node, update the label of a node, or move asubtree. We described the bene�ts of modeling changes using not only the traditionalinsert, delete, and update operations, but also the powerful subtree move operationthat we introduced in this chapter.Our solution to this change detection problem is based on the use of a matching

72 CHAPTER 4. DETECTING CHANGES IN ORDERED TREESbetween the nodes of the two input trees. The relation between matchings and editscripts is formalized by our de�nition of the conformance of an edit script to a match-ing. Using this de�nition of conformance, we described a two-step strategy to solvethe change detection problem. We �rst described the second step: Given a matchingbetween the two input trees, we presented a method for computing a minimum-costedit script that conforms to that matching. Next, we presented methods for com-puting such a matching in the �rst place. We proved that our methods result in anoptimal solution under some reasonable assumptions.We studied our algorithms both analytically and empirically. By making use ofdomain characteristics, our algorithms are able to compute di�erences signi�cantlyfaster than those studied in prior work. We proved that an upper bound on thenumber of comparisons made by our FastMatch algorithm is (ne+ e2)c+2lne, wheren is the number of tree nodes, e is the weighted edit distance between the trees, l is thenumber of interior node labels, and c is the cost of the function used to compare valuesof leaf nodes. We showed empirically that e is typically a small constant times theunweighted edit distance. Further, we showed empirically that for the dataset studied,the number of comparisons made by FastMatch are approximately 20 times smallerthan the analytical bound. Although the results of our methods are guaranteed toalways be correct, they are guaranteed to be optimal only when the values in the leafnodes of the input trees are not too similar to each other. We described a simplepostprocessing step that results in optimal solutions for a large class of inputs thatdo not satisfy this assumption.While edit scripts provide a good theoretical basis for computing the di�erencesbetween two trees, they are not convenient for storing and browsing such di�erences.We therefore de�ned delta trees, which store di�erences alongside the data they mod-ify, and thus allow us to conveniently browse data marked up with the detectedchanges. In Chapter 7, we describe how the idea of delta trees is extended to providea general purpose data model and query language for changes in semistructured data.Finally, we illustrated the application of these ideas by describing our implementationof a program for computing and presenting changes in structured documents.In the next two chapters, we continue our study of the change detection problem.

4.7. SUMMARY 73In Chapter 5, we address the problem of detecting changes when data is representedusing unordered trees that do not have the layered structure assumed in this chapter.Further, we allow subtrees to be not only moved, but also copied and uncopied. Byusing the subtree operations move, copy, and uncopy, edit scripts can describe changesin a succinct and intuitively appealing manner. For example, when comparing twoversions of a license agreement, we can detect not only sentences that have been movedfrom one paragraph to another, but also sentences and paragraphs that have beencopied. However, these subtree operations may also be combined in a complicatedmanner resulting in edit scripts that are intuitively unusable. For example, an editscript may repeatedly copy, move, and uncopy slightly di�erent portions of a subtree,resulting in a change description that is very di�cult to understand and use. InChapter 5, we discuss such complications in detail and present a solution based onrestricting edit script to disallow problematic sequences of edit operations.In Chapter 6 we explore an alternative formulation of the change detection prob-lem. Instead of the conventional linear edit script model, we use a model of treetransformations that is based on the idea of applying edit operations in parallel. Thisformulation allows us overcome the di�culties due to problematic sequences of editoperations in a manner that is simpler and more elegant than the solution basedon linear edit scripts. This model of parallel transformations also results in simpleralgorithms for change detection.

Chapter 5Detecting Changes in UnorderedTreesIn Chapter 4, we presented algorithms for comparing snapshots of data that is repre-sented using ordered trees. Ordered trees are a natural abstraction of structured orsemistructured data that has a meaningful order among components. For example,documents consist of sections that have ordered paragraphs as components, para-graphs consist of an ordered list of sentences, and so on. However, we often encounterdata that has no inherent ordering. For example, consider the set of students in aclass, or the result of a query asking for stores selling a certain product. We need tomodel such data using unordered trees.In this chapter, we present techniques to compare unordered trees by computinga minimum-cost edit script that transforms one tree to the other. In addition tomodeling unordered trees, in this chapter we also extend our set of tree edit oper-ations by adding operations to copy and uncopy subtrees. Similar to the subtreemove operations described in Chapter 4, these new subtree operations result in moremeaningful and usable results when comparing data. Further, unlike in Chapter 4where we imposed signi�cant restrictions on our edit scripts to yield a more e�cientalgorithm, in this chapter we follow a more general approach that is applicable to alarger collection of data. Instead of assuming that the data has certain characteristics,such as \few" duplicates, we present algorithm mh-diff (for meaningful, hierarchical74

5.1. INTRODUCTION 75di�erence), which handles all data, with performance improving when the input datahas certain characteristics.5.1 IntroductionWe describe tree di�erences using move, copy, and uncopy operations in addition tothe more traditional insert, delete, and update operations. Thus, if a substructure(e.g., a section of text, a shift register) is moved to another location, our algorithm willreport it as a single operation. (This feature is shared by our ordered tree comparisonalgorithm described in Chapter 4.) Traditional change detection algorithms reportsuch changes using an edit script that deletes all the nodes in the moved subtreeand then inserts identical nodes at the new location of the subtree. An applicationor person using such an edit script is unable to easily detect that the deleted andinserted nodes are simply components of a subtree move operation. Similarly, if thesubstructure is copied (e.g., a second shift register is added which is identical to onealready in the circuit), then our algorithm will identify it as such. Traditional changedetection algorithms (and our algorithm in Chapter 4) report such changes using asequence of node insertion operations, thus losing the information that the new nodesare simply copies of some existing nodes.Note that detecting moves and copies becomes more important if the moved orcopied subtree is large. For instance, if we are comparing �le systems, and a largedirectory with thousands of �les is mounted elsewhere, we clearly do not wish toreport the change as thousands of �le deletes followed by thousands of �le creations.The problem of comparing unordered trees is inherently more complex than theanalogous problem for ordered trees. Most formulations of this problem (includingours, described in this chapter) are NP-hard. Even a simple problem formulationthat uses only insert, delete, and update operations can be shown to be NP-hard byreduction from the \exact cover by three-sets" problem [ZWS95].Algorithm mh-diff provides a heuristic solution, which is based on transformingthe problem to the \edge cover domain." That is, instead of working with edit scripts,the algorithm works with edge covers that represent how one set of nodes match

76 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESanother set. In this transformation, the costs of the edit operations are translatedinto costs on the edges of the cover.In Chapter 4 we de�ned a variant of the change detection problem for orderedtrees, using subtree moves as an edit operation in addition to insertions, deletions,and updates, and presented an e�cient algorithm for solving it. That algorithmuses domain characteristics to �nd a solution e�ciently. A major drawback of thealgorithm in Chapter 4 is that it assumes that the number of duplicates (or nearduplicates) in the labels found in the input trees is very small. Another drawback ofof the algorithm in Chapter 4 is that it assumes each node of the input trees has aspecial tag that describes its semantics. (For example, an ordered tree representing adocument may have tags \paragraph," \section," etc.) Furthermore, that algorithmassumes the existence of a total order <t over these tags such that a node with tagt1 cannot be the child of a node with tag t2 unless t1 � t2. While these assumptionsare reasonable in a text comparison scenario, there are many domains in which theydo not hold. Here, on the other hand, here we drop these assumptions, and introducecopy operations. This leads to an algorithm that is very di�erent from the one inChapter 4, and that yields a heuristic solution in worst-case O(n3) time, where n isthe number of nodes, but most often in roughly O(n2) time.In summary, the main contributions of this chapter are the following:� We formulate a change detection problem for unordered trees. Our formulationincludes move and copy operations, and uses a exible cost model for editoperations.� We present mh-diff, an e�cient algorithm for computing meaningful edit-scripts that are very close to the minimal cost edit script.� We present experimental results showing how close to optimal the mh-diff so-lutions are. We also experimentally evaluate the key parameter that determinesthe running time of mh-diff in practice.The rest of this chapter is organized as follows. In Section 5.2, we describe the datamodel used in this chapter and present the formal de�nition of the change detection

5.2. MODEL AND PROBLEM DEFINITION 77problem that we study in this chapter. Section 5.3 presents a quick overview of ouralgorithm for solving this problem. In Section 5.4, we describe how the essentialfeatures of an edit script are represented using an edge cover. We de�ne the edgecover representing an edit script, and present an algorithm for recovering an edit scriptfrom such an edge cover. This correspondence between edit scripts and edge coversallows us to compute a minimum-cost edit script by �rst �nding the correspondingedge cover. Section 5.5 describes how such an edge cover is found. In Section 5.6,we present our implementation of mh-diff and briey describe its performance. Adetailed performance study is presented in Chapter 9. We summarize the chapter inSection 5.7.5.2 Model and Problem De�nitionWe use rooted, labeled trees as our model for structured data. These are trees inwhich each node n has a label l(n) that is chosen from an arbitrary domain L. Unlikethe ordered trees studied in Chapter 4, these trees do not specify an order amongthe children of a node. Unordered trees are a natural abstraction of several kindsof data in the Object Exchange Model (OEM) (introduced in Chapter 3). The typeof tree (ordered or unordered) best suited to represent some OEM data depends onthe nature of the data and its domain. For example, if we are comparing OEMrepresentations of structured documents, which have an inherent order among theircomponents, an abstraction using ordered trees is natural. On the other hand, ifwe are comparing OEM representations of semistructured databases (introduced inChapter 1) describing books in a library, an abstraction using unordered trees isnatural.As in Chapter 4, the problem of snapshot change detection in structured data isthus the problem of �nding a way to edit the tree representation of one snapshot tothat of the other. (However, as described below, in this chapter we use a larger set ofedit operations to describe changes.) We denote a tree T by its nodes N , the parentfunction p, and the labeling function l, and write T = (N; p; l). The children of anode n 2 N are denoted by C(n).

78 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESWe begin by de�ning the tree edit operations that we consider. Since there aremany ways to transform one tree to another using these edit operations, we de�nea cost model for these edit operations, and then de�ne the problem of �nding aminimum-cost edit script that transforms one tree to another.5.2.1 Edit Operations and Edit ScriptsIn the following, we will assume that an edit operation e is applied to T1 = (N1; p1; l1),and produces the tree T2 = (N2; p2; l2). We write this as T1 e! T2. We consider thefollowing six edit operations:Insertion: Intuitively, an insertion operation creates a new tree node with a givenlabel, and places it at a given position in the tree. The position of the newnode n in the tree is speci�ed by giving its parent node p and a subset C ofthe children of p. The result of this operation is that n is a child of p, andthe nodes C, that were originally children of p, are now children of the newlyinserted node n.Formally, an insertion operation is denoted by ins(n; v; p; C), where n is the(unique) identi�er of the new node, v is the label of the new node, p 2 N1is the node that is to be the parent of n, and C � C(p) is the set of nodesthat are to be the children of n. When applied to T1 = (N1; p1; l1), we get atree T2 = (N2; p2; l2), where N2 = N1 [fng, p2(n) = p, p2(c) = n;8c 2 C,p2(c) = p1(c);8c 2 N1 � C, l2(n) = v, and l2(m) = l1(m);8m 2 N1.Deletion: This operation is the inverse of the insertion operation. Intuitively, del (n)causes n to disappear from the tree; the children of n are now the children ofthe (old) parent of n. The root of the tree cannot be deleted.Formally, a deletion operation is denoted by del (n), where n 2 N1 and n is notthe root of T1. When applied to T1 = (N1; p1; l1), we get a tree T2 = (N2; p2; l2)with N2 = N1 � fng, p2(c) = p1(n);8c 2 C(n), p2(c) = p1(c)8c 2 N2 � C(n),and l2(m) = l1(m);8m 2 N2.Update: The operation upd(n; v) changes the label of the node n to v.

5.2. MODEL AND PROBLEM DEFINITION 79Formally, an update operation applied to T1 = (N1; p1; l1) is denoted by upd(n; v),where n 2 N1, and produces T2 = (N2; p2; l2), where N2 = N1, p2 = p1,l2(n) = v, and l2(m) = l1(m);8m 2 N2 � fng.Move: Amove operation mov(n; p) moves the subtree rooted at n to another positionin the tree. The new position is speci�ed by giving the new parent of the node,p. The root cannot be moved.Formally, a move operation applied to T1 = (N1; p1; l1) is denoted by mov(n; p),where n; p 2 N1, and p is not in the subtree rooted at n. (The last restriction isnecessary to disallow moving a subtree to a node in the same subtree, since theresulting structure would not be a tree.) The resulting tree is T2 = (N2; p2; l2),where N2 = N1, l2 = l1, p2(n) = p, and p2(c) = p1(c);8c 2 N2 � fng.Copy: A copy operation cpy(m; p) copies the subtree rooted at n to a anotherposition. The new position is speci�ed by giving the node p that is to be theparent of the new copy. The root cannot be copied.Formally, a copy operation applied to T1 = (N1; p1; l1) is denoted by cpy(n; p),where n; p 2 N1, and n is not the root. Let T3 = (N3; p3; l3) be a new treethat is isomorphic to the subtree of T1 rooted at n, and let n0 be the rootof T3. The result of the copy operation is the tree T2 = (N2; p2; l2), whereN2 = N1 [N3, l2(m) = l1(m);8m 2 N1, l2(m) = l3(m);8c 2 N3, p2(n0) = p,p2(m) = p1(m);8m 2 N1, and p2(m) = p3(m);8m 2 N3.Glue: This operation is the inverse of a copy operation. Given two nodes n1 and n2such that the subtrees rooted at n1 and n2 are isomorphic, glu(n1; n2) causesthe subtree rooted at n1 to disappear. (It is conceptually \united" with thesubtree rooted at n2.) The root cannot be glued. Although the glu operationmay seem unusual, note that it is a natural choice for an edit operation giventhe existence of the cpy operation. As we will see in Example 5.2.1, invertingan edit script containing a cpy operations results in an edit script with a gluoperation. This symmetry in the structure of edit operations is useful in thedesign of our algorithms.

80 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESFormally, a glue operation applied to T1 = (N1; p1; l1) is denoted by glu(n1; n2).Let T3 be the subtree rooted at n1, and let T4 = (N4; p4; l4) be the subtreerooted at n2. The precondition of this glu operation is that T4 is isomorphicto T3 � T4. The result of the glue operation is the tree T2 = (N2; p2; l2), whereN2 = N1 �N4, p2(c) = p1(c);8c 2 N2, and l2(c) = l1(c);8c 2 N2.In addition to the above tree edit operations, one may wish to consider operationssuch as a subtree delete operation that deletes all nodes in a given subtree. Similarly,one could de�ne a subtree merge operation that merges two or more subtrees. We donot consider such more complex edit operations in this chapter, but note that someof these operations, (e.g., subtree deletes) may be detected by post-processing theoutput of our algorithm.We de�ne an edit script to be a sequence of zero or more edit operations thatcan be applied in the order in which they occur in the sequence. That is, given atree T0, a sequence of edit operations E = e1; e2; : : : ; ek is an edit script if there existtrees Ti; 1 � i � k such that Ti�1 ei! Ti; 1 � i � k. We say that the edit script Etransforms T0 to Tk, and write T0 E! Tk.Example 5.2.1 Consider the tree T1 depicted in Figure 5.1. We represent the iden-ti�er of each node by the number inside the circle representing the node. The labelof each node is depicted to the right of the node. Thus, the root of the tree T1 has anidenti�er 1, and a label a. Figure 5.1 shows how T1 is transformed by applying theedit script to E1 = (ins(11; g; 1; f9g);mov(2; 6);cpy(7; 1)) T1. Similarly, if we startwith the tree T2 in the �gure, the edit script E2 = (glu(12; 7);mov(2; 1); del (11))transforms it back to T1. We write T1 E1! T2, and T2 E2! T1. 2When an edit script is applied to tree, as in Example 5.2.1, the node identi�ers inthe initial and �nal state of the tree determine a mapping between the nodes in thetwo states. Note however, that in an instance of a change detection problem, we aregiven two trees, without any correspondence between their node identi�ers. That is,in a change detection problem involving the trees T1 and T2 of Figure 5.1, the nodeidenti�ers of T2 would be unrelated to those of T1. We will discuss this issue furtherin Section 5.3.

5.2. MODEL AND PROBLEM DEFINITION 81
T1

T2

1
a

8

2 b 4 9

3
d

5 a 6 10

1
a

12 4
g

11

13
a

5 6 9

102

3

e

f

e

cd

cd

ad

ad

7

8

cc

ac

8

cc

ac

f

b

d

7

cc

ac

cpy(7,1)

del(11)

ins(11, g, 1, {9})

mov(2,1)

mov(2,6)

glu(12,7)
a1

4
g

11

a
5 6 9

10

3

2

e

cd

ad

f 7 cc

acb

d

a1

b2 4
g

11

d
3 a5 6 9

10

e

cd

ad

f cc7

8
ac

Figure 5.1: Edit operations on labeled trees5.2.2 Cost ModelGiven a pair of trees, there are, in general, several edit scripts that transform one treeto the other. For example, there is the trivial edit script that deletes all the nodes ofone tree and then inserts all the nodes of the second tree. There are many other editscripts that, informally, do more work than seems necessary. Formally, we would liketo �nd an edit script that is \minimal" in the sense that it does no more work thatwhat is absolutely required. To this end, we de�ne a cost model for edit operationsand edit scripts.There are two major criteria for choosing a cost model. Firstly, the cost modelshould accurately capture the domain characteristics of the data being considered.For example, if we are comparing the schematics for two printed-circuit boards, wemay prefer an edit script that has as few inserts as possible, and instead describeschanges with moves and copies of the old components. However, if we are comparingtext documents, we may prefer to see a paragraph as a new insertion, rather than adescription of how it was assembled from bits and pieces of sentences from the old

82 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESdocument. Secondly, the cost model should be simple to specify, and should requirelittle e�ort from the user. For example, a cost model that requires the user to specifydozens of parameters is not desirable by this criterion, even though it may accuratelymodel the domain.Another issue is the trade-o� between generality of the cost model and di�cultyin computing a minimum-cost edit script. For example, a very general cost modelwould have a user-speci�ed function to determine the cost of each edit operation,based on the type of the edit operation, as well as the particular nodes on which itoperates. However, such a model is not amenable to the design of e�cient algorithmsfor computing the minimum-cost edit script, since it does not permit us to reasonabout the relative costs of the possible edit operations.With the above criteria in mind, we propose a simple cost model in which thecosts of insertion, deletion, move, copy, and glue operations are given by constants,ci, cd, cm, cc, and cg, respectively. Furthermore, given the symmetry between insand del, and cpy and glu, it is reasonable to use ci = cd, and cc = cg. Since,intuitively, a mov operation causes a smaller change than either cpy or glu ,it is also reasonable to use cm < cc. Note, however, that our algorithms do notdepend on these relationships between the cost parameters. The cost of an updateoperation depends on the old and new values of the label being updated; that is,c(upd(n; v)) = cu(v0; v), where v0 is the old label of n, and cu is a domain-dependentfunction that returns a non-negative real number.Finally, the cost of an edit script E, denoted by c(E), is de�ned as the sum of thecosts of the edit operations in E. That is, c(E) = Pd2E c(d).Problem Statement: Given two rooted, labeled trees T1 and T2, �nd an edit scriptE such that E transforms T1 to a tree that is isomorphic to T2, and such that for everyedit script E 0 with this property, C(E 0) � C(E).5.3 Method OverviewIn this section, we present an overview of algorithmmh-diff for computing a minimum-cost edit script between two trees. We present our algorithm informally using a

5.3. METHOD OVERVIEW 83
ac

1

2

3

4

5 6

9

a

e

cd

ac ad

g

a

d

b

51

53

55

56 57

58

59

60

62

63

64

52

T1 T2

8

7 10

cc

61ad

b e cd

adcc

ac

f f ccaFigure 5.2: The trees for the running example in Section 5.3.running example; the details are deferred to later sections.Consider the two trees depicted in Figure 5.2. We would like to �nd a minimum-cost edit script that transforms tree T1 into tree T2. The reader may observe that thesetrees are isomorphic to the initial and �nal trees from Example 5.2.1 in Section 5.2.Note, however, that there is no correspondence between the node identi�ers of T1 andT2 in Figure 5.2. This is because in Example 5.2.1 we applied a known edit script toa tree, transforming it to another tree in the process, whereas in this section, we aretrying to �nd an edit script, given two trees with no information on the relationshipbetween their nodes. Therefore, our �rst step consists of �nding a correspondencebetween the nodes of the two given trees.For example, consider the node 8 in Figure 5.2. We want to �nd the node in T2that corresponds to this node in T1. The dashed lines in Figure 5.2 represent someof the possibilities. Intuitively, we can see that matching the node 8 to the node 51does not seem like a good idea, since not only do the labels of the two nodes di�er,but the two nodes also have very di�erent locations in their respective trees; node 8is a leaf node, while node 51 is the root node. Similarly, we may intuitively arguethat matching node 8 to node 62 seems promising, since they are both leaf nodes andtheir labels match. However, note that matching a nodes based simply on their labelsignores the structure of the trees, and thus is not, in general, the best choice. Wemake this intuitive notion of a correspondence between nodes more precise below.

84 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES
+1 2 3 4 5 6 7 8 9 10

52 53 54 55 56 57 58 59 60 61 62 63 6451

T1 nodes

T2 nodes

complete bipartite graph

-Figure 5.3: The Induced Graph for the trees in Figure 5.25.3.1 The Induced GraphConsider the complete bipartite graph B depicted in Figure 5.3, consisting of thenodes of T1 at the top, and the nodes of T2 at the bottom, plus the special nodes� and 	. (For clarity, not all edges of the graph are shown in Figure 5.3.) We callB the induced graph of T1 and T2. The dashed lines in Figure 5.2 correspond to theedges of the induced graph. Intuitively, we would like to �nd a subset K of the edgesof B that tells us the correspondence between the nodes of T1 and T2. If an edgeconnects a node m 2 T1 to a node n 2 T2, it means that n was \derived" from m.(For example, n may be a copy of m.) We say m is matched to n. A node matched tothe special node � indicates that it was inserted, and a node matched to 	 indicatesthat it was deleted. Note that this matching between nodes need not be one-to-one;a node may be matched to more than one other nodes. (For example, referring toFigures 5.2 and 5.3, node 6 may be matched to both node 54 and node 59.) The onlyrestriction is that a node be matched to at least one other node. Thus, �nding thecorrespondence between the nodes of two trees consists essentially of �nding an edgecover of their induced graph. (An edge cover of a graph is a subset K of the edges ofthe graph such that any node in the graph is incident on at least one edge in S.)The induced graph has a large number of edge covers (this number being expo-nential in the number of nodes). However, we may intuitively observe that most ofthese possible edge covers of B are undesirable. For example, and edge cover thatmaps all nodes in T1 to 	, and all nodes in T2 to � seems like a bad choice, sinceit corresponds to deleting all the nodes of T1 and then inserting all the nodes of T2.We will de�ne the correspondence between an edge cover of an induced graph and anedit script for the underlying trees formally in Section 5.4.2, where we also describe

5.3. METHOD OVERVIEW 85how to compute an edit script corresponding to an edge cover. For now, we simplynote that, given an edge cover of the induced graph, we can compute a correspondingedit script for the underlying trees. Hence, we would like to select an edge cover ofthe induced graph that corresponds to a minimum-cost edit script.5.3.2 Pruning the Induced GraphWe noted earlier that many of the potential edge covers of the induced graph areundesirable because they correspond to expensive and undesirable edit scripts. In-tuitively, we may therefore expect a substantial number of the edges of the inducedgraph to be extraneous. Our next step, therefore, consists of removing (pruning) asmany of these extraneous edges as possible from the induced graph, by using somepruning rules. The pruning rules that we use are conservative, meaning that theyremove only those edges that we can be sure are not needed by a minimum-cost editscript. We discuss pruning rules in detail in Section 5.5.3, presenting only a simpleexample here.As an example of the action of a simple pruning rule, consider the edge e1 = [5; 53],representing the correspondence between nodes 5 and 53 in Figure 5.2. Supposethat the cost cU (a; ac) of updating the label a of node 5 to the label ac of node53 is 3 units. Furthermore, let the cost of inserting a node and deleting a node be1 unit each. Then we can safely prune the edge [5; 53] because, intuitively, givenany edge cover K1 that includes the edge e1, we can generate another edge coverthat excludes e1, and that corresponds to an edit script that is at least as good asthe one corresponding to K1. As an illustration of such pruning, consider the edgecover K2 = K1 � feg [f[5;]; [�; 53]g. This edge cover corresponds to an editscript that deletes the node 5, and inserts the node 53. These two operations cost atotal of 2 units, which is less than the cost of the update operation suggested by theedge e in edge cover K1. We therefore conclude that the edge [5; 53] in our runningexample may safely be pruned. In Section 5.5.3 we present Pruning Rule 2, which isa generalization of this example.

86 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES
53

1 2 3 4 5 6 7 8 9 10

55 56 57 58 59 60 61 62 63 64

+

-51 52Figure 5.4: The induced graph of Figure 5.3 after pruning5.3.3 Finding an Edge CoverBy applying the pruning rules to the induced graph of our running example (Sec-tion 5.5.3), say we obtain the pruned induced graph depicted in Figure 5.4. Althoughthe pruned induced graph typically has far fewer edges than the original inducedgraph does, it typically still contains more edges than needed to form an edge cover.In Section 5.4.2 we will see that we need only consider edge covers that are minimal;that is, edge covers that are not proper supersets of another edge cover. In otherwords, we would like to remove from the pruned induced graph those edges that arenot needed to cover nodes. For example, in the pruned induced graph shown in Fig-ure 5.4, having all four of the edges [7; 61], [7; 63], [9; 61], and [9; 63] is unnecessary; wemay remove either [7; 63] and [9; 61]; or [7; 61] and [9; 63]. However, it is not possibleto decide a priori which of these options is the better one; that is, it is not obviouswhich choice would lead to an edit script of lower cost. With pruning, on the otherhand, there was no doubt that certain edges could be removed.One way to decide among these options is to enumerate all possible minimal edgecovers of the pruned induced graph, �nd the edit script corresponding to each one(using the method described later in Section 5.4.2), and to pick the one with the leastcost. However, given the exponentially large number of edge covers, this is obviouslynot an e�cient algorithm. To compute an optimal edge cover e�ciently, we needto be able to determine how much each edge in the edge cover contributes to thetotal cost of an edit script corresponding to an edge cover containing it. That is,we need to distribute the cost of the edit script corresponding to an edge cover overthe individual edges of the edge cover. Once we have a cost de�ned for each edge

5.3. METHOD OVERVIEW 87
-

1 2 3 4 5 6 7 8 9 10

52 53 54 55 56 57 58 59 60 61 62 63 6451

+Figure 5.5: A minimum-cost edge cover of the induced graph in Figure 5.4in the pruned induced graph, we can �nd a minimum-cost edge cover using standardtechniques based on reducing the edge cover problem to a weighted matching problem[PS82, Law76]. For example, if the edges [7; 61], [7; 63], [9; 61], and [9; 63], have costs0, 1.3, 0.2, and 2.4, respectively, then we generate an edge cover that includes [7; 61]and [9; 61], and excludes [7; 63] and [9; 61].Note, however, that such a reduction of the edit script problem to an edge cover(and thus, weighted matching) problem cannot be exact, given the hardness of theedit script problem (unless P = NP, since we are considering a polynomial-timereduction). Indeed, our method of assigning costs to edges of the induced graph(Section 5.5.1) is only approximate, and thus the minimum-cost edge cover is notguaranteed to produce the best solution for the edit script problem.5.3.4 Generating the Edit ScriptReturning to the pruned induced graph of our running example, let us assume thatwe have gone through the process of determining the cost of each edge, and havecomputed a minimum-cost edge cover according to these costs, obtaining the edgecover depicted in Figure 5.5. Our next step consists of using this edge cover tocompute an edit script that transforms the tree T1 to the tree T2. Our algorithmCtoS (Cover-to-Script) for this purpose is described in Section 5.5. Here, we brieyillustrate some of the ideas used by the algorithm by considering its action on an edgein the edge cover for our running example.Consider the edge e1 = [7; 52] of the edge cover depicted in Figure 5.4. In Fig-ure 5.6, we depict this edge in relation to the original trees. (We also depict two

88 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES
1

2

nil

3

4

5 6

9

10

a

cd

ac ad

g

a

d

b

51

53

55

56 57

58

59

60

61

62

63

64

52

T1 T2

fad

e cd

adcc
7 f cca

eb

8 ac

ac

cc

cpyFigure 5.6: Annotating edges in the edge cover of Figure 5.5other edges from the edge cover. The edge cover edges are shown as dashed lines inFigure 5.6. We observe that there is one other edge in the edge cover that is inci-dent on node 7, viz. [7; 61], suggesting that the node 7 was copied either directly,or indirectly (due to one of its ancestors being copied). Furthermore, we note thatthe parent (node 4) of node 7 is matched to the parent (node 55) of node 61 (i.e.,the edge [4; 55] exists in the edge cover), while the parent of node 52 is not matchedto the parent of node 7. This matching of the parents suggests that node 61 is theoriginal instance of node 7, while node 52 is the copy. We therefore generate a copyoperation that copies the subtree rooted at node 7 to the location of node 52. Aconvenient way of depicting this copy operation is by annotating the correspondingedge ([7; 52] in our example) with a cpy mark; this scheme allows us to talk aboutedit operations without having to refer to explicit node identi�ers. Edges that do notcorrespond to any edit operation (e.g., [6; 57] in our example) are annotated with anil mark. In the sequel, we will use such edge annotations interchangeably with theactual edit operations that they represent.Consider next the edges [8; 53] and [8; 62]. Although both these edge cover edgesare incident on node 8, neither of them corresponds to a cpy operation, since thecopy 52 of node 8 is generated \for free" when node 7 is copied. Therefore, boththese edges are annotated nil. Proceeding thusly, we annotate all the edges in theedge cover of our running example, to obtain the annotated edge cover depicted inFigure 5.7, which shows only the edges with non-nil annotations, for clarity. These

5.3. METHOD OVERVIEW 89
1

2

3

ins

4

5 6

9

10

a

cd

ac ad

g

a

d

b

51

53

55

56 57

58

59

60

61

62

63

64

52

T1 T2

fa

e cd

adcc
7 f cca

eb

8 ac

ac

cc

cpy

nil

d

mov

+

Figure 5.7: Annotated edges of the edge cover of Figure 5.5annotations correspond to the following edit script:(ins(g; 1; f9g);mov(2; 6);cpy(7; 1))We see that this edit script is identical to the one in Example 5.2.1, which happens tobe a minimum cost edit script for our example. Of course, the above edit operationsmay also be listed in the following order(mov(2; 6);cpy(7; 1); ins(g; 1; f9g))Both edit scripts have the same �nal e�ect, and have the same cost. In general, alledit scripts corresponding to a set of annotated edges have the same overall e�ectand the same cost.For the above example mh-diff produces a minimum-cost edit script, but it maysometimes not �nd one with globally minimum cost. In Section 5.6 we evaluate howoften this happens and we briey discuss how one could perform additional searchingin the neighborhood of the script found by mh-diff.This concludes the overview of mh-diff. To summarize, the process consistsof constructing an induced graph from the input trees, pruning the induced graph,�nding a minimum-cost edge cover of the pruned induced graph, and �nally, usingthis edge cover to obtain an edit script. In the following sections, we describe thesephases in detail. For ease of presentation, we present these phases in a di�erent order

90 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESthan the order in which they are performed. In particular, in Section 5.4, we beginby formally de�ning the correspondence between and edit script and an edge coverof the induced graph. In that section, we also describe the method for generatingan edit script from an edge cover of the induced graph. In Section 5.5, we describehow the cost of an edit script is distributed over the edges of the corresponding edgecover of the induced graph. In that section, we also describe how this cost functionis approximated by deriving upper and lower bounds on the cost of an edge of theinduced graph, and how these bounds are used to prune the induced graph. Since�nding a minimum-cost edge cover for a bipartite graph with �xed edge costs is aproblem that has been previously studied in the literature [PS82, Law76], we do notpresent the details in this chapter.5.4 Edge Covers and Edit ScriptsIn this section, we describe algorithm CtoS, which generates an edit script betweentwo trees, given an edge cover of their induced graph. Before we can describe thisalgorithm, we need to understand the relationship between an edit scripts betweentwo trees and edge covers of their induced graph. Therefore, we �rst de�ne the edgecover induced by an edit script. That is, we describe how, given an edit script betweentwo trees, we generate an edge cover of the induced graph. (Note that this process isthe reverse of the process the algorithm CtoS performs. However, a de�nition of thisreverse process is needed for the description of the algorithm.)5.4.1 Edge Cover Induced by an Edit ScriptIn Section 5.3, we introduced the graph induced by two trees T1 and T2 as the completebipartite graph B = (U; V; U � V), with U = N1 [f�g and V = N2 [f	g (whereN1 and N2 are the nodes of T1 and T2, respectively). Let E be an edit script thattransforms T1 to T2; that is, T1 E! T2. We now de�ne the edge cover K(E) induced byE. Intuitively, we obtain K(E) as follows. Create a copy T3 of T1, and introduce anedge between each node in T1 and its copy in T3. Apply the edit script to T3, moving,

5.4. EDGE COVERS AND EDIT SCRIPTS 91
31

32

33

All edges [n, n+30] exist implicitly

34

35 36

39

40

cd

add a

b e

a T31

2

3

4

5 6

9

10

cd

add a

b e

aT1
+ -

8

cc

ac

7f

38

cc

ac

37fFigure 5.8: Example 5.4.1: the initial edge covercopying, etc. the end-points of the edges with the nodes they are attached to as nodesare moved, copied, etc. Thus, when an a node n 2 T3 is copied, producing node n0,any edge [m;n] is split to produce an new edge [m;n0]. The other edit operations arehandled analogously. Furthermore, an edge between the special nodes � and 	 isadded initially, and removed when it is no longer needed to cover either � or 	. Thefollowing example illustrates the above ideas.Example 5.4.1 Consider the edit script from Example 5.2.1, and the initial tree T1from Figure 5.1. As described above, our �rst step consists of creating a copy T3 ofT1, and adding an edge between each node of T1 and its counterpart in T3. We alsoadd the special nodes � and 	, along with an edge connecting them. The result ofthis step is depicted in Figure 5.8. For clarity in presentation, the edges between thenodes of T1 and their counterparts in T3 are not shown in Figure 5.8; instead, weencode these edges using the node identi�ers of T1 and T2. That is, as indicated inthe �gure, imagine an edge [n; n+ 30];8n = 1 : : : 10.Our next step consists of applying the edit script from Example 5.2.1 to the treeT3. To enable this application of the edit script for T1 to T3, we change the nodeidenti�ers in the edit script from the identi�ers of the nodes of T1 to those of T3,obtaining E1 = (ins(41; g; 31; f39g), mov(32; 36), cpy(37; 31)). As a result of theins operation, a node with identi�er 41 and label g is inserted as a child of node 31,and node 37 is made its child. In addition, we add an edge [�; 41] to the inducededge cover. Next, consider the action of the mov operation, which moves node 32

92 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES
31

ac

34

35 36
a

e

T3

38

39

40

cd

ac ad

37
cc

a
1

2

3

4

5 6

9

10

cd

add a

b e

aT1

f

42

43

+ -

32

33
d

b8

cc
7f

g
41cc

ac

All edges [n, n+30] exist implicitlyFigure 5.9: Example 5.4.1: the �nal edge coverto become a child of node 37. This operation does not add any new edges to theedge cover. (The existing edges [2; 32] and [3; 33] continue to exist.) Finally, the cpyoperation creates a copy of the subtree rooted at node 36, and inserts this copy as achild of node 31. In addition, the edges [7; 42] and [8; 43] are added to the edge cover.The result is depicted in Figure 5.9, (which also omits edges [n; n+30];8n = 1 : : : 10for clarity). Note that the transformed tree T3 is now isomorphic to the tree T2 inExample 5.2.1, so that essentially, we now have an edge cover of the induced graphof T1 and T2. 2Let us now formalize the intuitive de�nition of the edge cover induced by anedit script presented in the above example. Let E be an edit script that transformsT1 to T2; that is, T1 E! T2. We now de�ne K(E), the edge cover (of the inducedgraph of T1 and T2) induced by E. Let T3 be a tree that is isomorphic to T1, with fbeing the isomorphism. Thus, f : T1 ! T2 is a one-to-one, onto function that pre-serves the parent-child and label relationships de�ning labeled trees. More precisely,label (f(m)) = label (m), and parent(f(m)) = f(parent(m)) for all nodes m 2 T1. Letus extend f to T1 [f�g and T2 [f	g by de�ning f(�) =). We will now de�nehow, given the edit script E, we derive a mapping g(E), called the mapping inducedby E, from the isomorphism f . We will see that the mapping g is an onto mappingfrom T1 to T2, and is thus isomorphic to an edge cover of the induced graph B.

5.4. EDGE COVERS AND EDIT SCRIPTS 93Base case: If the edit script is empty, that is if E = (), then g = f .Inductive case: The edit script is non-empty. Let d be the last edit operation in theedit script E; that is, E = E 0:d for some edit script E 0. Let T 02 be the tree scriptobtained by applying E to T1; that is, T1 E! T2. Let g0 be (inductively) the mappinginduced by E 0; that is g0 = g(E 0). We have the following cases, based on the last editoperation d. (Recall the formal de�nitions of the edit operations from Section 5.2.)Case 1: d is an update operation. Then g(E) = g(E 0).Case 2: d is an insert operation ins(n; l; p; C). Then g(E) = g(E 0) [f(�; n)g.Case 3: d is a delete operation del (n). If n 2 T1, then g(E) = g(E 0) [f(n;)g, elseg(E) = g(E 0).Case 4: d is a move operation mov(n1; n2). Then g(E) = g(E 0).Case 5: d is a copy operation cpy(n1; n2). Let t1 be the subtree rooted at n1, andlet t01 be the subtree isomorphic to t1 that is created as a result of this copyoperation. Let h be the isomorphism between t1 and t01. Then g(E) = g(E 0)[h.Case 6: d is a glue operation glu(n1; n2). Let t1 be the subtree rooted at n1, andlet t2 be the subtree (isomorphic to t1) rooted at n2. (Recall that the subtreet1 disappears as a result of this glue operation, being \united" with the subtreet2.) Let h be the isomorphism between t1 and t2. Let h0 = (n; g(E 0)(n))8n 2 t1.Then g(E) = g(E 0) [h� h0.Finally, if the � node and the 	 node are both mapped to more than one node, weremove [�;] from the mapping. Now observe that after performing the operationsindicated above for all the edit operations in E, T3 is transformed to a tree that isisomorphic to T2 (by the de�nition of E), so that the mapping g(E) may be viewedas an onto mapping between T1 and T2. An onto mapping between the nodes of T1and T2 is isomorphic to an edge cover of the bipartite graph induced by T1 and T2;thus g(E) de�nes the edge cover induced by an edit script.

94 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES5.4.2 Using Edge CoversThe goal of using an edge cover is that it should capture the essential aspects of anedit script; that is, no important information should be lost in going from an editscript to the edge cover induced by it. However, there are certain edit scripts for whichthis property does not hold. For example, consider an edit script E2 that inserts anode p as the parent of ten siblings (children of the same parent) n1; : : : ; n10, thenmoves p to another location in the tree, and �nally deletes p. The node p is absentfrom both the initial tree and the �nal tree. Therefore, an edge cover of the initialand �nal trees contains no record of the temporary insertion of node p. Thus, wehave lost some information in going from E2 to the edge cover.Is the fact that our edge covers cannot capture edit scripts like E2 a problem? Onthe one hand, E2 could be the minimum cost edit script mh-diff is trying to �nd.For example, say that insert, delete, and move operations all cost one unit. The costof E2 would then be the cost of one insert, plus the cost of one move, plus the cost ofone delete, for a total cost of 3. If we do not use the \bulk move trick" that E2 uses,we need to move each of n1; : : : ; n10 individually, for a cost of 10. Thus, E2 could bethe minimum cost edit script, and if we rule it out, then mh-diff would miss it.On the other hand, scripts like E2 do not represent transformations that are mean-ingful or intuitive to an end user. In other words, if a user saw E2, he would not un-derstand why node p was inserted, since it really has no function in his application.True, the costs provided by the user are intended to describe the desirability of editoperations, but if we abuse these numbers we can end up with \tricky" scripts likeE2 that are more confusing than helpful.Another example of a potentially unintuitive edit script is the following: Consideran edit script E3 that moves a node n1 to become a child of another node n2, thenmakes several copies of the subtree rooted at n2 (thus making copies of n1 as well),and �nally deletes the original copy of n1. This edit script moves n1 to a place whereit does not need to be (under n2) only to generate free copies of n1.The cause of the unintuitive nature of the edit scripts described above is an in-teraction between di�erent edit operations, which gives rise to a \compound" e�ect.

5.4. EDGE COVERS AND EDIT SCRIPTS 95For example, in the edit script E2 above, the e�ect of the move operation is com-pounded because it acts on a node that was previously inserted. Similarly, in editscript E3 above, the e�ects of the copy operations are compounded because they acton a subtree into which a node was previously moved. Our approach is to disallowsuch unintuitive compound e�ects by restricting the interleaving of edit operations inan edit script. In particular, we require that edit operations be performed in a �xedorder: deletes, copies, moves, updates, glues, inserts. This structuring requirementdisallows tricks such as temporary insertion of a node, and complicated interleavingof move, copy, and glue operations.Unfortunately, this structuring requirement also disallows some intuitive sequencesof operations. For example, it does not allow an edit script that deletes a nodeproduced as a result of a cpy operation. Thus, an edit script cannot copy a subtreecontaining 100 nodes if 99 of them are needed, because it would be unable to deletethe unwanted copy of the 100th node. An analogous situation exists for ins andglu operations. To mitigate this problem, we add a phase of deletions after copies,called ghost deletions. During this phase, only nodes produced by copy operationsare permitted to be deleted. Furthermore, these deletions can act only on leaf nodes.(An interior nodes may be deleted only if all all its descendants are also deleted.)Analogously, we permit a phase of insertions, called ghost insertions, before the gluephase. Any nodes inserted in this phase must be removed by glue operations in thesubsequent glue phase. Furthermore, nodes may be only inserted as leaves. (That is,interior nodes must be inserted before the insertion of their descendants.)A reasonable restriction to impose on edit scripts is the following: Edit scripts mayonly copy subtrees from the original source. That is, instead of copying a subtree t0that was produced by copying some other subtree t, we copy t itself. We could expressthis restriction by disallowing copies of copied subtrees. However, such a restrictionwould have the following undesirable side-e�ect: If a subtree is copied to some noden, then from that point on none of the ancestors of n can be copied. We thereforerephrase our restriction as follows: When a subtree t is copied, any subtree t0 itcontains that was produced by copies are ignored. That is, the copy operation actsonly on t� t0. We impose a symmetrical restriction on glue operations. Finally, just

96 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESas we do not permit inserted nodes to be deleted, we disallow the gluing of nodesproduced by copies.More precisely, we de�ne structured edit scripts to be edit scripts with the fol-lowing properties: (1) No node is operated on by more than one structure-changingedit operation. (All edit operations except update are structure-changing.) (2) Editoperations are performed in phases, and the phases are ordered as follows: deletes,copies, moves, ghost deletes, updates, ghost inserts, glues, inserts. (3) In the ghostdeletes phase, only nodes produced by copy operations are deleted. In the ghostinserts phase, only nodes that are later removed using glue operations are inserted.Ghost insertions and deletions operate only on leaf nodes. (4) A node produced byone copy operation is not copied by another. Similarly, a node that is the target of aglue operation is not the source of another glue operation. (5) A node produced bya copy operation is not glued.We now describe how the above restrictions on structured edit scripts yield sim-pli�cations in the mapping between edge covers and scripts. A minimal edge coveris an edge cover that is not a proper superset of an edge cover. Minimal edge covershave the following useful characterization:Lemma 4 An edge cover is minimal if and only if it does not contain any path oflength three. 2Proof To see that a minimal edge cover K cannot contain a path of length three,suppose n1; n2; n3; n4 is a path in K. That is, [ni; ni+1] 2 K; i = 1 : : : 3. ThenK�f[n2; n3]g is an edge cover contradicting the minimality of K. Conversely, if K isnon-minimal, there is some edge [n2; n3] 2 K such that K 0 = K�f[n2; n3]g is an edgecover. Then K 0 contains at edges [n1; n2] and [n3; n4] for some n1 and n4, implying athree-path n1; n2; n3; n4 in K. 2Structured edit scripts have the following important property that allows us toconsider only minimal edge covers in the rest of the chapter.Lemma 5 The edge cover induced by a structured edit script is a minimal edge cover(and thus does not contain a path of length three). 2

5.4. EDGE COVERS AND EDIT SCRIPTS 97ProofDue to Lemma 4, it su�ces to show that the edge cover induced by a structurededit script does not contain a three-path. Since the induced graph is bipartite, anythree-path that is not incident on the special nodes � and 	. is of the form n0;m; n;m0such that m;m0 2 T1 and n; n0 2 T2. Now the only edit operation that causes theinduced cover to include more than one edge incident on a node m 2 T1 is copy.Therefore, m, n, and n0 are acted on by some copy operation. We can similarly arguethat m, n, and m0 are acted on by some glue operation. However structured editscripts cannot glue a node that has been acted on by a copy operation, thus implyingno such three-path can exist in their induced edge covers. For the case of edgesincident on the � and 	 nodes, we note that possibility of a three-path is avoided bythe de�nition of the induced edge cover because it removes the edge [�;] wheneverthere are multiple edges incident on both � and 	. Thus there can be no three-pathin the edge cover induced by a structured edit script. 25.4.3 Generating an Edit Script from an Edge CoverWe now describe how, given a minimal edge coverK of the graph induced by trees T1and T2, we compute a minimum-cost edit script corresponding to this edge cover. Inparticular, we present algorithmCtoS, for cover-to-script. The input to the algorithmconsists of two rooted labeled trees T1 and T2 and and a minimal edge cover K oftheir induced graph IG(T1; T2). As output, the algorithm CtoS produces an editscript E with the following properties:1. E is a valid edit script with respect to T1. That is, the operations in E can beapplied to T1 in order, and E is a structured edit script (see Section 5.4.2).2. E transforms T1 to a tree isomorphic to T2. That is, T1 E! T2.3. The edge cover induced by E isomorphic to K.4. There is no edit script with the above properties that has a lower cost thanthat of E. That is, if E 0 is an edit script satisfying properties 1{3 above, thenc(E 0) � c(E).

98 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESWe now explain the method used by CtoS, summarized by the pseudo-code inFigures 5.10{5.20. The algorithm proceeds in phases that roughly reect the phasesof a structured edit script. The phases are named after the kinds of edit operationsthey produce. For example, the procedure phaseDel in Figure 5.10 describes the deletephase of the algorithm, which produces delete operations. A slight amendment to thisrule is that the copy and glue phases, outlined in Figures 5.11 and 5.17 respectively,also produce some move operations. Intuitively, these are move operations used totake advantage of the free copies and glues described earlier.We now describe some notation that is used by the pseudocode in Figures 5.10{5.20. As explained in Section 5.3, it is convenient to represent the edit operations inan edit script using an annotation on the corresponding edge of the edge cover. In thepseudo-code, these annotations are stored in sets Pn, where n is the name of the phase.For example, Pdel is the set of annotations representing delete operations. These setsare initialized to the empty set. Annotations are generated using a function Annot,which takes as argument details of the corresponding edit operation; each annotationthus generated has a unique identi�er The variable annNil is initialized to a specialannotation representing the null edit operation.We refer to edges belonging to the given edge cover K as K-edges. We say twonodes are matched to each other if there is a K-edge connecting them. In order tosimplify the pseudo-code, if K contains the special edge [�;], this edge is removedfrom K during initialization. For each tree node m, we keep track of the numberof \free images of m" (i.e., copies of m obtained as a result of one of its ancestorsbeing copied) in the set m:F . For each such free image, m:F contains the annotationrepresenting the edit operation that is responsible for the free image. Initially, m:Fis the singleton set fannNilg representing the original image of the node m in treeT1.)We use E(x) do denote the set of K-edges that are incident on the node x. Weuse the function nnda(m) to denote the nearest proper ancestor m0 of m such that[m0;] 62 K. Intuitively, this function returns the nearest non-deleted ancestor of anode in T1. Analogously, we use the function nnia(n) to denote the nearest properancestor n0 of n such that [�; n0] 62 K. Intuitively, this function returns the nearest

5.4. EDGE COVERS AND EDIT SCRIPTS 99procedure phaseDel(tree T1, tree T2, cover K) ffor each edge e = [m;] 2 K do fann1 Annot(del(m));e.respAnn annNil;Pdel Pdel [f ann1 g;partner partner � f (m,) g;m.F := ;;gg Figure 5.10: CtoS: generating delete operationsnon-inserted ancestor of a node in T2. We also use the function nnid(n) to denote theset of nearest non-inserted descendants of a node n in T2. More precisely, we havethe following, where p is the parent function for tree T2:nnid(n) = fn1j9j 2 Z+ : pj(n1) = n ^ 8i = 1; : : : ; j � 1 : [�; pi(n1)] 2 KgWe de�ne a relation partner between the nodes of T+1 = T1 [f�g and T+2 =T2[f	g. Initially, partner is the relation de�ned by the given edge cover K, less thespecial edge [�;]. As the algorithm proceeds, the partner relation is modi�ed insuch a way that when the algorithm terminates, partner is an isomorphism betweenthe tree Tf obtained by applying the generated edit script to a working tree T3 that isisomorphic to T1, and T2. We use partners(m) to denote the set of nodes n such that(m;n) 2 partner. The pseudo-code for CtoS uses a function pickPartner(m) to in-tuitively denote the unique, �nal partner of a node m. More precisely, if partners(m)is a singleton set fng, pickPartner returns n; otherwise pickPartner returns a place-holder string \pp(m)" that will be replaced by the partner of m (guaranteed to beunique) when the algorithm terminates. We generalize pickPartner to a set M ofnodes in T1 as follows: pickPartner(M) = fpickPartner(m) j m 2Mg.The �rst phase of the algorithm is the delete phase (Figure 5.10), in which wegenerate an edit operation del(m) for each node m that is matched to the specialnode 	. We claim that any edit script that matches m to 	 must contain this del

100 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESprocedure phaseCpy(tree T1, tree T2, cover K) ffor each node m 2 T1, in pre-order, do fif(jE(m)j > 1) ffor each edge e1 = [m, n1] 2 E(m) such that[nnda(m), nnia(n1)] 2 K, do fe2 [nnda(m), nnia(n1)];ann2 e2.respAnn;if(ann2 2 m.F) doCNil(e1, e2);else doMovOrCpy(e1);gfor each edge e1 = [m, n1] 2 E(m) such that[nnda(m), nnia(n1)] 62 K, do fdoMovOrCpy(e1);ggelse if([m;] 62 K) flet E(m) = f e1 g;e1.respAnn annNil;m.F m.F � f annNil g;gif([m;] 62 K) ffor each annotation ann2 2 m.F do fann1 Annot(del(m.ann2));Pgdel Pgdel [f ann1 g � f ann2 g;gggg Figure 5.11: CtoS: generating copy-related operationsoperation, due to the following observations: Firstly, any node matched to 	 is absentfrom the �nal tree. Furthermore, there are only two ways in which a node can bemade to disappear: either it is deleted explicitly, or it is glued to some other node.(We use here the fact that structured edit scripts cannot �rst glue a node to anotherand then delete the second node.) However, the second method will not result in mmatching 	 in the edge cover induced by the script; instead, m will match the nodeto which it was glued. Therefore we can safely produce a del(m) operation for allsuch nodes m.

5.4. EDGE COVERS AND EDIT SCRIPTS 101procedure doCNil(edge e1, edge e2) flet e1 = [m, n1];ann2 e2.respAnn;m.F �= f ann2 g;e1.respAnn ann2;if(ann2 6= annNil) fpartner partner �= f (m, n1) g + f (m.ann2, n1) g;gg Figure 5.12: CtoS: bookkeeping for free copiesThe next phase of the algorithm, summarized in Figure 5.11, generates copy op-erations and move operations used to correctly position copies. In particular, it looksfor sets two or more of K-edges incident on a common node m 2 T1. Note that fromLemma 5, and the observation that minimal edge covers cannot contain any path oflength three, it follows that if e = [m;n] is such an edge, there can be no other K-edgeincident on n. We call such a set of edges a ower with base m. This set of edgesrepresents copies of the node m. However, as we have seen in Section 7.1.2, some ofthe copies of m could be produced as a result of some ancestor of m being copied. Wecall such copies free copies of m. Our algorithm considers owers in preorder of thebase nodes. As copy operations are generated for some node m, we also keep trackof the number of free copies of nodes in the copied subtree. Knowing the numberof available free copies allows us to determine exactly which owers correspond toexplicit copy operations and which correspond to implicit (free) copies. Furthermore,any unused free copies are nodes that need to be deleted after the copy operation isperformed. These are the ghost deletions we introduced above. Finally, note that afree copy may need to be moved to its �nal location; this situation is easily detectedby checking whether the parents of the a�ected nodes match.The update phase of the algorithm is straightforward, and produces an updateoperation for each edge [m;n] such that the labels of m and n di�er. Since we areconsidering only structured edit scripts, there is no way to avoid such an update; in

102 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESprocedure doMovOrCpy(edge e1) flet e1 = [m, n1];if(jm:F j> 1) fann2 pick(m.F);m.F m.F � f ann2 g;ann1 Annot(mov(m.ann2, pickPartner(nnia(n1))));e1.respAnn ann2;Pmov + f ann1 g;if(ann2 6= annNil) fpartner partner �= f (m, n1) g [f (m.ann2, n1) g;ggelse fann1 Annot(cpy(m, pickPartner(nnia(n1))));e1.respAnn ann1;Pcpy Pcpy [f ann1 g;partner partner � f (m, n1) g [f (m.ann2, n1) g;updFSets(ann1, m);gg Figure 5.13: CtoS: �nding spare images for copyprocedure updFSets(Annot ann1, node m) ffor each child c of m do updFSetsAux(ann1, c);gprocedure updFSetsAux(Annot ann1, node m) fif([m;] 62 K and [�; n] 62 K) m.F m.F [f ann1 g;for each child c of m do updFSetsAux(ann1, c);g Figure 5.14: CtoS: bookkeeping for free images

5.4. EDGE COVERS AND EDIT SCRIPTS 103
procedure phaseMov(tree T1, tree T2, cover K) ffor each edge e = [m, n] 2 K such thatjE(m)j = jE(n)j = 1 do fif([nnda(m), nnia(n)] 2 K) ; else fann1 Annot(mov(m, pickPartner(nnia(n)))));Pmov [f ann1 g;ge.respAnn annNil;m.F m.F � f annNil g;n.F m.F � f annNil g;gg Figure 5.15: CtoS: generating move operations
procedure phaseUpd(tree T1, tree T2, cover K) ffor each pair (m, n) 2 partners such thatm 6= �, n 6= 	, and l(m) 6= l(n) do fann1 Annot(upd(m, l(n)));Pupd [f ann1 g;gg Figure 5.16: CtoS: generating update operations

104 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESparticular, tricks like updating a node and then copying it are disallowed.The glue phase of the algorithm, summarized by the pseudo-code in Figures 5.17,5.18, and 5.19, is analogous to the copy phase. A notable di�erence is the use ofa function correspPartner(n,a) to determine the node m in T1 that is matched bya K-edge to n, and that is glued by the annotation a. We can compute this nodem using the bookkeeping relation gr maintained by the glue phase. More precisely,as we argue below, the set P = fx j gr(x; n; a) is guaranteed to be the singletonfm;n; ag. Similarly, the insert phase, summarized in Figure 5.20, is analogous tothe delete phase. Intuitively, the only major di�erence between these phases and theearlier copy and delete phases is that these phases perform actions from T2's point ofview instead of T1's; it is thus useful to consider them \mirror images" of the earlierphases.Given the sets of annotations produced by algorithm CtoS, the �nal edit script isproduced by generating the edit operation suggested by each annotation, and thenordering these operations in phases as required by our de�nition of structured editscripts earlier. Within each phase, edit operations are ordered as follows: Delete,ghost delete, move, and glue operations are ordered using any bottom-up order forT1. Insert, ghost insert, and copy operations are ordered using any top-down orderfor T2. Update operations are ordered arbitrarily.Discussion: In the rest of this section, we argue that the edge cover produced byalgorithm CtoS satis�es the four properties listed earlier.The edge cover induced by an edit script E is de�ned operationally as follows:We start with T1 and a working tree T3 isomorphic to T1. The initial working setof edges Kw contains edges corresponding to the isomorphism I1 between T1 and T3.We apply the edit script E to T3, resulting in a sequence of trees T4; T5; : : : ; Tf . Whena node is inserted in the (regular) inserts phase, we match it to �; when a node isinserted in the ghost inserts phase, we do not add any edges to Kw. When a node isdeleted in the (regular) deletes phase, we redirect any Kw-edges incident on it to thespecial node 	; when a node is deleted in the ghost deletes phase, we simply removeany Kw-edges incident on it. When a node is updated or a subtree is moved, thereis no change in in Kw. When a subtree is copied, we add to Kw an edge from each

5.4. EDGE COVERS AND EDIT SCRIPTS 105
procedure phaseGlu(tree T1, tree T2, cover K) ffor each node n 2 T2, in pre-order, do fif(jE(n)j > 1) ffor each edge e1 = [m1, n] 2 E(n) such that[nnda(m1), nnia(n)] 2 K, do fe2 [nnda(m1), nnia(n)];ann2 e2.respAnn;if(ann2 2 n.F) doGNil(e1, e2);else doMovOrGlu(e1);gfor each edge e1 = [m1, n] 2 E(n) such that[nnda(m1), nnia(n)] 62 K, do fdoMovOrGlu(e1);ggelse if([�; n] 62 K) flet E(n) = e1;e1.respAnn annNil;n.F n.F � f annNil g;gif([�; n] 62 K) ffor each annotation ann2 2 n.F do fann1 Annot(ins(n*,l(n), correspPartner(p(n),ann2)));Pgins Pgins [f ann1 g;gr gr [f (n*, n, ann2) g;gggg Figure 5.17: CtoS: generating glue-related operations

106 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESprocedure doGNil(edge e1, edge e2) flet e1 = [m1, n];ann2 e2.respAnn;n.F n.F � f ann2 g;e1.respAnn ann2;gr gr [f (m1, n, e1.respAnn) g;if(ann2 6= annNil) fpartner partner � f (m1, n) g;gg Figure 5.18: CtoS: bookkeeping for free gluesprocedure doMovOrGlu(edge e1) flet e1 = [m1, n];if(jn:F j> 1) fann2 pick(n.F);n.F n.F � f ann2 g;ann1 Annot(mov(m1, correspPartner(nnia(n), ann2)));Pmov Pmov [f ann1 g;e1.respAnn ann2;gr [f (m1, n, e1.respAnn) g;if(ann2 6= annNil) fpartner partner � f (m1, n) g;ggelse fann1 Annot(glu(m1, pickPartner(n)));Pglu Pglu [f ann1 g;e1.respAnn ann1;partner partner � f (m1, n) g;updFSets(ann1, n);gg Figure 5.19: CtoS: �nding spare images for glue

5.4. EDGE COVERS AND EDIT SCRIPTS 107procedure phaseIns(tree T1, tree T2, cover K) ffor each edge e = [�; n] 2 K do fann1 Annot(ins(n*, l(n), pickPartner(p(n)), pickPartner(nnid(n))));e.respAnn annNil;Pins Pins [f ann1 g;partner partner � f (�, n) g [f (n*, n) g;n.F ;;gg Figure 5.20: CtoS: generating insert operationsnewly created node to the partner of its original copy. When a subtree is glued, weredirect edges incident on each node in the subtree that disappears (the \source" ofthe glue operation) to that node's counterpart in the subtree that remains (the targetof the glue operation). Finally, if either of � and 	 is exposed (not covered by theedges in Kw), we add the edge [�;] to Kw. The �nal set of edges thus obtained isan edge cover of the induced graph of T1 and Tf , IG(T1; Tf). We call this set of edgesthe edge cover induced by E, and denote it by Kf = K(E).An edge cover K is minimal if no proper subset of K is an edge cover. It iseasy to verify that a minimal edge cover does not contain any path of length three.We further require that a minimal edge cover of IG(T1; T2) not contain any paths oflength two incident on either of the special nodes 	 and �.In the following discussion, we use the following notational convention: A primednode m0i represents a node in some working tree Tj; j 2 [3; f] such that if m0i 2 T3then there is a node mi 2 T1 such that I1(mi;m0i). (Recall that I1 is the isomorphismbetween T1 and T3. Note that if m0i 62 T3, there is no requirement regarding theexistence of a node mi 2 T1.)Property 1: Valid Structured Edit Script: We now argue that the edit scriptE produced by the algorithm is a valid structured edit script for the tree T1. Inparticular, we show that each edit operation is valid, and that the edit script isstructured. In the following discussion of edit operations, we use T to refer to the

108 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESworking tree at the time an edit operation is applied. That is, for an edit operationd 2 E, T is the tree obtained by applying E 0 to T3, where T3 is a tree isomorphic toT1, and E 0 is the pre�x of E up to, and not including, d.Consider �rst any delete operation produced by the algorithm in procedurephaseDel. This operation is of the form del(m0). (The pseudocode in Figure 5.10assumes that the edit script operates on the tree T1, whereas we argue based on itsoperation on the isomorphic tree T3; we thus replace each reference to m 2 T1 bym0 2 T3.) In order to be valid, the identi�er m0 must refer to a node that exists in T .Clearly, since m exists in T1, and since T3 is isomorphic to T1, m0 exists in T3. Onlydelete and glue operations make nodes disappear. Glue operations are performedafter deletes; therefore m0 cannot disappear due to a glue operation. Furthermore,m0 cannot disappear due to some other delete operation because phaseDel considerseach node in T1 at most once. Therefore, the delete operation is valid.Next, consider any copy operation produced by the algorithm in procedurephaseCpy. This operation is of the form cpy(m0; pickPartner(nnia(n1))). In or-der to be valid, m0 and pickPartner(nnia(n1)) must refer to nodes that exist inT . By the reasoning used for delete operations above, we can argue that m0 ex-ists in T . We assume, without loss of generality, that K matches the root of T1uniquely to the root of T2, and vice versa. Therefore, nnia(n1) exists in T2. LetpickPartner(nnia(n1)) = m02. By the de�nition of nnia(n1), m02 cannot be an in-serted node. If m2 2 T1, we know m02 2 T because no node that has a partner in T2is ever deleted by phaseDel, and because there are no glue operations before copyoperations. Suppose m02 is produced as a result of a copy operation. By the top-downordering of the copy phase (procedure orderOps), m02 is produced before this copyoperation is applied. Furthermore, m02 cannot subsequently be deleted (since thereare no deletes between copy operations) or be glued (since glue operations are per-formed after copy operations) before this copy operation. Therefore m02 exists in Tand this copy operation is valid.Now consider any move operation produced by the algorithm in proceduredoMovOrCpy. This operation is of the form mov(m0:ann2; pickPartner(nnia(n1))).As above, we can argue that pickPartner(nnia(n1))) exists in T . Note that ann2

5.4. EDGE COVERS AND EDIT SCRIPTS 109is obtained from m:F . If ann2 is the null annotation annNil, m0:ann2 refers to theoriginal node m0; we can argue, as above, that m0 is not removed by any previousedit operation. If ann2 is not null, we note that the only time an annotation is addedto m:F is when one of the ancestors of m0 is marked to be copied, thus implyingan indirect copy of m0; m0:ann2 denotes this copy. Now, m0:ann2 cannot be gluedbefore this move operation because all glue operations are performed after all moveand copy operations. Furthermore, m0:ann2 cannot be deleted because ghost deletesare performed after moves. Thus, m0:ann2 exists in T , and this move operation isvalid.Using arguments similar to those above, it is easy to establish that the ghost deleteoperations produced by phaseGlu, the update operations produced by phaseUpd, andthe move operations produced by phaseMov are valid.Now consider any glue operation produced by the algorithm in proceduredoMovOrGlu. This operation is of the form glu(m01; pickPartner(nnia(n))). As above,we can argue that m01 and m02 = pickPartner(nnia(n))) exist in T . In order for thisglue operation to be valid, the subtree st(m01) rooted at m01 must be isomorphic tothe subtree st(m02) rooted at m02; we now demonstrate this isomorphism.In particular, we show that st(m01) and st(m02) are both isomorphic to a speciallyconstructed tree, nist(n). Intuitively, nist(n) is obtained from st(n) by \short cir-cuiting" any nodes in st(n) that are matched to �. More formally we de�ne thenodes, parent function, and label function of nist(n) as follows: nist(n) = (N 0; p0; l0)where N 0 = fn0 2 st(n)j[�; n0] 62 Kg, and 8n0 2 nist(n), p0(n0) = nnia(n0) andl0(n0) = l(n0). Let Tg be the working tree just before the glue phase, and let pg be itsparent function.Consider the edge e1 = [m1; n]; let e1:respAnn = �. Consider the relation grconstructed in phaseGlu. It is easy to observe that for each node y 2 nist(n) there isexactly one node x 2 st(m01) such that (x; n; �) 2 gr. We therefore de�ne a functiong : nist(n) ! st(m01) as follows: g(y) = x where (x; y; �) 2 gr. We know thatpg(m0i) = nnda(mi)0 for each m0i 2 Tg, and p0(y) = nnia(y) for all y 2 T2. Therefore,it is easy to see that g preserves the parent and label functions.

110 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESLet us now show that g is a one-to-one function. Consider a node y 2 nist(n).If g(y) is an inserted node y�, clearly y� is not referenced by gr again, and thusy� 6= g(y0) for y0 6= y. If g(y) is a node m0i such that [mi; n] 2 K, note that jE(n)j > 1implies jE(mi)j = 1 (due to minimality of K), so that there can be no other edge in Kincident on mi, and thereforemi cannot be g(y0) for any y0 6= y. Thus g is a one-to-onefunction from nist(n) to st(m01) that preserves the parent and label functions.Let us now show that g maps nist(n) onto st(m01); that is, we show that for eachx 2 st(m01), there is a y 2 nist(n) such that g(y) = x. If x is an inserted node, itmust be ghost inserted, since regular insertions are performed after the glue phase.Thus (x; y; �) is is added to gr for some y and � when x is inserted, and we haveg(y) = x. If x is produced by a copy, x will be skipped when this glue operation isperformed due to detectGluSkips. If x is not produced by an insertion or a copyoperation, then x = m03 such that [m3; n3] 2 K for some n3 2 T2. It is easy to see that[pg(m03); p0(n3)] 2 K. Since we know m03 2 st(m01) and [m1; n] is the only edge in Kthat is incident on m01, it follows that n3 2 nist(n), implying that (x; n; �0) is addedto gr when node n3 is handled by phaseGlu. We thus have g(n3) = x, showing thatg is onto. We have thus shown that g is a one-to-one, onto function from nist(n) tost(m01) that preserves the parent and label functions; therefore st(m01) is isomorphicto nist(n). We can argue analogously that st(m02) is also isomorphic to nist(n), sothat st(m01) and st(m02) are isomorphic, and the glue operation is valid.Using an argument analogous to that used for phaseMovOrCpy, we can show thatthe move operations in doMovorGlu are valid. Now consider an insert operation pro-duced by phaseIns. This operation is of the form ins(n�; l(n); pickPartner(p(n));pickPartner(nnid(n))). Trivially, we avoid using existing identi�ers for the newly cre-ated nodes as n�, and the label l(n) is valid. Let pickPartner(p(n)) = m01. Ifm01 is notan inserted node, we can argue, as we have done while discussing other edit operations,thatm01 2 T . Ifm01 is an inserted node, we note that insert operations are performed ina top-down T2 order, so that m01 is inserted before this insert operation. Thus, m01 2 Tin both cases. We can argue as before that each node x 2 pickPartner(nnid(n)) existsin T . The only remaining condition for validity of this insert operation is that in T ,p(x) = m01 for all x 2 pickPartner(nnid(n)). In the discussion of Property 2, we will

5.4. EDGE COVERS AND EDIT SCRIPTS 111show that for m 2 T1, n 2 T2 such that [m;n] 2 K, we have partner(pi(m); nnia(n)),where pi is the parent function of the tree Ti just before the insert phase. Therefore,in Ti we have pi(x) = pickPartner(nnia(n)) for all x 2 pickPartner(nnid(n)). Nowif nnia(n) = p(n), we have m01 = pickPartner(nnia(n)) giving the required resultp(x) = m01. If nnia(n) 6= p(n), the insertion of nodes corresponding to nodes betweennnia(n) an n proceeds in a top-down manner, and each inserted node has all nodesin pickPartner(nnid(n)) as its children. Thus, when n� is inserted, p(x) = m01. Thusthis insert operation is valid. The validity of insert operations produced in phaseGInsfollows by a similar argument.We have shown above that each edit operation produced by the algorithm is valid.We now show that the resulting edit script is a structured edit script. The procedureorderOps ensures that the edit operations are performed in the order required ofstructured scripts. All the insert operations in Pgins produced by phaseGlu insertleaf nodes since the last argument (set of children) is ;. It is easy to verify that anynode deleted in Pgdel is a leaf node because if any of its original children are notdeleted, then they are moved to another location before the delete operation. Thetop-down by T2 ordering of copy operations, and procedure detectCpySkips ensurethat a copied subtree is not further copied; similarly, glued subtrees are not subjectedto further glue operations. Furthermore, no node produced by by a copy operationis ever glued because of detectCpySkips and detectGluSkips. Therefore, the editscript generated by the algorithm is a valid structured edit script.Property 2: Transformation T1 E! T2: We now show that the edit script Eproduced by the algorithm transforms T3 (a tree isomorphic to T1) to a tree Tfthat is isomorphic to T2. In particular, we show that the partner relation is anisomorphism between Tf and T2. We begin by showing that partner is a one-to-onerelation between Tf and T2. First, observe that the algorithm never adds a partner toa node that already has one or more partners; similarly, the algorithm never removesa partner for a node that has exactly one partner without also adding another partnerfor it. Thus, once a node has exactly one partner at some stage in the edit script,it will continue to have exactly one partner for the rest of the script. In particular,this fact implies that nodes in T3 that have exactly one partner, also have exactly one

112 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESpartner in Tf . A similar argument holds for nodes in T2. Consider a node m0 2 T3such that [m;] 2 K; m0 is deleted and is thus absent from Tf . Now consider a noden 2 T2 such that [�; n] 2 K; for such a node n, the procedure phaseIns produces aninsert operation to create a node n� which then becomes the sole partner of n.Now consider a node m0 in T3 that originally has multiple partners. In pro-cedure phaseCpy, all of m0's partners except those connected to m via an edgewith respAnn = annNil are removed. Observe further that there is always exactlyone edge with this property incident on m (because an edge [m;n1] is assigned arespAnn of annNil either because it is the only edge incident on m, or becausethe edge [nnda(m); nnia(n1)] has respAnn = annNil). Therefore it follows that allbut one partners of m0 are removed by procedure phaseCpy. An analogous argu-ment shows that all but one partners of a node n in T2 that originally has multi-ple partners are removed by procedure phaseGlu. (In this case, we initially havepartner(mi; n)8[mi; n] 2 E(n). In phaseGlu, (mi; n) is removed from partner forall ei = [mi; n] 2 E(n) except when ei.respAnn = annNil. As before, we arguethat there is exactly one edge in E(n) with this property; say that edge is [m2; n].Then after the glue phase, we have partner(n) = m2.) Finally, note that the partnerrelation is initially complete (that is, every node in T1 [T2 has at least one partner),and further, whenever new nodes are added, they are assigned a partner. Therefore,the partner relation between the �nal tree Tf and the tree T2 is also complete. Thuswe have shown that partner is a one-to-one and complete relation between Tf andT2. We now show that the partner relation preserves the parent function; that is,pf (partner(n)) = partner(p(n)) for all nodes n 2 T2, where pf is the parent functionof Tf . First, note the following property, which is easily veri�ed from the actions ofthe algorithm: If [m;n] 2 K, m 2 T1, n 2 T2, and m0 2 Tf , then partner(m0; n)when the algorithm terminates. (Recall that m0 2 T3 is a node such that I1(m;m0)where I1 is the isomorphism between T1 and T3.) Note also that the only three waysof changing the parent of an existing node are (1) moving the node, (2) deleting itsparent, and (3) inserting a node as its parent.

5.4. EDGE COVERS AND EDIT SCRIPTS 113Case 1: [�; n] 2 K: In this case, procedure phaseIns changes the partner of n from� to m0, where m0 is a newly created node. We see that the parent of this node is the(�nal) partner of the node p(n); that is, partner(n) = m0 and pf (m0) = partner(p(n))as required.Case 2: 9m1 : [m1; n] 2 K;m1 6= �: Let Ti denote the working tree immediatelybefore the insert phase, and let pi be the parent function for Ti. In each of the threesub-cases below, we show below that 9m02 : partner(m02; n)^partner(pi(m02); nnia(n)).Then, if p(n) = nnia(n), we have pi(m02) = pf (m02), which gives us the requiredresult. Otherwise, [�; p(n)] 2 K, so that phaseIns produces an insert operationcreating a node m03 such that partner(m03; p(n)). Since n 2 nnid(y) for all y betweenp(n) and nnia(n) (inclusive), partner(n) (i.e., m01 is made a child of m03, givingp(m1) = partner(p(n)) as required. In the following, assume for now that nnda(m1)0is not glued (directly or indirectly) implying that if m01 is not moved, deleted, orglued, then pi(m01) = nnda(m1)0. (We will do away with this assumption later.)Case 2.1: jE(m1)j = jE(n)j = 1: Consider the two possibilities in procedure phaseMov.If m1 is moved, its new parent is the �nal partner of nnia(n); it is easy to ver-ify that the parent just before the insert phase, pi(m1), is also the �nal partner ofnnia(n), giving partner(pi(m1); nnia(n)) as required. If m1 is not moved, we know[nnda(m1); nnia(n)] 2 K, implying partner(nnda(m1)0; nnia(n)) (due to R1). Nowsince all nodes between m01 and nnda(m1)0 are deleted due to phaseDel, we havepi(m01) = nnda(m1)0. Thus we have the required partner(pi(m01); nnia(n)).Case 2.2: jE(m1)j > 1; jE(n)j = 1: In this case, (m02; n) (for some node m02) is addedto the partner relation in either (1) procedure doCNil or (2) procedure doMovOrCpy.In scenario (1), [nnda(m); nnia(n)] 2 K which, since nnda(m1)0 = pi(m01), givespartner(pi(m01); nnia(n)) as needed. In scenario (2), m01 is either moved to, or createdby a copy at, pickPartner(nnia(n)); thus partner(pi(m02); nnia(n)) as needed.Case 2.3: jE(m1)j = 1; jE(n)j > 1: After the glue phase, partner(n) = m2, where[m2; n] is the unique edge in E(n) with respAnn = annNil. We note that if phaseGluinvokes doGNil, [nnda(m1); nnia(n)] 2 K, implying partner(nnda(m1)0; nnia(n)),which gives partner(pi(m02); nnia(n)) (using pi(m01) = nnda(m1)0). If phaseGlu in-vokes doMovOrGlu, pi(m02) = correspPartner(nnia(n); annNil) = partner(nnia(n));

114 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESThus partner(pi(m02); nnia(n)) in this case too.Now let us return to our assumption that nnda(m1)0 is not glued and show that itis not necessary for our argument. If nnda(m1)0 disappears due to a glue operation,we know that in the subtree that is the target of the glue operation, there is a nodem03 such that st(nnda(m1)0) is isomorphic to st(m03). Therefore st(m03) contains anode m04 such that p(m04) = m03. Furthermore, since st(m03) is the target of the glueoperation, partner(m04; n), and partner(m03; nnia(n)); thus m03 and m04 can replacennda(m1)0 and m01 (respectively) in the above argument.The partner relation also preserves the label function; that is, l(partner(m)) =l(m) for all nodes m 2 T1 [T2. This fact follows easily from the action of procedurephaseUpd. We have thus demonstrated a relation partner between Tf and T2 that isone-to-one and complete, and that preserves the parent and label functions; that is,partner is the required isomorphism between Tf and T2.Property 3: Induced Cover: We now show that the edge coverKf = K(E) (of theInduced Graph of T1 and Tf) induced by the edit script E produced by the algorithmis isomorphic to the given edge cover K (of the Induced Graph of T1 and T2). We�rst show that for each edge e = [m1; n1] 2 K (m1 2 T+1 , n1 2 T+2), there exists acorresponding edge e0 = [m1; partner(n1)] 2 Kf such that partner(n1) 2 Tf , wherewe de�ne partner(�;�) and partner(;) for notational convenience.The edge es = [�;] is a special case: It is easy to see that if Kf and K areisomorphic ignoring es, then they are also isomorphic considering es. If n1 = 	and m1 6= �, the node m01 is deleted by E, due to procedure phaseDel. Therefore,[m1;] 2 Kf , giving [m1; partner(n1)] 2 Kf (using partner() =). If m1 = � andn1 6= 	, a node m01 is inserted by E due to procedure phaseIns. Therefore, [�;m01] 2Kf . Since phaseIns also ensures partner(m01; n1), we have [m1; partner(n1)] 2 Kf asneeded. Given the above, in the rest of this discussion of Property 3 we assume thatm1 6= � and n1 6= 	.If jE(m1)j = jE(n1)j = 1, we have partner(m01; n1) due to procedure phaseMov.We know that [m1;m01] 2 K3. If [m1;m01] 2 Kf , we have the required result. If not,it must be the case that m01 disappears at some stage in the edit script. A node candisappear in only two ways: Either it is deleted or it is glued. Since K is minimal,m1

5.4. EDGE COVERS AND EDIT SCRIPTS 115is not matched to 	; therefore phaseDel does not generate a delete operation for m01.Furthermore, phaseCpy deletes only nodes produced as a result of a copy operation,and therefore cannot delete m01. In phaseGlu glue operations are produced only foredges with jE(n)j > 1, which excludes m01 from being glued directly. Suppose m01 isglued indirectly due to a glue operation acting on one of its ancestors. If this case,the edge [m1;m01] gets transferred to [m1;m02], where m02 is the node correspondingto m01 in the subtree that is the target of the glue operation; furthermore, we havem02 = partner(n1), so that m02 e�ectively takes the place of m01 in our argument.Thus, [m1; partner(n1)] 2 Kf as needed.If jE(m1)j > 1 and jE(n1)j = 1, partner(n1) is assigned some node m02 inphaseCpy. The node m02 is obtained from the pool of copies of m01, as accountedfor in the set m:F . (The node m02 may be either the original m01, or a copy of m01produced by a copy operation acting on m01 or one of its ancestors.) Since a copy of anode receives copies of all edges incident on the original, [m1;m01] 2 K3, and no nodethat is removed from m:F is ever deleted or glued, it follows that [m1;m02] 2 Kf .Since m02 = partner(n1), we have [m1; partner(n1)] 2 Kf as required.If jE(m1)j = 1 and jE(n1)j > 1, phaseGlu sets partner(n1) to the node m03 where[m3; n1] is the unique (see the discussion of Property 2) edge incident on n1 withrespAnn = annNil, which implies that m03 is never the source of a glue operation.Furthermore, since there are no deletes after glues, m03 2 Tf giving [m1;m03] 2 K 0 asneeded.Thus, we have shown that for every edge in K, there is a corresponding edge inKf . We can argue in the reverse direction in an analogous manner; that is, we canshow that for every edge [m1;m02] 2 Kf , there is an edge [m1; partner(m02)] 2 K.Thus we conclude that K and Kf are isomorphic.Property 4: Minimum Cost: We now show that there can be no edit script withProperties 1{3 above that costs less than the edit script E produced by our algorithm.Let E 0 be any edit script that satis�es Properties 1{3. From the de�nition of aninduced edge cover, it follows that E 0 must produce an insert operation for each edge[�; n1] 2 K; similarly, it must produce a delete operation for each edge [m1;] 2 K.Therefore, E 0 cannot have any fewer insert or delete operations than E. Furthermore

116 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESsince the deletion of a node m02 present in the initial tree T3 produces an edge [m2;]in the induced script, E 0 cannot delete any nodes that are present in the original treeother nodes m0i such that [mi;] 2 K. Similarly, since the insertion of a node m03that remains in the �nal tree Tf results in an edge [�;m03] in the induced cover, E 0cannot insert any nodes that remain in the �nal tree other than those matched tosome node n2 2 T2 such that [�; n2] 2 K. (Thus, the only insert operations that E 0may have that are not in E are ghost inserts; similarly the only delete operations thatE 0 may have that are not in E are ghost deletes.) Let I 02 be the isomorphism betweenT 0f = E 0(T3) and T2.Let us now consider the copy operations produced by the algorithm. From thede�nition of the edge cover induced by an edit script, and from the fact that K(E 0)is isomorphic to K, we have the following: If E(m1) = feigki=1 where ei = [m1; ni],then E 0 must copy m01 (directly or indirectly) at least k � 1 times. Since E 0 performscopy operations before any move operations, the only way an indirect copy of m01can be made is by copying a node m02 such that m2 is an ancestor of m1 in T1.Structured edit scripts cannot delete or glue a node that is either the source of, or isproduced by, a direct copy operation. Therefore, an edit script cannot make unneededcopies of a node for the purpose of creating copies of nodes in its subtree sincethe surplus copies cannot be removed. Therefore, if m01 is a node that is indirectlycopied j times, then there is some m2 2 T1 such that m2 is an ancestor of m1 andjE(m2)j = j + 1. Thus, the number of times a node m01 is copied indirectly isic(m01) = maxfjE(x)j � 1 : anc(x;m1)g. It is easy to see that the algorithm countsexactly ic(m01) + 1 using the set m1:F ; that is, ic(m01) = jm1:F j � 1. Therefore, E 0must produce all the copy operations produced by the algorithm in phaseCpy.Let E be an edit script that transforms T3 to Tf . Let I1 be the isomorphismbetween T1 and T3, and let I2 be the isomorphism between Tf and T2. Let copied(x; y)denote that the node y is produced by copying the node x (directly or indirectly).By considering the e�ect of each edit operation in an edit script on its induced edgecover, we can establish the following result:R1: For all m1 2 T1 and n1 2 T2, [m1; n1] 2 K(E) if and only if one of the fol-lowing holds true: (1) 9m01 2 Tf : I1(m1;m01) ^ I2(m01; n1); (2) 9m01 2 T3;m02 2 Tf :

5.4. EDGE COVERS AND EDIT SCRIPTS 117copied(m01;m02) ^ I1(m1;m01) ^ I2(m02; n1).Let us now considermove operations. The only operations that change the parentof an existing node are move, and interior node insertion and deletion. However, thedeletion of an interior node x changes the parent function in a restricted manner:The new parent of each of its children C(x) is set to x's parent before the deletion.Similarly, the insertion of an interior node y changes the parent function in a restrictedmanner: Each of y's new children are required to be children of y's parent before theinsertion.Consider nodes m01 2 T3 and n1 2 T2 such that I 02(m01; n1). In the working treeTd just after the deletion phase, pd(m01) = nnda(m1)0. Suppose m01 is not moved byE 0; then in the working tree Ti just before the insertion phase, we have pi(m01) =nnda(m1)0 because there are no interior node inserts or deletes between Td and Ti.Case 1: The partner of p(n1) is not inserted; that is, p(n1) = nnia(n1). Isomor-phism requires that I 02(p(m01); p(n1)), that is, I 02(nnda(m1)0; nnia(n1)), which implies[nnda(m1); nnia(n1)] 2 K(E 0), due to R1.Case 2: The partner of p(n1) is inserted; that is p(n1) is a proper descendant ofnnia(n1), and I 02(m02; p(n1)) for some inserted node m02. Let anc(x; y) denote thatx is an ancestor of y. Let m0k be the inserted node such that I2(m0k; nk), whereanc(nk; n1) and p(nk) = nnia(n1). Observe that the truth value of (x; y) 2 anc isnot a�ected by the insertion of a node z 6= x; y. Therefore, our choice of nk andthe fact that I 02 preserves the anc relation implies anc(m0k;m01). Now m0k cannotbe an ancestor of nnda(m1)0 because if it were, nnda(m1)0 would have to match anode between n1 and nnia(n1), which is impossible since only inserted nodes canmatch nodes between n1 and nnia(n1). Furthermore, no node can exist (in thecurrent or any later working tree) between m0k and nnda(m1)0 because such a nodewould have to match a node between nk and p(nk), which is absurd. Therefore,p(m0k) = nnda(m1)0, so that I 02(p(m0k); p(nk)) gives I2(nnda(m1)0; nnia(n1)). UsingR1, we thus have [nnda(m1); nnia(n1)] 2 K(E 0).We have shown that for each pair of nodes m01 2 T3, n1 2 T2 such that I2(m01; n1),if m01 is not moved, [nnda(m1); nnia(n1)] 2 K(E 0). It follows that a move operation isrequired for each edge [m;n] 2 K such that [nnda(m); nnia(n)] 62 K. Thus, for each

118 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESmove operation produced by phaseMov, there must be a corresponding move operationin E 0. Similarly, we can argue that the move operations produced in phaseMovOrCpyor phaseMovOrGlu must also be produced by E 0. (A subtlety is that the choice, ifany, of which surplus copies of a node are to be deleted, and thus which copies areto retained, and moved as needed, is immaterial for the cost of an edit script sinceghost deletions of a node require that all its children be deleted or moved earlier inthe script; an analogous situation exists for ghost insertions.)Let us now consider update operations. Consider an edge [m;n] 2 K such thatm 2 T1, n 2 T2, and l(m) 6= l(n). Using R1, we have one of the following three cases:(1) jE(m)j = jE(n)j = 1 and I 02(m0; n). Clearly this requires an update operationto change the label of m0. (2) jE(n)j = 1, E(m) = f[m;ni]gki=1, and there are knodes x1; : : : ; xk such that xi = m0 _ copied(m0; xi) and I 02(xi; ni). In this case, sincel(xi) = l(m) 6= l(n), we need k update operations to change the labels of xi. (Notethat since copies are done before updates, the label of each xi must be updatedseparately, even if there exist ni; nj; i 6= j such that l(ni) = l(nj).) (3) jE(m)j = 1,E(n) = f[mi; n]gki=1, and all but one of the nodes m0i are glued to some node m0p suchthat I 02(m0p; n). If m = mp, clearly m0 must be updated. If m 6= mp, m0 is glued tom0p, so that m0 must be identical to the label of m0p. Now if l(m0p) = l(n), clearlym0 must be updated. If l(m0p) = l(m0) 6= l(n), we note that both m0p and m0 mustbe updated to l(n) because there can be no updates after a glue operation. Thus, inall cases, we have shown that each edge [m;n] 2 K such that m 2 T1, n 2 T2, andl(m) 6= l(n) necessitates an update operation. By considering the action of previousphases of the algorithm on the partner relation, it is easy to verify these are exactlythe update operations produced by our algorithm in phaseUpd. Thus E 0 has no fewerupdate operations than E.Finally, we can argue using the ideas described above that E 0 must include all theglue and move operations produced by the algorithm in phaseGlu. Thus we concludethat E 0 contains all the edit operations in E, and therefore costs no less than E.

5.5. FINDING THE EDGE COVER 1195.5 Finding the Edge CoverIn this section we describe how mh-diff �nds a minimal edge cover of the inducedgraph. The resulting cover will serve as input to algorithm CtoS (Section 5.4).Our goal is to �nd not just any minimal edge cover, but one that corresponds toa minimum-cost edit script. Let us call such an minimal edge cover the target cover.Consider an edge e in our pruned induced graph. To get to the target cover, mh-diff must decide whether e should be included in the cover. To reach this decision,it would be nice if mh-diff knew the \cost" of e. That is, if e remains in the targetcover, then it would be annotated (by algorithm CtoS) with some operation, and wecould say that the cost of this operation is the cost of e. Unfortunately, we have a\chicken and the egg problem" here: CtoS cannot run until we have the target cover,and we cannot get the target cover until we know the costs it will imply. To breakthe impasse, our approach uses the following idea:Instead of trying to compute the actual cost of e, we compute an upper and lowerbound to this cost. These bounds can be computed without the knowledge of whichother edges are included in the target cover, and serve two purposes: Firstly, theyallow us to design pruning rules that are used to conservatively eliminate unnecessaryedges from the induced graph. Secondly, after pruning, the bounds can guide oursearch for the target cover.As an enhancement, we actually use a variation on the edge cost suggested above.The following example shows that simply \charging" each annotation to the edge itis on is not entirely \fair." We are given a tree T1 containing two nodes, n1 and n2with the same label l. Furthermore n1 has children n11 and n12 with labels a and b,respectively, and n2 has children n21 and n22 with labels c and d, respectively. SupposeT2 is a logical copy of T1. (That is, T1 and T2 are isomorphic.) Consider an edge coverthat matches each node in T1 to its copy in T2 except that it \cross matches" n1 andn2 across the trees, as shown in Figure 5.21. Given this edge cover, algorithm CtoSwill produce a move operation for each of the nodes n11, n12, n21, and n22. However,these move operations were caused not by any mismatching of the nodes n11, n12,n21, or n22, but instead, by the mismatching of n1 and n2. Therefore it would be

120 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES
a

n1

n11 n12 n22n21

n2 n1’

n11’ n12’ n22’

n2’

n0 n0’

mov mov

mov

mov

a

l l

bab a b
n21’

b

m m

llFigure 5.21: Distributing edge costs fairlyintuitively more fair to charge these move operations to the edges responsible for themismatch, viz. [n1; n02] and [n2; n01]. To achieve this, we use the following scheme:If e is annotated with ins, del, or upd in the target cover, we do charge e for thisoperation. However, if e is annotated by mov, cpy, or glu, then the parent of e,and not e is charged. We call the edge costs computed in such a fashion fair costs.In summary, mh-diff �rst computes upper and lower bounds for the fair cost ofeach edge in the pruned induced graph. These bounds are then used to prune edgesin the induced graph, and �nally to search for the target cover. We begin by de�ningthe fair cost of an edge below.5.5.1 An Edge-wise Cost FunctionLet K be an annotated minimal edge cover. For an edge e 2 K, if the annotation on eis mov, cpy, or glu, let cx(e) denote the cost of that operation. If e is annotated withins, del, or upd, then let cs(e) denote the cost of the operation. Furthermore, letE(m) be the set of edges in K that are incident on m, that is, E(m) = f[m;n] 2 Kg.Let C(m) be the set of the children of m. We then de�ne the fair cost of each edge[m;n] 2 K as follows:cK([m;n]) = cs(m;n)+ 12jE(m)j Xm02C(m) X[m0;n0]2K cx([m0; n0])

5.5. FINDING THE EDGE COVER 121+ 12jE(n)j Xn02C(n) X[m0;n0]2K cx([m0; n0]) (5.1)Note that this cost depends on K, and thus is not a function of e alone. Thefollowing lemma states that the above scheme of distributing the cost of an edgecover over its component edges is a sound one; that is, adding up the cost edge-wiseyields the overall cost of the edge cover.Lemma 6 If K is an annotated, minimal edge cover of the graph induced by twotrees, then c(K) = Pe2K cK(e). 2Proof By accounting. Recall that the cost c(K) of an annotated edit script is thesum of the costs of the annotations in K (where the cost of each annotation is equalto the cost of the edit operation it represents). Each annotation in K is on someedge e 2 K. If the annotation is an upd, it is charged (by cK(e)) to the edge e itself.For other annotations, each node of e is charged for half the cost of the annotation.Furthermore, the cost of each node is distributed evenly over all edges e0 2 K incidenton its parent. Since the special edge between the (dummy) roots of the two treesbeing considered is never annotated (without loss of generality), it follows that thetwo methods of accounting for the cost of an annotated edge cover are equivalent. 25.5.2 Bounds on Edge CostsAlthough Lemma 6 suggests a method of distributing the cost of an annotated edgecover (and thus an edit script) over the component edges, the cost of each edgedepends on the other edges present in the edge cover, and is thus not directly usefulfor computing a minimum-cost edge cover. However, we use that distribution schemeto derive upper and lower bounds on the fair cost cK(e) of an edge e over all minimaledge covers K.Intuitively, given that the cost of any upd annotation on an edge is charged tothat edge (by Equation 5.1), a simple choice for the lower bound on the cost of anedge [m;n] is simply the cost cu(m;n) of updating the label m to that of n. However,we can do a little better. In some cases, selecting an edge [m;n] (as part of the edge

122 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREEScover being constructed) may force some of the children m0 of m to be moved to n.In particular, this happens for those children of m0 for which there is no edge thatcould possibly match m0 to a child of n. We call such moves forced moves. In caseswhere we can determine a forced move exists, the cost of a mov is added to the lowerbound cost. However, according to Equation 5.1 not all the cost of a forced movegoes to edge [m;n]. In the worst case, the number of edges incident on m, jE(m)j, islarge, leaving [m;n] with an insigni�cant contribution. However, if jE(m)j is greaterthan 1, we know by Lemma 5 that jE(n)j = 1, so forced moves on the n side wouldcontribute to [m;n]. Thus, we may add the minimum of the second and the thirdterms in Equation 5.1 to the lower bound function.Formally, let E be the set of edges in the induced graph of T1 and T2. (As wewill see later, although E initially includes all edges in the complete bipartite graph,the pruning of edges results in successive reduction of the size of E.) For notationalconvenience, let us also de�ne cw(m;n) to be cu(m;n) if m and n are regular nodes, 0if (m = �)^ (n =), ci if(m = �)^ (n 6=), and cd if (m 6= �)^ (n =). Further,we de�ne the forced move cost, cmf (m0; n) of a node m0 2 T1 with respect to anothernode n 2 T2 as follows: cmf (m0; n) = cm, if 69n0 2 C(n) such that [m0; n0] 2 E, and 0otherwise. The cost cmf (m;n0) is de�ned analogously. The lower bound fair cost, clb,of an edge can then be expressed as follows:clb([m;n]) = cw(m;n)+12 min8<: Xm02C(m) cmf (m0; n); Xn02C(n) cmf (m;n0)9=;For notational convenience in de�ning the upper bound, let us now de�ne a con-ditional move cost, cmc. Intuitively, cmc(m0; n) costs one mov cost unless there is apartner of m0 that is a child of n. Formally, cmc(m0; n) = 0, if 9n0 2 C(n) such that[m0; n0] 2 E, and cm otherwise. The cost cmc(n0;m) is de�ned analogously. Usingreasoning similar to that used for deriving the lower bound cost above, we arrive atthe following de�nition for the upper bound fair cost, cub, of an edge:cub([m;n]) = cw(m;n)

5.5. FINDING THE EDGE COVER 123+ 12 Xm02C(m)(cc(jE(m0)j � 1) + cmc(m0; n))+ 12 Xn02C(n)(cg(jE(n0)j � 1) + cmc(n0;m))Note that both cub(e) and clb(e) can be computed without knowledge of the targetcover. Furthermore, the following lemma states that the above de�nitions of cub(e)and clb(e), are upper and lower bounds, respectively, on the fair cost contributioncK(e) of edge e to any minimal edge cover K that contains e.Lemma 7 Let B = (U; V;E) be the bipartite graph induced by trees T1 and T2. LetB0 = (U; V;E 0), where E 0 � E. Let K denote the collection of all minimal edge coversof B 0. We then have the following inequalities:clb(e) � minK2K cK(e) and cub(e) � maxK2K cK(e) 2Proof Given an edge [m;n] in a minimal edge coverK, the upper bound cost functionassumes the worst possible case. In particular, it assumes that, for each child m0 ofm, a cost of cc and cg, respectively, is incurred for all but one edges incident on m0;the remaining edge is assumed to incur a cost cm for a move. (Recall that we assumethat cpy and glu both cost more than a mov .) The only exception is when thereis an edge [m0; n0] for some child n0 of n; such an edge clearly does not involve amove, and therefore contributes 0 units to the cost. An analogous worst-case scenariois assumed for each child n0 of n. Furthermore, the cost of [m;n] is highest whenjE(m)j = jE(n)j = 1, which is what the upper bound function assumes, resulting inthe overall upper bound.Similarly, the lower bound function assumes the best possible case for each childm0 of m. In particular, it assumes that no cost is incurred on behalf of m0 exceptin those cases where matching m to n would force a child m0 to be moved; in sucha case, a cost contribution of cm is added. Furthermore, note that the cost of anedge [m;n] is lower as E(m) and E(n) are bigger. However, since K is restricted

124 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES
T2

nm
e1

e3
e2

T1Figure 5.22: Applying pruning rulesto be a minimal edge cover, at least one of E(m) and E(n) must be a singleton set(containing just the edge [m;n]), or else there would be a path of length three in K,contradicting Lemma 5. Therefore, the cost of [m;n] includes at least the lower of thetwo costs propagated from each of m, and n. Since this is precisely what the lowerbound function de�nes clb to be, we see that the inequality for clb holds. 25.5.3 PruningWe now use the upper and lower bound functions for the cost of an edge as de�nedabove to introduce the pruning rules we use to reduce the size of the induced graphof the two trees being compared. Let e1 = [m;n] be any edge in the induced graph,as shown in Figure 5.22. Let e2 be any edge incident on m, and let e3 be any edgeincident on n. Intuitively, our �rst pruning rules tries to remove edges with a lowerbound cost that is so high that it is preferable to match each of its nodes using someother edges, given the existence of such edges with a suitably low upper bound cost.Pruning Rule 1 Let Ct = maxfcm; cc; cgg. If clb(e1) � cub(e2) + cub(e3) + 2Ct thenprune e1.Example 5.5.1 To illustrate this rule, consider a tree T1 containing, among others,two childless nodes 1 (label f) and 2 (label g). Similarly, T2 contains childless nodes3 (label g) and 4 (label f), among others. Say the costs cm, cc, and cg are one uniteach, while the update costs are cu(f; g) = 3, and cu(f; f) = cu(g; g) = 0. Let us nowconsider if edge e1 = [1; 3] can be pruned because edges e2 = [1; 4] and e3 = [2; 3]exist. Since the nodes have no children, it is easy to compute clb(e1) = cu(f; g) = 3,cub(e2) = cu(f; f) = 0, and cub(e3) = cu(g; g) = 0. Since Ct = 1, we see that Pruning

5.5. FINDING THE EDGE COVER 125Rule 1 holds and e1 can be safely removed. The intuition is that in the worst case wecan replace e1 by edges e2 and e3. Using the latter edges could introduce at most thecosts cub(e2) and cub(e3), plus the cost of two mov, cpy, or glu operations. The lastfactor can arise, for instance, if node 2 ends up being matched not only to node 3 butto another node in T2. This means that node 2 needs to be copied, which would nothave been necessary if we had kept edge e1 and not used e2. Similarly, the removalof edge e1 may cause an extra glue operation for node 4. However, even in this worstcase scenario, the costs would be less than the cost of updating the label of node 1to that of node 2, so we can safely remove the [1; 2] edge. 2Our second pruning rule (already illustrated in Section 5.3) states that if it is lessexpensive to delete a node and insert another, we do not need to consider matchingthe two nodes to each other. More precisely, we state the following:Pruning Rule 2 If clb(e1) � cd(m) + ci(n) then prune e1.Note that the above pruning rules are simpler to apply if we let e2 and e3 be theminimum-cost edge incident on m and n, respectively. The following lemma tells usthat the pruning rules are conservative:Lemma 8 Let Ep be the set of edges pruned by repeated application of PruningRules 1 and 2. Let K1 be any minimal edge cover of the graph B. There exists aminimal edge cover K2 such that (1) K2 \ Ep = ;, and (2) C(K2) � C(K1). 2Proof The proof is by induction on the cardinality of Ep. When jEpj = 0, the lemmais trivially true. Now assume that the lemma is true whenever jEpj � k, for anyk � 0. We will show that the lemma is also true when jEpj = k+1. Each (successful)application of a pruning rule adds one edge to Ep. Consider the edge e1 that waspruned last. Using the induction hypothesis for E 0p = Ep � fe1g, we can generate anedge cover K 01 such that (1) K 01 [E 0p = ;, and (2) C(K 01) � C(K1).If K 01 does not contain e1, let K2 = K 01. If K 01 contains e1, we modify K 01 to obtainK2 as follows. If e1 was pruned using Pruning Rule 1, then let K2 = K 01 � fe1g [

126 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESfe2; e3g, where e2 and e3 are the edges used in the application of Pruning Rule 1. Else,e1 was pruned using Pruning Rule 2; in this case, letK2 = K 01�fe1g[f[n1;]; [�; n2]g,where e1 = [n1; n2].Clearly, K2 [Ep = ;. Since K 01 is an edge cover of B, and since the only nodesthat could be possibly exposed as a result of removing e1 from K 01 (namely, n1 andn2) are covered by the edges added to K 01 to obtain K2, it follows that K2 is also anedge cover of B. From the de�nition of the pruning rules, and Lemma 7 we see thatC(K2) � C(K 01) � C(K1). 2The pruning phase of our algorithm consists of repeatedly applying PruningRules 1 and 2. Note that the absence of edges raises the lower bound function, andlowers the upper bound function, thus possibly causing more edges to get pruned.Our algorithm updates the cost bounds for the edges a�ected by the pruning of anedge whenever the edge is pruned. By maintaining the appropriate data structures,such a cost-update step after an edge is pruned can be performed in O(nlogn) time,where n is the number of nodes in the induced graph.5.5.4 Computing a Min-Cost Edge CoverAfter application of the pruning rules described above, we obtain a pruned inducedgraph, containing a (typically small) subset of the edges in the original induced graph.In favorable cases, the remaining edges contain only one minimal edge cover. However,typically, there may be several minimal edge covers possible for the pruned inducedgraph. We now describe how we select one of these minimal edge covers.We �rst approximate the fair cost of every edge e that remains after pruning by itslower bound elb(e). (We could have also use the upper bound, or an average of bothbounds, since this is only an estimate.) Then, given these constant estimated costs, wecompute a minimum-cost edge cover by reducing the edge cover problem to a bipartiteweighted matching problem, as suggested in [PS82]. Since the weighted matchingproblem can be solved using standard techniques, we do not present the details inthis chapter, noting only that given a bipartite graph with n nodes and e edges, theweighted matching problem can be solved in time O(ne). For our application, e is

5.6. IMPLEMENTATION AND PERFORMANCE 127the number of edges that remain in the induced graph after pruning.5.6 Implementation and PerformanceIn this section, we describe our implementation of mh-diff, and discuss its analyticaland empirical performance. Figure 5.23 depicts the overall architecture of our imple-mentation, with rectangles representing the modules (numbered, for reference) of theprogram, and other shapes representing data. Given two trees T1 and T2 as input,Module 1 constructs the induced graph (Section 5.3.1). This induced graph is nextpruned (Module 2) using the pruning rules of Section 5.5.3 to give the pruned inducedgraph. In Module 2, the update cost for each edge in the induced graph is computedusing the domain-dependent comparison function for node labels (Section 5.2.2). Thenext three modules together compute a minimum-cost edge cover of the pruned in-duced graph using the reduction of the edge cover problem to a weighted matchingproblem [PS82]. That is, the pruned induced graph is �rst translated (by Module 3)into an instance of a weighted matching problem. This weighted matching problemis solved using a package (Module 4) [Rot] based on standard techniques [PS82]. Theoutput of the weighted matching solver is a minimum-cost matching, which is trans-lated by Module 5 into K0, a minimum-cost edge cover of the pruned induced graph.Next, Module 6 uses the minimum-cost edge cover computed, to produce the desirededit script, using the method described in Section 5.4.2).Recall that since we use a heuristic cost function to compute a minimum-cost edgecover, the edge cover produced by our program, and hence the edit script may notbe the optimal one. We have also implemented a simple search module that startswith minimum-cost edge cover K0 (see Figure 5.23) computed by our program andexplores its neighborhood of minimal edge covers in an e�ort to �nd a better solution.The search proceeds by �rst exploring minimal edge covers that contain only one edgenot in K0. Next, we explore minimal edge covers containing two edges not in K0, andso on. The intuition is that we expect the optimal solution to be \close" to the initialsolution K0. Although, in the worst case, such an exploration may be extremelytime-consuming, note that as a result of pruning edges, the search space is typically

128 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES
wt.

matching
problem

(3) Edge cover
to wt. match

Translator

(4) weighted

solver

matching Induced
Pruned

Graph

costmin-
matching

(5) Matching
to cover

translator
edge cover
min-cost

K0

T1

(6)
Cover to

Script

Edit Script

Builder
Graph

Graph
Induced

(1) Induced
(2) Pruner

T2

Figure 5.23: System Architecturemuch smaller than the worst case.We have used our implementation to compute the di�erences between query resultsas part of the Tsimmisand C3projects at Stanford [CGMH+94, CGL+97]. Theseprojects use the oemdata model, which is a simple labeled-object model to representtree-structured query results. In particular, we have run our system on the outputof Tsimmisqueries over a bibliographic information source that contains informationabout database-related publications in a format similar to BibTeX. Since the datain this information source is mainly textual, we treat all labels as strings. For thedomain-dependent label-update cost function, we use a weighted character-frequencyhistogram di�erence scheme that compares strings based on the number of occurrencesof each character of the alphabet in them. For example, consider comparing thelabels \foobar" and \crowbar." The character-frequency histograms are, respectively,(a : 1; b : 1; f : 1; o : 2; r : 1) and (a : 1; b : 1; c : 1; o : 1; r : 2; w : 1). The di�erence histogramis (c :�1; f : 1; o : 1; r :�1; w :�1). Adding up the magnitudes of the di�erences givesus 5, which we then normalize by the total number of characters in the strings (13),

5.6. IMPLEMENTATION AND PERFORMANCE 129and scale by a parameter (currently 5), to get the update cost (5=13) � 5 = 1:9.Let us now analyze the running time of our program. Let n be the total numberof nodes in both input trees T1 and T2. Constructing the induced graph (Module 1,in Figure 5.23) involves building a complete bipartite graph with O(n) nodes on eachside. We also evaluate the domain-dependent label-comparison function for each pairof nodes, and store this cost on the corresponding edge. Thus, building the inducedgraph requires time O(kn2), where k is the cost of the domain-dependent comparisonfunction. Next, consider the pruning phase (Module 2). By maintaining a priorityqueue (based on edge costs) of edges incident on each node of the induced graph, thetest to determine whether an edge may be pruned can be performed in constant time.If the edge is pruned, removing it from the induced graph requires constant time,while removing it from the priority queues at each of its nodes requires O(logn) time.When an edge [m;n] is pruned, we also record the changes to the costs cmc(m; p(n)),cmc(n; p(m)), cmf (m; p(n)), and cmf (n; p(m)), which can be done in constant time.Thus, pruning an edge requires O(logn) time. Since at most O(n2) are pruned, thetotal worst case cost of the pruning phase is O(n2logn). Let e be the number of edgesthat remain in the induced graph after pruning. The minimum-cost edge cover iscomputed in time O(ne) by Modules 3, 4, and 5. The computation of the edit scriptfrom the minimum-cost edge cover can be done in O(n) time by Module 6. (Notethat the number of edges in a minimal edge cover is always O(n).)The number of edges that remain in the induced graph after pruning (denotedby e above) is an important metric for three main reasons. Firstly, as seen above,a lower number of edges results in faster execution of the minimum-cost edge coveralgorithm. Secondly, a smaller number of edges decreases the possibility of �ndinga suboptimal edge cover, since there are fewer choices that need to be made by thealgorithm. Thirdly, having a smaller number of edges in the induced graph reducesexponentially the size of the space of candidate minimal edge covers that the searchmodule needs to explore.Given the importance of the metric e, we have conducted a number of experi-ments to study the relationship between e and n. We start with four \input" treesrepresenting actual results of varying sizes from our Tsimmissystem. For each input

130 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES
0100200300400500600700 0 50 100 150 200 250Edgesafterpruning(e) Number of nodes (n)10% edits: 3333333 33333320% edits: +++++++ +++ +++n2n=2Figure 5.24: E�ectiveness of pruningtree, we generate a batch of \output" trees by applying a number of random edits.The number of random edits is either 10% or 20% of the number of nodes in the inputtree. Then for each output tree, we run mh-diff on it and its original input tree. Theresults are summarized by the graph in Figure 5.24. The horizontal axis indicates thetotal number of nodes in the two trees being compared (and hence, in the inducedgraph). The vertical axis indicates the number of edges that remain after pruningthe induced graph. Note that the ideal case (best possible pruning) corresponds toe = dn=2e, since we need at least dn=2e edges to cover n nodes, whereas the worstcase is e = n2 (no pruning at all). For comparison, we have also plotted e = n=2 ande = n2 on the graph in Figure 5.24. We observe that the relationship between e andn is close to linear, and that the observed values of e are much closer to n=2 than ton2. Note that in Figure 5.24 we have plotted the results for two di�erent values of d,the percentage of random edit operations applied to the input tree. We see that, fora given value of n, a higher value of d results in a higher value of e, in general. Wenote that some points with a higher d value seem to have a lower value of e than thegeneral trend. This is because applying d random edits is not the same as having theinput and output trees separated by d edits, due to the possibility of redundant editoperations. Thus, some data points, even though they were obtained by applying drandom edits, actually correspond to fewer changes in the tree.

5.7. SUMMARY 131We have also studied the quality of the initial solution produced by mh-diff.In particular, we are interested in �nding out in what fraction of cases our methodproduces suboptimal initial solutions, and by how much the cost of the suboptimalsolution exceeds that of the optimal. Given the exponential (in e) size of the searchspace of minimal edge covers of the induced graph, it is not feasible to try exhaus-tive searches on large datasets. However, we have exhaustively searched the spaceof minimal edge covers, and corresponding edit scripts, for smaller datasets. We ran50 experiments, starting with an input tree T1 derived as in the experiments for eabove, and using 6 randomly generated edit operations to generate an output tree.We searched the space of minimal edge covers of the pruned induced graph exhaus-tively for these cases, and found that the mh-diff initial solution di�ered from theminimum-cost one in only 2 cases out of 50. That is, in 96% of the cases mh-difffound the minimum-cost edit script, and of course it did this in much less time thanthe exhaustive method. In the two cases where mh-diff missed, the resulting scriptcost about 15% more than the minimum cost possible.5.7 SummaryIn this chapter, we studied the problem of detecting changes from snapshots of struc-tured or semistructured data that is represented using unordered trees. As in Chap-ter 4, we formalized this problem as the problem of computing a minimum-cost editscript that transforms one tree to another. However, the edit scripts studied in thischapter consist not only of operations that insert and delete nodes, update labels, andmove subtrees, but also of operations that copy, and uncopy subtrees. Further, unlikethe algorithms presented in Chapter 4, the work described in this chapter does notassume that the input trees have special properties such as layering. These changesto the problem de�nition, along with the fact that detecting changes in unorderedtrees is provably harder than the analogous problem of ordered trees, required us torethink our strategy for solving the change detection problem.Although the subtree operations of move, copy and uncopy are intuitive to use,they may often be interleaved in a complex manner to produce unintuitive results.

132 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREESWe illustrated such unintuitive edit scripts and described the di�culties they pose. Inorder to overcome these di�culties, we de�ned a structured edit script, in which theinterleaving of di�erent types of edit operations is restricted. We described howstructured edit scripts allow us to bene�t from the advantages of our expressivesubtree operations while avoiding troublesome sequences of edit operations.We de�ned the induced graph of two trees, and described the correspondencebetween minimal edge covers of this graph and structured edit scripts between thetwo trees. We presented an algorithm that uses this correspondence to compute aminimum-cost edit script. Since the problem is NP-hard, our algorithm uses heuristicsto produce a good initial solution, followed by an optional search for better solutions.In practice, we have found that the initial solutions generated by our method are oftenoptimal or close to optimal, allowing us to skip the search step. In Chapter 9, westudy the performance of our method in more detail. In the next chapter, we studyan alternate approach to avoiding the problems caused by arbitrary interleaving ofsubtree operations such as move, copy, and uncopy. In particular, we present adeclarative speci�cation of di�erences between trees that leads to simpler algorithmsfor change detection.

Chapter 6Parallel TransformationsIn Chapter 5 we presented techniques for computing di�erences between snapshotsof data represented using unordered trees. We described the problems caused by editscripts that combine edit operations on subtrees in a complex manner, yielding unin-tuitive results. In that chapter, we addressed these problems by de�ning structurededit scripts that restrict the interleaving of di�erent types of edit operations. In thischapter, we explore an alternate method of overcoming the problem of unintuitiveinterleaving of edit operations: using a di�erent model of tree transformation. Unlikethe edit script model, which transforms trees procedurally by applying the operationsin an edit script in sequence, this model transforms trees declaratively by functionallyspecifying the result of applying a transformation to a tree. Informally, we may thinkof this model as applying the edit operations in parallel. In addition to being moreelegant than the restrictions required by structured edit scripts, this new model alsoresults in simpler algorithms for �nding a minimum-cost transformation between twotrees. A slight drawback of this model is that it is often di�cult for a person tounderstand the e�ect of a single edit operation independently of the other operationsin the transformation. However, in many cases this drawback is not a signi�cantproblem and is outweighed by the advantages.133

134 CHAPTER 6. PARALLEL TRANSFORMATIONS6.1 Introduction and OverviewAs in Chapter 5, we study the problem of comparing rooted, unordered, labeled trees,such as those depicted in Figure 6.1. These trees may represent, for example, listingsfrom a Web database containing information about movies. As in earlier chapters,tree nodes are represented by circles; each node has a label, indicated next to it, andan identi�er, indicated inside the circle. In our Web example, the label of node 3 mayrepresent a section heading, and its child nodes the paragraphs in the section. Recallfrom Chapters 4 and 5 that we use node identi�ers for notational convenience only;we do not assume that these identi�ers are object-identi�ers or keys that can be usedto match nodes in one tree with those in the other. (However, in cases where suchobject identi�ers or keys exist, we can take advantage of them.)Figure 6.1(a) also illustrates how changes to a tree T1 can be represented by alinear edit script, such as those we studied in Chapters 4 and 5: E1 = (cpy(5; 2),cpy(4; 6), mov(4; 5)). Recall that such a script is a sequence of edit operations thattransforms T1 into T 01. For example, the �rst operation in our script, cpy(5; 2), makesa copy of the T1 node 5, and places it under node 2. The new node has a newidenti�er, in this case 6. The edit operations commonly used in the literature arenode insertion, node deletion, and node relabeling. Here, as in Chapter 5, we extendthis set of edit operations by adding the subtree operations move, copy, and uncopy(or glue). As argued in Chapter 5, these operations allow us to express changes moresuccintly than is possible using only the three traditional operations. For example,when comparing structured documents, saying that a paragraph was moved is morehelpful than saying that the sentences in the paragraph were deleted and then insertedsomewhere else.As in earlier chapters, our goal is to �nd a compact representation of the changesbetween two trees. If we use linear edit scripts, our goal is to �nd a \minimum-cost"script that transforms the �rst tree into one that is isomorphic to the second. Weassign costs to operations and look for a minimum-cost script to ensure that the scriptdoes not do more work than needed. Unfortunately, this method of describing changesusing linear edit scripts has several problems when used with subtree operations such

6.1. INTRODUCTION AND OVERVIEW 135
2 cb 3

1a

d 6 5d4b

7b
(b)

2 cb 3

4bd 6 5d

cpy(4,6)

mov(4,5)

cp
y(

5,
2) 2 cb 3

4 5b d

1a

1a

2 cb 3

1

d 6 5d

7 4b

T1 a

b

T1’

2 cb 3

4 5b d

1a
cb

d d

b b

T1 T2a+ -
51

52

53

54

55

56

57

(a)Figure 6.1: Applying a linear edit script.as moves and copies.The �rst problem is that it is di�cult to understand an edit operation on itsown, because its e�ect depends on the operations preceding it in the edit script.For example, consider the following edit script applied to T1 in Figure 6.1(a): E2 =(mov(4; 5); cpy(5; 2)). If we focus on the copy operation, we would intuitively expectit to produce a copy of node 5, with node 2 as the parent. However, because of thepreceding move, the copy actually produces a copy of both nodes 4 and 5. In fact,E2 has the same e�ect as the script E1 discussed earlier. This equivalence is not clearfrom the edit scripts themselves; we need to actually apply the edit scripts to discoverit. Another problem with the linear edit script model is that it may result in veryunintuitive edit scripts. For example, consider structured documents, and supposethe cost of a copy operation is 5 units, while the cost of a move operation is 1 unit.Consider now a script that moves the subtree rooted at a node n1 to below anothernode n2, copies the subtree rooted at n2 (thus also making a copy of the n1 subtree),and then moves both the original and the copy of the subtree rooted at n1 to otherlocations. We observe that the sole purpose of the initial move operation is to geta \free" copy of the subtree at n1, thus reducing the overall cost of the edit script.However, this \trick" is not very intuitive in the application context: If n1 and n2represent paragraphs, the above script says that paragraph n1 is temporarily movedunder n2, not because n1 is at all related to n2, but simply to make it cheaper to

136 CHAPTER 6. PARALLEL TRANSFORMATIONSmake the copies we eventually need of n1 that will go elsewhere.In this chapter we present a novel method to represent changes and to comparetrees that avoids these problems. The intuitive idea is to apply edit operations \inparallel" as opposed to in sequence. That is, we apply a set of edit operations, calleda transformation, to a tree by �rst disassembling the given tree into \chunks," thenoperating on each chunk independently, and �nally reassembling the resulting chunksto get the �nal tree. (In Section 6.2 we describe our model in detail.) Our model isfree from the the unintuitive artifacts resulting from the interdependencies betweenedit operations in the linear edit script model. Even more importantly, searchingfor a minimum-cost parallel transformation is simpler than searching for a minimum-cost edit script (when moves and copies are allowed). This simplicity is becausethe essential information in a transformation, including its cost, can be compactlyrepresented in a signature. Thus, we can search for a minimum-cost signature andthen map it back to the corresponding transformation. In this chapter we showhow signatures are constructed, and how they map to transformations. The mappingbetween signatures and transformation is independent of the cost model used, makingour methods for detecting changes useful in diverse application domains.The idea of working with signatures is widely used in the literature of di�erencingalgorithms, in various forms (such as \traces" or matchings) [WF74, Mye86, ZS89,Yan91]. However, the introduction of move and copy operations makes it hard torecover a script from a signature, and this makes it di�cult to detect changes usingsignatures. To illustrate some of these di�culties, Figure 6.1(b) shows the \tradi-tional" signature of the edit script in Figure 6.1(a). The trees T1 and T2 representthe initial and �nal trees (respectively) from Figure 6.1(a). However, note that nodeidenti�ers in T2 are di�erent from those in T 01 (and T1) because we do not know yethow T2 was obtained from T1. Intuitively, the signature is a relation (dashed lines)that maps each node in T2 to the node or nodes in T1 from which it is \derived." Forexample, if nodes n1; n2 2 T2 are copies of a common node m 2 T1, the signaturemaps m to both n1 and n2. Deleted T1 nodes are mapped to a special node 	 , whileinserted T2 nodes are mapped to a special node �. In our sample script, there wereno inserts or deletes, so the signature just links 	 to �. (More formally, the signature

6.1. INTRODUCTION AND OVERVIEW 137is a minimal edge cover of the complete T1, T2 bipartite graph; see Section 6.3.)If our search for a minimum-cost signature yields the signature of Figure 6.1(b), itis hard to recover the corresponding minimum-cost edit script. In particular, we notethat since there are two dashed edges incident on nodes 4 and 5, we may concludethat these nodes were copied by the edit script. Similarly, since node 4 does nothave a \partner" (by dashed edges) whose parent matches the parent of node 4,we may conclude that node 4 is moved. With some bookkeeping, this reasoningrecovers the original edit script E1 = (cpy(5; 2); cpy(4; 6);mov(4; 5)): Unfortunately,this edit script is not a minimum-cost edit script (assuming, say, unit costs for editoperations); the edit script E2 = (mov(4; 5); cpy(5; 2)) achieves the same result withone fewer operation. By moving node 4 to under node 5 before node 5 is copied,we get a \free" copy of node 4. Thus, to recover the minimum-cost edit script fromthe signature we would need to consider all such possibilities of saving operations by\piggy-backing" them on others. As we will see, our parallel transformation modeldoes not have these problems: it is easy to recover a minimum-cost transformationfrom a signature, making the search for a minimum-cost transformation e�cient andsimple.In summary, our main contributions in this chapter are the following:� We present a novel model for tree transformations that permits expressive op-erations such as subtree move and copy and avoids the problems caused byarbitrary interleaving of such operations in a linear edit script model.� We describe how the essential features of transformations in this model arecaptured using representative signatures, and describe how these signaturessimplify algorithms for �nding a minimum-cost transformation between twotrees.� We present algorithms for mapping transformations to signatures and vice-versa, and describe techniques for computing signatures that produce goodtransformations.The rest of this chapter is organized as follows. We �rst de�ne our model oftree transformations in Section 6.2 below. In Section 6.3, we de�ne the signature

138 CHAPTER 6. PARALLEL TRANSFORMATIONSof a transformation, and formalize the manner in which it succinctly captures theessence of a transformation by proving our main results of this chapter, Theorems 5and 6. Section 6.4 presents the application of these ideas by describing methods forcomputing a desirable signature for two given trees, and Section 6.5 summarizes thischapter.6.2 Transformation ModelLet N be a domain of node identi�ers, and let L be a domain of labels. A rooted,unordered, labeled tree T is a 4-tuple (N; r; p; l), where N � N is called the set ofnodes in T , r 2 N is a distinguished node, called the root of T , p : N � frg ! Nis a cycle-free function called the parent function of T , and l : N ! L is called thelabel function of T . (By cycle-free, we mean pk(n) 6= n for any n 2 N and k > 0.)Henceforth in this chapter, by trees we mean rooted, unordered, labeled trees.In our model, a transformation is a set of edit operations (de�ned below). Eachedit operation in a transformation has a unique identi�er. In what follows, we oftenneed a way to refer to nodes produced by insertion or copy operations. (For example,we may wish to update a node produced by a copy operation.) We use node handlesfor this purpose. In particular, we use the following notation for node handles: f(n,i),where n 2 N and i 2 Z+, refers to the copy of node n produced by the copy operation(with identi�er) i; f(0,i) refers to the node produced by insertion operation i; f(n,0)refers to the node n. We denote the set of all node handles by H. (Here and in therest of this chapter, we use type font to represent literal strings, and italics torepresent non-literals.) The edit operations on trees are introduced below, along withan informal description of their e�ect; the formal de�nition follows as De�nition 6.2.3.Delete: del(h, j), where h = f(n,0) for n 2 N . Intuitively, this edit operationdeletes the node n. (As we shall see later in De�nition 6.2.2, the children of nare either deleted, moved, or glued.) In this and the following edit operations,the last argument j 2 Z+ is a unique identi�er of the edit operation; for brevity,j is often omitted when not needed.

6.2. TRANSFORMATION MODEL 139Insert: ins(h, l, j), where h 2 H, l 2 L, and j 2 Z+. Intuitively, this editoperation inserts a node with parent (the node corresponding to) h and label l.(The newly created node has handle f(0,j).)Update: upd(h, l, j), where h 2 H, l 2 L, and j 2 Z+. Intuitively, this editoperation changes the label of node h to l.Move: mov(h1, h2, j), where h1 = f(n,0) for n 2 N , h2 2 H, and j 2 Z+.Intuitively, this edit operation moves the chunk (de�ned below) rooted at n,making h2 its new parent.Copy: cpy(h1, h2, j), where h1 = f(n,0) for n 2 N , h2 2 H , and j 2 Z+.Intuitively, this edit operation copies the chunk rooted at n, making h2 theparent of the copy.Glue: glu(h1, h2, j), where h1 = f(n1,0) for n1 2 N , h = f(n2,0) for n2 2 N ,and j 2 Z+. Intuitively, glue is the inverse of a copy operation; it causes thechunk rooted at n1 to disappear by \gluing" it over the chunk rooted at n2.As noted in Section 6.1, the �rst step to applying a transformation is the dis-assembly of the given tree into \chunks." Chunks, or disassembly components (seebelow), are produced by breaking up the tree at every node that is \operated on" byan edit operation. The break up points are called disassembly points.De�nition 6.2.1 Given a tree T = (N; r; p; l) and a transformation F , we de�ne theset of disassembly points, dp(T;F), as follows:dp(T;F) = fn 2 N j n = r _ 9 del(f(n; 0)) 2 F _9 mov(f(n; 0); h) 2 F _ 9 cpy(f(n; 0); h) 2 F _9 glu(f(n; 0); h) 2 F _ 9 glu(h; f(n; 0)) 2 FgWith reference to a transformation F applied to a tree T , we de�ne the nearestdisassembly ancestor nda(n; T; F) of a node n 2 N to be the nearest (not necessarilyproper) ancestor of n that belongs to dp(T;F). Further, the disassembly component(\chunk") of n is de�ned as dc(n; T; F) = fn0 2 N j nda(n0) = nda(n)g. 2

140 CHAPTER 6. PARALLEL TRANSFORMATIONSWhen discussing a given tree and transformation, we abbreviate nda(n; T; F) bynda(n), and dc(n; T; F) by dc(n). Not every transformation as de�ned above can beapplied to a given tree. Given a tree T and a transformation F , we de�ne the notionof validity of F over T as follows.De�nition 6.2.2 A transformation F is said to be valid for a tree T = (N; r; p; l) ifthe following conditions hold.1. The transformation F is well-formed ; that is, the following hold:(a) Identi�ers of edit operations in F are unique.(b) For each node handle f(n; 0) appearing in F : n 2 N .(c) For each f(0; i) in F : ins(h; l; i) 2 F for some h 2 H and l 2 L.(d) For each f(n; i) in F with i > 0: n 2 N , and cpy(f(nda(n); 0); h; i) 2 Ffor some h 2 H.(e) If mov(f(n1; 0); f(n2; 0)) 2 F , then n1 is not an ancestor of n2 in T .(f) For each glu(f(n1; 0); f(n2; 0); i) 2 F , there exists an isomorphism gi be-tween dc(n1) and dc(n2). More precisely, there exists a function gi :dc(n1) ! dc(n2) that is one-to-one, onto, preserves the parent functionp, and \preserves labels" in the sense that gi(x) = y implies the following:If upd(x; l) 2 F then either l(y) = l or upd(y; l) 2 F ; else either l(y) = l(x)or upd(y; l(x)) 2 F .2. For each node n in T , at most one of the following types of edit operations isin F : del(f(n; 0)), cpy(f(n; 0); n0), glu(f(n; 0); h), and glu(h; f(n; 0)). Further,for each n 2 T , there is at most one operation of the form del(f(n; 0)), at mostone operation of the form mov(f(n; 0); h), and at most one operation of theform glu(f(n; 0); h) in F . Finally, no node is updated more than once.3. If F contains del(f(nda(p(n)); 0)) or glu(f(nda(p(n)); 0); h) (for some n), thenone of del(f(n; 0)), mov(f(n; 0); h), and glu(f(n; 0); h) is in F . 2

6.2. TRANSFORMATION MODEL 141The last condition in the above de�nition is not strictly necessary, but is used tomake deletes (respectively, glues) more symmetrical to inserts (respectively, copies).Since any children of inserted (copied) nodes need to be inserted, moved, or copiedto that location, we require that any children of a deleted (respectively, glued) nodebe deleted, moved, or glued.For ease of explanation, we henceforth assume, without loss of generality, that noedit operation acts on the root of a tree. (We can always add an arti�cial root toany tree to ensure this property holds.) We are now ready to de�ne the tree F (T)obtained by applying a transformation F to a tree T . Intuitively, we start with aworking copy T 0 of T , and break T 0 into chunks (i.e., the disassembly componentsde�ned above). Nodes deleted by F are removed. Next, copy, update, glue, and moveoperations in F are applied to the chunks of T 0. Nodes corresponding to insertionoperations in F are created. Finally, the chunks are reassembled to yield the treeF (T). Formally, we de�ne F (T) as follows:De�nition 6.2.3 Given a tree T = (N; r; p; l) and a transformation F valid for T ,the result of applying the transformation F to T is a tree F (T) = (N 0; r0; p0; l0) whereN 0, p0, r0, and l0 are de�ned below. In the following, we use a skolem functionf 0 : N �Z !N such that f 0(n; i) intuitively represents the node in T 0 referenced bythe node handle f(n, i) in F .N 0 = ff 0(n; 0) j n 2 N; del(f(n; 0)) 62 F; glu(f(nda(n); 0); h) 62 Fg[ff 0(0; i) j ins(h; l; i) 2 Fg[ff 0(n; i) j cpy(f(nda(n); 0); h; i) 2 Fgr0 = f 0(r; 0)p0(f 0(0; i)) = f 0(n2; j); where ins(f(n2; j); l; i) 2 Fp0(f 0(n; 0)) = f 0(n2; i); if mov(f(n; 0); f(n2; i)) 2 Ff 0(p(n); 0); otherwisep0(f 0(n; i)) = f 0(n2; j); if cpy(f(n; 0); f(n2; j); i) 2 Ff 0(p(n); i); otherwise

142 CHAPTER 6. PARALLEL TRANSFORMATIONS
2 cb 3

4 5b d

1a *

* *

F(T)

2 cb 3

1a 4b 5d

db

3 3
5

T

6

7 6

2

disassemble reassembleoperate on "chunks"

2 cb 3

1a

d 6 5d

7b 4bFigure 6.2: Applying the transformation in Example 6.2.1l0(f 0(0; i)) = l1; where ins(h; l1; i) 2 Fl0(f 0(n; i)) = l1; if upd(f(n; i); l1) 2 Fl(n); otherwise 2Example 6.2.1 Consider the tree T depicted in Figure 6.2, and the following trans-formation F : fmov(f(4; 0), f(5; 0)), cpy(f(4; 0); f(5; 101)), cpy(f(5; 0); f(2; 0); 101)g.The disassembly points of T by F are marked by an asterisk; they are, intuitively, thenodes in T that are acted on by edit operations in F (in addition to the root). The treeT 's disassembly components also shown in the �gure; the stubs on the nodes indicatethe parent of the chunk. The results of applying the operations in F to the chunksare indicated using dashed lines. In particular, the operation mov(f(4; 0); f(5; 0))results in the parent of the chunk rooted at node 4 to change from node 3 to node 5.The operation cpy(f(5; 0); f(2; 0); 101) results in the duplication of the chunk rootedat node 5, producing a new node with identi�er 6. (Thus, by our node handle no-tation, 6 = f(5; 101).) Similarly, operation cpy(f(4; 0); f(5; 101)) results in a copyof the chunk rooted at node 4. Note that the parent of the copy is node 6 becausef(5; 101) = 6. Finally, the tree F (T) obtained by reassembling the chunks (using thestubs) is also shown.Note that the result of applying transformation F to tree T is independent ofthe order in which the edit operations in F are applied. For example, if we hadconsidered applying the move operation after both copy operations, the result wouldbe the same as above. Thus we can intuitively understand the e�ect of each edit

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 143operation on the chunks without worrying about the actions of other edit operationsin the transformation. For example, we do not have to worry about a copy operationacting on a chunk resulting in surreptitious copies of other chunks (due to thosechunks �rst being moved to below the copied chunk), as is the case when using thelinear edit scripts described in Section 6.1. 2Recall (from Section 6.1) that we are interested in �nding a minimum-cost trans-formation between two given trees. We de�ne the cost of a transformation to be thesum of the costs of its constituent edit operations. The cost of each edit operation isgiven by some application dependent function. For example, in an application com-paring structured documents, the cost of updating (tree nodes representing) wordswould depend on how similar the old and new values are. Thus updating \cat" to\cats" may cost 0.1 unit, while updating \cat" to \dinosaur" may cost 2 units. Wedo not discuss details of the cost model in this work, since our main results do notdepend on them.6.3 Representative Signatures of TransformationsIn Section 6.1 we introduced signatures as a concise representation of the essentialinformation in a transformation. In particular, given a signature S of a transforma-tion F , one can easily recover a transformation F 0 that is essentially identical to F .Signatures satisfying this property are called representative signatures, and they areuseful tools for computing a minimum-cost transformation. (Searching in signaturespace is more convenient than searching in the space of all possible transformations.)Below, we �rst de�ne the signature S(F; T) of a transformation F applied to a tree T .We then describe how to recover from S(F; T) a transformation F 0 that is essentiallyidentical to F (as indicated by Theorems 5 and 6), thus showing that our signaturesare representative.Intuitively, we may think of generating signatures by using the following proce-dure: We start with the given tree T and a tree T 0 that is isomorphic to T . We createsignature edges (as distinguished from tree edges) connecting each node in T to itspartner in T 0 (based on the isomorphism). We apply the transformation F to T 0,

144 CHAPTER 6. PARALLEL TRANSFORMATIONSupdating our set of signature edges in the process as follows: When a node is deleted,signature edges incident on it are redirected to 	; similarly, we introduce signatureedges connecting inserted nodes to �. When a subtree is copied, we connect the copyc of a node n to all the nodes to which n is connected; glues are handled analogously.Moves and updates do not a�ect the set of signature edges. We are then left with a setof signature edges connecting nodes in T to nodes in the transformed T 0. Formally,we have the following de�nition for signatures:De�nition 6.3.1 Let F be a transformation that is valid for a tree T = (N; r; p; l),and let F (T) = (N 0; r0; p0; l0).. We de�ne the signature of F on T to be a relationS(F; T) � (N [f�g)�(N 0[f	g) as follows. The function f 0 is from De�nition 6.2.3,the function gj is from De�nition 6.2.2, and � and 	 are distinguished reserved nodesin N .S(F; T) = f(�; f 0(0; i)) j ins(h; l; i) 2 Fg[f(n;) j del(f(n; 0)) 2 Fg[f(n; f 0(n; i)) j n 2 F; cpy(f(nda(n); 0); h; i) 2 Fg[f(n; f 0(n0; 0)) j n 2 F; glu(f(nda(n); 0); h; j) 2 F; gj(n; n0)g[f(n; f 0(n; 0)) j n 2 F; del(f(n; 0)) 62 F; glu(f(nda(n); 0); h) 62 Fg[f(�;) j 6 9ins(: : :) 2 F _ 6 9del(: : :) 2 Fg 2We de�ne the induced graph of two trees T1 = (N1; r1; p1; l1) and T2 = (N2; r2; p2; l2)to be the complete bipartite graph IG(T1; T2) = (U; V; U � V), where U = N1 [f�gand V = N2 [f	g. In general, signatures are edge covers of the induced graph.However, we will now show that we can restrict our attention to minimal edge covers,de�ned below:De�nition 6.3.2 Given a bipartite graph B = (U; V;E), with distinguished nodes� 2 U and 	 2 V , a set K � E is called an edge cover of B if each node in U [V isincident on at least one edge in K. The set K is said to be a minimal edge cover if

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 145it is an edge cover that (1) does not contain any paths of length three, and (2) doesnot contain any paths of length two ending at � or 	. 2Note that above de�nition implies that no proper subset of a minimal edge coveris an edge cover. The following lemma shows that for any tree T and valid transfor-mation F , S(F; T) is a minimal edge cover of IG(T;F (T)).Lemma 9 For any transformation F valid for a tree T , S(F; T) is a minimal edgecover of IG(T;F (T)). 2Proof Let us �rst show that each node in IG(T;F (T)) is incident on at least oneedge in S(F; T). If there is an insert operation in F , then [�; f 0(0; i)] 2 S(F; T); ifnot, [�;] 2 S(F; T). Thus, � is covered by S(F; T). An analogous argument holdsfor 	. Now consider any node n 2 T . If del(f(n; 0)) 2 F , then [n;] 2 S(F; T); elseif glu(f(n; 0); f(n0; 0)) 2 F , then [n; f 0(n0; 0)] 2 S(F; T); else [n; f 0(n; 0)] 2 S(F; T).Thus, in all cases n is covered by S(F; T). Now consider a node n0 2 T 0. If n0 = f 0(0; i),then ins(h; l; i) 2 F , implying [�; n0] 2 S(F; T); else if n0 = f 0(n; 0), then (fromDe�nition 6.2.3) del(f(n; 0)) 62 F and glu(f(n; 0); h) 62 F implying [n; n0] 2 S(F; T);else n0 = f 0(n; i) for i > 0, implying cpy(f(n; 0); h; i) 2 F so that [n; n0] 2 S(F; T).Thus, in all cases n0 is covered by S(F; T). We have thus shown that each node inIG(T;F (T)) is covered by S(F; T).Let us now show that S(F; T) is a minimal edge cover of IG(T;F (T)). We �rstshow that there is no path of length two ending at � or 	. Consider an edge [�; n0].From De�nition 6.3.1, it follows that n0 = f 0(0; i), for some edit operation identi�er i.Using the uniqueness of edit operation identi�ers, we see that there can be no otheredge incident such a node n0. Thus there are no paths of length two terminating at�. An analogous argument shows that there are no paths of length two terminatingat 	.We now show that there are no paths of length three in S(F; T). Let, if possible,n1; n2; n3; n4 be a path of length three in S(F; T) such that n1 2 T , implying n2 2F (T), n3 2 T , and n4 2 F (T). Since we have shown that there are no paths of lengthtwo incident on � or	, it follows that ni 6= �;	, for i = 1 : : : 4. FromDe�nition 6.3.1,

146 CHAPTER 6. PARALLEL TRANSFORMATIONSwe see that if n 2 T is a node with multiple edges in S(F; T) incident on it, thennda(n) is acted on by a copy operation in F . Now n3 is such a node, implyingcpy(nda(n3); x) 2 F . We also observe that if n0 2 F (T) is a node with multipleedges f[mi; n0]g (i = 1 : : : k; k > 1) in S(F; T) incident on it, then n0 = f 0(mi�; 0),where i� 2 [1; k], and glu(nda(mi); nda(mi�)) 2 F for all mi 6= mi�; thus there isa glue operation acting on each nda(mi), i 2 1 : : : k. Now n2 is such a node, withedges [n1; n2] and [n3; n2] incident on it. Therefore, there is a glue operation acting onnda(n3). Thus nda(n3) is acted on by both a copy and a glue operation, contradictingthe validity of F (De�nition 6.2.2). We therefore conclude that no such path existsin S(F; T), proving minimality. 2Later we show that the converse of the above lemma is also true; that is, forevery minimal edge cover K of IG(T1; T2) there exists some transformation F 0 suchthat F 0(T1) = T2, and S(F 0; T1) = K. Therefore, when searching for the signatureof a minimum-cost transformation between two given trees, it su�ces to search overthe space of all minimal edge covers of their induced graph. Once we have found aminimal edge cover that is the signature of a minimum-cost transformation, we caneasily recover the actual transformation from it, as described below.To recover a transformation from a minimal edge cover K of the induced graph oftwo trees T1 and T2, we proceed in two steps. The �rst step consists of determiningthe disassembly points of the required transformation. In the second step, we usethese disassembly points to generate the actual edit operations in the transformation.Intuitively, we determine the disassembly points of T1 and T2 using K as follows.First, the tree roots, and the special nodes � and 	 are deemed disassembly points.Next, any node whose partners (byK) are in any way \di�erent" from the partners ofits parent is a disassembly point. We say the partners of a node n are \di�erent" fromthose of its parent p(n) if there is some partner of n whose parent is not a partner ofp(n), or vice versa. Finally, any partner of a disassembly point is also a disassemblypoint. De�nition 6.3.3 below presents the formal de�nition of the cover disassemblypoints of trees T1 and T2 by an edge cover K of their induced graph; we denote thisset of points by cdp(T1; T2;K).

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 147De�nition 6.3.3 Let T1 = (N1; r1; p1; l1) and T2 = (N2; r2; p2; l2) be two trees andlet K be a minimal edge cover of their induced graph B = IG(T1; T2). We de�ne thecover disassembly points of T1 and K as the following set: cdp(T1;K) � N .cdp(T1;K) = frg[fm 2 N j [m;] 2 Kg[fm 2 N j 9[m;n] 2 K : [p(m); p(n)] 62 Kg[fm 2 N j 9[m;n] 2 K : (9[m0; n] 2 K : [p(m0); p(n)] 62 K)g[fm 2 N j 9[m;n1]; [m;n2] 2 K : p(n1) = p(n2)g[fm 2 N j 9[m;n] 2 K : (9[m1; n]; [m2; n] 2 K : p(m1) = p(m2))g[fm 2 N j 9[p(m); n] 2 K : (6 9[m;n0] 2 K : p(n0) = n)g[fm 2 N j 9[m;n] 2 K : ([m0; n] 2 K : (6 9[m00; n] 2 K : p(m00) = m))gWe de�ne the cover disassembly points of T2 andK as cdp(T2;K) = fn 2 T2 j [m;n] 2K; m 2 cdp(T1;K)g [fn 2 N 0 j [�; n] 2 Kg. We also de�ne the cover nearest dis-assembly ancestor, cnda(n), and the cover disassembly component, cdc(n), of a noden 2 T1 [T2 analogously to the corresponding de�nitions in De�nition 6.2.1. 2The following lemma shows that the set of points given by this de�nition is exactlythe set of disassembly points of a minimum-cost transformation whose signature isthe given edge cover.Lemma 10 Let T = (N; r; p; l) and T 0 = (N 0; r0; p0; l0) be two trees, and let K be aminimal edge cover of their induced graph IG(T; T 0).cdp(T;K) = dp(T;F (K;T; T 0)) 2Proof Let us �rst show that cdp(T;K) � dp(T;F (K;T; T 0)). Let m be any node incdp(T;K). If m = r, then m 2 dp(T;F (K;T; T 0)) since the root is always includedin dp(T;F (K;T; T 0)) (De�nition 6.2.1). If [m;] 2 K, then del(m) 2 F (K;T; T 0)

148 CHAPTER 6. PARALLEL TRANSFORMATIONS(by De�nition 6.3.6), implying m 2 dp(T;F (K;T; T 0)). Now for all m 2 cdp(T;K)other than those considered above, De�nition 6.3.6 generates either a mov, cpy, or gluoperation, implying m 2 dp(T;F (K;T; T 0)). Thus cdp(T;K) � dp(T;F (K;T; T 0)).Let us now show that dp(T;F (K;T; T 0)) � cdp(T;K). Let m be any node indp(T;F (K;T; T 0)). If m = r, r 2 cdp(T;K) as required. If del(m) 2 F (K;T; T 0),De�nition 6.3.1 implies [m;] 2 K, implying m 2 cdp(T;K). Otherwise, eithermov(m;h), cpy(m;h), glu(h;m), or glu(m;h) is in F (K;T; T 0), implying m is incdp(T;K). Thus dp(T;F (K;T; T 0)) � cdp(T;K) which, with our earlier result, com-pletes the proof. 2Once we have determined the disassembly points as described above, we recoverthe actual transformation as follows: Nodes matched to the special node 	 are deleted.Nodes matched to � indicate nodes to be inserted. A one-to-one (edge cover) edgeincident on a disassembly point signi�es a move operation. For a disassembly pointon which k > 1 (edge cover) edges are incident, we generate k�1 copy operations andzero or one move operation. The edge for which a copy operation is not generatedis called \distinguished." The choice of this distinguished edge is signi�cant onlywhen we can avoid a move operation by choosing as distinguished edge an edge thatconnects two nodes whose parents also \match." This intuition is formalized by thefollowing de�nition:De�nition 6.3.4 Let T = (N; r; p; l) and T 0 = (N 0; r0; p0; l0) be two trees, and let Kbe a minimal edge cover of their induced graph IG(T; T 0). Without loss of generality,let [r; r0] be the only edge in K incident on either of r or r0. Let E(n) denote theedges in K that are incident on a node n 2 N [N 0. We de�ne the matched edge setof a node n 2 N [N 0 � fr; r0g such that [�; n]; [n;] 62 K as the set E 0(n) below:E 0(n) = f[n; n0] 2 E(n) j [p(n); p(n0)] 2 Kg; if n 2 Nf[n0; n] 2 E(n) j [p(n0); p(n)] 2 Kg; otherwiseFurther, let us de�ne the distinguished edge de(n) incident on any n 2 cdp(T;K) as

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 149follows: de(n) = e; if E(n) = fegan arbitrary edge in E 0(n); if jE(n)j > 1; E 0(n) 6= ;an arbitrary edge in E(n); otherwiseNote that our de�nition of de implies de(r) = de(r0) = [r; r0], de(m) = [m;] forall [m;] 2 K, and de(n) = [�; n] for all [�; n] 2 K. Furthermore, we extend thede�nition of de to all nodes in N [N 0 by de�ning de(n) for n 2 N [N 0 � cdp(T;K)as follows: de(n) = [m;n]; where de(cnda(n)) = de(cnda(m))(From the de�nition of cdp and cnda, it is easy to observe that for any n 2 N [N 0�cdp(T;K), there is exactly one node m such that de(cnda(n)) = de(cnda(m)).) 2Given two trees T1 and T2, and a minimal edge cover K of their induced graph,De�nition 6.3.6 below presents the details of recovering a transformation F from Kbased on the intuition described above. Recall that we require that T 01 = F (T1)be isomorphic to T2. When generating the edit operations in F , we often need torefer to the node in T 01 that corresponds (by the isomorphism) to a certain node inT2. As described in Section 6.2, nodes are referenced in edit operations using nodehandles; i.e., expressions of the form f(n,i). Thus, we need a way to map each nodein n 2 T2 to a node handle that represents its partner in T 01; we call such a nodehandle the representative handle of n, and denote it by h(n). Using the de�nitionof node handles in Section 6.2, it is easy to observe that the representative handleof a node n in T2 that is matched to � is f(0, i), where i is the identi�er of theinsertion operation that produces the node in T 01 that is isomorphic to n. Further,for a node n 2 T2 that is matched to exactly one node m 2 T1 by a one-to-one edge,we have h(n) = f(m,0). The case in which n is matched to more than one node inT1 is similar; we simply pick the node m such that [m;n] is the distinguished edgeincident on n. Finally, if a node n 2 T2 is matched to a node m 2 T1 that has more

150 CHAPTER 6. PARALLEL TRANSFORMATIONSthan one edge incident on it, we have two cases: If [m;n] is the distinguished edgeincident on m, it means that n is the node corresponding to m, and h(n) = f(m,0);otherwise n represents a copy of m, and h(n) = f(m,i), where i is the identi�erof the copy operation that produces the node in T 01 that is isomorphic to n. Thefollowing de�nition formalizes the above intuition.De�nition 6.3.5 Let T = (N; r; p; l) and T 0 = (N 0; r0; p0; l0) be two trees, and let Kbe a minimal edge cover of their induced graph B = IG(T; T 0) = (U; V;E). Withoutloss of generality, let [r; r0] be the only edge in K incident on either of r or r0. Wede�ne the representative handle h(n) of a node n 2 T 0 as follows, where we use typefont to represent literal strings, and italic font to represent non-literals, and where� is a function that maps edges to arbitrary, unique, positive integers:h(n) = f(0;�(de(n))); if de(n) = [�; n]f(m; 0); if de(n) = [m;n] = de(m)f(m;�(de(cnda(n)))); if de(n) = [m;n] 6= de(m) 2De�nition 6.3.6 Let T = (N; r; p; l) and T 0 = (N 0; r0; p0; l0) be two trees, and let Kbe a minimal edge cover of their induced graph IG(T; T 0). Without loss of generality,let [r; r0] be the only edge inK incident on either of r or r0. We de�ne the transforma-tion induced by the cover K, denoted by F (K;T; T 0) as follows, where m;m0 62 fr;�g,n 62 fr0;	g, E(m) = f[m;n] 2 Kg [f[n;m] 2 Kg, and cdp(T;K) is a short-hand forcdp(T; T 0K) \ T . (We use type font to represent literal strings, and italic font torepresent non-literals, and where � is a function that maps edges to arbitrary, unique,positive integers.)F (K;T; T 0) = fdel(f(m; 0)) j [m;] 2 Kg[fins(h(p(n)); l(n); i) j [�; n] 2 Kg[fmov(f(m; 0); h(p(n))) j m 2 cdp(T;K); [m;n] 2 K;jE(m)j = jE(n)j = 1g

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 151[fmov(f(m; 0); h(p(n))) j m 2 cdp(T;K); [m;n] 2 K; jE(m)j > 1;de(m) = [m;n]; de(cnda(p(m))) = [cnda(p(m)); n0] 6= de(n0)g[fcpy(f(m; 0); h(p(n)); �([m; n])) j m 2 cdp(T;K); [m;n] 2 K;jE(m)j > 1; [m;n] 6= de(m)g[fmov(f(m; 0); h(p(n))) j m 2 cdp(T;K); [m;n] 2 K; jE(n)j > 1;de(n) = [m;n]; de(p(n)) 6= [p(m0); p(n)]g[fglu(f(m; 0); f(m0; 0)) j m 2 cdp(T;K);[m;n] 2 K; jE(n)j > 1; [m0; n] = de(n); m 6= m0g[fupd(h(n);l(n)) j [m;n] 2 K; [m;n] 6= de(m); l(m) 6= l(n);jE(m)j > 1g 2Example 6.3.1 Let T be the initial tree from Example 6.2.1, and let T 0 be a treeisomorphic to the �nal tree F (T) there, as shown in Figure 6.3. (Note that in Ex-ample 6.2.1 the �nal tree is obtained by modifying the initial tree. Here, the twotrees are not related in this manner; hence the tree nodes do not share identi�ers.) Aminimal edge cover of their induced graph is indicated using dashed lines. (Note thatthis edge cover is in fact the signature of the transformation in Example 6.2.1.) Thecover disassembly points, computed using De�nition 6.3.3, are marked by asterisks.The distinguished edge incident on each node is marked by a small �lled circle on thatedge near the corresponding node. Since there are only two nodes with more than oneedge incident on them, the choice of a distinguished edge is nontrivial in these twocases only. Intuitively, for node 5, we observe that the parent of node 56 is matchedto the parent of node 5; therefore the edge [5; 56] is chosen as distinguished. Node 4is not matched to any node whose parent matches the parent of node 4; therefore,we select a distinguished edge arbitrarily from those incident on node 4, say [4; 53].(De�nition 6.3.4 describes the choice formally.)Using this information about the cover disassembly points and distinguished edges,we now use De�nition 6.3.6 to obtain a transformation. The edge [4; 54] satis�es the

152 CHAPTER 6. PARALLEL TRANSFORMATIONS
-

2 cb 3

4 5b d

1a
cb

a

d d

b b

T T’51

52

53

54

55

56

57

*

**

*

*

*

*

*

+Figure 6.3: The trees in Example 6.3.1conditions in line 4 of the equation in De�nition 6.3.6, resulting in the operationmov(f(4,0), h(p(54))). Now from Figure 6.3 we observe that p(54) = 53. Fur-ther, node 53 is matched to node 5, but [5; 53] is not the distinguished edge incidenton node 5 (i.e., de(5) 6= [5; 53]); therefore, the representative handle of node 53is f(5,�([5; 53])), where � is simply a function that generates a unique identi�erfor each edge. Say �([5; 53]) = 501, so that h(p(54)) = h(53) = f(5,501), giv-ing mov(f(4,0), f(5,501)) as the edit operation generated corresponding to edge[4; 54]. Next, observe that edge [5; 53] satis�es the conditions in line 6 of De�ni-tion 6.3.6, resulting in the operation cpy(f(5,0), f(2,0), 501), since h(p(53)) =h(52) = f(2,0), and �([5; 53]) = 501. A similar process for the edge [4; 57] re-sults in the operation cpy(f(4,0), f(5,0)). De�nition 6.3.6 does not generate anymore operations, giving fmov(f(4,0), f(5,501)), cpy(f(5,0), f(2,0), 501),cpy(f(4,0), f(5,0))g as the recovered transformation.Observe that the transformation recovered above is essentially identical to thatin Example 6.2.1. Apart from edit operation identi�ers, the only di�erence is thatinstead of moving the node 4 to below the original instance of node 5 (and copyingnode 4 to below the copy of node 5) as done by that transformation, the abovetransformation moves node 4 to below the copy of node 5 (copying node 4 to belowthe original instance of node 5). This di�erence is a result of the freedom in the choiceof a distinguished edge incident on node 4. 2We now state and prove the main results of this chapter as Theorems 5 and 6below, showing that the transformation F 0 recovered by De�nition 6.3.6 from thesignature S(F; T) of a transformation F on tree T is essentially identical to F :

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 153Theorem 5 Let T and T 0 be two trees, and let K be a minimal edge cover of theirinduced graph IG(T; T 0). Then (1) F (K;T; T 0) is a valid transformation for T , (2)F (K;T; T 0)(T) is isomorphic to T 0, and (3) S(F (K;T; T 0); T) is isomorphic to K. 2Theorem 6 Let T be a tree, let F be a transformation that is valid for T , and letF 0 = F (S(F; T); T; F (T)). Then F 0 has the same number of move, copy, and glueoperations as F (respectively), and the insert, delete, and update operations in F 0 areidentical to those in F , modulo edit operation identi�ers. 2The following lemma is useful in proving the above theorems:Lemma 11 Let T = (N; r; p; l) and T 0 = (N 0; r0; p0; l0) be two trees, and let K bea minimal edge cover of their induced graph IG(T; T 0). If m;n 62 cdp(T;K), m 6=	, m 6= r, n 6= �, and n 6= r0, then [p(m); p0(n)] 2 K. Consequently, we have[cnda(m); cnda(n)] 2 K for all nodes m 2 N , n 2 N 0. 2Proof Follows from De�nition 6.3.3. 2Proof of Theorem 5Part (1): Let us �rst show that F = F (K;T; T 0) is a valid transformation for T .The conditions 1(a-e) and 2 in De�nition 6.2.2 are easy to verify. Let us considercondition 3 for some node n such that del(n) 2 F , and any child c of n. If [c;] 2 K,del(f(c; 0)) 2 F . Otherwise [c; y] 2 K for some y 2 T 0. Since the only edge in Kincident on n = p(c) is [n;] (due to minimality of K and De�nition 6.3.2), it followsfrom De�nition 6.3.3 that m 2 cdp(T;K). De�nition 6.3.6 shows that every nodem 2 cdp(T;K) such that [m;] 62 K is acted on by a mov or glu operation in F .Thus condition 3 is satis�ed. Finally, let us verify condition 1(f) of De�nition 6.2.2.If glu(f(m1; 0); f(m2; 0); i) 2 F then [m1; n]; [m2; n] 2 K due to De�nition 6.3.6. Letx be any node in dc(m1), implying that m1 is an ancestor of x. Consider �rst the casewhen p(x) = m1. Since x 62 dp(T;F), it follows from Lemma 10 and De�nition 6.3.3that 9![x; y] 2 K such that p(y) = n. (We use 9! to denote \there exists a unique.")Furthermore, x 62 dp(T;K) implies y 62 dp(T;F) = cdp(T;K), so that 9![x0; y] 2K such that p(x0) = m2. Thus for any child x of m1, we determine uniquely acorresponding child x0 of m2, and we de�ne gi(x) = x0. By using induction on the

154 CHAPTER 6. PARALLEL TRANSFORMATIONSdepth of a node x in the subtree dc(m1), we extend the de�nition of gi to all nodes indc(m1). We thus have a one-to-one function gi : dc(m1)! dc(m2) that preserves theparent function; by symmetry, it follows that gi is also an onto function. Finally, itis easy to verify that gi \preserves labels" in the sense of De�nition 6.2.2. ThereforeF is a valid transformation for T .Part (2): Let us now show that F (T) = (N 00; r00; p00; l00) is isomorphic to T 0 =(N 0; r0; p0; l0). De�ne a function h0 : N 0 ! N 00 intuitively reecting the representativehandle function h in De�nition 6.3.5 as follows:h0(n) = f 0(0; i); if h(n) = f(0; i)f 0(m; 0); if h(n) = f(m; 0)f 0(m; i); if h(n) = f(m; i)We claim that h0 is an isomorphism from F (T) to T 0. Since there is exactly onedistinguished edge de(n) incident on any node n 2 F (T), it follows that h, and henceh0, is a one-to-one function.Now let us show that h0 is an onto function. Consider any m0 2 F (T), and thepossibilities according to De�nition 6.2.3. If m0 = f 0(0; i), we know that ins(: : : ; i) 2F (T), implying de(n) = [�; n] and �(de(n)) = i, so that h(n) = f(0; i) and h0(n) =m0. If m0 = f 0(m; 0), we know m 2 T and del(f(m; 0)); glu(cnda(m); : : :) 62 F . Thus[m;] 62 S(F; T) and 9n = cnda(n) 2 T 0 : de(cnda(m)) = [cnda(m); n] = de(n)(since de(cnda(m)) 6= de(cnda(n)) implies glu(f(cnda(m); 0); : : :) 2 F), implyingh(n) = f(m; 0) and h0(n) = f 0(m; 0) = m0. Finally, if m0 = f 0(m; i); i > 0 thencpy(f(cnda(m); 0); :::) 2 F , so that 9n0 2 T 0 : de(n0) = [cnda(m); n] 6= de(cnda(m)).Now using the de�nition of cdp(T;K) and the fact that m 62 cdp(T;K), it is easy toobserve that 9n 2 cdc(n0) : de(n) = [m;n] 6= de(m), implying h(n) = f(m; i) andh0(n) = f 0(m; i).We shall now show that h0 preserves the parent function; that is, we shallshow that h0(p0(n)) = p00(h0(n)) for all n 2 N 0; n 6= r0. If h0(n) = f 0(0; i) thenins(h(p(n)); l(n); i) 2 F , implying p00(f 0(0; i)) = h0(p0(n)) as needed. If n (and there-fore h(n)) is not a disassembly point, clearly p00(h0(n)) = h0(p0(n)) by De�nition 6.2.3.

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 155If n (and therefore h0(n)) is a disassembly point, we have n = cnda(n), m = cnda(m),and the following two cases:Case 1: h0(n) = f 0(m; 0). In this case, h(n) = f(m; 0), implying de(n) = [m;n] andde(m) = de(n) (since m and n are disassembly points) by the de�nition of the handlefunction h. Using the de�nition of F (K;T; T 0), it is easy to observe that for all thethree of the possibilities (1) jE(n)j = jE(m)j = 1, (2) jE(n)j = 1; jE(m)j > 1, and (3)jE(n)j > 1; jE(m)j = 1, mov(f(m; 0); h(p(n))) 2 F , implying p00(f 0(m; 0)) = h0(p(n))as needed.Case 2: h0(n) = f 0(m; i); i > 0. In this case, cpy(f(m; 0); h(p(n))) 2 F , implyingp00(f 0(m; i)) = h0(p(n)) as needed.From the de�nition of h0(n), h(n), and F (K;T; T 0), it is easy to see that h0 pre-serves the label function l. Thus, h0 is the required isomorphism between T 0 andF (T).Part (3): Now let us show that S = S(F; T) is isomorphic to K; more precisely,we show that [m;n] 2 K if and only if [m;h0(n)] 2 S(F; T). (We extend h0 by de�ningh0() = 	 for notational convenience.) It is easy to observe that [�;] 2 K if andonly if [�;] in S; therefore we will exclude this special edge from our discussionbelow.Consider any [m;n] 2 K. We will show that [m;h0(n)] 2 S. Ifm = �, ins(: : : ; i) 2F , so that [�; f 0(0; i)] = [m;h0(n)] 2 S as required. Otherwise, we have two cases:Case 1: h0(n) = f 0(m; 0). If de(n) = [m0; n]; m0 6= m then (by lemma Lemma 11)[cnda(m); cnda(n)] and [cnda(m0); cnda(n)] belong to K, in turn implyingglu(f(cnda(m); 0); f(cnda(m0); 0)) so that [m; f 0(m; 0)] 2 S. Otherwise de(n) =[m;n], implying glu(f(m; 0); :::) 62 F . Now if 9m0 2 N : glu(f(m0; 0); f(m; 0)) 2 F ,we can argue [m; f 0(m; 0)] as before; else the absence of glu and del operating on mgives [m; f 0(m; 0)] as required.Case 2: h0(n) = f 0(n; i); i > 0. From the de�nition of the representative handle func-tion h and the copy operation-generating part of the de�nition of F (K;T; T 0) (De�-nition 6.3.5), we see that 9cpy(f(cnda(m); 0);m0; i) 2 F . Therefore, [m; f 0(m; i)] 2 Sas required.Thus [m;n] 2 K) [m;h0(n)] 2 S. Now since h0 : N 0 ! N 00 is an isomorphism,

156 CHAPTER 6. PARALLEL TRANSFORMATIONSall edges in S are of the form [m;h0(n)], where m 2 N [f�g and n 2 N 0 [f	g.Consider any such edge. If m = � then h0(n) = f 0(0; i), implying [�; n] 2 K byDe�nition 6.3.5. If h0(n) = f 0(m; 0) then h0(n) = m gives [m;n] 2 K. Otherwise,h0(n) = f 0(m; i); i > 0, implying [m;n] 2 K again. Thus [m;h0(n)] 2 S) [m;n] 2K, which together with [m;n] 2 K) [m;h0(n)] 2 S, shows that S and K areisomorphic. 2Proof of Theorem 6Let T = (N; r; p; l), T 0 = F (T) = (N 0; r0; p0; l0). Consider �rst any insert operationins(h(p0(n)); l(n); i) in F 0. From the de�nition of F (K;T; T 0), we know that [�; n] 2S(F; T) such that �([�; n]) = i, which in turn implies ins(h; l; i) 2 F and n = f 0(0; i)due to De�nition 6.3.1. Since l(f 0(0; i)) = l, it follows that l = l(n). If h = f(n2; 0),p0(n) = f 0(n2; 0); else h = f(n2; i) and p0(n) = f 0(n2; i); in either case, h = h(p0(n)).Thus ins(h(p0(n)); l(n); i) 2 F .Consider any delete operation del(f(m; 0)) 2 F 0. From the de�nition ofF (K;T; T 0), we obtain [m;] 2 S(F; T), which in turn implies del(f(m; 0)) 2 Fdue to De�nition 6.3.1. The above arguments for insert and delete operations canalso be repeated in the reverse direction.Consider a node m 2 T such that jE(m)j = k > 1. Let the set of edge-cover edgesincident on m be E(m) = f[m;ni]gki=1. Now since the edge cover is actually S(F; T),De�nition 6.3.1 implies that there are exactly k � 1 copy operations of the formcpy(f(m; 0); h) in F . It is easy to observe that the de�nition of F (K;T; T 0) generatesexactly k � 1 copy operations for such a node m. Since the above argument can berepeated for each node m 2 T , we conclude that the number of copy operations inF is equal to that number in F 0.The argument for glue operations is analogous to the above argument for copyoperations: Consider a node n 2 T 0 such that jE(n)j = k > 1. Let the set of edge-cover edges incident on n be E(n) = f[mi; n]gki=1. Now since the edge cover is actuallyS(F; T), De�nition 6.3.1 implies that there are exactly k � 1 glue operations of theform glu(f(mj; 0); f(m0; 0)) in F , where m0 2 fmig and mj 2 fmig for j = 1 : : : k�1.It is easy to observe that the de�nition of F (K;T; T 0) generates exactly k � 1 glueoperations corresponding to such a node n. Since the above argument can be repeated

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 157for each node n 2 T 0, we conclude that the number of glue operations in F is equalto that number in F 0.Now consider move operations. Consider �rst any move operation in the thirdsubset of the de�nition of F (K;T; T 0). We know that m 2 cdp(T;K), so that m 2dp(T;F) by Lemma 10. From De�nition 6.2.1, we see that a non-root node is indp(T;F) only if it is acted on by some edit operations other than update. Now, mcannot be deleted, because that would imply [m;] 2 S(F; T). Furthermore, the factthat jE(m)j = jE(n)j = 1 indicates that m cannot be subject to a copy or a glueoperation. Consequently, it must be the case that m is moved by F .Now consider any move operation mov(f(m; 0); h(p(n))) in the fourth subset ofthe de�nition of F (K;T; T 0). We know that jE(m)j > 1; let E(m) = f[m;ni]gki=1where k > 1. As we have seen above, there are k � 1 copy operations of the formcpy(f(m; 0); �) in F . Let [m;n�] be the unique edge in E(m) that does not correspondto a copy operation. Suppose mov(f(m; 0); �) 62 F . Then p0(f 0(m; 0)) = f 0(p(m); 0)by De�nition 6.2.3. Now if either del(f(p(m); 0)) 2 F or glu(f(p(m); 0); h0) 2 F ,the validity of F implies mov(f(m; 0); h) 2 F (due to De�nition 6.2.2), contradict-ing our assumption. Therefore, it must be the case that del(f(p(m); 0)) 62 F andglu(f(p(m); 0); h0) 62 F , in turn implying f 0(p(m); 0) 2 N 0 due to De�nition 6.2.3.Now, using De�nition 6.3.1, the above facts yield [p(m); f 0(p(m); 0)] 2 S(F; T) = K,in turn implying E 0(m) 6= ; in De�nition 6.3.6, which gives de(m) 2 E 0(m), contra-dicting the condition in the fourth subset of De�nition 6.3.6. Therefore, we concludethat F contains a move operation mov(f(m; 0); h). The argument for move operationsin the sixth subset of the de�nition of F (K;T; T 0) is analogous to the above.Finally, let us consider update operations. Consider �rst an edge [m;n] 2 S(F; T)such that jE(m)j = jE(n)j = 1, implying n = f 0(m; 0). Since l(n) 6= l(m), clearlyupd(f(m; 0); l(n)) 2 F due to De�nition 6.2.3. Now consider an edge [m;n] 2 S(F; T)such that jE(m)j = 1 and jE(n)j = k > 1, implying k�1 glue operations correspond-ing to k � 1 of the k edges in E(n). Now if [m;n] is the edge not corresponding toa glue operation, we can argue as above that upd(f(m; 0); l(n)) 2 F . On the otherhand, if [m;n] is an edge corresponding to a glue operation glu(f(m; 0); f(m0; 0)), thecondition 1(f) in De�nition 6.2.2 requires upd(f(m; 0); l(n)) 2 F . We have thus shown

158 CHAPTER 6. PARALLEL TRANSFORMATIONSthat all the update operations in F 0(K;T; T 0) for nodes m such that jE(m)j = 1 arealso present in F . Now consider an edge [m;n] 2 S(F; T) such that jE(m)j = k > 1and jE(n)j = 1, implying k � 1 copy operations corresponding to k � 1 of the kedges in E(n). Now if [m;n] is the edge not corresponding to a copy operation,we can argue as above that upd(f(m; 0); l(n)) 2 F . On the other hand, if [m;n] isan edge corresponding to a copy operation cpy(f(m; 0); h; i), n = f 0(m; i), implyingupd(f(m; i); l(n)) 2 F since l(m) 6= l(n) (by De�nition 6.2.3). It is easy to show thatthe argument for update operations also holds in the reverse direction; that is, anupdate operation in F implies a corresponding one in F 0. 26.4 Computing SignaturesIn this section, we briey describe the application of our ideas presented in earlier sec-tions. In particular, we outline the bene�ts of our transformation model, and describehow signatures can be used to e�ciently compute a minimum-cost transformation be-tween two trees. When managing tree-structured data (e.g., structured query results,programs, documents, Web sites, circuit designs, and �le systems), one often needsto �nd di�erences between related data (e.g., results of running a query at di�er-ent times, two similar circuits, or di�erent versions of a program or document). Suchtree di�erences can be compactly and e�ectively captured by the novel transformationmodel we have presented here. Our model includes expressive subtree operations, suchas move and copy, which make the detected di�erences more meaningful to a user.This model also admits representative signatures, which are compact representationsof the essential information in transformations. These signatures make it possible tosearch for a minimum-cost transformation by searching instead for a minimum-costsignature, knowing that each signature can be mapped back to a transformation. Asdiscussed in Section 6.1 and below, working with transformation signatures greatlysimpli�es algorithms for computing minimum-cost transformations. Our model, re-sults, and strategy for computing a minimum-cost transformation are independent ofthe details of the cost model used. Furthermore, although in this chapter we havefocused on unordered trees, the results adapt easily to ordered trees, making our

6.4. COMPUTING SIGNATURES 159scheme widely applicable.A general approach to computing a minimum-cost signature, without using appli-cation- or domain-speci�c features, is to use search-based techniques and heuristics.Recall from Section 6.3 that the signature of any transformation between the inputtrees T1 and T2 is a minimal edge cover of their induced graph (which is a bipartitegraph that has an edge between every node in T1 and every node in T2). Thus, thesearch space that we need to explore is the space of all possible minimal edge coversof this bipartite graph. Note that this is a much simpler search space than the searchspace of all possible transformations between T1 and T2. This simpli�cation is a resultof the existence of representative signatures in our transformation model.Further, we can use pruning rules, such as those introduced in Chapter 5, to elim-inate edges from the induced graph. Recall that these rules (conservatively) detectcases when two nodes can never be partners in any minimum-cost transformation(using upper and lower bounds on the contribution of an induced graph edge to thecost of a signature). (In addition, we may optionally decide to use aggressive pruningrules that prune edges if it is \very unlikely" that the corresponding nodes could bepartners.) Eliminating edges from the induced graph greatly reduces the size of thesearch space. Next, we use estimates of the cost contribution of induced graph edgesto compute a minimum-(estimated)cost edge cover of the pruned induced graph. Fi-nally, we search for a better signature in the neighborhood of this initial edge cover,using techniques similar to those in [WZC95, SWZS94]. In Chapter 9, we presentexperimental results that explore some of these options.We can often further reduce the size of the search space of signatures by usingfeatures of the application domain. For example, consider an application comparingstructured documents. Such documents are often represented using layered, orderedtrees, with layers corresponding to structural elements (such as words, sentences,paragraphs, and sections). That is, each tree node has an immutable type, and thetree is layered by a partial order on these types. (For example, sentences are belowparagraphs and sections.) Therefore we do not need to consider any signature thatmatches nodes of di�erent types to each other. This fact leads to very e�ectivepruning of the induced graph, and a corresponding reduction in the size of the search

160 CHAPTER 6. PARALLEL TRANSFORMATIONSspace of its minimal covers.Due to the simplicity of the relation between signatures and transformation in ourmodel, we are able to derive tighter bounds on the edge costs described above thanthose possible in the linear edit script model. (With linear edit scripts, cost boundsneed to take into account possible \piggy-backing" of edit operations.) These tighterbounds lead to more e�ective pruning of the induced graph, and thus give us betterperformance. This simplicity also allows us to easily derive better estimates for edgecosts in the induced graph, thus improving the quality of the initial solution, and thee�ectiveness of the subsequent search process.Finally, we can often use domain characteristics in conjunction with the propertiesof representative signatures to permit the exact computation of the contribution ofan edge in the induced graph to the total cost of the signature (whereas in generalwe use estimates). Consequently, the initial solution that was earlier the estimatedminimum-cost signature is now the actual optimal solution, so that the subsequentsearch phase is unnecessary. One such scheme (similar in spirit to the restrictionson matchings used in [Yan91, ZS89, ZWS95]) results in a simple bottom-up dynamicprogramming algorithm that produces optimal solutions if moves, copies, and gluesare restricted to be \local." (A restriction of local copies, for instance, disallows aparagraph from being copied outside its section.) Even if these restrictions do notstrictly hold in a given application domain, we may intuitively expect such algorithmsproduce solutions that are close to optimal.6.5 SummaryIn this chapter, we described the di�culties encountered when we use the traditionallinear edit script model with expressive subtree operations such as move, copy, anduncopy. To address these di�culties, we presented a novel model for describing treetransformations. Unlike edit scripts, which constitute a procedural speci�cation ofthe di�erences between two trees, transformations in our model provide a simpledeclarative speci�cation of tree di�erences. Intuitively, our transformations operateon a tree by �rst dividing the tree into components called chunks, then operating on

6.5. SUMMARY 161these chunks independently of one another, and �nally putting the chunks togetherto form the �nal tree.The essential features of the tree transformations de�ned in this chapter are com-pactly represented by their signatures. We de�ned representative signatures of trans-formations and presented the simple algorithms used to map transformations andsignatures to each other. Due to the declarative nature of our transformations andthe lack of restrictions such as those required for structured edit scripts in Chapter 5,these algorithms are extremely simple. Our algorithm to map signatures to trans-formations, given by De�nition 6.3.6, is substantially simpler than the analogousalgorithm for structured edit scripts presented in Section 5.4.3 of Chapter 5.We also described how some of the techniques used for the linear edit script model,including those described in earlier chapters, can be adapted to this transformationmodel. In particular, we have implemented a program that combines the pruningtechniques from Chapter 5 with the transformations of this chapter. In Chapter 9,we describe experimental results based on this implementation.Recall, from Chapter 3, that detecting changes by comparing data snapshotsis an important subproblem of the problem of managing change in heterogeneous,autonomous databases. In this chapter and Chapters 4 and 5, we studied severalchange detection techniques. In the next chapter, we explore how such changes, oncedetected, can be represented, stored, and queried in a systematic manner, and inChapter 8 we describe how we combine these ideas in the implementation of the C3system.

Chapter 7Representing and QueryingChangesIn Chapters 4, 5, and 6, we described techniques for detecting changes in heteroge-neous, autonomous databases. In this chapter, we address the issue of how thesechanges are stored, queried, and managed. Recall from Chapter 3 that the data weare interested in is semistructured in nature. The lack of a �xed schema inherent insuch data makes it very di�cult to use traditional database techniques for represent-ing and querying historical data. We therefore present a simple and general model,doem (pronounced \doom"), for representing changes in semistructured data. Wealso present a language, Chorel, for querying over data and changes represented indoem. We describe our implementation of doem and Chorel. We also introducea facility that allows users to subscribe to changes in semistructured data, and wedescribe its design and implementation based on doem and Chorel.7.1 IntroductionRecall from Chapter 3 that semistructured data is data that has some structure,but it may be irregular and incomplete and does not necessarily conform to a �xedschema. Recently, there has been increased interest in data models and query lan-guages for semistructured data [Abi97, BDHS96, CACS94, CGMH+94, QWG+96].162

7.1. INTRODUCTION 163We also see increased interest in change management in relational and object data[GHJ96, DHR96], and in the related problem of temporal databases [SA86, Soo91].However, we are not aware of any work that addresses the problem of representingand querying changes in semistructured data. As will be seen, this problem is morechallenging than the corresponding problem for structured data due to the irreg-ularity, incompleteness, and lack of schema that often characterize semistructureddata. Nevertheless, our approach, based on graph annotations, is also applicable tostructured graph-based data.7.1.1 Motivating ExamplesThe Palo Alto Weekly, a local newspaper, maintains a Web site providing informationabout restaurants in the Bay Area [PAW98]. Most of the data in the restaurant guideis relatively static. But as often happens in database applications, we are particularlyinterested in the dynamic part of the data. For example, we are interested in �ndingout which restaurants were recently added, which restaurants were seen as improving,degrading, and so on. These changes can be captured using the di�erencing techniquesdescribed in Chapters 4, 5, and 6. Figure 3.3 in Chapter 3 depicts some sample outputproduced by our di�erencing program on inputs from the Palo Alto Weekly. (Ourprogram, Tdi�, is described in detail in Chapter 8.)For reasonably small documents, browsing the marked-up HTML �les produced byhtmldi� to view the changes of interest is a feasible option. However, as documents getlarger and changes become more prevalent and varied, one soon feels the need to usequeries to directly �nd changes of interest instead of simply browsing. (For example,the restaurant guide page is currently more than 20,000 lines long, making browsingvery inconvenient.) An example of a simple change query over the restaurant datais \�nd all new restaurant entries." Another example is \�nd all restaurants whoseaverage entree price changed." Just as browsing databases is often an ine�ective wayto retrieve information, the same holds for browsing data representing changes. Thus,for this example, what we need is a query language that allows queries over changesto (semistructured) HTML pages.

164 CHAPTER 7. REPRESENTING AND QUERYING CHANGESAs another motivating example, consider a typical library system that containsbook circulation information. Suppose we wish to be noti�ed whenever any \popular"book becomes available where, say, we de�ne a book as popular if it has been checkedout two or more times in the past month. We could partially achieve this goal by set-ting a trigger on the circulation database that noti�es us whenever a book is returned.However, there are two problems with this approach. First, many library informationsystems are legacy mainframe applications on which triggers are not available. Fur-thermore, even in cases where the library information system is implemented using adatabase system that supports triggers, a user often lacks the access rights requiredto set triggers on the database. Second, there is often no way to access historicalcirculation information, so that we cannot check whether the book being returnedwas checked out two or more times recently. In this application too, the data maybe semistructured, especially if the library system merges information from multiplesources [PAGM96]. Thus, we again need a method to compute, represent, and querychanges in the context of semistructured data.7.1.2 OverviewSince our goal is to represent changes in semistructured data, we use as a startingpoint the Object Exchange Model (oem), designed at Stanford as part of the Tsimmisproject [CGMH+94]. oem is a simple graph-based data model, with objects as nodesand object-subobject relationships represented by labeled arcs. Due to its simplicityand exibility, oem can encode numerous kinds of data, including relational data,electronic documents in formats such as SGML and HTML, other data exchangeformats (e.g., ASN.1), and programs (e.g., C++). Note that oem may be thoughtof as an extension of the tree-based models used in Chapters 4, 5, and 6 to directedgraphs. The basic change operations in such a graph-based model are node insertion,update of node values, and addition and removal of labeled arcs. (Node deletion isimplicit by unreachability [AQM+96].) Our change representation model, doem (forDelta-oem), uses annotations on the nodes and arcs of an oem graph to representchanges. Intuitively, the set of annotations on a node or arc represents the history of

7.1. INTRODUCTION 165that node or arc.For querying over changes we use a language based on the Lorel language forquerying semistructured data [AQM+96]. In our language, called Chorel (for ChangeLorel), we extend the concept of Lorel path expressions to allow us to refer to theannotations in a doem database. The result is an intuitive and convenient languagefor expressing change queries in semistructured data. Although the work in thischapter is founded on the oem data model and the Lorel language, the principalconcepts are applicable to any graph-based data model (semistructured or otherwise),e.g., [BDHS96, Cat96].Our implementation of doem and Chorel uses a method that encodes doemdatabases as oem databases and translates Chorel queries into equivalent Lorel queriesover the oem encoding. This encoding scheme has the bene�t that we did not need tobuild from scratch yet another database system; instead, we capitalized on an existingdatabase system for semistructured data. Finally, as an important �rst application ofdoem and Chorel, we describe our design and implementation of a query subscriptionservice that permits users to subscribe to changes in semistructured data.7.1.3 ContributionsThe main contributions of this chapter are as follows:1. We present a simple and general change representation model for semistructureddata. An important feature of our model is that it represents changes to adatabase directly as graph annotations, instead of indirectly as the di�erencebetween old and new database states.2. We describe the syntax, semantics, and implementation of a query languageover changes to semistructured data. Again, an important advantage of ourquery language is that it allows the user to access changes directly.3. We describe how our system implements this change query language on top ofan existing semistructured database system by encoding the change data andby translating change queries to ordinary queries.

166 CHAPTER 7. REPRESENTING AND QUERYING CHANGES4. We show how \virtual annotations" can be used to access implicit informationin our data model. In particular, we describe how our query language (andits translation-based implementation) is extended to facilitate snapshot-basedaccess to data.5. We describe the design and implementation of a query subscription service thatpermits users to subscribe to changes in heterogeneous database environments.A unique feature of our service is that it enables the user to specify very precisely(using our query language) the changes of interest.The rest of this chapter is organized as follows. Section 7.2 reviews the ObjectExchange Model (OEM), and introduces OEM change operations and histories. InSection 7.3, we present our oem-based change representation model for semistruc-tured data, doem. Section 7.4 describes our change query language, Chorel. In Sec-tion 7.5, we present the encoding scheme that we use to implement doem and Chorelby translation, and we briey describe our system implementation. In Section 7.6,we introduce some extensions to our language that make snapshot-based access inour data model more convenient. We also describe how our translation-based imple-mentation of Chorel is extended for this purpose. Section 7.7 describes the querysubscription system we have implemented based on the material in Sections 7.3{7.5.We conclude in Section 7.8.7.2 The Object Exchange ModelThe Object Exchange Model (OEM) is a simple, exible model for representing het-erogeneous, semistructured data. In this section, we begin by briey describing oem.Next, we de�ne the basic change operations used to modify an oem database. Finally,we introduce the concept of an oem history that describes a collection of basic changeoperations. Histories form the basis of our change representation model described inSection 7.3.Intuitively, one can think of an oem database as a directed graph in which nodescorrespond to objects and arcs correspond to relationships. Each arc has a label

7.2. THE OBJECT EXCHANGE MODEL 167
n4

"Lytton" "Palo Alto"

guide

address

address

"Janta"

restaurant restaurant

street city10

price

name parkingparking

"Bangkok Cuisine"

name

"usually full""Lytton lot 2"
"moderate"

cuisine

"Indian"

"120 Lytton"

price

address
nearby-eats

comment
n1

n6

n7Figure 7.1: The oem database in Example 7.2.1.that describes the nature of the relationship. (Note that the graph can have cycles,and that an object may be a subobject of multiple objects via di�erent relationships.Example 7.2.1 below illustrates these points.) Nodes without outgoing arcs are calledatomic objects; the rest of the nodes are called complex objects. Atomic objects havea value of type integer, real, string, etc. An arc (p; l; c) in the graph signi�es thatthe object with identi�er c is an l-labeled subobject (child) of the complex objectwith identi�er p. Each oem database has a distinguished node called the root of thedatabase. The root is the implicit starting point of path expressions in the Lorelquery language (described in Section 7.4.1). Formally, we de�ne an oem database asfollows:De�nition 7.2.1 An oem database is a 4-tuple O = (N;A; v; r), where N is a setof object identi�ers; A is a set of labeled, directed arcs (p; l; c) where p; c 2 N and lis a string; v is a function that maps each node n 2 N to a value that is an integer,string, etc., or the reserved value C (for complex); and r is a distinguished node inN called the root of the database. A node is a complex object if its value is C andotherwise it is an atomic object. Only complex objects have outgoing arcs. We alsorequire that every node be reachable from the root using a directed path. 2

168 CHAPTER 7. REPRESENTING AND QUERYING CHANGESExample 7.2.1 We will use as our running example an oem database describing therestaurant guide section of the Palo Alto Weekly, introduced in Section 7.1. Figure 7.1shows a small portion of the data. Note that although the restaurant entries are quitesimilar to each other in structure, there are important di�erences that require the useof a semistructured data model such as oem. In particular, we see that the price ratingfor a restaurant may be either an integer (10) or a string (\moderate"). The addressmay be either a simple string (\120 Lytton") or a complex object with subobjectslisting the street, city, etc. Note also that although the data has a natural hierarchicalstructure, nodes may have multiple incoming arcs (e.g., node n7), and there are cycles(e.g., the cycle formed by the arcs \parking" and \nearby-eats"). In the sequel, werefer to this database as Guide. 27.2.1 Changes in oemWe now describe how an oem database is modi�ed. Let O = (N;A; v; r) be an oemdatabase. The four basic change operations are the following:Create Node: The operation creNode(n; v) creates a new object. The identi�er nmust be new, i.e., n must not occur in O. The initial value v must be an atomicvalue (integer, real, string, etc.) or the special symbol C (for complex).Update Node: The operation updNode(n; v) changes the value of object n, wherev is an atomic value or the special symbol C. Object n must be either anatomic object or a complex object without subobjects. (The model requires usto remove all subobjects of a complex object n before transforming it into anatomic object.) The value v becomes the new value of n.Add Arc: The operation addArc(p; l; c) adds an arc labeled l from object p (theparent) to object c (the child). Objects p and c must exist in O, p must becomplex, and the arc (p; l; c) must not already exist in O.Remove Arc: The operation remArc(p; l; c) removes an arc. Objects p and c mustexist in O, and O must contain an arc (p; l; c), which is removed.

7.2. THE OBJECT EXCHANGE MODEL 169
"Lytton"

root

"Palo Alto"

guide

address

address

"Janta"

restaurant restaurant

street city

price

name parking

"Bangkok Cuisine"

name

"usually full""Lytton lot 2"
"moderate"

"Indian"

"120 Lytton"

price

address

cuisine

comment

nearby-eats

n1

n4

n6

n7

restaurant
comment

name "need info"

10

"Hakata"

n2 n5

n3

parking

20

r

Figure 7.2: The oem database in Example 7.2.2If u is a basic change operation that can be applied to O, we say u is valid forO, and we use u(O) to denote the result of applying u to O. Note that there is noexplicit object deletion operation. In oem, persistence is by reachability from thedistinguished root node [AQM+96]. Thus, to delete an object it su�ces to removeall arcs leading to it. A subtlety is that sometimes we need to allow objects to be\temporarily" unreachable. In particular, when we create a new object, it remainsunreachable until we create an arc that links it to the rest of the database. Thus, whenwe consider sequences of changes in Section 7.2.2, we want to permit the result ofatomic changes to (temporarily) contain unreachable objects. The issue is discussedfurther in Section 7.2.2 below. Note that users will typically request \higher-level"changes based on the Lorel update language [AQM+96]; the basic change operationsde�ned here reect the actual changes at the database level.Example 7.2.2 Let us consider some modi�cations to the oem database in Exam-ple 7.2.1. We will use these modi�cations as a running example in the rest of the chap-ter. First, on January 1st, 1997, the price rating for \Bangkok Cuisine" is changedfrom 10 to 20. This modi�cation corresponds to an updNode operation. On the sameday, a new restaurant with name \Hakata" is added (with no other data). This

170 CHAPTER 7. REPRESENTING AND QUERYING CHANGESmodi�cation corresponds to two creNode operations for the restaurant node and itssubobject, and two addArc operations to add arcs labeled \restaurant" and \name."Next, on January 5th, a subobject with value \need info" is added to the \Hakata"restaurant object via an arc labeled \comment." This modi�cation corresponds toone creNode operation and one addArc operation. Finally, on January 8th the parkingat \Lytton lot 2" is no longer considered suitable for the restaurant \Janta," and thecorresponding arc is removed; this modi�cation corresponds to a remArc operation.The resulting modi�ed oem representation of the Guide data is shown in Figure 7.2,with new data highlighted in bold, and the deleted arc represented using a dashedarrow. 27.2.2 oem HistoriesWe are typically interested in collections of basic change operations, which describesuccessive modi�cations to the database. In Chapters 4, 5, and 6, we used sequencesof edit operations, called edit scripts, to model collections of edit operations. Below,we de�ne histories, which are generalizations of edit scripts to OEM. Histories di�erfrom the edit scripts of earlier chapters in two major ways: (1) Histories are composedof operations that edit directed graphs (OEM) instead of trees. (2) In order to allowthe temporary presence of objects that are unreachable from the root of an OEMdatabase, we divide the operations in a history into sections which may be informallythought of as transactions. (Recall that any object not reachable from the root of anOEM database is implicitly deleted.)We say that a sequence L = u1; u2; : : : ; un of basic change operations is valid foran oem database O if ui is valid for Oi�1 for all i = 1 : : : n, where O0 = O, andOi = ui(Oi�1), for i = 1 : : : n. We use L(O) to denote the oem database obtainedby applying the entire sequence L to O. Also, we say that a set U = fu1; u2; : : : ; ungof basic change operations is valid for an oem database O if (1) for some orderingL of the changes in U , L is a valid sequence of changes, (2) for any two such validsequences L and L0, L(O) = L0(O), and (3) U does not contain both addArc(p; l; c)and remArc(p; l; c) for any p, l, and c. We use U(O) to denote the oem database

7.2. THE OBJECT EXCHANGE MODEL 171obtained by applying the operations in the set U (in any valid order) to O.We are now ready to de�ne an oem history. Assume we are given some timedomain time that is discrete and totally ordered; elements of time are called times-tamps. Intuitively, consider an oem database to which, at some time t1, a set U1 ofbasic change operations is applied, then at a later time t2, another set U2 is applied,and so on. A history represents such a sequence of sets of modi�cations.De�nition 7.2.2 An oem history is a sequence H = (t1; U1); : : : ; (tn; Un), where Uiis a set of basic change operations and ti is a timestamp, for i = 1 : : : n, and ti < ti+1for i = 1 : : : n� 1. We say H is valid for an oem database O if, for all i = 1 : : : n, Uiis valid for Oi�1, where O0 = O, and Oi = Ui(Oi�1) for i = 1 : : : n. 2We now return to the requirement that all objects in an OEM database must bereachable from the root. An OEM history can be viewed as a sequence L1; :::; Lnof sequences of atomic changes. Within one sequence Li of changes, we relax therequirement that all objects are reachable from the root so that we can, e.g., createa node and then create arcs leading to it, as discussed earlier. However, immediatelyafter each sequence Li has been applied, nodes that are unreachable are consideredas deleted, and the remainder of the history should not operate on these objects. Tosimplify presentation, we also assume that object identi�ers of deleted nodes are notreused.Example 7.2.3 The history for the modi�cations described in Example 7.2.2 consistsof three sets of basic change operations. It is given by H = ((t1; U1); (t2; U2); (t3; U3)),where t1 = 1Jan97 , t2 = 5Jan97 , t3 = 8Jan97 , and:U1 = fupdNode(n1; 20); creNode(n2; C); creNode(n3; \Hakata");addArc(n4; \restaurant"; n2); addArc(n2; \name"; n3)gU2 = fcreNode(n5; \need info")addArc(n2; \comment"; n5)gU3 = fremArc(n6; \parking"; n7)g:This above history is valid for the OEM database of Figure 7.1. 2

172 CHAPTER 7. REPRESENTING AND QUERYING CHANGES7.3 Representation of ChangesIn Chapter 4, we described a simple structure, called a delta tree, for representingchanges between two versions of tree-structured data. Given two trees and the dif-ferences (edit script) between them, we produce a delta tree corresponding to eachtree by annotating each tree node with the edit operations acting on that node. Inthis section, we generalize delta trees for representing changes in directed graphs (notonly trees) and for representing changes across multiple versions (not only two) of thedatabase As in delta trees, we represent changes to an oem database by attachingannotations to the oem graph, thereby turning it into a doem (Delta oem) graph.We �rst introduce the annotations we use and de�ne a doem database as an oemgraph containing these annotations. Next, we describe how an oem history (de�nedin Section 7.2.2) is represented using a doem database. Finally, we discuss someproperties of doem databases that make them well-suited for representing changes insemistructured data.Intuitively, annotations are tags attached to the nodes and arcs of an oem graphthat encode the history of basic change operations on those nodes and arcs. There isa one-to-one correspondence between annotations and the basic change operations.Thus, nodes and arcs may have the following annotations:� cre(t): the node was created at time t.� upd(t; ov): the node was updated at time t; ov is the old value.� add(t): the arc was added at time t.� rem(t): the arc was removed at time t.The set of all possible node annotations is denoted by node-annot, and the set ofall possible arc annotations is denoted by arc-annot.Using the above de�nitions of node and arc annotations, we now de�ne a doemdatabase. In the following de�nition, the function fN (n) maps a node n to a set ofannotations on that node and the function fA(a) maps an arc a to a set of annotationson that arc.

7.3. REPRESENTATION OF CHANGES 173De�nition 7.3.1 A doem database is a tripleD = (O; fN ; fA), whereO = (N;A; v; r)is an oem database, fN maps each node in N to a �nite subset of node-annot, andfA maps each arc in A to a �nite subset of arc-annot. 27.3.1 doem Representation of an oem HistoryGiven an oem database O and a history H = (t1; U1); :::; (tn; Un) that is valid forO, we would like to construct the doem database representing O and H, denotedby D(O;H). D(O;H) is constructed inductively as follows. We start with a doemdatabase D0 that consists of the oem database O with empty sets of annotations forthe nodes and the arcs of O. Suppose Di�1 is the doem database representing O and(t1; U1); :::; (ti�1; Ui�1), for some 1 � i � n. The doem database Di is constructedby considering the basic change operations in Ui. Since the history is valid, we canassume some ordering Li of the operations in Ui (De�nition 7.2.2). Starting withDi�1,we process the operations in Li in order. Whenever the value of an object is updated,in addition to performing the update we attach an upd annotation to the node. Thisannotation contains the timestamp ti and the old value of the object. When a newobject is created or an arc added, in addition to performing the modi�cation, weattach a cre or add annotation with the timestamp ti. When an existing arc isremoved, we do not actually remove the arc from the graph; instead, we simplyattach a rem annotation to the a�ected arc with the timestamp ti. Observe that thisrepresentation directly stores the changes themselves, not the before and after imagesof the changes, and thus takes the snapshot-delta approach discussed in Chapter 2.Example 7.3.1 Consider the history described in Example 7.2.3, which transformsthe oem database of Figure 7.1 to that of Figure 7.2. The corresponding doemdatabase is shown in Figure 7.3. We see that the doem database contains severalannotations, depicted as boxes in the �gure. For example, the annotations withtimestamp\1Jan97" correspond to the �rst set of updates. Note that the cre, add, andrem annotations contain only the timestamp, while the upd annotation also containsthe old value of the updated node (10, in our example). Also note that the removed\parking" arc from the \Janta" restaurant object to the \Lytton lot 2" parking object

174 CHAPTER 7. REPRESENTING AND QUERYING CHANGES
rem

t:8Jan97

t:1Jan97

"Lytton" "Palo Alto"

guide

address

address

"Janta"

restaurant

street city

price

name parkingparking

"Bangkok Cuisine"

name

"usually full""Lytton lot 2"
"moderate"

"Indian"

"120 Lytton"

price

address

cuisine

comment

nearby-eats

upd

"Hakata"

"need info"name

restaurant

restaurant add

add
add

cre cre

cre

20

comment

ov:10

t:1Jan97
t:1Jan97 t:5Jan97

t:1Jan97

t:5Jan97

t:1Jan97

Figure 7.3: The doem object in Example 7.3.1.is not actually removed from the doem database; instead it bears a rem annotation.27.3.2 Properties of doem DatabasesWe have seen above how a doem database is used to represent an oem database andits history. We now discuss the advantages of this representation. We say that adoem database D is feasible if there exists some oem database O and valid historyH such that D = D(O;H). Note that we do not require doem databases to recordall changes since creation, i.e., oem database O need not be empty. doem databaseshave the following desirable properties:� It is easy to obtain the original snapshot O0(D) from a doem database D.O0(D) contains exactly those nodes in D that do not have a cre annotation.The arcs of O0(D) are the arcs in D that either have no annotations, or have arem annotation as the annotation with the smallest (earliest) timestamp.� It is easy to obtain the snapshot at time t, Ot(D), from a doem database D.Starting from the root object of D, we traverse D in preorder. For each node n

7.3. REPRESENTATION OF CHANGES 175we encounter, we do the following:1. We �nd the value vt(n) of n at time t (atomic value or C) as follows: Ifn has no upd annotations, then vt(n) = v(n). Otherwise, let upd(t1; ov1),: : :, upd(tk; ovk) be the upd annotations in fN(n). If tk � t, vt(n) = v(n).Otherwise, pick i 2 [1; k] such that ti is the smallest timestamp greaterthan t in t1; : : : ; tk; then vt(n) = ovi.2. If vt(n) = C, continue the preorder traversal by following the arcs ema-nating from n that were present at time t. These are the arcs emanatingfrom n that either do not have any annotation with timestamp less than orequal to t, or have an add annotation as the annotation with the greatesttimestamp less than or equal to t.� It is easy to obtain the current snapshot from a doem database. It is thesnapshot at time c, where c is the current time.� It is easy to obtain the encoded history H(D) from a doem database D. Thehistory H(D) = (t1; U1); :::; (tn; Un) is constructed as follows. First, t1; : : : ; tn isthe set of timestamps occuring in D, ordered by time. For each i = 1 : : : n, Uicontains the following operations:1. addArc(p; l; c) (remArc(p; l; c)), if the arc (p; l; c) has the annotation add(ti)(respectively, rem(ti));2. updNode(n; v), if n has an annotation upd(ti; ov) and v is the next valueof n. That is, v = ov0 if the next (by time) annotation of n is upd(tj; ov0),and v = v(n) if n is not updated after ti;3. creNode(n; v), if n has the annotation cre(ti), where v is de�ned as inCase 2.� It is relatively easy to determine if a given doem database D is feasible. Weconstruct the original snapshot O0(D) and the encoded history H(D) for D asabove, and test if D(O0(D);H(D)) = D.

176 CHAPTER 7. REPRESENTING AND QUERYING CHANGES� Most importantly, if D is feasible, we can show that the oem database O0(D)and the history H(D) encoded by D are unique. Thus, a doem databasefaithfully captures all the information about the history of the correspondingoem database.� As we will see in the next section, it is easy and intuitive to query the historyencoded in a doem database.7.4 Querying Over ChangesIn Section 7.3, we have seen how the history of an oem database is represented bythe corresponding doem database. In this section, we describe how doem databasesare queried. We introduce a query language called Chorel for this purpose. Chorelis similar to the Lorel language [AQM+96] used to query oem databases. We beginwith a brief overview of Lorel, followed by a description of the syntax and semanticsof Chorel.7.4.1 Lorel OverviewLorel uses the familiar select-from-where syntax, and can be thought of as an ex-tension of OQL [Clu98, Cat96] in two major ways. First, Lorel encourages the use ofpath expressions. For instance, one can use the path expressionguide.restaurant.address.street to specify the streets of all addresses of restau-rant entries in the Guide database. Second, in contrast to OQL, Lorel has a very\forgiving" type system. When faced with the task of comparing di�erent types,Lorel �rst tries to coerce them to a common type. When such coercions fail, the com-parison simply returns false instead of raising an error. This behavior, while it maybe unsuitable for traditional databases, is exactly what a user expects when queryingsemistructured data. Lorel also provides a number of syntactic conveniences such asthe possibility of omitting the from clause. We do not describe Lorel in detail here(see [AQM+96]), but only present through a simple example those features that areneeded to understand Chorel.

7.4. QUERYING OVER CHANGES 177Example 7.4.1 Consider again the oem database depicted in Figure 7.2. To �nd allrestaurants that have a price rating of less than 20.5, we can use the following Lorelquery:select guide.restaurantwhere guide.restaurant.price < 20.5;Note that the query expresses the price rating as a real number whereas the restaurantentries for \Bangkok Cuisine" and \Janta" in the oem database shown in Figure 7.2use an integer and a string, respectively. Furthermore, the third restaurant entry doesnot have a price subobject at all. Lorel successfully coerces the integer price 10 toreal, and the comparison succeeds. For the string encoding of the price (\moderate"),Lorel tries to coerce, but fails, returning false as the result of the comparison. Finally,for the third restaurant, the missing price subobject simply causes the comparisonto return false. Thus, the result of the above query is a singleton set containing therestaurant object for \Bangkok Cuisine." Note that this result is an intuitively rea-sonable response to the original query, despite the typing di�culties and the missingdata. 2Lorel also allows the use of path expressions that include regular expressions andwildcards (e.g., \#" matches an arbitrary path of length 0 or more). Such generalpath expressions are powerful extensions of the simple path expressions of OQL, andallow Lorel users to specify complex path patterns in a database graph. Chorel is alsobased on extending the notion of path expressions, but in a di�erent direction: Weextend path expressions to allow the annotations in doem databases to be speci�edand matched.7.4.2 ChorelIn Chorel, path expressions may contain annotation expressions, which allow us torefer to the node and arc annotations in a doem database. Informally, Lorel pathexpressions can be thought of as being matched to paths in the oem database duringquery execution. Analogously, the annotation expressions in Chorel path expressions

178 CHAPTER 7. REPRESENTING AND QUERYING CHANGEScan be thought of as being matched to annotations on the corresponding paths in thedoem database.Example 7.4.2 Consider the doem database depicted in Figure 7.3. To �nd allnewly added restaurant entries only, we can use the following Chorel query:select guide.<add>restaurant;The annotation expression \<add>" speci�es that only those objects connected tothe \guide" object by a \restaurant"-labeled arc having an add annotation shouldbe retrieved. For the database depicted in Figure 7.3, this Chorel query returns therestaurant object with name \Hakata." 2Not surprisingly, we use four kinds of annotation expressions in Chorel path ex-pressions: node annotation expressions \cre" and \upd," and arc annotation expres-sions \add" and \rem." Recall that a path expression, e.g., guide.restaurant.price,consists of a sequence of labels. Arc annotation expressions must occur immediatelybefore a label, whereas node annotation expressions must occur immediately afterone. (Note that since node and arc annotations use di�erent keywords, no confusioncan arise.) Path expressions containing node or arc annotation expressions are calledannotated path expressions. For instance,guide.<add>restaurant.price<upd>is a correct annotated path expression. It requires an add annotation to be presenton the arc labeled \restaurant," and an upd annotation on the \price" node (i.e., onthe node at the destination of the arc labeled \price"). For simplicity, in this chap-ter we do not consider path expressions that have annotation expressions attachedto wildcards or regular expressions, however generalizing to allow such annotationexpressions is not di�cult.Annotation expressions may also introduce time variables to refer to the times-tamps stored in matching annotations, and data variables to refer to the modi�ed

7.4. QUERYING OVER CHANGES 179values in matching upd annotations. More precisely, the syntax of annotation expres-sions is as follows:<Annot [at timeV]> if Annot is in f add, rem, cre g< upd [at timeV] [from oldV] [to newV]> for updwhere timeV, oldV, and newV are variables. Note that a doem database does not ex-plicitly store the new value of an updated object, however this information is availableimplicitly, and can be determined easily as shown in Section 7.3.2.Let us consider a Chorel query that uses a time variable. Note that we allow usersto enter timestamps using a textual representation, e.g., 4Jan97. In keeping withLorel's extensive use of coercion, any recognizable format is allowed and is convertedautomatically to an internal timestamp datatype.Example 7.4.3 Consider the doem database in Figure 7.3. To �nd all restaurantentries that were added before January 4th, 1997, we can use the following Chorelquery:select guide.<add at T>restaurantwhere T < 4Jan97;The Chorel preprocessor will rewrite this query to obtain the following. (We willexplain this rewriting shortly.)select Rfrom guide.<add at T>restaurant Rwhere T < 4Jan97;The introduced from clause will bind R to all \restaurant" objects that are connectedto the \guide" object via an arc with an add annotation, and will provide correspond-ing bindings for T . More precisely, the evaluation of the from clause will yield theset of pairs hR;T i such that there is a restaurant arc from the guide object to Rthat has an add annotation with timestamp T . The where clause will �lter out thehR;T i pairs for which T does not satisfy the condition. For the doem database inFigure 7.3, this query returns the restaurant object for \Hakata." 2

180 CHAPTER 7. REPRESENTING AND QUERYING CHANGESOnce time and data variables have been bound using annotations, they can be usedjust like other variables in Lorel or OQL. This feature is illustrated by the followingquery, which uses time and data variables in the select clause.Example 7.4.4 Referring again to the doem database in Figure 7.3, suppose wewant to �nd the names of all restaurants whose price ratings were updated on orafter January 1st, 1997 to a value greater than 15, together with the time of theupdate and the new price. We can use the following query:select N, T, NVfrom guide.restaurant.price<upd at T to NV>guide.restaurant.name Nwhere T >= 1Jan97 and NV > 15;The result of the above query is a single complex object with three components, asshown below. The label name is chosen by Chorel using the method described in[AQM+96]. For time and data variables whose labels are not speci�ed by the query,Chorel chooses the default labels create-time, add-time, remove-time, update-time,new-value, and old-value.answername "Bangkok Cuisine"update-time 1Jan97new-value 20 27.4.3 Chorel SemanticsWe now make the semantics of Chorel queries more precise. As is done for Lorel,the semantics is described by specifying the rewriting of Chorel queries into OQL-likequeries. However, we need to introduce some additional machinery to handle theannotation expressions in Chorel queries.First, the annotation expressions in a Chorel query are transformed into a canon-ical form that includes all variables. For example, \<add>" is rewritten to \<add at

7.4. QUERYING OVER CHANGES 181T1>," and \<upd from X>" is rewritten to \<upd at T2 from X to NV2>," whereT1, T2, and NV2 are fresh variables. Next, as in Lorel, we eliminate path expressionsby introducing variables for the objects \inside" the path expressions. For exam-ple, the path expression \a.b.c" in a from clause is converted to \a.b X, X.c Y,"where X and Y are new range variables. The details of this rewriting are describedin [AQM+96].At this stage, we have to give a semantics to range variable de�nitions that mayinclude annotation expressions (e.g., \X.label Y," \X.<add at T>label Y") in thecontext of a doem database. In the absence of an annotation expression, the se-mantics of an expression \X.label Y" is that for a binding oX of X, Y is bound toall objects oY such that there is an arc labeled label from oX to oY in the currentsnapshot. Note that by this semantics, a standard Lorel query (without annotations)over a doem database has exactly the semantics of the same query asked over thecurrent snapshot for that doem database. In the presence of annotation expressions,the semantics requires the existence of the speci�ed annotation, and also providesbindings for the variables in the annotation expression. The bindings are also speci-�ed by a special rewriting. As an example, the query in Example 7.4.4 is rewrittento: select N, T, NVfrom guide.restaurant R, R.price P, R.name N,(T, OV, NV) in updFun(P)where T >= 1Jan97 and NV > 15;Our rewriting uses the following functions, which extract the information storedin annotations: creFun(node)! ftimegupdFun(node)! f(time; old-value;new-value)gaddFun(source; label)! f(time; target)gremFun(source; label)! f(time; target)gThe function creFun(n) returns the set of timestamps found in cre annotations on

182 CHAPTER 7. REPRESENTING AND QUERYING CHANGESnode n. (Note that by our de�nition of change operations in Section 7.2.1, thisset is either empty or a singleton.) The function updFun(n) returns a set of triplescorresponding to the timestamp, the old value, and the new value in upd annotationson n. The function addFun(n,l) returns a set of (t; c) pairs such that c is an l-labeledsubobject of n via an arc that has an add(t) annotation. The remFun function isanalogous to addFun. Once this rewriting has been performed, the from, where, andselect clauses of the resulting query are processed in a standard manner.Above, we have illustrated how variables introduced in the from clause are inter-preted. Variables may be introduced in the where clause as well. They are treated byintroducing existential quanti�cation in the where clause, extending the treatment ofsuch variables in Lorel [AQM+96]. Consider the following example:Example 7.4.5 Consider again the doem database of Figure 7.3. Suppose we wantthe names of restaurants to which a \moderate" price subobject was added sinceJanuary 1st, 1997. We can write the following Chorel query:select Nfrom guide.restaurant R, R.name Nwhere R.<add at T>price = "moderate" and T >= 1Jan97;The variable T is introduced in the where clause. Therefore, the rewritten whereclause is:where exists (T, P) in addFun(R,"price") :(P = "moderate" and T >= 1Jan97); 27.5 Implementing doem and ChorelIn this section, we describe how we have implemented doem databases and Chorelqueries. One approach would be to extend the kernel of the Lore database system[MAG+97] to allow annotations to be attached to the nodes and arcs of an oemdatabase. Given these extensions, the Lorel query engine could be extended to a

7.5. IMPLEMENTING DOEM AND CHOREL 183Chorel query engine in a straightforward manner based on the semantics speci�edin Section 7.4.3. We do not discuss this approach further. Instead, our implemen-tation uses an alternative approach of implementing doem and Chorel \on top of"Lore. We encode doem databases as oem databases, and we implement Chorel bytranslating Chorel queries to equivalent Lorel queries over the oem encoding of thedoem database. In addition to being more modular than the direct implementa-tion approach (and not a�ecting Lore object layout or query processing), this ap-proach can also be adapted easily to other graph-based data models, e.g., those in[BDHS96, Cat96]. Note that while there are several simple methods of encoding adoem database as an oem database, the challenge here is to devise an encodingthat permits a simple and valid translation of Chorel queries over the original doemdatabase into Lorel queries over the oem encoding. For many of the obvious possibleencodings, such query translation proves to be very di�cult or impossible.We begin by explaining how we encode doem databases in oem, followed by adescription of the translation of Chorel queries to Lorel queries for this encoding, and�nally a description of our system implementation.7.5.1 Encoding doem in oemLet D be a doem database. We encode D as an oem database OD de�ned as follows.For each object o in D, there is a corresponding object o0 in OD. Atomic objects areencoded as complex objects so that we can record their histories using subobjects.Special labels used by the encoding start with the character \&" to distinguish themfrom standard labels occuring in O. The encoding object o0 for doem object o hasthe following subobjects, listed by their labels. Refer to Figures 7.4 and 7.5.� &val: If o is atomic with current value v, there is a \&val"-labeled arc from o0to an atomic object with value v. If o is complex, there is a \&val"-labeled arcfrom o0 to itself. (The use of this extra edge will soon become clear.)� &cre: If o has a create annotation cre(t), then o0 has a \&cre"-labeled complexsubobject o0c that has a \&time"-labeled atomic subobject with value t.

184 CHAPTER 7. REPRESENTING AND QUERYING CHANGES
o1

5upd(t3, 3)

DOEM

OEM

o1’

&time &val
&time

&val

&next&next
&upd&upd&cre

&val

t2 2 t3 3

&time

t1

5

cre(t1)
upd(t2, 2)

Figure 7.4: Encoding a doem object in oem: node annotations� &upd: For each update annotation upd(t; ov) attached to o, o0 has an \&upd"-labeled complex subobject o0u. The object o0u has a \&time"-labeled atomicsubobject with value t, and a \&val"-labeled atomic subobject with the valuebefore the update (ov).� l : If the current snapshot for D contains an arc (o; l; p), then OD contains anarc labeled l from o0 to the object p0 that encodes p.� &l-history: If D contains an arc (o; l; p), then OD contains an arc(o0;&l-history; o0l) where o0l is a complex object that contains the history ofthe l arcs from o to p. The object o0l has the following structure:{ &target: There is an arc (ol;⌖ p0), where p0 is the object encodingp.{ &add, &rem: For each annotation add(t) (rem(t)) attached to (o; l; p), thereis an \&add"-labeled (respectively, \&rem"-labeled) complex subobject o0cthat has a \&time"-labeled atomic subobject with value t.� &next: For each oem object o01 that encodes a doem object o1 and its nodeannotations, the \&cre"- and \&upd"-labeled subobjects of o01 are chained to-gether in ascending order of the values of their \&time" subobjects using arcswith label \&next." (As we shall see shortly, this chaining is useful for obtaining

7.5. IMPLEMENTING DOEM AND CHOREL 185
o2’

o4’ oa’

A

o3’

&val

&B-history

&A-history

&add

&target

OEM

&time

t4

&target

o2

o3 o4

BA
add(t4)

rem(t5)

DOEM

&next

&time

&next

&time

t5

&rem

t6

&add

&next

h1 h2Figure 7.5: Encoding a doem object in oem: arc annotationsthe \new value" corresponding to an update annotation.) Similarly, for eachoem object o0iLj that encodes a doem arc (oi; L; oj) and the annotations on thatarc, the \&add"- and \&rem"-labeled subobjects of oiLj are chained together inascending order of the values of their \&time" subobjects using arcs with label\&next." (As we shall see in Section 7.6, this chaining is useful for implementingsnapshot-based access.)7.5.2 Translating Chorel to LorelGiven the above encoding of a doem database as an oem database, we now describehow a Chorel query over a (conceptual) doem database is translated into an equiv-alent Lorel query over an oem encoding of the doem database. In Section 7.4.3 wedescribed how a Chorel query can be rewritten into an OQL-like query using spe-cial functions creFun, updFun, addFun, and remFun. Therefore, in the following weassume that we are given such a rewritten query.We simulate the special functions creFun, updFun, addFun, and remFun using ex-pressions that extract the required values from the oem encoding of the annotations.For example, the expression \(T, OV, NV) in updFun(P)" is replaced with \P.&updU, U.&time T, U.&val OV, U.&next.&val NV." From the encoding schemedescribed in Section 7.5.1, we see that this expression instantiates the triple (T, OV,

186 CHAPTER 7. REPRESENTING AND QUERYING CHANGESNV) to the timestamp, old value, and new value of the update annotations on objectsbound to P. If an expression of the form \(T, C) in addFun(P, l)" occurs in aChorel query, we replace it with \P.&l-history H, H.&add.&time T, H.&targetC." The case for remove annotations, involving the remFun function, is analogous.Finally, we replace an expression \T in creFun(P)," with \P.&cre.&time T."Note that our encoding scheme ensures that only arcs that exist in the currentsnapshot corresponding to the encoded doem database are accessible directly viatheir labels in the encoding. If an l-labeled arc does not exist in the current snapshot,its information is stored using an arc with label &l-history, which does not matchthe label l.One remaining issue is that in the oem encoding of a doem database, the valueof an atomic object is stored in a \&val"-labeled subobject of the encoding object.So, for instance, when a query compares an atomic object to a value, we want to usethe value stored in the \&val" subobject for this comparison. Therefore, wherever inthe query the value of a object variable is accessed (i.e., in predicates and functionarguments) we replace the object variable \X" with \X.&val." Observe that sincethere is a \&val"-labeled arc from the encoding of each complex object to itself, wecan safely perform the above transformation for all value accesses of object variablesoccuring in the original query, without knowing whether the objects they encodeare atomic or complex (which, in general, we will not know). The transformation isillustrated by the following example.Example 7.5.1 Consider the Chorel query in Example 7.4.5. In Section 7.4.3, weconsidered the OQL-like rewriting of this query. We now complete this rewriting asdescribed above, to yield the following Lorel query over the oem encoding of thedoem database in Figure 7.3:select Nfrom guide.restaurant R, R.name Nwhere exists H in R.&price-history :exists P in H.&target :exists T in H.&add.&time :T >= 1Jan97 and P.&val = "moderate";

7.5. IMPLEMENTING DOEM AND CHOREL 187Note that we simulate the range speci�cation addFun(R,"price") using the \&"-pre�xed subobjects. Further, we use P.&val to access the actual price value (andnot the complex object packaging it with its history). 2Note that the example query returns a set of doem objects that represent restau-rant names. That is, it returns not only the names of the restaurants, but also thehistory of these names, if they changed. Returning the doem object enables the userto access both the value and the history of an object.In the above description, for simplicity we assumed that every atomic object o isencoded using a complex object o0 that has a &val-labeled subobject with value v(o).However, in practice we do not encode unannotated atomic objects in this manner;that is, if an atomic object o has no annotations, we encode it using a simple atomicobject o0 with value v(o). In our translation scheme, we replace accesses to the valueof an variable X by X.[&val], which is a Lorel path expression indicating an optionalpath component &val.7.5.3 ImplementationFigure 7.6 depicts the system architecture of core, a Change Object Repositorybased on doem and Chorel.A doem database is �rst populated by loading a DOEM load �le, which is a simpletextual representation of a doem database. The Encoder reads this doem load �leand produces a Lore load �le that encodes the doem database using the methoddescribed in Section 7.5.1. The Lore loader reads the oem load �le and stores thecorresponding database in Lore [MAG+97].When a user invokes a Chorel query on the doem database, the query is �rsttranslated into a Lorel query over the oem encoding of the doem database by theChorel Translator, using the method described in Section 7.5.2. The resulting Lorelquery is evaluated over the oem database by the Lore query engine. Note that theresult of the Lorel query contains oem objects that are encodings of doem objects andannotations. The API (Application Program Interface) Translator translates theseoem encodings to the corresponding doem objects, which can then be displayed by

188 CHAPTER 7. REPRESENTING AND QUERYING CHANGES
File
Load
LoreDOEM

Load
File

in OEM
encoded
DOEM

CORE

Load
Encoder

Extender

Translator

Translator
API

Chorel

Extend

Query

Loader

Navigational AccessNavigational Access

Lorel Query Result

Lore API calls

(DOEM API) (Lore API)

Chorel Query Result

Lore

Results

Navigate

User

Engine
Lore Query

Lorel Chorel
Query Query

Load File
DOEM

Incremental

Interface

User

CORE

Figure 7.6: System architecture
the User Interface.The User Interface can also be used to browse the doem database, either directly,or starting from the results of a Chorel query. The translation from navigation in thedoem database to navigation in the oem encoding stored in Lore is done by the APITranslator.A doem database can also be extended by adding new data and changes. Forexample, consider a doem database representing the history of our Guide database(Example 7.2.1) up to last week. We may want to extend the database to includethis week's changes when they become available. This capability is handled by theExtender, which takes as input an incremental doem load �le, and uses the Lore APIto modify the encoded doem database. We are also in the process of extending Loreso that it can monitor changes to oem databases and create and extend correspondingdoem databases directly.

7.6. VIRTUAL ANNOTATIONS AND SNAPSHOT-BASED ACCESS 1897.6 Virtual Annotations and Snapshot-based Ac-cessIn Section 7.4.2 we have seen how the construct <upd at T from oldV to newV>refers to a virtual annotation upd(t; ov; nv), where t, ov, and nv are, respectively, thetimestamp, the old value, and the new value of an update operation in the history. Thereal annotation, upd(t; ov), does not contain the old value, however that informationis available elsewhere in the database. We can extend this idea of virtual annotationsto facilitate access to other implicit information in a doem database. As a concreteexample, in this section we introduce virtual annotations that facilitate snapshot-basedaccess to a doem database. We de�ne the semantics of Chorel queries containingreferences to virtual annotations by using range functions that are de�ned over thereal annotations and data in a doem database. We describe how to implement thisadded functionality by extending the translation-based method of Section 7.5.7.6.1 Snapshot-based AccessRecall from Section 7.4.3 that an unannotated path expression such asguide.restaurant.entree.price is evaluated over the current snapshot of a doemdatabase. Sometimes, one may wish to evaluate path expression components overother (non-current) snapshots. For example, we maywish to refer to the price of an en-tree at some time T ; we introduce the syntax guide.restaurant.entree.price<atT>. Similarly, we may wish to refer to the existence of a parking arc between twoobjects X and Y at time T ; we use the syntax X.<at T>parking Y in the from clauseof a Chorel query.Example 7.6.1 Consider the Guide database depicted in Figure 7.3. Suppose wewish to list the parking areas close to the restaurant \Janta" as of 1st January 1997.We write the following query:select Pfrom guide.restaurant R, R.<at T>parking Pwhere R.name = "Janta" and T = 1Jan97;

190 CHAPTER 7. REPRESENTING AND QUERYING CHANGESFor the doem database depicted in Figure 7.3, this query returns the parking objectwith address \Lytton lot 2," since on 1st January 1997 there was a \parking" arc fromthe Janta restaurant object to the Lytton parking object. (This arc was removed on8th January 1997.) 2When the variable T occuring in an at annotation expression is bound to a constantelsewhere in the query (as in the above example), the e�ect of the annotation expres-sion on query evaluation is intuitively simple: We evaluate the query as if the pathexpression component quali�ed by <at T> refers to the snapshot of the database attime T . As we have seen in Section 7.3.2, the snapshot at time T is easily obtainedusing the information in a doem database. However, if T is unbound, then unless wetake special precautions we may �nd ourselves faced with unsafe queries, as illustratedby the following example.Example 7.6.2 For the Guide database depicted in Figure 7.3, suppose we are in-terested in �nding the times at which the restaurant \Bangkok Cuisine" had a pricerating less than 15. We write the query as follows:select Tfrom guide.restaurant R, R.price<at T> Pwhere R.name = "Bangkok Cuisine" and P < 15;The basic problem with this query is that while the database stores only a �nitenumber of timestamps, the above query would require T to range over the in�nitenumber of intermediate timestamp values as well. 2We overcome such di�culties by allowing timestamp variables such as T above tobind only to those timestamp values that exist explicitly in the doem database.Intermediate timestamp values are represented using intervals [B;E), where B andE are the begin and end timestamps, respectively. (We use a convention of intervalsthat are closed on the left and open on the right; our methods are not dependent onthis convention.)To introduce this concept of intervals, we add another virtual annotation, calledduring, on nodes and arcs, and a corresponding annotation expression \<during B

7.6. VIRTUAL ANNOTATIONS AND SNAPSHOT-BASED ACCESS 191E>" in the syntax of annotated path expressions. (As we will see in Section 7.6.3,virtual annotation during in fact subsumes virtual annotation at.) Intuitively, theconstruct X<during B E> V in a from clause binds the triple (B;E; V) to all valuesf(b; e; v)g such that the object X had value v continuously from time b to time e.Similarly, the construct X<during B E>l Y binds the triple (B;E; Y) to all valuesf(b; e; Y)g such that the arc (X; l; Y) existed continuously from time b to time e. Wefurther require that the above intervals [b; e) be maximal.When using snapshot-based access, we often need to refer to the current time.We introduce a distinguished timestamp tN for this purpose. More precisely, tN isa special variable whose value during the evaluation of a query is the time at whichthat evaluation begins. Similarly, we often need to refer to the initial timestamp cor-responding to a database; we introduce a distinguished timestamp tI for this purpose.More precisely, each doem database has an initial timestamp tI associated with it.Note that tI is a constant, and may be negative in�nity.Using the during virtual annotation, the query in Example 7.6.2 may be rewrittenas follows:select B,Efrom guide.restaurant R, R.price<during B E> Pwhere R.name = "Bangkok Cuisine" and and P < 15;This query returns a set of pairs f(b; e)g such that at all times during the interval[b; e), Bangkok Cuisine had a price rating less than 15. For our example databasedepicted in Figure 7.3, this query returns the singleton set f(tI ; 1Jan97)g, where tIis the initial timestamp of the database.Note that it is possible to express such snapshot-based queries using only thebasic Chorel constructs described in Section 7.4. However, the resulting queries areextremely cumbersome. For example, the simple snapshot-based access X.<duringB E>foo Y in a from clause requires a construction such as the following:from X.<add at B>foo Y, X.<rem at E>foo Z...where Y = Z and not exists M :(X.<add at M>foo Y or X.<rem at M>foo Y);

192 CHAPTER 7. REPRESENTING AND QUERYING CHANGESIn reality, the expression is even more complex, since we need to handle the specialcases involving missing annotations on both the \begin" and the \end" side. Thus,snapshot-based access is an excellent candidate for simpli�cation using virtual anno-tations.7.6.2 Semantics of duringWe now formalize our intuitive description of the semantics of during annotations.As in Section 7.4.3, we shall specify the semantics using a rewriting with specialfunctions for binding range variables. To de�ne the semantics of the arc annotationexpression X.<during B E>l Y in the from clause of a Chorel query, we introduce aspecial function, arcDuring. This function maps a doem object o1 and label l to aset of triples f(b; e; o2)g such that in the history represented by the doem database,the arc (o1; l; o2) existed in the time interval [b; e), and [b; e) is maximal (i.e., thiscondition fails to hold if we decrease b or increase e). We rewrite the from clauseby replacing X.<during B E>l Y with (B,E,Y) in arcDuring(X,l). (Recall fromSection 7.3.2 that given a doem database D, it is easy to obtain the snapshot at timet, Ot(D). Thus the intervals [b; e) in the de�nition of arcDuring are well de�ned.)The function arcDuring has some notable boundary cases: If the earliest annotationon an arc is rem(t1), then the arc exists in [tI ; t1). (Recall from Section 7.6.1 that tIis the initial timestamp associated with a database and tN is the current timestamp.)Similarly, if the latest annotation on an arc is add(t2), then the arc exists in theinterval [t2; tN]. Finally, if an arc has no annotations, it exists in [tI; tN].Now we de�ne the semantics of the node annotation expression X<during B E>V in the from clause of a Chorel query. To do so, we introduce a special function,nodeDuring. This function maps a doem object o to a set of triples f(b; e; v)g suchthat in the history represented by the doem database, the object o had value v duringthe time interval [b; e), and [b; e) is maximal. We rewrite the from clause replacingX<during B E> V with (B,E,V) in nodeDuring(X). (Using Section 7.3.2 we see thatthe intervals [b; e), and the corresponding values v, are well-de�ned.) The functionnodeDuring also has some notable boundary cases: If the earliest annotation on a

7.6. VIRTUAL ANNOTATIONS AND SNAPSHOT-BASED ACCESS 193doem object o is upd(t1; v1) then o has value v1 in the interval [tI; t1). Similarly, ifthe latest annotation on o is upd(tk; vk), then o has value v(o) (the current value) in[tk; tN]. Finally, if o has no annotations, then it has value v(o) in [tI; tN].Example 7.6.3 Consider the query proposed in Example 7.6.1. Using the duringconstruct, we can write the following query to return parking for the \Janta" restau-rant as of 1st January 1997.select Pfrom guide.restaurant R, R.<during B E>parking Pwhere R.name = "Janta" and B <= 1Jan97 and E > 1Jan97;Using the semantics for during described above, we see that this query is conceptuallyrewritten to the following:select Pfrom guide.restaurant R, (B,E,P) in arcDuring(R,parking)where R.name = "Janta" and B <= 1Jan97 and E > 1Jan97;Consider the doem database in Figure 7.3. When R is bound to the restaurant object\Janta," function arcDuring results in the tuple variable (B;E;P) ranging over thesingleton set f(tI ; 8Jan97; p1)g, where p1 is the parking object with address \Lyttonlot 2." Since R, B, and E satisfy the predicate in the where clause, the Lyttonparking object will be returned as the query result. 27.6.3 The at ConstructExamples 7.6.1 and 7.6.3 suggest a simple de�nition for the edge annotation X.<atT>l Y and the node annotation X<at T> V. We de�ne them as abbreviations forX.<during B E>l Y and X<during B E> V, respectively, and add the condition B <=T < E to the where clause. Note that our rewriting requires the variable T occuringin the at annotation to be bound elsewhere in the query independently of the pathexpression component containing at. For example, if we apply this de�nition of <atT> to rewrite the query in Example 7.6.1, we obtain the query in Example 7.6.3.

194 CHAPTER 7. REPRESENTING AND QUERYING CHANGESIn cases where the variable T occuring in the <at T> construct is not bound else-where in the query, the de�nition of at as an abbreviation for a during expressionfails. For example, if we apply the rewriting to the problematic query of Exam-ple 7.6.2, which uses <at T> without binding T elsewhere, we get the following queryin which T is still unbound:select Tfrom guide.restaurant R, R.price<during B E> Pwhere R.name = "Bangkok Cuisine" and P < 15 and B <= T and T < E;In general, this problem can be mitigated by allowing timestamp variables such asT to bind to intervals instead of single timestamps. However, we do not considersuch extensions further in this chapter. We shall henceforth assume that the <at T>construct is de�ned only when T is bound elsewhere in the query independently ofthe path expression component containing at.7.6.4 The snap ConstructLet us now consider a special class of Chorel queries that are useful in studying paststates of a historical database. Intuitively, such queries take the snapshot at sometime t, and then evaluate an ordinary (non-historical) query over this snapshot. Wecall such queries pure snapshot queries. For example, using our Guide database,suppose we wish to generate, as of 15th June 1997, the names, price ratings, andparking addresses for restaurants with a price rating less than 20. That is, we wouldlike to evaluate the following Lorel (non-historical) query over the oem database thatis the doem snapshot of 15th June 1997:select R, P, Afrom guide.restaurant R, R.price P, R.parking.address Awhere R.price < 20;In reality we are evaluating Chorel queries over our doem database. Thus, to expressthat the above query should be evaluated over the snapshot of 15th June 1997, wecould qualify each component of each path expression in the query as follows:

7.6. VIRTUAL ANNOTATIONS AND SNAPSHOT-BASED ACCESS 195
o1

5

DOEM

&dcre

OEM

o1’

&time &val
&time

&val

&next&next

&time &time

&upd&upd&cre

tNtI

&next&val

t2 2 t3 3

&time

t1

5

cre(t1)
upd(t2, 2)

upd(t3, 3)

&next
o’I o’N

o’’I o’’N

Figure 7.7: Encoding a doem object in oem: node annotationsselect R, P, Afrom guide.<at T>restaurant R, R.<at T>price<at T> P,R.<at T>parking.<at T>address<at T> Awhere R.<at T>price<at T> < 20 and T = 15Jun97;In order to make writing such snapshot queries more convenient, we introduce as asyntactic convenience the construct <snap T>, with the requirement that T be boundelsewhere in the query independently of the path expression component containingsnap. The construct X.<snap T>foo Y in a from clause is rewritten to X.<at T>fooY; furthermore, any other use of Y in the query is (recursively) rewritten as thoughit were quali�ed by a <snap T>. In particular, Y.bar Z is interpreted as Y.<snapT>bar Z and recursively rewritten, and accesses to Y's value are rewritten as Y<atT>. The where clause is handled analogously. Using this construct, the above querymay now be written more simply as follows:select R, P, Afrom guide.<snap T>restaurant R, R.price P, R.parking.address Awhere R.price < 20 and T = 15Jun97;

196 CHAPTER 7. REPRESENTING AND QUERYING CHANGES7.6.5 Implementing during by translationWe now describe how the translation-based implementation of Chorel described inSection 7.5 is extended to accommodate the during construct. Refer to Figures 7.7and 7.8, which depict the oem encoding of doem objects; we have indicated the newfeatures using dashed lines. (The other features were described in Section 7.5.1.)Each oem database used to encode a doem database has a special complex objecto0N that has one \&time"-labeled atomic subobject o00N with value tN . (Recall, fromSection 7.6.1, that tN refers to the current time; in the implementation, the value of o00Nis the query execution time.) Similarly, there is a special complex object o0I that hasone \&time"-labeled atomic subobject o00I with value tI . (Recall, from Section 7.6.1,that tI is the initial timestamp associated with a doem database, and may be negativein�nity.) Note that there is exactly one instance of each of the objects o0N , o00N , o0I ,and o00I per database. (To highlight this fact, these objects are depicted using shadedcircles in Figures 7.4 and 7.5.)In Section 7.5.1, we described the use of \&next"-labeled arcs to chain annotation-encoding objects in ascending order of the annotation timestamps. We now extendthis chain to include the timestamps tI and tN as follows. Consider �rst the encodingof node annotations, as depicted in Figure 7.4. If a doem node o has one or morenode annotations (create or update), then in its oem encoding, we add a \&next"-labeled arc from the object encoding the annotation with the largest timestamp to thespecial object o0N . The \&next"-labeled arc from o0u to o0N in Figure 7.4 is an exampleof this case. If the doem node o has no annotations, then in the oem encoding,we add a \&dcre"-labeled arc from the corresponding node o0 to the special nodeo0I . In Figure 7.4, if o1 were to not have a create annotation, a \&dcre"-labeled arcfrom o01 to o0I would exist. (Since in reality o1 does have a create annotation, this\&dcre"-labeled arc does not exist, and is depicted using a dotted line.)Now consider the encoding of arc annotations, as depicted in Figure 7.5. If anarc (o1; l; o2) in the doem database has no annotations, then in the oem encoding ofthe database, we add a \&dadd"-labeled arc from o01l2 to the special object o0I , whereo01l2 is the \&l-history"-labeled subobject of o01 that encodes the history of (o1; l; o2).In Figure 7.5, o1l2 is shown as the object h1. If the arc (o1; l; o2) has one or more

7.6. VIRTUAL ANNOTATIONS AND SNAPSHOT-BASED ACCESS 197
o2’

o4’

o’’I

A

o3’

&val

&B-history

&A-history

&add

&target

OEM

&time

t4

&add
&target

o2

o3 o4

BA
add(t4)

rem(t5)

DOEM

&next

&time &time

tNtI

&next

&time

&next

&time

t5

&rem

t6

&add

&next

h1 h2

oa’
o’I o’N

o’’NFigure 7.8: Encoding a doem object in oem: arc annotationsannotations, and the annotation with the largest timestamp is an add annotation,then the oem encoding has a \&next"-labeled arc from the corresponding \&add"-labeled subobject o0a of o01l2 to the special object o0N . In Figure 7.5, we see an exampleof such an arc from o0a to o0N .Given the above enhancements to our scheme for encoding doem in oem, wecan rewrite Chorel queries containing the during construct as Lorel queries over theencoding objects. Given a Chorel query with the construct X<during B E> in thefrom clause, we replace this construct by the following: X(.&cre|.&upd|.&dcre)A, A.&time B, A.&next.&time E, A.&next.&val V. Similarly, if a Chorel queryhas the construct X.<during B E>foo Y in the from clause, we replace this con-struct by the following: X.&foo-history H, H.&target Y, H(.&add|.&dadd) A,A.&time B, A.&next.&time E. As in Section 7.5, variables introduced in the whereclause of a Chorel query are treated by introducing existential quanti�cation in thewhere clause.Example 7.6.4 Consider the during-based query in Example 7.6.3. Using the aboverewriting, we obtain the following Lorel query over the oem database encoding theGuide doem database:select P

198 CHAPTER 7. REPRESENTING AND QUERYING CHANGESfrom guide.restaurant R, R.&parking-history H, H.&target P,H.&add A, A.&time B, A.&next.&time Ewhere R.name = "Janta" and B <= 1Jan97 and E > 1Jan97; 27.6.6 Object Deletion and Garbage CollectionRecall that in the oem data model underlying doem and Chorel, there is no explicitobject deletion operation. Instead, persistence is by reachability from the distin-guished root of the database, and any unreachable objects are implicitly deleted. Anoem database system must therefore periodically perform garbage collection in or-der to detect and remove such deleted objects. Between the time an object becomesunreachable and the time garbage collection is performed, the semantically deletedobject continues to exist in the database. This situation does not pose any di�cul-ties for Lorel queries, since Lorel path expressions cannot access any object that isunreachable from the root of the current database snapshot. However, in Chorel,such deleted objects are reachable using annotated path expressions that contain a\forward jump in time" (i.e., path expressions that refer to a more recent snapshotfrom an older one). The following example illustrates the point:Example 7.6.5 Referring back to our Guide database depicted in Figure 7.3, sup-pose the arc from the Guide object to the restaurant object for \Bangkok Cuisine"is removed on 1st July 1997. This arc removal results in the restaurant object forBangkok Cuisine, as well as its price, address, street, and city subobjects becomingunreachable from the root of the database, implying their deletion. In our doemdatabase, however, these objects continue to exist; the only change is that there isnow a remove annotation rem(1Jul97) on the restaurant arc that was removed. Nowsuppose on 15th July 1997 we issue the following query to our doem database, askingfor the current price rating of all restaurants that existed as of 1st June 1997:select Pfrom guide.<at 1Jun97>restaurant R, R.price P;

7.7. A QUERY SUBSCRIPTION SERVICE 199Now since the price object for Bangkok Cuisine does not currently exist, the result ofthe above query should not contain it. However, there is no way for the Chorel queryengine to detect this situation, since there is no information on either the restaurantor the price objects that suggests their deletion. (The relevant piece of informationis the rem annotation on the restaurant arc.) Thus the query result will contain theprice rating for Bangkok Cuisine. 2We mitigate the above problem by introducing a delete annotation, which recordsthe deletion of an object (usually as a result of garbage collection). Suppose that attime tG, some objects are determined to be newly unreachable from the root of thedatabase. In the corresponding doem database, we mark such newly unreachableobjects (which continue to exist physically) using a del (tG) annotation. We furtherensure that we do not access the value of an object at time t0 if that object has a del(t)annotation with t0 > t. More precisely, we modify the de�nition of the nodeDuringfunction in Section 7.6.2 to state that if a node has a del(td) annotation then its valueafter td is unde�ned. (That is, the most recent time interval is modi�ed from [tk; tN]to [tk; td).) The corresponding changes to the translation-based implementation arestraightforward.7.7 A Query Subscription ServiceIn Section 7.1, we mentioned as an important application of change managementbeing able to notify \subscribers" of changes in (semistructured) information sourcesof interest to them. In this section, we describe our design and implementation of suchan application, called a Query Subscription Service (qss), using doem and Chorel.An ordinary query is evaluated over the current state of the database, the resultsare passed to the client and then discarded. An example of an ordinary query is\�nd all restaurants with Lytton in their address." In contrast, a subscription queryis a query that repeatedly scans the database for new results based on some givencriteria and returns the changes of interest. An example of a subscription query is\every week, notify me of all new restaurants with Lytton in their address." Below,we describe how subscription queries are speci�ed and implemented in our system.

200 CHAPTER 7. REPRESENTING AND QUERYING CHANGES
I1

R1

(t1, U1) (t2, U2) (t3, U3)

Source StatesI2 I3

R2 R3

DOEM

t1 t2 t3Specification
Frequency

time

Change results

Polling Query

Polling Times

R0 = {} Results

History

Filter QueryFigure 7.9: A Query Subscription Service based on doem and ChorelSupporting subscription queries introduces the following challenges. First, as dis-cussed earlier, many information sources that we are interested in (e.g., library in-formation systems, Web sites, etc.) are autonomous [SL90] and typical databaseapproaches based on triggering mechanisms are not usable. Second, these informa-tion sources typically do not keep track of historical information in a format that isaccessible to the outside user. Thus, a subscription service based on changes mustmonitor and keep track of the changes on its own, and often must do so based onlyon sequences of snapshots of the database states.Briey, our approach to constructing a query subscription service over semistruc-tured, possibly legacy, information sources, is as follows: We access the informationsources using Tsimmis wrappers or mediators [PGGMU95, PGMU96], which presenta uniform oem view of one or more data sources. We obtain snapshots of relevantportions of the data and use di�erencing techniques from Chapters 4, 5, and 6 to inferchanges based on these snapshots. Finally, we use doem to represent the changes,and Chorel to specify the changes of interest. We describe our approach in moredetail next.A subscription consists of three main components; refer to Figure 7.9. The �rstcomponent is a pair of frequency speci�cations (fp; ff). The polling frequency fpindicates the times at which data source is to be polled in order to detect changes.

7.7. A QUERY SUBSCRIPTION SERVICE 201The �lter frequency ff indicates the times at which new changes should be evaluatedand reported to the user. Examples of frequency speci�cations are \every Fridayat 5:00pm" and \every 10 minutes." The polling frequency implies a sequence oftime instants (t1; t2; t3; : : :), which we call polling times. Filter times are de�nedanalogously. (In the actual system, we also consider two other modes: one in whichthe polling and/or �lter times are obtained following explicit user requests, and theother in which they are obtained as a result of a trigger on the source database �ring,if the source provides such a triggering mechanism. To simplify the presentation, wewill not describe these modes further here.)The second component of a subscription is a Lorel query Ql, which we call thepolling query. qss sends the polling (Lorel) query to the wrapper or mediator atthe polling times (t1; t2; t3; : : :) to obtain results (R1; R2; R3; : : :). An example pollingquery is the following. (Recall from Section 7.4.1 that \#" is a special character thatmatches any sequence of zero or more labels in a path. We also use the Lorel operatorlike for string matching.)define polling query LyttonRestaurants asselect guide.restaurantwhere guide.restaurant.address.# like "%Lytton%";Let R0 be the empty oem database, and let Ri be the result of the polling queryon the source at time ti for i = 1; 2; : : :. Each Ri (a Tsimmis query result) is a tree-structured oem database. Using di�erencing techniques described in Chapters 4, 5,and 6, qss obtains a history H = (t1; U1); (t2; U2); : : : corresponding to the sequenceof oem databases (R0; R1; R2; : : :). That is, Ui(Ri�1) = Ri for all i > 0. Then, qssconstructs a doem database D(R0;H) corresponding to this history H and the initialsnapshot R0, as described in Section 7.3. Thus, intuitively, in the �rst timestep theresults of the polling query are all \created." Thereafter, each subsequent timestepannotates the doem database with the changes to the result of the polling query sincethe previous timestep. We identify the doem database corresponding to a pollingquery using the name of the polling query. Thus the name of the doem databasecorresponding to the above polling query is \LyttonRestaurants."

202 CHAPTER 7. REPRESENTING AND QUERYING CHANGESThe third component of a subscription is a Chorel query Qc, called the �lter query,over the generated doem database. In addition to standard Chorel, in Qc we can usea special time variable \t[0]" to refer to the current �lter time tk, and we can use\t[-1]," \t[-2]," etc., to refer to the past �lter times tk�1, tk�2, etc. (If the current�lter time is tk, we de�ne t[-i] to be tk�i if i < k, and tI otherwise, where tI is theinitial timestamp associated with the doem database of the subscription.) The �lterquery describes the data and changes of interest to the user. An example �lter queryis the following:define filter query NewOnLytton asselect R.name, C.namefrom LyttonRestaurants.restaurant<cre at T1> RLyttonRestaurants.cafe<cre at T2> Cwhere R.parking = C.parking and T1 > t[-1] and T2 >= 1Jan97;Given our de�nition of the doem database \LyttonRestaurants," this query indi-cates that the user should be noti�ed of the names of restaurant-cafe pairs on Lyttonstreet that share a parking area, where the restaurant was newly created since thelast �lter time and the cafe was created some time after January 1, 1997. At each�lter time tk (k > 0) given by the �lter frequency, qss evaluates Qc over the doemdatabase D(R0;Hk), where Hk = (t1; U1); : : : ; (tj; Uj), and tj is the greatest pollingtime less than tk, and returns the results to the user.Example 7.7.1 Consider again the changes to the Guide data described in Exam-ple 7.2.2, as depicted in Figure 7.2. Suppose we are interested in being noti�ed everynight of new restaurants created in the Guide database since the previous night. Weissue the subscription S = hf;Ql; Qci, where the frequency speci�cation f is \everynight at 11:30pm," and the polling query Ql and �lter query Qc are Restaurants andNewRestaurants (respectively) as de�ned below:define polling query Restaurants asselect guide.restaurant;

7.7. A QUERY SUBSCRIPTION SERVICE 203define filter query NewRestaurants asselect Restaurants.restaurant<cre at T>where T > t[-1];Suppose we create this subscription S on December 30th, 1996, at 10:00am. Thepolling times given by our frequency speci�cation are t1 = 30Dec96, t2 = 31Dec96,t3 = 1Jan97, and so on (all at 11:30pm). At polling time t1, qss sends the pollingquery Ql to the Guide oem database, to obtain the result R1 consisting of the tworestaurant objects in Figure 7.1. Since R0 is the empty oem database by de�nition,both restaurant objects will have a cre annotation in the doem database built by qss.These annotations all have a timestamp t1, while the variable t[-1] in the query Qchas value negative in�nity at t1. Therefore, evaluating the �lter query Qc on thisdoem database returns the two restaurant objects as the initial results to the user.At polling time t2, the Guide database is unchanged, so the result R2 of thepolling query is identical to R1. Consequently, no changes are made to the doemdatabase maintained by qss. Note also that at time t2, t[�1] = t1, so that the createannotations on the restaurant objects in the doem database no longer satisfy thepredicate T > t[-1] in the where clause of Qc. Therefore, the result of Qc is empty,and the user does not receive any noti�cation.Before polling time t3, the Guide database is modi�ed by the addition of a newrestaurant object, with name \Hakata," as described in Example 7.2.2. Therefore, att3, the result R3 of the polling query contains the new restaurant object in additionto the two old restaurant objects. The new restaurant object is detected by thedi�erencing algorithm. Accordingly, the doem database maintained by qss nowincludes the new restaurant object, with a create annotation cre(t3) on it. Note alsothat at this time, t[�1] = t2, so that this create annotation satis�es the predicate inthe where clause of Qc. Therefore the result of the query Qc over the modi�ed doemdatabase contains the new restaurant object \Hakata," and the user is noti�ed of thisresult. 2

204 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

Source

OEM encoding

user

Manager
R1, R2, R3,...

Manager changes

Ri, Ri-1

Source-specific

Subcription
Manager Engine

Chorel

Query

Q_c

Q_l

Subscription

Subscription Notifications

QSC
(client)

QSS
(server)

Subscription
Store

snapshot
results

Interface

Change Notification

DOEM
OEMdiff

Tsimmis

Mediator
Wrapper or

DOEM
Store

Lore

ResultsQuery

Figure 7.10: System architecture of qss7.7.1 qss ImplementationWe now provide a brief discussion of some aspects of our implementation of the QuerySubscription Service. Refer to Figure 7.10. The system has a client-server architec-ture, with one or more client processes (Query Subscription Clients, or qscs) thatinteract with users, and a server process (qss) that implements the core functional-ity. A single server process serves multiple clients. qsc implements a user interfacethat supports subscription creation and deletion, and also delivers noti�cations to theuser. The qss server is the principal component of the qss system. It consists of �vemain modules:

7.7. A QUERY SUBSCRIPTION SERVICE 205� The Subscription Manager handles all the information relevant to subscriptions.For each subscription, the Subscription Manager maintains the polling queryQl,the �lter query Qc, the frequency speci�cation f , the identi�er of the currentdoem database (stored in the DOEM Manager described below), as well asinformation such as the user name, host name, etc.� The Query Manager module is responsible for sending polling queries to theTsimmis wrapper or mediator and collecting the resulting oem results; it inter-faces with the Tsimmis CSL library [CGMH+94].� The OEMdi� module implements the di�erencing algorithm in Chapter 4 tocompute the history from the snapshot results of the polling query.� The DOEM Manager maintains the doem database corresponding to the se-quence of polling query results, using the OEMdi� module to compute changesbetween successive polling query results. It uses the Lore system [MAG+97] tostore oem encodings of doem databases, using the translation scheme describedin Section 7.5.1.� The Chorel Engine evaluates the Chorel �lter query Qc for each subscriptionover the corresponding doem database. It includes a preprocessor that replacesthe special time variables t[i], if any, in the �lter query with the appropriatetimestamps as explained above.The arrows in Figure 7.10 depict the ow of information in qss. For each subscrip-tion, the Subscription Manager uses a timer to invoke the Query Manager with thepolling query Ql at each polling time ti. The Query Manager communicates with theTsimmis wrapper or mediator to execute the polling query and to retrieve the resultRi. This result is sent to the DOEM Manager, which forwards Ri to the OEMdi�module along with the previous results Ri�1, obtained from the current snapshot ofthe doem database for this subscription. (Alternatively, the DOEM Manager couldstore the previous result in addition to the doem database, thereby trading space fortime.) The OEMdi� module compares Ri�1 with Ri to produce the change operationsU such that U(Ri�1) = Ri. The DOEM Manager then incorporates these changes

206 CHAPTER 7. REPRESENTING AND QUERYING CHANGESinto the doem database for this subscription. Finally, the Chorel �lter query Qc forthis subscription is executed over the updated doem database by the Chorel Engine,and the results are sent to the user via the qsc client.For certain polling queries, qss may need to store a large portion of the under-lying database in order to detect changes accurately. We are exploring the followingways of limiting the space used for storing doem databases: (1) merging the doemdatabases for several subscriptions that have similar polling queries; (2) making theclient responsible for storing the doem databases for its subscriptions; and (3) trad-ing accuracy for space by storing a smaller state at the expense of not being ableto detect all changes accurately. We are also working on methods for determininga polling query and �lter query automatically from a simpler form of subscriptionquery.7.8 SummaryIn this chapter we studied the problem of representing, storing, and querying historicaldata in the context of heterogeneous, autonomous databases. We motivated the needfor a uniform representation scheme for changes in semistructured data, and for aquery language that allows direct access to changes. We presented a simple datamodel, doem, for representing historical semistructured data. In DOEM, changes todata items are represented using annotations on the a�ected data, making DOEMparticularly well-suited to browsing historical semistructured data marked up withchanges.In addition to browsing, the DOEM data model also supports a historical querylanguage called Chorel. An important feature of Chorel is that changes are treated as�rst-class, allowing data and changes to be queried in an integrated manner. Our im-plementation of a database system for historical semistructured data, called CORE,is based on the Lore database system for semistructured data. We described howwe implemented CORE as an extension to Lore by using a technique that encodesDOEM in OEM and translates Chorel queries on a DOEM database to Lorel querieson its DOEM encoding. Apart from modularity, this implementation strategy makes

7.8. SUMMARY 207our techniques easily adaptable to other database systems for structured and semi-structured data.While data items in the DOEM model have four basic kinds of annotations de-scribing their history of changes, we can also associate additional virtual annota-tions with data items. Such virtual annotations are similar to views in traditionaldatabase systems, and can be used for the analogous purpose of providing conve-nient, customized access to data. We demonstrated how we use virtual annotationsto facilitate snapshot-based access to a historical database. We de�ned the semanticsof snapshot-based virtual annotations such as <snap> in terms of the base annota-tions, and described extensions to our translation-based implementation scheme toaccomodate queries containing such annotations.We also described the design and implementation of a Query Subscription Service(QSS) that allows us to subscribe to interesting changes in source databases. Tospecify interesting changes, QSS uses a general and powerful subscription languagebased on Chorel. We de�ned the syntax and semantics of this language, and describedits implementation based on our implementations of OEMDi� and CORE. Togetherwith the techniques for detecting changes described in Chapters 4, 5, and 6, thetechniques of this chapter are the basis of our implementation of the C3 changemanagement system described in the next chapter.

Chapter 8System ImplementationIn this chapter, we describe how we have used the techniques described in previouschapters to implement the C3 system for managing change in heterogeneous, au-tonomous databases. In Section 8.1 we describe the functionality provided by the C3system to its users. Using an extended example, we illustrate how the C3 system maybe used. In Section 8.2, we describe how this functionality is implemented. Contin-uing with the extended example, we present the system response to a representativeset of user and external events. Recall that we outlined the high-level architectureof our system in Chapter 3. Further, in Chapters 4{7 we described the design andimplementation of the major system modules. Therefore, in this chapter, we discussonly those system implementation details that are not presented in earlier chapters.In particular, we focus on describing how system modules interact with each other toprovide the overall system functionality.8.1 User InteractionsA quick glance at Figure 8.15 (described in detail in Section 8.2) suggests that thereare three major user interfaces to the C3 system, one each for the three principalmodules: TDi�, CORE, and QSS. Although the QSS interface is the most compre-hensive of the three, using the TDi� and CORE interfaces separately is often useful.For example, while QSS is restricted to presenting all data in our integrating data208

8.1. USER INTERACTIONS 209
Figure 8.1: Restaurant reviews from the Palo Alto Weekly

Figure 8.2: New version of reviews with changes marked

210 CHAPTER 8. SYSTEM IMPLEMENTATION
Figure 8.3: Old version of reviews with changes markedmodel (OEM), TDi� is free to present data in its native format such as plain text,HTML, and Latex.8.1.1 Using TDi�When presented with two snapshots of data, such as two versions of a Web page,TDi� computes the di�erences between these snapshots, and presents the results ina graphical format that can be conveniently browsed. For example, suppose we areinterested in �nding out what has changed in a Web page that lists approximately200 restaurant reviews from the Palo Alto Weekly [PAW98]. Figure 8.1 shows anexcerpt from this page. Suppose we are interested in comparing the version of thisWeb page from January 1994 with that from November 1995. A version of TDi�specialized for HTML data takes these Web pages as input, parses them into orderedtrees, and computes the di�erences between them using the methods of Chapter 4.The insertions, deletions, updates, and moves thus detected are then displayed usingicons of di�erent colors. TDi� marks changes in both the old and new versions of the

8.1. USER INTERACTIONS 211document using representative icons. Figures 8.2 and 8.3 depict excerpts from themarked-up new and old versions of the restaurant reviews. In the interactive system,the old version is presented with a yellow background in order to clearly distinguishit from the new one. Similarly, the icons use di�erent colors to represent insertions,deletions, updates, and moves. By clicking on one of these icons, one can �nd outmore about the change it represents. When one clicks on an icon in one version, thecorresponding information from the other version is displayed. For example, clickingon a red dot, which denotes a deleted sentence, results in the display of the old versionof the document with the deleted sentence highlighted.We have implemented a few special versions of TDi� for data formats such asplain text, simple HTML, and Latex. In general, the method for studying di�erencesbetween versions of data is to �rst convert the data to OEM format, and then use theOEM version of TDi�. The TDi� interface allows us to compare only two versions ofdata at a time. For a more general solution, we use the QSS interface described next.8.1.2 Using QSSRecall, from Chapter 7, that the Query Subscription Service (QSS) module acts asa driver for the C3 system and provides a exible and general method to monitorchanges to autonomous databases using a subscription metaphor. We have interfacedour C3 system with a number of source databases, including a Web site with tra�creports, a Web site listing entertainment events, and a bibliographic server. The user�rst connects to the QSS server for the source database of interest. For our example,we use the eGuide Web site, which lists entertainment events for the San FranciscoBay Area. Figure 8.4 shows a screen-shot from this site. The �gure suggests thenatural hierarchical structure of this Web database, consisting of categories such asmovies, restaurants, and events (depicted near the bottom of the �gure), subcategoriessuch as Movies Now Playing, Special Programs, and Showtimes (depicted near thetop), individual listings such as the movie listings (depicted on the left), details of themovie (depicted on the right), and so on. Each movie listing contains information suchas the rating, running time, critics rating, MPAA rating, a review, and a listing of

212 CHAPTER 8. SYSTEM IMPLEMENTATION

Figure 8.4: The eGuide Web database: movie section

8.1. USER INTERACTIONS 213
Figure 8.5: The eGuide Web database: theater detailstheaters that are screening the movie. Clicking on some of these items results in moredetailed information. For example, Figure 8.5 depicts an excerpt of the informationdisplayed when one clicks on a theater name.After logging into the QSS server for eGuide, the user is presented with the optionof reviewing her present subscriptions or creating a new one. We �rst describe theprocess of creating a subscription. Elaborating on the formal de�nition of a sub-scription in Chapter 7, a subscription consists of a unique name, and the followingcomponents:Polling Query: Intuitively, this query describes the portion of the source databasethat is of interest to the user. More precisely, the polling query is a Lorel querysent periodically by QSS to the wrapper of the source database in order todetect changes and generate a history. Each wrapper supports a limited set ofquery types, and these are encoded using a list of query templates presented tothe user. Commonly used instantiations of these templates are also presentedusing a menu.Figure 8.6 shows the �ve commonly used polling queries o�ered for eGuide.

214 CHAPTER 8. SYSTEM IMPLEMENTATION
Figure 8.6: Menu of common polling queries for eGuide1. Get all movies whose titles, descriptions, etc. contain the keyword $N.select movie where keyword(movie, $N);2. Get all movies with title $N.select movie where movie.title = $N;3. Get all movies whose titles contain the word $N.select movie where contains(movie.title, $N);4. Get all movies with rating $N.Rating values can be "G", "PG", "PG-13", "R", "NC-17" or "NR".select movie where movie.rating = $N;5. Get all movies whose ratings are higher than or equal to $N.select movie where rating_ge(movie, $N);Figure 8.7: Some polling query templates from the eGuide wrapper

8.1. USER INTERACTIONS 215QSS also o�ers a list of twelve query templates for movies and four templatesfor special events. An excerpt from this list of query templates is displayedin Figure 8.7. The listing includes the English query, and its equivalent Lorelversion. (The templates also include MSL versions of each query; these are notshown in the �gure.) For our example, we select the \non-rated movies" optionfrom the menu.Filter Query: Intuitively, this query describes the changes of which the user wishesto be noti�ed. More precisely, the �lter query is a Chorel query that is pe-riodically evaluated over the DOEM database representing the historical datagenerated by polling queries. This DOEM database is given the reserved nameViewRoot. As described in Chapter 7, the �lter query can also make use of thespecial syntax t[-i] to refer to past query evaluation times. Similarly, pastpolling query evaluation times are accessed using the syntax t'[-i]. Com-monly used �lter queries are presented in a menu. Note that since every Lorelquery is also a Chorel query, the Chorel query is not required to refer to changes,although it is typically more useful when it does.Figure 8.8 lists the �ve commonly used �lter queries o�ered in the menu foreGuide. For our example, we write the following Chorel query which returnsthe titles of newly added movies along with the times they were added:select X,T from ViewRoot.<add at T>%.title X where T > t[-1];Polling Frequency: This frequency speci�es when the source database is to bepolled for new changes. The user can select from a menu of commonly usedfrequencies as indicated by the screen-shot in Figure 8.9. More generally, we usethe syntax of the Unix cron utility to specify the frequency [Vix98]. A specialvalue for the polling frequency is Probe, which indicates that polling is to beperformed on explicit user request only.For our example, we select from the menu \every day at midnight."Filter Frequency: This frequency is analogous to the polling frequency, and indi-cates when the �lter query is to be evaluated over the DOEM database of the

216 CHAPTER 8. SYSTEM IMPLEMENTATION1.Objects added to the top level since the last checkingselect ViewRoot.<add at t>%where t > t[-1];2.Objects newly found in the top level since the last checkingselect ViewRoot.%<cre at t>where t > t[-1];3.Objects removed from the top level since the last checkingselect ViewRoot.<rem at t>%where t > t[-1];4.Objects newly removed from the top level since the last checkingselect Xfrom ViewRoot.<rem at t1>% Xwhere t1 > t[-1] andforall Y in ViewRoot.<add at t2>% :X <> Y or t2 <= t[-1] or t1 < t2;5.Objects in the top level updated since the last checkingselect ViewRoot.%<upd at t>where t > t[-1];Figure 8.8: Menu of common �lter queries
Figure 8.9: Specifying the polling frequency

8.1. USER INTERACTIONS 217
Figure 8.10: QSS subscription review screensubscription in order to detect new changes of interest. Similar to the pollingfrequency, the �lter frequency may have the special value Probe, indicating thatthe �lter query is to be evaluated on explicit user request only. In addition, the�lter query may have the special value Tie, indicating that the �lter query isto be evaluated immediately after each evaluation of the polling query.For our example, we select the Tie option from the menu.When we request the creation of a subscription named NR-titles with the pa-rameters selected above, QSS evaluates the polling and �lter query once immediatelyin order to establish a baseline for future changes. The results of the �lter queryevaluation are returned as the initial result of the subscription. Every midnight fol-lowing the creation of this subscription, QSS executes the polling query, updates theDOEM database based on its results, and checks for new changes satisfying the �lterquery. New results are stored for review by the subscription owner. (Optionally, thesubscription owner may request an email noti�cation.)Figure 8.10 shows an excerpt from the subscription review screen, focusing on theNR-titles subscription created above. As shown in the �gure, QSS presents the set of

218 CHAPTER 8. SYSTEM IMPLEMENTATION
Figure 8.11: A result for the subscription NR-titlesaccumulated �lter (change) query results. By clicking on any of the result identi�ers,we can view the detailed results. Figure 8.11 is an excerpt from the results screendisplaying the result delivered for NR-titles on the 2nd of September. Recall thatour �lter query asks for the titles of newly added NR movies along with the times atwhich their additions were detected. The �gure shows the titles of two newly addedmovies and the corresponding times. The results screen displayed by QSS is an activeone, meaning we can click on links and icons to browse the result in more detail bynavigating the DOEM database of this subscription. As discussed below, we can alsoevaluate arbitrary Chorel queries on this database.8.1.3 Using CORERecall, from Chapter 7, that the Change Object Repository (CORE) module is ourimplementation of a historical database system for OEM data. Figure 8.12 displays ascreen-shot of the CORE query screen. In addition to typing in a Chorel query, wecan also restrict the browsable results to some time interval. The semantics of suchtimestamp-restricted browsing are as follows: Browsing a DOEM database D with atimestamp-restriction (B;E] disregards all nodes and arcs in D that are not presentin at least one OEM snapshot Ot(D) for some timestamp t 2 (B;E]. (Recall thatwe de�ned the OEM snapshot of a DOEM database in Section 7.3.2 of Chapter 7.)Note that the timestamp restriction, if any, on browsing of the results of a querydoes not change the semantics of query evaluation. That is, the given Chorel query is

8.1. USER INTERACTIONS 219

Figure 8.12: CORE query interfaceevaluated as before to yield a set of object identi�ers (OIDs) as result. It is only thesubsequent browsing of the DOEM database with these OIDs as starting points thatis modi�ed as described above. In addition to being a useful feature for studying paststates of a DOEM database, timestamp-restricted browsing is essential to our methodfor storing, retrieving, and browsing QSS results, as described in the Section 8.2.Using the CORE query interface, we can interactively browse and query anyDOEM database. In particular, we can browse and query the DOEM database im-plicitly created by each QSS subscription, based on the de�nitions in Section 7.7 ofChapter 7. In brief, this DOEM database encodes the history of polling query resultsfor this subscription. (We discuss the construction of this database in more detail inSection 8.2.) In the context of our subscription NR-titles introduced above, we canwrite the Chorel query \select ViewRoot;" to return the special named object thatis the root of the DOEM database for this subscription.Figure 8.13 shows a portion of the resulting browsing screen. Since we did notrestrict the browsing to a speci�ed time interval, all objects in the DOEM database

220 CHAPTER 8. SYSTEM IMPLEMENTATION

Figure 8.13: Result of the query \select ViewRoot;" on the NR-titles database

8.1. USER INTERACTIONS 221are available for browsing by navigating down from the root. The browsing screendisplays one object per line (with line wrapping for details that do not �t on a line).The distinguished objects that are part of the query result are displayed with the leastindentation; other objects reachable from the distinguished objects are displayed withindentation proportional to their distance from the distinguished objects. By default,the display is restricted to objects and links that exist in the current snapshot ofthe DOEM database. (See Section 7.3.2 in Chapter 7 for a discussion of snapshots.)Further, to keep the display manageable, by default only objects reachable from thedistinguished objects using a path of length three or less are displayed. Such defaultscan be easily modi�ed. On each line representing an object, the last label in the pathused to reach the object is displayed in bold font, followed by the value of the object innormal font if it is an atomic object. (Recall, from Chapter 7, that in our data modelonly atomic objects, which are objects that have no outgoing arcs, have values.) Weuse a green icon at the beginning of an object's display line to represent the set ofarc annotations on the last arc (whose label follows) in the path used to reach theobject. Clicking on this icon toggles the detailed display of these arc annotations.Similarly, we use a blue icon at the end of an object's display line to represent the setof arc annotations on that object, and clicking this icon toggles their detailed display.The icons denoting expanded annotation sets have a triangular arrow pointing to thedetails.Continuing with our example, the result of our trivial query (select ViewRoot;)is the singleton set containing the special named object. The �rst line in the resultsdisplay depicted in Figure 8.13 corresponds to this special object. The �gure indicatesthat this ViewRoot object has only one subobject, with label movie. This movieobject in turn has a number of self-explanatory subobjects with labels such as title,rating, and cinema. Figure 8.13 also indicates that we have expanded the nodeannotation for the movie title node, and the arc annotation for the movie arc, anddisplays the timestamps of these annotations. Red icons next to a node are used torepresent the set of outgoing arcs that do not exist in the current snapshot of theDOEM database. Clicking on these red icons toggles the display of such historicalarcs, which are hidden by default. In the display shown in Figure 8.13, we have

222 CHAPTER 8. SYSTEM IMPLEMENTATION
Figure 8.14: Result of the query in Figure 8.12 on the NR-titles databaseexpanded the removed subobjects of the movie object. The last two cinema objectsin the �gure (shown in red on screen) are displayed as a result of this expansion. Tocon�rm that these cinema objects are indeed removed subobjects of the movie object,we have also expanded the arc annotations on the arc leading to the penultimatecinema object. The �gure indicates that this arc was added on September 11th andremoved on the 13th. The �gure also indicates that we have expanded the removedsubobjects of this cinema object. The resulting name, time, phone, and addresssubobjects are also displayed in red.As an example of a more interesting query, consider the following, which looksfor movies in the Comedy category and returns their titles, categories, star rating(critic's rating), and time of addition to the database:select M.<add>title, M.<add>category, M.<add>star rating, Afrom ViewRoot.<add at A>movie Mwhere M.<add>category = "Comedy";Figure 8.14 depicts a portion of the result of this query on the DOEM database of

8.2. SYSTEM INTERACTIONS 223userQSC(client)QSS(server) TDiff CORE COREGUILoreTsimmisWrapperSubscr.dataAutonomous DBs DOEMStoreuser userTDiffGUISubscription NotificationSubscription Ri-1, Ri DiFilter Q.Filter Q. result Lorel EncodedresultDOEM Chorel ChorelChangesPolling Q. resultPolling Q. Browseresult
Figure 8.15: Architecture of the C3systemour NR-titles subscription. In keeping with the semistructured nature of the data wemodel, it is likely that one or more kinds of subobjects may be missing from somemovie objects in the database. However, our use of a semistructured query languageallows us to conveniently interact with the database in spite of such missing data.For example, observe that some of the listings in the result do not have star-ratings;these listings correspond to movie objects in the database that have missing star-rating subobjects. As with our earlier example, we can interactively browse theseresults by expanding annotations, exposing removed subobjects, and so on. COREthus provides a powerful and convenient method for iteratively querying and browsinga historical semistructured database.8.2 System InteractionsIn the previous section, we described the functionality o�ered by the C3 systemthrough the TDi�, QSS, and CORE interfaces. In this section, we describe how this

224 CHAPTER 8. SYSTEM IMPLEMENTATION

Figure 8.16: The eGuide database: query interface

8.2. SYSTEM INTERACTIONS 225functionality is supported. We begin by a brief description of the system architecturethat outlines the function of each module. We then continue with our extendedexample from the previous section, using it to describe how these modules interactwith each other.Figure 8.15 depicts the architecture of the C3 system. (This �gure is a detailedversion of Figure 3.1 in Chapter 3 and Figure 7.10 in Chapter 7.) The three centralmodules of the system are TDi�, CORE, and QSS. QSS acts as a driver for the entiresystem and supports subscriptions by using TDi� to compute changes and CORE tostore and query them. TDi� and CORE each support the Graphical User Interfaces(GUIs) described in Section 8.1. They also support the system interfaces describedbelow. QSS consists of a server module that implements the main change noti�cationfunctionality. To provide a variety of noti�cation mechanisms (e.g., email, alerts),this server can interact with di�erent kinds of query subscription clients (QSCs).The QSS server uses a private subscription store as a repository for subscription datasuch as user-name, password, source database, and other details described below.Recall, from Chapter 7, that our implementation of CORE is based on an encodingand translation scheme that uses the Lore semistructured database system as a back-end database. That is, we encode DOEM databases in OEM, and store the encodeddatabases in Lore. We evaluate Chorel queries by translating them to equivalent Lorelqueries on the encoded OEM databases, evaluate these Lorel queries using Lore, andtranslate the OEM-encoded results back to DOEM.Recall, from Chapter 3, that all C3 interactions with the source databases arethrough Tsimmis wrappers and mediators that support a set of Lorel query tem-plates, and return results in OEM. Wrapper and mediator implementation techniquesare not a focus of this dissertation and we do not discuss such details here. Further,for simplicity of exposition, we assume in this chapter that we are interacting witha Tsimmis wrapper. However, since the interfaces o�ered by Tsimmis wrappers andmediators are identical, our system also allows access to one or more source databasesthrough a mediator. We have implemented and used wrappers that allow our systemto interface with a variety of source databases such as relational databases, propri-etary bibliographic systems, and Web databases. For example, consider the eGuide

226 CHAPTER 8. SYSTEM IMPLEMENTATIONWeb site introduced in the previous section, depicted in Figure 8.4. This Web site alsosupports a simple query interface that allows one to search for movies based on titles,keywords, and a few other criteria, as suggested by Figure 8.16. The wrapper we haveimplemented for the eGuide database translates Lorel queries that match a supportedquery template into queries using this form interface. The query result presented byeGuide, in a format similar to that suggested by Figures 8.4 and 8.5, is translated bythe wrapper into an OEM format with subobject structure reecting the hierarchicalstructure suggested by Figures 8.4 and 8.5. The techniques used by the wrapper toimplement such functionality are described in [PGGMU95, HGMC+97, HBGM+97].Briey, for each query template that is supported by the wrapper, we indicate thecorresponding source query to be sent to the Web site's search interface. This trans-lation of queries is speci�ed using pattern matching with placeholder variables. Theset of interlinked Web pages returned as query result by the Web site is convertedinto OEM using a powerful navigation and pattern-matching language very similarto Perl [WCS96].We now describe the functioning of the rest of the C3 system using our exam-ple subscription NR-titles from the previous section. It may be helpful to refer tothe description of subscription semantics in Section 7.7 of Chapter 7. As soon asthe subscription creation request is submitted, QSS records the subscription data,such as the user name, the source database, the polling and �lter queries, and thecorresponding frequencies in a private subscription data store.8.2.1 PollingAt each polling time speci�ed by the polling frequency of the subscription, includingthe implicit polling time that is the subscription creation time, QSS sends the pollingquery to the wrapper for the source database. For our continuing example, thefollowing Lorel query is sent to the eGuide wrapper.select movie where movie.rating = "NR";This wrapper �nds a match between this query and the following template in itstranslation database, which uses $1 as a placeholder variable.

8.2. SYSTEM INTERACTIONS 227select movie where movie.rating = "$1";The corresponding source query template in the wrapper's translation database in-dicates a form (see Figure 8.16) with the rating radio button set to the value of thevariable $1, which is "NR" in our example. The resulting form is submitted to theeGuide database, which responds with a collection of interlinkedWeb pages similar tothat suggested by Figures 8.4 and 8.5. Using pattern-matching with variable binding,this collection of pages is transformed to the graph-based OEM format.We use OEM load �les to encode OEM data throughout the C3 system. Fig-ure 8.17 depicts an excerpt of the OEM load �le generated by our eGuide wrapper.Recall that OEM data is modeled as a rooted graph O. In order to represent thisrooted graph in the linear format required by a load �le, we �rst select an arbitraryrooted spanning tree T of O such that T and O have the same node as root. The treeT is encoded in the load �le as follows. Each line in the �le represents one node, andconsists of the following �elds in order: (1) one plus the depth of the node; (2) thelabel of the tree arc leading to the node; (3) the type of the node; and (4) the valueof the node, if the node is of atomic type. For example, the second line in Figure 8.17encodes a node with incoming tree arc labeled \movie." This node is at depth 1 inthe tree, and has children labeled title, category, rating, runtime, and so on. (In the�gure, lines beginning with the \+" represent long lines that have been wrapped forpresentation purposes.) Details of an enhanced and extensible version of our load�le format are described in [GCCM96]. We use this extended format to representDOEM data in load �les by encoding annotations on a node at the end of the linerepresenting the node, and annotations on an arc at the end of the line representingthe target node.The OEM load �le thus generated is sent to the TDi� module along with thesaved load �le from the previous polling time. (At the �rst polling time, the role ofthe saved �le is played by a trivial OEM load �le representing an empty database.)TDi� parses these load �les and computes a set of changes describing the di�erencebetween them, using our change detection techniques from earlier chapters. Sinceour source database is text-based, we treat all values as strings and use the scaledcharacter frequency histogram di�erence function described in Chapter 5 to compare

228 CHAPTER 8. SYSTEM IMPLEMENTATION1 ViewRoot complex2 movie complex3 title string The Opposite of Sex3 category string Comedy3 rating string R3 runtime string 01:403 littleman_rating string Little Man Clapping3 review string (At the Embarcadero Center Cinema) A likable cast+ makes this extremely quirky comedy fun to watch despite a story that strains+ credibility. Christina Ricci is a riot as a Lolita wannabe who seduces her gay+ brother's boyfriend. Lisa Kudrow is just as funny in the less showy role of an+ uptight schoolteacher. The movie meanders a lot, but the kooky characters+ compel you to stay with it. Directed by Don Roos.3 full_review complex4 title string Ricci Plays the Bad Girl With Abandon in+ `Opposite'4 author string Ruthe Stein, Chronicle Staff Critic3 cinema complex4 name string Palo Alto Square4 time string 4:30-9:304 phone string (650)32M-OVIE4 address string Corner of Page Mill Road and El Camino+ Real, Palo Alto3 cinema complex4 name string Towne 34 time string 5:00-9:354 phone string (408)287-14334 address string 1433 The Alameda, San Jose...[some material skipped]...2 movie complex3 title string Smoke Signals3 category string Comedy3 rating string PG-133 runtime string 01:29...[truncated]... Figure 8.17: An OEM load �le

8.2. SYSTEM INTERACTIONS 229two strings. For other datasets, we use di�erent types such as integers and oatingpoint numbers.Recall that our di�erencing algorithms in earlier chapters are for trees, not forthe general graphs encountered in OEM data. Further, the edit operations used byTDi� are tree edit operations such as subtree moves that do not have a counterpartin a more general graph. However, the following two observations allow us to usethese algorithms for OEM data: First, although OEM data is in general not treestructured, the data generated using Tsimmis wrappers is either tree structured orhas a preferred spanning tree. For example, most Web sites are intuitively mappedto graphs that are not trees. Several Web pages may point to a common page, andthere are often cycles of Web links. However, in spite of such non-tree features, mostWeb databases also have a preferred spanning tree that reects their hierarchicalstructure. In particular, the eGuide database from our running example has a clearhierarchical structure. Part of this structure is readily apparent in Figure 8.4. Second,the tree edit operations are easily mapped to the OEM change operations describedin Chapter 7. For example, a subtree move is mapped to one arc addition and onearc removal. In our implementation, the preferred spanning tree of an OEM graph isimplicit in its linearization as an OEM load �le. That is, an OEM load �le linearizesa graph based on the preferred spanning tree; all non-tree arcs are represented usingsymbolic references to other nodes and are easily detected during parsing [GCCM96].The OEM changes thus computed by TDi� are presented in an incremental DOEMload �le, which can be thought of as a simple encoding of an edit script. Figure 8.18depicts an excerpt from such an incremental load �le, one used to load the datadisplayed in Figure 8.13 on the 11th of September. Each line in an incremental load�le is a record representing an edit operation, with �elds separated using the \:"character. The �rst �eld is always the type of the edit operation. The number andkind of the following �elds depend on the type of edit operation the line represents. (InFigure 8.18, lines beginning with the \+" character are wrapped lines continuing theprevious ones.) For a node creation operation, denoted by CRE, the second, third, andoptional fourth �elds represent, respectively, the identi�er, creation timestamp, andoptional value of the created node. As indicated by Figure 8.18, node identi�ers are

230 CHAPTER 8. SYSTEM IMPLEMENTATION
CRE: tdiff42540 : Fri Sep 11 00:00:15 PDT 1998ADD: ViewRoot, tdiff42540, movie : Fri Sep 11 00:00:15 PDT 1998CRE: tdiff42541 : Fri Sep 11 00:00:15 PDT 1998, "Buffalo 66"ADD: tdiff42540, tdiff42541, title : Fri Sep 11 00:00:15 PDT 1998CRE: tdiff42542 : Fri Sep 11 00:00:15 PDT 1998, "Drama"ADD: tdiff42540, tdiff42542, category : Fri Sep 11 00:00:15 PDT 1998ADD: tdiff42540, tdiff24192, rating : Fri Sep 11 00:00:15 PDT 1998REM: tdiff42468, tdiff24192, rating : Fri Sep 11 00:00:15 PDT 1998CRE: tdiff42544 : Fri Sep 11 00:00:15 PDT 1998, "01:50"ADD: tdiff42540, tdiff42544, runtime : Fri Sep 11 00:00:15 PDT 1998CRE: tdiff42545 : Fri Sep 11 00:00:15 PDT 1998, "1 Stars"ADD: tdiff42540, tdiff42545, star_rating : Fri Sep 11 00:00:15 PDT 1998CRE: tdiff42546 : Fri Sep 11 00:00:15 PDT 1998, "First-time director Vincent+ Gallo stars in this self-consciously stylized story of a social misfit who's+ rescued from emotional annihilation by the girl he kidnaps. With Christina Ricci,+ Ben Gazzara, Anjelica Huston. (profanity, bloody images)."ADD: tdiff42540, tdiff42546, review : Fri Sep 11 00:00:15 PDT 1998CRE: tdiff42547 : Fri Sep 11 00:00:15 PDT 1998ADD: tdiff42540, tdiff42547, full_review : Fri Sep 11 00:00:15 PDT 1998CRE: tdiff42548 : Fri Sep 11 00:00:15 PDT 1998, "Gallo Scores With `Buffalo+ '66'/Gritty, comic look at forgiveness"Figure 8.18: An incremental DOEM load �le

8.2. SYSTEM INTERACTIONS 231represented as strings. These strings can be thought of as external object identi�ersof objects in the DOEM database stored in CORE. Although these identi�ers can beimplemented using Lore names [MAG+97], for greater e�ciency they are implementedusing a separate symbolic reference index. For a node update operation, denoted byUPD, the second, third, and fourth �elds represent, respectively, the identi�er, updatetimestamp, and new value of the node. For an arc addition operation, denoted byADD, the second, third, fourth, and �fth �elds represent, respectively, the identi�er,source node identi�er, target node identi�er, arc label, and addition timestamp ofthe new arc. For an arc removal operation, denoted by REM, �elds are analogous tothose for ADD.The incremental DOEM load �le produced by TDi� is then sent to the COREmodule for incremental loading into the DOEM database of the subscription beingserviced. Refer back to Figure 7.6 in Chapter 7 for the internal architecture of theCORE module. In our example, the edit operations speci�ed by the incremental load�le suggested by Figure 8.18 are applied to the DOEM database of the subscriptionNR-titles.8.2.2 Filtering and BrowsingAt each �lter time speci�ed by the �lter frequency of the subscription being serviced,including the implicit �lter time that immediately follows the initial polling time(subscription creation time), QSS �rst replaces any special variables of the formt[-i] in the query with the appropriate time constants based on the current timeand the stored past �lter times for the subscription. (See Chapter 7 for the semanticsof such replacements.) For our continuing example, suppose the previous �lter timeis midnight on the 11th of September. Then replacing the t[-1] in the �lter queryfrom the previous section with this timestamp gives us the following Chorel query.(We use a timestamp format similar to that used by the Unix date utility.)select X,Tfrom ViewRoot.<add at T>%.title Xwhere T > Thu Sep 11 00:00:00 1998;

232 CHAPTER 8. SYSTEM IMPLEMENTATIONThis Chorel query is sent to CORE, which evaluates it over the DOEM databaseof the subscription NR-titles (using Lore and the translation scheme described inChapter 7).For our example subscription NR-titles, the �lter frequency is tied to the pollingfrequency, implying that each �lter time immediately follows the completion of allactions required at each polling time. Recall that at the last such polling time, thechanges encoded by the incremental load �le suggested by Figure 8.18 were incorpo-rated into the DOEM database for NR-titles. Thus the newly added details for themovie \Bu�alo 66" satisfy the query with X = "Buffalo 66" and T = Fri Sep 1100:00:00 1998.If the Chorel query result produced by the CORE module is a nonempty set ofobject identi�ers, this set needs to be stored for future browsing by the subscriptionowner. To store the result set, we create a new named complex object, called the resultobject, that has the objects in the result as subobjects. Recall from Chapter 7 thatnamed objects are points of entry into, and roots of persistence of, Lore and COREdatabases. At each �lter time at which a nonempty �lter query result is produced,a unique name is generated for the complex object used to store the result in thismanner, and this mapping between �lter times and result object names is maintainedby QSS using the subscription store. Finally, if the subscription owner has requestednoti�cation of new results using email or other methods, a suitable message indicatingthe subscription name and �lter time is generated and sent.When a subscription owner visits the subscription review screen depicted in Fig-ure 8.10 and selects one of the change query results for browsing, QSS maps the times-tamp of that result to the name of the corresponding result object as discussed above.Continuing our example of the subscription NR-titles, suppose the subscription ownerrequests the change query result dated September 11th. Using the information in thesubscription store, QSS maps this timestamp to the name DOEM-905497234. Next,QSS retrieves the result object with this name using a simple Chorel query. Inour example, the query is select DOEM-905497234;. The resulting CORE browsingscreen, depicted in Figure 8.19, displays the browsable results of the subscription onthe requested date.

8.2. SYSTEM INTERACTIONS 233
Figure 8.19: Browsing a �lter query resultUsing named result objects to store and retrieve past results of a subscription asdescribed above raises a subtle issue related to historical accuracy of the subsequentbrowsing. Since the DOEM database of a subscription continues to evolve as newchanges detected by QSS and TDi� are incorporated, the subobject structure visiblewhile browsing a �lter query result using stored result objects (such as the objectnamed DOEM-905497234 in our example) is in general di�erent from that at the timethe result was produced. For example, suppose the title displayed in Figure 8.19 isupdated to \Bu�alo Strikes Back" on the 15th of September, and the owner of ourexample subscription NR-titles browses the result of 11th September on the 17th.Instead of the proper result displayed in Figure 8.19, the result would contain thenew title \Bu�alo Strikes Back." Other changes to the DOEM database can a�ectthe result in more subtle ways. For example, if the movie \Bu�alo 66" received an Rrating on September 14th, such a rating would be visible during browsing the resultdepicted in Figure 8.19, resulting in an apparent inconsistency. (Recall that the NR-titles subscription asks for only NR-rated movies.) To avoid such inconsistencies, weuse the timestamp-restricted browsing introduced earlier. In addition to retrievingthe named result object using a query such as select DOEM-905497234;, we alsorestrict the subsequent browsing to the interval [t0; tr], where t0 is the subscriptioncreation time, and tr is the timestamp of the result being browsed (11th September in

234 CHAPTER 8. SYSTEM IMPLEMENTATIONour ongoing example). As a result, any changes made after the result was computedare invisible, and the state of the DOEM database as presented by the browsinginterface is identical to that at time tr.8.3 SummaryIn this chapter, we described the design, implementation, and use of the C3 systemfor managing change in heterogeneous, autonomous databases. We described thefacilities provided by C3, and demonstrated their use using an extended examplebased on a popular Web database of entertainment listings. The TDi� componentallows us to compare two versions of a portions of such databases, and to browsethe changes between them using an intuitive graphical user interface. The COREcomponent allows us to store, query, and browse a collection of changes gatheredover an extended period of time. Finally, the QSS component implements a powerfulsubscription language that allows us to monitor interesting changes in heterogeneous,autonomous databases.We described how the C3 system supports the above functionality using the tech-niques from earlier chapters and sister projects such as Tsimmis and Lore. Weuse template-based Tsimmis wrappers to contain the heterogeneity of our sourcedatabases by translating data and queries to and from our integrating model, OEM,and query language, Lorel. We use Tsimmismediators to integrate data frommultiplewrappers and mediators. We use our tree di�erencing algorithms from Chapters 4, 5,and 6 to detect changes in the source databases. Such changes may be directlybrowsed or stored in the CORE database system described in Chapter 7. The COREsystem also supports Chorel queries over the history of a database. The implementa-tion of CORE uses the Lore database management system for semistructured data.The QSS module implements subscriptions by periodically querying Tsimmis wrap-pers, computing new changes using TDi�, and computing new subscription resultsusing CORE.We have found the C3 system to be a valuable tool for managing the complexityof evolving heterogeneous, autonomous databases. For example, the author makes

8.3. SUMMARY 235regular use of a QSS subscription similar to the one described in Section 8.1.2 tobe noti�ed of interesting movies playing in one of the few small theaters close toStanford. Using CORE's browsing and querying interface, it is interesting to studythe di�erence between the kinds of movies that play in these theaters and those thatplay in the large cineplexes. We have also found QSS subscriptions on the KRONtra�c reports Web site to be very useful [KRO98]. For example, it is simple to set upa subscription that sends a noti�cation whenever there are accidents on Highway 280between Stanford and San Francisco on Friday evenings. Further, the ability tobrowse and query accidents and other tra�c events from the past is often useful. Forexample, on receiving a noti�cation indicating three accidents on Highway 280 oneFriday evening, we can query CORE to �nd accidents on similar evenings in the pastyear to determine whether the current situation is substantially di�erent and thus acause for concern.The stand-alone interface to the TDi� module is also interesting to use. In fact,one of the most entertaining applications of the C3 system has been the study ofhow restaurant reviews from the Palo Alto Weekly evolve over time [PAW98]. Welist below a few of the actual changes in the restaurant reviews as detected by TDi�.Note that due to numerous moves and other structural changes, simpler di�erencingalgorithms based on computing a longest common subsequence as discussed in Chap-ter 2 are unable to detect the above changes accurately. These changes to the reviewsreveal far more than the reviews themselves, supporting our claim that changes todata are often much more interesting than the data itself.� The sentence \The kitchen just doesn't make technical errors" in the reviewof a prestigious restaurant was changed to \The kitchen rarely makes technicalerrors."� \In general, the food here is middling to good, but as long as you order carefully,you'll do �ne" was deleted.� \Portions are ladylike and the menu is a bit pricey" was changed to \Portionsare ladylike."

236 CHAPTER 8. SYSTEM IMPLEMENTATION� \The only complaint here is the emphasis on meat; many entrees haven't a hintof green vegetables" was deleted.� \The prices are moderate" was changed to \It's all delicious, but it's not thecheapest meal in town."� \Night life in Palo Alto is nothing to write home about as a rule, but the newand improved [...] makes things brighter" was deleted.� The remark \(pronounced furr)" was inserted after \...huge servings of pho."In conclusion, we believe our C3 implementation demonstrates both the bene�tsof a coherent change management system for heterogeneous, autonomous databases,and the feasibility of our techniques for building such a system.

Chapter 9Experimental EvaluationIn this chapter, we present some experimental evaluation of our tree di�erencing al-gorithms described in Chapters 5 and 6. We study the e�ectiveness of our pruningtechnique, the quality of the computed di�erences, the merits of di�erent edge costestimation functions, and the running time of our implementation. We present re-sults both for real data, obtained from the C3 system described in Chapter 8, andsynthetically generated data. For the experiments described in this chapter, we usedthe parallel transformation model described in Chapter 6 along with the pruning andcost estimation techniques of Chapter 5. In Section 9.1, we describe the results ofour experiments using real data. Section 9.2 presents analogous results for syntheti-cally generated data, focusing on how they di�er from the results in Section 9.1. Wesummarize our results in Section 9.3.9.1 Experiments Using Real DataRecall the description of the C3 change management system in Chapter 8. One of theautonomous databases that we used for demonstrating our work is the eGuide Webdatabase, which contains hierarchically structured information about entertainmentevents [EG98]. Our change management system supports subscriptions to changesin this database. Such subscriptions are implemented by periodically querying theeGuide database and comparing the new and old results using our tree di�erencing237

238 CHAPTER 9. EXPERIMENTAL EVALUATIONalgorithm. For our experiments, we used data from a subscription over the portionof the database describing movies. We gathered a sequence of 151 snapshots of thisdata over a period of �ve months. We then used the 150 pairs of successive snapshotsas inputs to our algorithm. Figure 8.17 in Chapter 8 depicts one of the sampleinputs used in our experiments. The input format lists one object per line, with �eldssuggesting the depth, label, type, and optional value of the object. (In Figure 8.17,long lines, such as the eighth, are wrapped for presentation purposes. For details onthe load �le format, refer to Section 8.2.1 in Chapter 8.)Recall that our tree di�erencing algorithm uses an arbitrary, domain-dependentfunction to compare node labels. Given two labels, this function returns the costof updating one to the other. The eGuide dataset consists almost exclusively ofstring labels. To compare strings, we use the character frequency histogram di�erencefunction described in Section 5.6 of Chapter 5. Recall that this function is the scaledsum, over all characters c, of the unsigned di�erence in the frequencies of c in thetwo strings. We call the scaling factor tick; a higher tick value results in strictercomparisons. For example, with tick = 0.1, the cost of updating the string \foo" tothe string \fooos" is 0:1� (j1�1j+ j2�3j+ j0�1j) = 0:2. In our experiments below,we study the e�ect of varying tick.All the studies described in this section were performed on all 150 pairs of inputtrees, and in all the charts presented in this section, except Figures 9.7 and 9.8, eachdata point is the average result over these 150 trials.9.1.1 E�ectiveness of PruningAs described in Chapter 5, pruning the induced graph is a very important step inour method for comparing trees. In addition to exponentially reducing the size ofthe search space for min-cost edge covers of the induced graph, better pruning alsoresults in better initial solutions, as described in Section 9.1.2 below. Recall, fromChapter 5, that we prune an edge e from the induced graph if the lower bound costof e is greater than or equal to some quantity Q; that is, we prune if clb(e) � Q. Suchpruning is conservative; that is, the pruned induced graph is guaranteed to contain

9.1. EXPERIMENTS USING REAL DATA 239an edge cover no more expensive than any min-cost edge cover of the unprunedinduced graph. In Chapter 5 we conjectured that our pruning rules are excessivelyconservative in most situations and suggested that it may be pro�table to prune moreaggressively. To test this conjecture, we studied the e�ect of varying an aggressivenessparameter A, where we now prune an edge e if c(e) � Q(1 � A). Thus A = 0corresponds to conservative pruning, A = �1 corresponds to no pruning, and valuesof A approaching 1 correspond to very aggressive pruning.We quantify the success of pruning using the excess edge ratio de�ned as follows,where jIpj is the number of edges in the induced graph after pruning, and jIj is thenumber of edges before pruning.eer = jIpj � (min(jT1j; jT2j) + 1)jIjNote that an edge cover of the induced graph of trees T1 and T2 contains at leastmin(jT1j; jT2j) + 1 edges. The intuition behind eer is that any edges beyond thisnumber are in excess; a pruned induced graph with eer = 0 has no excess edges.A pruned induced graph with no excess edges is a minimum-cardinality edge coverof the induced graph. However, in our cost model described in Chapter 5, edgeshave di�ering costs. Therefore, a minimum-cardinality edge cover is not, in general,a minimum-cost edge cover. Thus, in general, the pruned induced graph de�nedby a minimum-cost edge cover has eer > 0. Therefore, eer = 0 is only a looselower bound on the number of unnecessary edges remaining in an induced graph.Figure 9.1 indicates how the excess edge ratio varies with pruning aggressiveness fordi�erent values of the label discrimination parameter tick introduced at the beginningof Section 9.1. As expected, higher values of the aggressiveness parameter A leadto fewer excess edges. We note that even conservative pruning (A = 0) results ina more than a 50% reduction in the number of excess edges, indicating that ourpruning technique is very e�ective for this real dataset. Further, as we prune moreaggressively, the excess edge ratio continues to drop signi�cantly, approaching a valuevery close to 0. Figure 9.1 also shows that as tick is lowered, pruning is less successful.The reason for this result is that a lower value of tick results in node labels appearing

240 CHAPTER 9. EXPERIMENTAL EVALUATIONmore similar to each other, in turn lowering the lower-bound edge costs.One may expect highly aggressive pruning to lead to a deterioration in the qualityof the solution, since with increasing aggressiveness it becomes more likely that theedges required for a good solution are removed. We therefore studied the e�ect ofaggressive pruning on the relative cost of the transformation corresponding to theinitial solution produced by our algorithm.Recall, from Chapter 5, that the cost of a transformation is given by the sum ofthe costs of its constituent edit operations; the costs of edit operations are based on aparametric cost model described in that chapter. Ideally we would like to compare thecost of a transformation computed by our method to the cost of an optimal (minimum-cost) transformation. However, given the NP-hardness of the problem and the sizeof our input data, computing such an optimal solution is impracticable. Therefore,to judge the merit of a transformation, we compare its cost to the cost of the besttransformation computed for the given inputs by all our experiments. Althoughin general the best computed transformation is not guaranteed to be optimal, byinspecting several such transformations for our sample data, we found that the bestcomputed transformation is very often optimal or close to optimal.We de�ne the relative cost of a transformation F as c(F)=c(F �), where c(F)denotes the cost of F , and c(F �) denotes the cost of the best computed transformation.Figure 9.2 shows that the relative cost of the solution produced decreases as we prunemore aggressively up to values of A as high as 0:95. This result is explained by notingthat as more edges that are very likely (although not guaranteed) to be undesirablein an edge cover are pruned, the minimum-cost edge cover computed in the nextstep of our method is less likely to contain such undesirable edges. In addition, theboundary cases that prevent us from conservatively pruning edges that may be prunedat a higher levels of aggressiveness are typically uncommon; in particular, they arerare in the eGuide dataset used in our experiments here.For other datasets, the value of the aggressiveness factor A that gives the bestresults is, in general, di�erent. Using an A value that is too low results in less pruningand a greater chance of making the wrong choices when computing the transforma-tion. On the other hand, an A value that is too high results in too much pruning and

9.1. EXPERIMENTS USING REAL DATA 241
-0.5 -0.2 0.1 0.4 0.7 1

Pruning Aggressiveness

0

0.2

0.4

0.6

0.8

1

E
xc

es
s

E
dg

e
R

at
io

tick = 1.0

tick = 0.5

tick = 0.05

tick = 0.01

Figure 9.1: E�ectiveness of pruning for eGuide dataa greater chance of edges needed for a minimum-cost transformation being removed.It would be prudent to run a few test cases with di�erent values of A to empiricallydetermine a suitable value. Our experience with the datasets used in our implemen-tation described in Chapter 8, as well as the synthetic dataset studied in Section 9.2indicates that suitable values for A are approximately in the range [0:8; 0:95]. Fig-ure 9.2 also shows that lower values of tick lead to poorer results. A lower tick valueleads to less pruning (as indicated by Figure 9.1), and also reduces the e�ectivenessof heuristic functions used to estimate edge costs, as discussed in Section 9.1.2.9.1.2 Quality and Edge Cost EstimatesRecall from Chapter 5 that, given the hardness of the tree comparison problem, it isnot possible to devise a purely edgewise cost function c� on the edges of the inducedgraph such that the cost �e2Kc�(e) of an edge cover K is the same as the cost of thecorresponding transformation unless P = NP. Our method therefore uses an edgecost estimation function c0 that approximates such a function c�. Such as estimation

242 CHAPTER 9. EXPERIMENTAL EVALUATION
-0.5 -0.2 0.1 0.4 0.7 1

Pruning Aggressiveness

0

1

2

3

4

c(
F_

co
m

pu
te

d)
 /

c(
F_

be
st

)

tick = 1

tick = 0.1

tick = 0.05

tick = 0.01

Figure 9.2: E�ect of pruning on quality for eGuide datafunction is used to compute a minimum-cost edge cover of the induced graph; thisedge cover intuitively matches nodes in one input tree to their counterparts in theother. In Chapter 5 we suggested using the lower bound cost of an edge as theestimated cost. However, it is also possible to use other heuristic cost estimates. Weexperimentally evaluated the following edge cost estimation functions:1. LAB: The estimated cost of an edge [m;n] is the cost of updating the label ofm to that of n. That is, c1([m;n]) = cu(m;n). This estimate is likely to producegood results when the node labels of the input data are good discriminators ofthe nodes. In particular, if the node labels constitute keys or object identi�ersthat are shared between the input trees, this estimate will result in nodes inone tree being matched to their counterparts in the other. However, if the nodelabels are not good discriminators of the nodes, this estimate is likely to serveas a poor guide for matching nodes.2. LAB+SS: The estimated cost of an edge [m;n] is the sum of the cost of up-dating the label of m to that of n and the di�erence in the sizes of the two

9.1. EXPERIMENTS USING REAL DATA 243subtrees. That is, using jst(x)j to denote the size of the subtree rooted at nodex, we have the following:c2([m;n]) = cu(m;n) + j jst(m)j � jst(n)j jIntuitively, our �rst estimate, LAB, ignores the positions of nodes in their trees.The estimate LAB+SS attempts to address this de�ciency of LAB by di�eren-tiating nodes using the size their subtrees. This estimate is likely to performwell for datasets consisting of trees that have a natural layering and in whichmatching nodes in di�erent layers to each other is undesirable. For example, ifthe input trees are layered in the manner described in Chapter 4, this estimatewill strongly discourage matching nodes in di�erent layers by assigning a highcost to such edges (due to the high expected di�erence between the sizes of sub-trees rooted at nodes in di�erent layers). On the other hand, if the input hasno such layering property (as is the case for our synthetically generated treesin Section 9.2, this estimate is likely to perform poorly, as it will inordinatelypenalize the matching of nodes in di�erent positions in the trees.3. PARM: In this estimation function, we use parameters to determine the pres-ence of edit operations that may contribute to the cost of an edge. Recall, fromChapter 5, that one of the major reasons we cannot accurately estimate thecontribution of an edge (to the cost of a transformation derived from a minimaledge cover containing that edge) is the following: It is not possible to decidewhether the procedure for generating a transformation F (K) corresponding toan edge cover K (described in Chapter 6) generates a move, copy, or glue op-eration corresponding to a given edge e without knowledge of the other edgesin K. If a copy operation is generated corresponding to an edge, the cost ofthat operations, cC is charged to that edge. In the PARM estimation function,we estimate this component of the cost of an edge to be pC :cC, where pC is aparameter in [0; 1] that intuitively indicates the likelihood of a copy operationbeing generated for an edge. (We use the term likelihood in an informal, andnot statistical, sense.) Similarly, we estimate the glue component of the cost of

244 CHAPTER 9. EXPERIMENTAL EVALUATIONan edge by pG:cG, where pG is a parameter in [0; 1] that intuitively indicates thelikelihood of a glue operation being generated for an edge.For move operations, we use a similar idea. However, recall from Section 5.5of Chapter 5 that it is better to charge the cost of a move not to the edgesincident on the moved nodes, but to the edges incident on their parents. Inparticular, if a node x is moved, every edge incident on its parent m = p(x) ischarged cM=2jEK(m)j, where EK(m) is the set edge cover edges incident on m.Since we do not know jEK(m)j when we are computing edge cost estimates, weestimate jEK(m)j by jE(m)j:pC+1, where E(m) is the set of edges in the prunedinduced graph that are incident on m, and pC is the parameter introduced aboveto estimate copy costs. Intuitively, this estimate reects the notion that if copyoperations are more likely, jEK(m)j is likely to be higher. Thus, if a child xof a node m is moved, an edge [m;n] is charged cM=2(jE(m)j:pC + 1). Let usfurther use a parameter pM that intuitively indicates the likelihood of a nodebeing moved. Then, since m has jC(m)j children, the estimated cost due tomoves for an edge [m;n] is cM :pM :jC(m)j=2(jE(m)j:pC+1). For an edge [m;n],let us de�ne f = j jC(m)j � jC(n)j j to be the child mismatch factor. We knowthat at least f nodes must be moved, deleted, or inserted in any edge cover thatmatchesm to n. Intuitively, the greater the value of f , the more likely it is thatsome of the children of m and n will be moved. We would like to correct thelikelihood of moves pM used above to reect this intuition. For this purpose,we use a parameter p0M that indicates the additional likelihood of one of the fmismatched nodes being moved. The correction to apply to the estimated costof an edge is then cM :p0M :f=2(jE(m)j:pC + 1).The above argument for the children of m can be repeated for the children ofn, giving the following formula for the estimated cost of an edge [m;n] due tomoves. cem([m;n]) = cM :p0M :j jC(m)j � jC(n)j j+ cM :pM :jC(m)j2:(jE(m)j:pC + 1)+ cM :p0M :j jC(m)j � jC(n)j j+ cM :pM :jC(n)j2:(jE(n)j:pG + 1)

9.1. EXPERIMENTS USING REAL DATA 245The �rst and second term on the right hand side estimate the cost contributionof moving the children of m and n, respectively. Putting the estimated costsdue to copies, glues, and moves together, we have the following formula for theestimated cost of an edge:c3([m;n]) = pC :cC + pG:cG + cem([m;n])4. LAB+POS: The estimated cost of an edge [m;n] is the label update costplus the weighted sum of the di�erences between the height, depth, number ofchildren, and number of siblings of m and n. This weighted sum informallycharacterizes the di�erence in the positions of the nodes m and n in their re-spective trees. Intuitively, the greater the di�erence in the positions of m andn, the more likely it is that matching m to n will require a large number of editoperations in the resulting transformation (in order to change the position of min T1 so that the transformed tree is isomorphic to T2). More precisely, the esti-mated cost is given by the following, where wh, wd, wc, and ws are parameters,and where h(x), d(x), C(x), and S(x) denote, respectively, the height, depth,set of children, and set of siblings of node x:c4([m;n]) = cu(m;n)+ wh:jh(m)� h(n)j+ wd:jd(m)� d(n)j+ wc:j jC(m)j � jC(n)j j+ ws:j jS(m)j � jS(n)j j5. LB: The cost of an edge is estimated using the lower bound derived in Sec-tion 5.5.2 of Chapter 5.In order to evaluate the above edge cost estimation functions, we computed amin-cost edge cover using each of the estimates, and compared the costs of the cor-responding transformations with each other. For these experiments, we used theeGuide dataset described at the beginning of Section 9.1. The results are summa-rized in Figures 9.3, 9.4, 9.5, and 9.6, which plot the relative cost of the computedtransformation against the aggressiveness of pruning for the �ve estimation functions,

246 CHAPTER 9. EXPERIMENTAL EVALUATION
-0.5 0 0.5 1

Pruning Aggressiveness

1

2

3

c(
F_

co
m

pu
te

d)
 /

c(
F_

m
in

im
um

)

model 1

model 2

model 3

model 4

model 5

Figure 9.3: Comparison of edge cost estimation methods; tick = 1
-0.5 0 0.5 1

Pruning Aggressiveness

1

2

3

c(
F_

co
m

pu
te

d)
 /

c(
F_

m
in

im
um

)

model 1

model 2

model 3

model 4

model 5

Figure 9.4: Comparison of edge cost estimation methods; tick = 0.1

9.1. EXPERIMENTS USING REAL DATA 247
-0.5 0 0.5 1

Pruning Aggressiveness

1

2

3
c(

F_
co

m
pu

te
d)

 /
c(

F_
m

in
im

um
)

model 1

model 2

model 3

model 4

model 5

Figure 9.5: Comparison of edge cost estimation methods; tick = 0.05
-0.5 0 0.5 1

Pruning Aggressiveness

1

2

3

4

c(
F_

co
m

pu
te

d)
 /

c(
F_

m
in

im
um

)

model 1

model 2

model 3

model 4

model 5

Figure 9.6: Comparison of edge cost estimation methods; tick = 0.01

248 CHAPTER 9. EXPERIMENTAL EVALUATIONand for di�erent values of the label discrimination parameter tick. We use a dummyaggressiveness value of �0:5 for experiments in which no pruning is performed.For all �ve edge cost estimation functions, more aggressive pruning improves thequality of the computed solution up to very high values of the aggressiveness param-eter. This result is consistent with our results of the previous section, which used theLB estimation function. A related observation is that when no pruning is performed,all �ve estimation functions perform almost equally poorly for tick values of 1, 0.1,and 0.05. The reason for this behavior is that the more sophisticated estimation func-tions (such as the lower bound estimate) rely on the absence of edges in the inducedgraph. For example, if no edges have been pruned then LB degenerates to LAB. Fortick values of 1, 0.1, and 0.05, LB consistently and signi�cantly outperforms all theothers. The result is explained by noting that when the number of edit operations isrelatively small, as is the case for much real data in general, and our sample datasetin particular, the best-case scenario assumed by LB is close to accurate. The esti-mate LAB+POS is the next best performer. When tick is 0.01 we observe that thisestimate gives the best results. The reason for this behavior is that at a very lowtick value node labels become irrelevant for the purpose of matching nodes becauseany label can be updated to any other label at a very low cost. (Recall that forour dataset node labels are strings. With tick at 0.01, changing 100 characters in astring costs only 1 unit.) Thus it is more prudent to match nodes giving weight tostructural properties. Focusing on the results for the lower bound cost estimate, wenote that as tick decreases, the aggressiveness of pruning required to achieve a givenquality increases. For example, when tick is 1 or 0.1, conservative pruning (aggres-siveness 0) gives us a relative cost of roughly 1.4. At tick values of 0.05 and 0.01,this number deteriorates to approximately 1.9 and 3.0, respectively. The inectionmoves from aggression 0 for tick 1 and 0.1 to aggression 0.5 and 0.8 for tick 0.05 and0.01 respectively. Thus by using a better edge cost estimate, we can attain a higherquality solution at lower levels of pruning aggressiveness.

9.1. EXPERIMENTS USING REAL DATA 249
0 40 80 120 160 200 240 280 320 360

Number of tree nodes

0

20

40

60

80

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Figure 9.7: Running time for eGuide data9.1.3 Running TimeFigure 9.7 depicts the e�ect of input size on running time, where we de�ne input sizeto be the sum of the number of nodes in the two input trees. These results are forexperiments using the LB edge cost estimation function, with a pruning aggressivenessof 0.9 and a tick value of 0.1. We observe that the running time is roughly quadraticin the size of the input. To verify this relationship, Figure 9.8 plots the running timeagainst the product of the tree sizes; we note that the relationship is close to linear.Note that any algorithm used for computing a minimum-cost edit script between treesT1 and T2 (even using much simpler edit operations) must make at least jT1j � jT2jlabel-comparisons [Sel77].Figure 9.9 depicts the break-up of the running time of among the �ve major stepsof the implementation. We observe that over 40% of the running time is spent inthe input and parsing. This step involves reading the two input �les, in the formatdepicted in Figure 8.17, and parsing them into internal tree structures. We believethis time can be substantially reduced by using better parsing techniques, but do notexplore this issue further here since it is not the focus of this work. The next step,constructing the induced graph, accounts for roughly 17% of the running time. Note

250 CHAPTER 9. EXPERIMENTAL EVALUATION
0 4000 8000 12000 16000 20000 24000 28000 32000

Product of tree sizes: |T1| x |T2|

0

20

40

60

80
R

un
ni

ng
 ti

m
e

in
 s

ec
on

ds

Figure 9.8: Running time for eGuide datathat this time includes not only the time required to build the bipartite induced graphwith O(jT1j:jT2j) edges, but also the time required to evaluate the user-speci�ed label-comparison function. Recall that in our data labels are strings and the comparisonfunction is based on comparing the character frequency histograms of two strings.Using a simpler and more e�cient comparison function can reduce the time spentin this step, but may result is a less accurate result. The pruning step accounts forabout 26% of the running time. Note that these numbers are for very aggressive(aggressiveness 0.9) pruning, and we continue pruning until no more edges can bepruned. We can reduce the time spent in this step by stopping the pruning processbefore it terminates naturally. However, given that fewer edges in the induced graphresult in an exponential reduction in the size of the search space for edge covers, sucha strategy may result in much higher running times in the search step. Computinga min-cost edge cover using the edge cost estimates accounts for roughly 16% of therunning time. Recall that we compute a min-cost edge cover by transforming theproblem into a weighted matching problem, and then using a library implementationof Gabow's O(n3) algorithm for weighted matching in arbitrary graphs [Rot]. Byusing a more e�cient implementation of weighted matching specialized for bipartite

9.2. EXPERIMENTS USING SYNTHETIC DATA 251
15.6%

1.12%

25.98%

16.98%

40.31%
Input and Parsing

Induced Graph Construction

Pruning

Transformation Computation and Output

Min-cost Edge Cover ComputationFigure 9.9: Components of total running time for eGuide datagraphs, it is possible to reduce the time spent in this stage. Figure 9.9 also showsthat the time spent on computing the transformation from the min-cost edge coveris very small.9.2 Experiments Using Synthetic DataIn this section, we present the results of our experiments using synthetically generateddata, focusing on the di�erences between these results and the corresponding resultsfor the real data presented above. The results for the running time of our algorithm forsynthetic data are essentially identical to those for real data presented in Section 9.1.3.We therefore concentrate on results on the e�ectiveness of pruning, the quality of thesolution produced, and the relative merits of di�erent edge cost estimates.Generating su�ciently general, yet realistic, random trees to serve as inputs for ourexperiments is a challenging problem in itself. After experimentation using severalinput-generation techniques, we decided to use the following inductive method forgenerating a tree withN nodes. We begin with a tree T0 containing only the root node.To grow the tree T at any stage we do the following: We randomly select a leaf m ofthe current tree. We then select an integer c from the uniform random distributionover the interval [f; F] where f and F are parameters representing, respectively, the

252 CHAPTER 9. EXPERIMENTAL EVALUATIONminimum and maximum fanout of internal nodes. We then add min(c;N � jT j)children to m. We initially assign each node thus generated a unique integer greaterthan one as label. After we have generated the entire tree, we randomly select N �Dnodes, where D is a parameter in the range [0; 1] denoting the fraction of identicallabels. The labels of all theseN�D nodes are then changed to 1. Thus the parametersused to generate a synthetic tree are the following:� The number of nodes in the tree (N)� The minimum and maximum fanout of interior nodes (f and F)� The fraction of nodes that have identical labels (D)After generating a tree T1 as described above, we generate a random transforma-tion of the desired size by adding operations one at a time as follows. (For the ex-periments discussed below, we generated random transformations containing jT1j=10edit operations.) We �rst select type of the edit operation, with each type beingequally likely. Next, the node in T1 on which this operation is to act is selected uni-formly randomly from the nodes of T1. Labels of inserted nodes are selected using themethod used to select node labels when generating T1. Labels of updated nodes aregenerated by adding a uniformly randomly generated delta in the range (0; 1) to thecurrent label of the node being updated. Note that, as a result of such updates, nodelabels in the second input tree are not integers in general; further, a node's label mayclosely match that of another. For example, a node with initial label 4 may be up-dated to 4:99, thus closely matching another node with label 5. We also take specialprecautions such as making sure the target node of a move operation does not belongto the subtree being moved. Once we have generated a random transformation Fr inthis manner, we apply Fr to the tree T1 go obtain the second input tree T2 = Fr(T1).The trees T1 and T2 then serve as input to our algorithm.Since all node labels in the experiments of this section are numbers, we used asimple scaled arithmetic di�erence to compare node labels. Thus the cost of updating1:3 to 2 is 0:7�t, where t is the scaling factor. Our experiments showed that the e�ectof varying t are similar to the e�ect of varying tick for the experiments in Section 9.1.

9.2. EXPERIMENTS USING SYNTHETIC DATA 253The results reported below are for t = 1. In the charts in this section, each data pointis the average result over at least 15 trials for each of the following values of inputtree sizes: 10, 20, 40, 80, and 160, giving at least 75 trials for each data point. Wedid not �nd any signi�cant sensitivity of our results, other than running time, to thesize of the input trees; therefore we discuss only the aggregated results.9.2.1 E�ectiveness of PruningFigure 9.10 illustrates how the e�ectiveness of pruning varies as we increase the num-ber of nodes that have identical labels. It plots the excess edge ratio de�ned inSection 9.1.1 against the parameter D described above for two values of the pruningaggressiveness parameter A. We observe that as the fraction of nodes with identicallabels rises, the excess edge ratio rises rapidly. This result is expected, since thegreater the number of identical labels, the smaller the number of edges with non-zeroupdate costs, leading to smaller values of lower bound edge costs, and thus feweredges that can be pruned. We also observe that for a given value of D, aggressivepruning (A = 0:9) yields a lower excess edge ratio. However, the bene�t of aggressivepruning diminishes as D rises. This behavior is explained by noting that as morelabels become identical, the lower bound costs of an increasing number of edges droprapidly to zero; edges with zero lower bound cost are not pruned for any A < 1.Since aggressive pruning is not guaranteed to remove only edges not required bya min-cost solution, one may expect aggressive pruning to result in a deterioration ofthe quality of the solution. In Section 9.1.1 we observed that for the dataset in ourexperiments, aggressive pruning actually results in a very signi�cant improvement inthe quality of the solution produced. This result indicated that the problem casesthat can in general result to a deterioration in solution quality with aggressive pruningrarely occur in our dataset. However, for randomly generated data, such as the dataused in our experiments in this section, such problem cases may be expected to occurwith a higher frequency. Figure 9.11 illustrates the relation between output qualityand the fraction of nodes with identical labels in the input, for both conservative(A = 0) and aggressive (A = 0:9) pruning. We use the ratio of the cost of the

254 CHAPTER 9. EXPERIMENTAL EVALUATION
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of nodes with identical labels

0

0.2

0.4

0.6

0.8

1

E
xc

es
s

ed
ge

 r
at

io

A = 0

A = 0.9

Figure 9.10: E�ectiveness of conservative pruning for synthetic data
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of nodes with identical labels

0

1

2

3

4

5

c(
F_

ou
t)

 /
c(

F_
in

)

A = 0

A = 0.9

Figure 9.11: E�ect of pruning on quality for synthetic data

9.2. EXPERIMENTS USING SYNTHETIC DATA 255generated transformation (Fout) to the cost of the randomly generated transformation(Fin) used to produce T2 from T1 as a measure of the inverse of the quality of thesolution. We observe that the quality of the solution produced is very sensitive to thefraction of identical labels. This result is not surprising, since as D is increased, ourability to distinguish nodes based on their labels diminishes rapidly. In the extremecase of D = 1, node labels are completely useless in determining matching nodes.We also observe that in general aggressive pruning improves the quality. However,this improvement is substantially less than the improvement for real data describedin Section 9.1.1. Again, this result is to be expected , since with randomly generatedinputs, aggressive pruning is more likely to remove useful edges, thus resulting inworse solutions in some of instances of our synthetic data. Thus when we average overmany experiments, the bene�ts of aggressive pruning in some instances are partiallynulli�ed by the penalties in other instances. Finally, note that while the quality ofthe solution steadily deteriorates as the fraction of identical labels increases, when alllabels are identical (D = 1), the quality is marginally better than that at D = 0:8.This result can be explained by noting that when all labels are identical, the numberof potential partners of a node for a low-cost solution increases. For example, if weconsider a node m 2 T1 at height 1, as D increases, the expected number of nodesn 2 T2 such that the subtrees rooted at m and n are isomorphic increases.9.2.2 Quality and Edge Cost EstimatesWe conducted a study similar to the one described in Section 9.1.2 in order to studythe relative merits of di�erent edge cost estimates. We computed a min-cost edgecover using each of the estimates, and compared the costs of the corresponding trans-formations to the cost of the randomly generated input transformation. As in Sec-tion 9.1.2, we found that aggressive pruning with aggressiveness A close to 0.9 resultsin the best results; therefore, we focus on A values in this neighborhood. The resultsare summarized in Figures 9.12, 9.13, 9.14, 9.15, 9.16, and 9.17, which plot the rela-tive cost of the computed transformation against the aggressiveness of pruning for the�ve estimation functions, and for di�erent values of D, the fraction of tree nodes with

256 CHAPTER 9. EXPERIMENTAL EVALUATION
0.8 0.85 0.9 0.95 1

Aggressiveness

1

1.2

1.4

1.6

1.8

c(
F_

ou
t)

/c
(F

_i
n)

model 1

model 2

model 3

model 4

model 5

Figure 9.12: Quality and edge cost estimates; D = 0identical labels. Note that increasing D for our synthetic data has an e�ect similarto decreasing the label discrimination parameter tick for the real data described inSection 9.1.For the case in which all node labels are distinct (D = 0, Figure 9.12), we observethat our �rst estimation function, LAB, which compares nodes using their labels only,performs the best. This result is not surprising because when all labels are distinct,the labels function almost as keys. The labels are not exactly keys because copy,insert, and update operations may result in the tree T2 containing multiple nodeswith the same label even though T1 does not. In Figure 9.12, the data points for theLB estimate are superimposed on those for LAB. This result is to be expected because,when most of the node labels di�er signi�cantly in their labels, the lower bound costis dominated by the cost of label update. Edge cost estimates that consider factorsother than the label (such as node position and subtree size) perform poorly in thiscase because they make it more likely for nodes to be mismatched because of thesefactors.As soon as there are a few duplicate labels in the input (D = 0:2, Figure 9.13),

9.2. EXPERIMENTS USING SYNTHETIC DATA 257
0.8 0.85 0.9 0.95 1

Aggressiveness

0

1

2

3
c(

F_
ou

t)
/c

(F
_i

n)
model 1

model 2

model 3

model 4

model 5

Figure 9.13: Quality and edge cost estimates; D = 0.2
0.8 0.85 0.9 0.95 1

Aggressiveness

2

3

4

5

c(
F_

ou
t)

/c
(F

_i
n)

model 1

model 2

model 3

model 4

model 5

Figure 9.14: Quality and edge cost estimates; D = 0.4

258 CHAPTER 9. EXPERIMENTAL EVALUATION
0.8 0.85 0.9 0.95 1

Aggressiveness

2

3

4

5

6

c(
F_

ou
t)

/c
(F

_i
n)

model 1

model 2

model 3

model 4

model 5

Figure 9.15: Quality and edge cost estimates; D = 0.6
0.8 0.85 0.9 0.95 1

Aggressiveness

2

3

4

5

6

c(
F_

ou
t)

/c
(F

_i
n)

model 1

model 2

model 3

model 4

model 5

Figure 9.16: Quality and edge cost estimates; D = 0.8

9.2. EXPERIMENTS USING SYNTHETIC DATA 259
0.8 0.85 0.9 0.95 1

Aggressiveness

4

5

6

7
c(

F_
ou

t)
/c

(F
_i

n)

model 1

model 2

model 3

model 4

model 5

Figure 9.17: Quality and edge cost estimates; D = 1we observe that the simple LAB estimate no longer performs well. The other esti-mates, which take the structure of the tree into consideration in addition to using thenode labels, perform better. In particular, note that the LB estimate (estimate 5)consistently outperforms all other estimates in this case. The only estimate that un-derperforms LAB is the LAB+SS estimate. In fact, a glance at the other �gures inthis series reveals that LAB+SS is almost always the worst performer. Intuitively, thereason for the poor performance of LAB+SS is that it places too much importanceon structure. However, in cases when there are none or few di�erences between theinput trees, this estimate performs well.The results get more interesting as we increase the fraction of nodes with identicallabels further. Consider Figure 9.14, which summarizes the result for D = 0:4. Forthe reasons stated above, LAB and LAB+SS remain the worst performers. The lowerbound estimate LB continues to perform well. However, the two other estimates,PARM and LAB+POS, are also competitive. In fact, with very aggressive pruning,PARM outperforms LB. We believe this result is due to the fact that the PARMestimate can makemore e�ective use of the fewer edges resulting frommore aggressive

260 CHAPTER 9. EXPERIMENTAL EVALUATIONpruning because of the following: The LB estimate can use missing edge informationonly when such missing edges are guaranteed to cause an increase in the edgewisecost (since it is a lower bound). In contrast, the PARM estimate can always use themissing edge information since it adjusts the likelihoods of various edit operations toaccount for the missing edges.As the fraction of nodes with identical labels is increased further, we notice an-other interesting change. The results for D = 0:6 and D = 0:8, as summarized inFigures 9.15 and 9.16, are very similar to each other. In both cases, the estimationfunction 4, LAB+POS, is consistently the best performer by a signi�cant margin.This result is explained by noting that at these high values of D, it is more prudentto match nodes based on their positions in the trees rather than by their labels. Fur-ther, recall from Figure 9.10 that when D is high, very few edges can be pruned evenwhen we prune very aggressively. Thus estimates, such as LB and PARM, that relyon the absence of edges do not perform well. Finally, the simple estimates of LABand LAB+SS perform poorly because of the diminished distinguishing ability of nodelabels.Although Figures 9.15 and 9.16 are very similar, a careful observation reveals thatas D is increased from 0.6 to 0.8, LAB+POS performs worse. Further, a glance atFigure 9.17 reveals that this trend continues when we increase D to 1. When thenumber of nodes with identical labels is relatively small, it is likely that these nodesare distinguishable using the structural properties used by LAB+POS. However, asthis number increases, there is a higher likelihood of nodes with identical labels alsohaving similar structural properties, thus reducing the e�ectiveness of LAB+POS inmatching them properly.9.3 SummaryIn this chapter, we presented the results of our experimental evaluation of some treedi�erencing algorithms described in earlier chapters. We found that the technique weintroduced in Chapter 5 for pruning edges from the induced graph is very successful.Conservative pruning results in a substantial reduction in the size of the induced

9.3. SUMMARY 261graph for both real and synthetic data. As expected earlier, we found that aggressivepruning further reduces the size of the induced graph. Although aggressive pruningmay in general result in deterioration of the quality of the �nal solution, we foundthat as we increase the value of the aggressiveness parameter A, the quality of thesolution improves until we reach very high A values. The best choice for A dependson dataset, and it would be prudent to experiment with a few di�erent values ofA to determine a good choice. Based on our experiments, we believe that suitablevalues are likely to be in the range [0:75; 0:95]. For the eGuide dataset obtained fromour implementation described in Chapter 8, we found that A = 0:9 produced goodresults. In general, we found pruning with high values of A to be very useful in bothreducing the size of the induced graph and improving the quality of the solution.Our study of edge cost estimation functions showed that, for our eGuide dataset,the estimate LB, based on the lower bound introduced in Section 5.5.2 of Chapter 5,almost always signi�cantly outperforms the other estimates we studied. For our syn-thetic dataset, LB performs well when we do not have too many duplicate labels in theinput data. When duplicate labels are very common, the estimate LAB+POS, whichemphasizes the relative positions of nodes in their trees, outperforms LB. Again, givena new dataset, a good strategy would be to use some experimentation to determinea good edge cost estimation function. However, based on our experience with the C3system, we have found that the fraction of nodes with duplicate labels is typicallysmall, suggesting that LB is a good default choice.We also analyzed the running time of our implementation, and found it to beroughly proportional to the product of the sizes of the input trees. Our experimentsindicated that our implementation spends a signi�cant fraction of the running timeon parsing the inputs, suggesting that we may be able to improve performance byusing a more e�cient parsing technique. A substantial fraction of the running timeis also spent on evaluating the user-speci�ed function used to compare labels. Ourexperiments used a function that compared labels using the di�erence between theircharacter frequency histograms. In many applications, it may be possible to use asimpler and more e�cient comparison function, thus improving the running time.

Chapter 10ConclusionIn this dissertation, we motivated, formulated, and addressed the problem of manag-ing evolving data that resides in a heterogeneous collection of autonomous databases.The principal contributions of this dissertation are summarized in Section 10.1 below.In Section 10.2, we discuss promising directions for future work in related areas.10.1 Summary of Dissertation ResultsFirst, we motivated the need for managing change in a heterogeneous collection ofautonomous databases, and presented a framework for addressing this need. Next, westudied the problem of computing di�erences between snapshots of a database in thisenvironment. We formulated a number of tree di�erencing problems, and presentedalgorithms to solve them. We then described the design and implementation of adatabase system for historical semistructured data. Finally, we described our imple-mentation of a comprehensive change management system based on the techniquesof this dissertation. We discuss these contributions in more detail below.10.1.1 Change Management FrameworkIn Chapter 1, we introduced heterogeneous, autonomous databases, and describedtheir growing importance. We motivated the need for database techniques that treat262

10.1. SUMMARY OF DISSERTATION RESULTS 263a collection of such databases as an integrated information system. In particular, westressed the importance of techniques to manage the evolution of data in such anenvironment. We explained how the heterogeneity and autonomy of databases in thisenvironment invalidate the assumptions made by conventional database techniques,and outlined the major research challenges in this area.In Chapter 3, we presented our framework for managing change in heterogeneous,autonomous databases, and described how it builds on a framework of wrappers andmediators that is often used for data integration. An important design requirement,necessitated by the autonomy of the component databases, is that our system makevery few assumptions about the component databases.10.1.2 Di�erencing AlgorithmsIn Chapters 4, 5, and 6, we motivated the need for techniques for comparing twodatabase snapshots (or partial snapshots) in order to detect changes. In additionto being the basis of an essential module in our change management system, suchtechniques are also useful in several other applications such as version control, syn-tactic program analysis, and automatic mark-up of changes in evolving documents(for example, manuals and legal documents). Data obtained from wrappers overheterogeneous databases has a hierarchical structure. We argued that di�erencingalgorithms that are cognizant of such hierarchical structure produce results that aremuch more usable than those from algorithms that treat all data as strings or tables.We presented di�erencing algorithms for labeled trees, both ordered and unordered.Two key features of our tree di�erencing techniques are the following: First, inaddition to the node insertion and deletion and label update operations used by priorwork, our algorithms also use expressive subtree operations such as move, copy, anduncopy. Using more expressive operations makes the problem of detecting changesharder, but produces results that are more usable. For example, if a paragraph ina manual is moved from one section to another, comparing the old and new manualusing our techniques produces a corresponding subtree move operation as output,while earlier techniques that do not use such subtree operations produce a sequence

264 CHAPTER 10. CONCLUSIONof node insertion and deletion operations as output. Second, unlike prior work, we donot impose restrictions on the function used to compare node labels. Although suchrestrictions may seem reasonable at �rst glance, they have some serious rami�cationsthat render techniques based on them unusable for our purposes. For example, mostprior work requires that the function used to compare node labels be a distance metric.This function is required to satisfy an extended triangle inequality that asserts thatthe cost of updating one node label to another cannot be greater than the cost ofdeleting the �rst node and inserting the second. As a result of this restriction, suchwork does not allow us to specify, for example, that a node with label \movie" shouldnot be matched to a node with label \restaurant" when we are comparing snapshotsof the entertainment database described in Chapter 8. Our techniques, on the otherhand, allow such speci�cations because of their exible cost model.In Chapter 4, we presented a technique for comparing ordered trees that achievese�ciency and optimality by using domain characteristics to simplify the problem. InChapter 5, we presented a more general solution for unordered trees, and in Chap-ter 6, we described a model of tree transformations that is more declarative than thetraditional edit script model, and that leads to simpler algorithms for solving thedi�erencing problem. In Chapter 8, we described how we use our tree di�erencingalgorithms to detect changes in semistructured data in the OEM model by mappingtree edit operations to edit operations in OEM.10.1.3 Database System for Historical Semistructured DataAs described in Chapter 3, semistructured data is data that has structure that maybe irregular, incomplete, and dynamic. We motivated the need for data managementtechniques for semistructured data, and explained why traditional database tech-niques cannot be directly applied to such data. We focused on di�culties encounteredin modeling historical semistructured data; that is, semistructured data together withits history of changes. In Chapter 7, we presented a data model, DOEM, and a querylanguage, Chorel, for historical semistructured data. A key feature of DOEM andChorel is the use of an explicit representation of changes as �rst-class entities instead

10.1. SUMMARY OF DISSERTATION RESULTS 265of an implicit representation of changes as the di�erence between two database states.We described the implementation of CORE, a database system for historical semi-structured data. Our implementation strategy avoids reimplementation of severaldatabase modules by using the existing implementation of Lore, a database systemfor semistructured data, and Lorel, Lore's query language. In addition to beingmodular, this strategy also permits us to implement CORE by using other databasesystems, such as the O2 object database system [BDK92]. We represent DOEM data,which is logically an annotated graph, in OEM, which is an ordinary graph model, byencoding annotations using special objects. Chorel queries over a DOEM databaseare implemented by translating them into equivalent Lorel queries over the OEMencoding of the DOEM database.10.1.4 The C3 SystemThe work described in this dissertation has been implemented as the C3 system formanaging change in heterogeneous, autonomous databases. The C3 system uses ourdi�erencing algorithms to detect changes in heterogeneous, autonomous databases(called source databases), and our implementation of CORE to store and query thehistory of these changes along with the base data. We have also implemented asubscription service that noti�es subscribers of changes of interest to them. Suchsubscriptions are speci�ed using a special form of Chorel queries, and are extremelypowerful. The C3 system builds on companion work in data integration and semi-structured data. We use an architecture of wrappers and mediators, with wrapperand mediator generation techniques from the Tsimmis project. As described above,we also use the Lore database system for semistructured data. The combination of thetechniques in this dissertation with those from the Tsimmis and Lore projects resultsin an extremely versatile system for managing change in heterogeneous, semistruc-tured databases. In Chapter 8, we described our experiences with the C3 system. Wedescribed the functionality o�ered by the system to discover and study the evolution ofdata in heterogeneous, semistructured databases. We also described how the systemmodules, based on work described earlier, cooperate to support this functionality.

266 CHAPTER 10. CONCLUSION10.2 Future WorkIn this section, we describe some opportunities for future work in topics related to thisdissertation. We classify such opportunities into three categories: comparing data,managing historical semistructured data, and extending the C3 system.10.2.1 Comparing DataIn Chapters 4{6, we noted the advantages of describing di�erences between treesusing not only node insertion, deletion, and label update operations, but also thesubtree operations of move, copy, and uncopy. In essence, using more expressiveoperations results in edit scripts that are more meaningful than edit scripts that useonly simple node operations. It would be interesting to study whether we can pushthis strategy further; that is, would using even more expressive operations lead tostill better results? For example, consider the comparison of structured documents,modeled as ordered trees. We may wish to use a merge operation that combines twoor more sibling nodes into one node by concatenating their contents. Thus, a mergeoperation could be used to combine the sentences from three paragraphs into oneparagraph or to combine the contents of two sections into one.It seems reasonable to assume that such additional edit operations would resultin more usable descriptions of changes. For example, an edit script that indicatesthat three paragraphs in a document were merged is more succinct and intuitivelymore convenient than one that indicates that two paragraphs were deleted, withtheir constituent sentences moved to the third. However, such a proliferation of editoperations raises two important issues that need to be resolved: First, without anyadditional restrictions, such new edit operations may interfere with one another inunexpected ways, leading to unintuitive edit scripts similar to those described inChapter 5. Second, it is not clear how our general strategy of mapping edit scripts tocompact representations (matchings or signatures) would generalize to include suchcomplex edit operations.We could carry the idea of more complex edit operations even further by allowinguser-de�ned edit operations. That is, the problem inputs consist of not only the two

10.2. FUTURE WORK 267trees to be compared, but also a speci�cation of the edit operations with which thedi�erences are to be described. A general solution to this problem is likely to beintractable. However, the problem can be simpli�ed by imposing domain-based ordomain-independent restrictions, and by relaxing the requirement that the solutionbe optimal.It is natural to consider the extension of our work on comparing trees to techniquesfor comparing more general graph structures. In Chapter 8, we described how ourtechniques are applied to graph structured data that has a preferred spanning tree.However, when the data is truly graph structured, we need to devise more generalgraph di�erencing techniques. As we have done for trees, the �rst step is deciding onthe set of edit operations on graphs. The simple edit operations of node insertion anddeletion, and arc addition and removal, are obvious candidates. However, just as weobtain better results for trees by including subtree operations, we may obtain betterresults for graphs by including more complex graph edit operations. For example, wemay de�ne a merge operation that replaces two nodes in a graph with a new nodewith a label that is a concatenation of the labels of the original nodes, with arcsincident on the original node redirected to the new node. An e�cient algorithm foran optimal solution of a general formulation of this problem is unlikely. However,by imposing suitable restrictions and carefully designing a mapping between editscripts and signatures, we could use a strategy analogous to our strategy for trees.Further, we could relax the requirement that the solution be optimal, and use heuristicdescriptions of good solutions.Another avenue for future work is devising algorithms for comparing data that istoo large to �t in primary storage and must therefore be accessed o� secondary ortertiary storage such as magnetic and optical disks, magnetic tapes, and juke-boxes.For example, we may wish to compute di�erences between two versions of an engi-neering design, a large manual, or the hierarchy of documents on a Web site. Accessesto secondary storage are typically several orders of magnitude slower than accesses toprimary storage. Further, secondary storage accesses are typically faster if data is ac-cessed sequentially or in a clustered manner. Since the algorithms described in earlierchapters do not take these factors into account, a naive implementation of them for

268 CHAPTER 10. CONCLUSIONsecondary storage is likely to be impractical. A simple method to compute di�erencesbetween datasets in secondary storage is to divide each dataset into fragments that�t in main memory, compute the di�erences between pairs of these fragments usingmain memory algorithms, and combine the di�erences thus detected. However, sucha strategy is likely to detect a large number of spurious di�erences due to the possi-bility of mismatched fragments. It may be possible to partially amend this situationby devising heuristics that reduce the likelihood of mismatched fragments, and bypostprocessing the detected di�erences to make local improvements.10.2.2 Managing Historical Semistructured DataRecall, from Chapter 7, that CORE uses an implementation strategy that is based onencoding DOEM in OEM and translating Chorel queries to equivalent Lorel queriesover the OEM encoding. The disadvantage of this strategy is that query processingis often very ine�cient. The Lorel queries produced by our translation scheme ofteninvolve several joins and nested quanti�cations. We may be able to ameliorate manyof these performance problems by modifying Lore to generate better query plansfor the kinds of queries produced by CORE. We can index strategic data, such asannotation sets, using conventional indexing techniques, and modify the Lore queryoptimizer to use these indexes. Such a solution should be easy to incorporate intoour current implementation.As an enhancement to the above solution, we can design and implement indexesthat are specialized for historical data. For example, such indexes can be biasedto account for the fact that recent data and changes are more likely to be accessedthan those in the more distant past. Instead of treating all indexed data as equallyimportant, biased indexes prioritize access to recent data. For example, such an indexwould allow the retrieval of annotations that were added this week to be much fasterthan the retrieval of annotations that were added a year ago. The design of suchbiased indexes, along with algorithms to build and incrementally maintain them asdata evolves, is a promising topic for future work.In addition to the traditional value-based indexes, semistructured databases can

10.2. FUTURE WORK 269also bene�t from path indexes that index an object based on the values of its sub-objects nested several levels deep. While such path indexes can speed up queryprocessing, they are often expensive to maintain in the face of frequent updates tothe database. Thus, in addition to designing e�cient implementations of path in-dexes, we need to devise techniques to determine which indexes are most bene�cialfor a given query and update mix [CCY94].Another approach to improving the performance of Chorel queries is to implementCORE directly instead of using the encoding and translation scheme. In addition toavoiding the complicated queries that arise as artifacts of our encoding and translationscheme, this approach would permit the low-level design of the database system tobe optimized for DOEM and Chorel.In DOEM, annotations describing the history of changes to a node or arc are con-ceptually attached to that node or arc. We have seen that this model permits intuitivebrowsing and querying of historical data. However, an implementation of DOEM isnot required to physically colocate annotations with the nodes or arcs they are con-ceptually attached to. For example, it may be more e�cient to store all annotationsseparately, perhaps organized using a biased index as described above. An interestinggeneral problem in this area is the following: Given a large labeled, directed graph(optionally with annotations on the nodes and arcs), and some description of likelyaccess patterns (for both retrieval and modi�cation), what is the most e�cient wayto represent the graph on disk?As described in Chapter 7, a central construct in Chorel is an annotated path ex-pression. Annotated path expressions are simply path expressions whose componentsmay be modi�ed by an optional annotation expression. For example, the annotatedpath expression a.<add at T>b denotes a path consisting of an a-edge followed bya b-edge that has an add(t) annotation, with t bound to T . In Chapter 7, we fo-cused on simple annotated path expressions in which annotation expressions modifyonly simple path expression components, that is, single labels. General path expres-sions may contain components that use wildcards and regular expression operators,and the ability to modify such components using annotation expressions is often use-ful. For example, we may use the annotated path expression a.?<add>.c to denote

270 CHAPTER 10. CONCLUSIONa path consisting of an a-edge followed by an edge (with any label) that has anadd annotation, followed by a c-edge. As another example, consider the expressiona.(b<add>|c<rem>).#<add>. Intuitively, this annotated path expression suggests apath consisting of an a-edge followed by either a b-edge with an add annotation ora c-edge with a rem annotation, followed by zero or more edges with add annota-tions. This interpretation implicitly assumes that the <add> annotation expressionattached to the closure (#) operator denotes the presence of an add annotation onevery edge included in the closure. An alternate interpretation is to only require anadd annotation on the last edge included in the closure. Yet another interpretationis to require an add annotation on some edge in the closure. The last two interpre-tations need to handle the special case of the closure including no edges. In general,it should be interesting to explore the options for attaching annotation expressionsto path expressions in a more exible manner. For example, we may wish to usea.(b(<add>|<rem>)|c(<add>&<rem>)) to denote a path consisting of an a-edge fol-lowed by either a b-edge with an add or a rem annotation, or by a c-edge with bothan add and a rem annotation.Recall from Chapter 7 that virtual annotations provide convenient access to in-formation that is implicitly represented in a DOEM database. We have seen someexamples of such annotations: at, snap, during, and ov (old value). However, thesevirtual annotations are hard-coded as part of the CORE implementation. We can-not introduce new virtual annotations without modifying our implementation. Givenour translation-based implementation scheme, such modi�cations are not di�cult tomake. However, it would be interesting to design and implement a facility that al-lows new kinds of virtual annotations to be de�ned and used at the CORE userinterface, without any modi�cations to the CORE implementation. Such a facilitywould provide functionality somewhat similar to that provided by views in a tradi-tional database system.In addition to extending querying facilities for historical semistructured databasesas described above, it should be interesting to implement a trigger facility for suchdatabases. Conventional database systems often include trigger facilities that permita database system to automatically respond to the occurrence of certain kinds of

10.2. FUTURE WORK 271events [WC96a]. Triggers are commonly expressed using an event-condition-action(ECA) construct that speci�es the action to be performed when events of a certainclass occur, and when the speci�ed condition holds true. It should be interesting toextend Lore to include such a trigger facility for semistructured data. The DOEMupdate model is a good basis for the event language of such triggers. For example,we may associate a trigger with an event that adds an edge with a speci�ed label.The condition and action action of such triggers can be speci�ed using standard Lorelquery and update statements. It would be interesting to study the tradeo� betweengenerality and implementation e�ciency in such a trigger facility.10.2.3 Extending the C3 SystemRecall from Chapter 8 that the C3 system allows us to integrate heterogeneous, au-tonomous databases, to detect changes in these databases, to store an integratedhistorical database describing the data and changes of interest to us, to query thishistorical database using a general-purpose query language, and to request noti�ca-tion of interesting changes speci�ed using a powerful subscription language. Together,these facilities provide a comprehensive system to monitor and study the evolutionof data in the source databases. A logical next step in change management for het-erogeneous, autonomous databases involves adding the ability to e�ect change atthe source databases. Given the autonomy of the source databases, a strategy thatrequires permissions to directly modify the source databases is likely to be unsuc-cessful in practice. In many cases, the source databases may o�er external agents(such as the wrappers used by C3) no facilities for modifying the information theycontain. In other cases, a source database may o�er some rudimentary and restric-tive mechanisms for modifying the data. For example, many databases on the Web,such as the Internet Movie Database, o�er a forms interface that external agents canuse to suggest changes to the database [IMD98]. Such interfaces need to be mod-eled carefully in order to accurately capture their semantics, which are often morecomplex than the simple atomic update semantics used in traditional database sys-tems. For example, the Internet Movie Database o�ers forms for several purposes,

272 CHAPTER 10. CONCLUSIONsuch as voting on the quality of a movie, adding missing information, correcting ex-isting information, and submitting a review. Successful submission of a form doesnot guarantee that the suggested modi�cation has occurred, or even that it will oc-cur in the future. Further, di�erent types of suggested modi�cations have di�erentchances of actually being made. For example, a simple vote rating a movie as goodis likely to be accepted automatically; however, a contentious claim regarding thetrue origin of a script is likely to be rejected or revised by a human being reviewingsuch claims. A successful strategy for implementing a facility for e�ecting changes insource databases needs to reect some of these intricacies of the update interfaces of-fered by the source databases. In general, an update facility for C3 requires modelingof long-running activities consisting of several steps, some of which involve humaninteraction. In this respect, such a facility is related to prior work on long-runningtransactions and workows and we may be able to use some techniques from those�elds [GMS87, WWW+97]. A fully general framework for e�ecting changes in au-tonomous databases may be very ambitious because such a framework would requiresolving, among other problems, a particularly troublesome variant of the view updateproblem: The problem of mapping changes speci�ed in the integrated OEM view ofthe source data to the operations supported by the source's modi�cation interface islikely to be intractable. Fortunately, we may be able to obtain signi�cant bene�ts byimplementing a restricted modi�cation framework based on simple ideas. For exam-ple, it is not di�cult to see how the forms-based modi�cation interface supported bythe Internet Movie Database could be mapped to changes in the OEM view of thedatabase. A very simple extension to the C3 system would allow users to make onlythose changes to the OEM view that can be unambiguously and easily mapped tothe forms supported by the source database. This approach is similar to that used tode�ne updateable views in SQL [DD93].A module to monitor and maintain inter-database integrity constraints would beanother useful extension to the C3 system. For example, as described in Chapter 1, atStanford there are a several databases that store personnel information for people inthe Computer Science department. There are several integrity constraints spanning

10.2. FUTURE WORK 273these databases, a simple one being that the primary phone number listed for a per-son be the same in all databases. Suppose we have integrated these databases usingthe C3 system. Using QSS, it is easy to create a subscription that noti�es a personwhenever that person's phone number is listed inconsistently by these databases forlonger than, say, three days. On receiving such a noti�cation, this person may thentake the actions necessary to correct the situation. In many cases, instead of only no-tifying users of inconsistencies, it may be possible to suggest one or more mechanismsto resolve the inconsistency. In our example above, the system could suggest thatthe phone number from the most recently updated database be propagated to theothers. As discussed earlier, such actions may be represented using a workow thatincludes, in addition to actions updating the source databases, actions requiring userapproval. In order to implement such a strategy, we need methods for automaticallyor semi-automatically generating consistency restoring workows from a declarativespeci�cation of inter-database integrity constraints. There is a substantial body ofwork in the related area of integrity constraint management for conventional databasesystems [WC96b]. In [CGMW94, CGMW96], we describe a simple rule-based frame-work and toolkit for constraint management in autonomous databases. Extendingsuch work to semistructured data in an autonomous environment is a fruitful topicfor future research.Recall, from Chapter 7, that our implementation of a query subscription service(QSS) maintains a DOEM database for each subscription. New changes periodicallydetected by C3 are added to this DOEM database. Over time, the DOEM databaseof a subscription potentially grows without bound as changes accumulate. In prac-tice, we need some method to bound the size of these databases. (In our currentimplementation, we simply suspend servicing subscriptions whose DOEM databasesgrow beyond a �xed limit.) For some subscriptions, it may be impossible to accu-rately service the subscription without storing an unbounded amount of historicalinformation in its DOEM database. For example, consider a subscription that asksfor all the times at which an object was modi�ed since a �xed date; servicing thissubscription requires that we store the entire history of modi�cations to the spec-i�ed object. However, for many subscriptions, we do not need to store the entire

274 CHAPTER 10. CONCLUSIONhistory in this manner. As a simple example, consider a subscription that asks onlyfor newly added objects; for this subscription, we need to store only the most recentpolling query result in the DOEM database. In addition, it may often be possible toservice a subscription by storing only a fraction of its complete DOEM database asde�ned in Chapter 7. These observations suggest a DOEM pruning problem: Givena subscription, determine the least amount of information that must be stored in thesubscription's DOEM database in order to correctly service the subscription. Notethat we need an online solution to the DOEM pruning problem. That is, every timewe receive new changes, we need to determine which changes need not be installed,and which old changes and data may be discarded without a�ecting current and fu-ture subscription results. A precise solution to this problem is likely to be complex;however, several approximate or heuristic strategies may yield satisfactory results.For example, it may be possible to use a collection of simple rules that indicate whatto prune. One such rule may indicate that if a subscription's �lter query mentionsonly add annotations, then rem annotations need not be stored unless they are themost recent annotations on their respective arcs. Studying such strategies for DOEMpruning, and their e�ects on the performance and accuracy of QSS is an interestingtopic for future work.Another method for saving space in the QSS implementation is the sharing ofDOEM databases among subscriptions. Our current implementation maintains aseparate DOEM database for each subscription. However, given several similar sub-scriptions, it may be advantageous to combine their DOEM databases in order tosave storage space and improve performance. As a very simple example, if two ormore subscriptions have identical polling queries and polling frequencies, we can usea single DOEM database to service them both. Note that our menu-driven interfaceto QSS makes it likely that several users chose the same polling query. Further, itmay often be possible to service a subscription approximately by using the DOEMdatabase of another subscription. Exploring such opportunities for DOEM sharingamong related subscriptions is an interesting topic for future work.The C3 system detects changes by polling the source databases, which are accessedusing wrappers that present a simple query interface. However, in some cases source

10.2. FUTURE WORK 275databases may o�er noti�cation facilities. For example, an online retailer may o�er tonotify us when certain books are available, or when the price of a computer monitordrops below a speci�ed threshold [AMA98, CDW98]. If such facilities exist, ignoringthem and using only polling and di�erencing to detect changes is wasteful. It wouldbe useful to extend C3 to include active wrappers that map such noti�cation servicesto DOEM histories. For example, an active wrapper for the online retailer mentionedabove would map an email message indicating the availability of a book to a set ofchange operations on the OEM representation of the source data. We can adapt manyof the template-based wrapper implementation techniques used for Tsimmis wrappersto such active wrappers. However, unlike regular wrappers, active wrappers needa per-subscription set-up. That is, in addition to translating noti�cations from thesource model to OEM, active wrappers need to �rst indicate to the source the kinds ofnoti�cations they wish to receive by creating a source subscription. The subscriptionservices o�ered by source databases vary considerably; thus we need methods tointegrate not only the data models and query languages of source databases, but alsotheir subscription services. The design of methods for such integration of subscriptionservices is an interesting topic for future research. An implementation of such methodsin a toolkit for rapid construction of active wrappers would make a valuable additionto the C3 system.There are several opportunities for future work on user interfaces to the C3 system.An interface to semistructured databases (both historical and non-historical) wouldbene�t from a facility that permits the objects in a query result to be not onlybrowsed, but also marked and selectively used in subsequent queries. For example,suppose we issue a query to �nd authors who have published a paper whose titlecontains the word historical. The user interface may display, say, �fty authors thatqualify. Next, we may browse the details for these authors and, based on our browsing,mark some of the authors as interesting. We may now wish to �nd books written byone of these interesting authors on a given topic. The design and implementation ofa user interface that supports such closely coupled querying and browsing presentsseveral interesting challenges. For example, given that the query-browse-mark-querycycle may be repeated several times, we need a method to e�ciently evaluate a

276 CHAPTER 10. CONCLUSIONcomposite query containing some combination of past queries and marked objectsfrom past query results.

Bibliography[Abi97] S. Abiteboul. Querying semistructured data. In Proceedings of theInternational Conference on Database Theory, Delphi, Greece, January1997.[ACHK93] Y. Arens, C. Chee, C. Hsu, and C. Knoblock. Retrieving and integrat-ing data from multiple information sources. International Journal ofIntelligent and Cooperative Information Systems, 2(2):127{158, June1993.[ACM95] S. Abiteboul, S. Cluet, and T. Milo. A database interface for �le up-date. In Proceedings of the ACM SIGMOD International Conferenceon Management of Data, 1995.[ADD+94] R. Ahmed, P. DeSmedt, W. Du, W. Kent, M. Ketabchi, W. Litwin,A. Ra�i, and M.-C. Shan. The Pegasus heterogeneous multidatabasesystem. IEEE Computer, 24:19{27, 1994.[AK97] N. Ashsish and C. Knoblock. Wrapper generation for semi-structuredinternet sources. In Proceedings of the Workshop on Management ofSemistructured Data, Tucson, Arizona, 1997.[AMA98] The amazon.com online bookstore. http://www.amazon.com/, 1998.[AQM+96] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. TheLorel query language for semistructured data. Journal of Digital Li-braries, 1(1):68{88, November 1996.277

278 BIBLIOGRAPHY[Arm74] W. Armstrong. Dependency structures of database relationships. InProceedings of the IFIP Conference, pages 580{583, 1974.[BDHS96] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query lan-guage and optimization techniques for unstructured data. In Proceed-ings of the ACM SIGMOD International Conference on Managementof Data, pages 505{516, Montr�eal, Qu�ebec, June 1996.[BDK92] F. Bancilhon, C. Delobel, and P. Kanellakis:. Building an Object-Oriented Database System: The Story of O2. Morgan Kaufmann, 1992.[BKKK87] J. Banerjee, W. Kim, H. Kim., and H. Korth. Semantics and imple-mentation of schema evolution in object-oriented databases. In Proceed-ings of the ACM SIGMOD International Conference on Managementof Data, pages 311{322, 1987.[BLCG92] T. Berners-Lee, R. Cailliau, and J. Gro�. The world-wide web. Com-puter Networks and ISDN Systems, 25:454{459, 1992.[BLT86] J. Blakeley, P.-A. Larson, and F. Tompa. E�ciently updating ma-terialized views. In Proceedings of the ACM SIGMOD InternationalConference on Management of Data, pages 61{71, Washington, D.C.,June 1986.[BN98] The Barnes and Noble online bookstore.http://www.barnesandnoble.com, 1998.[BPSM98] T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible markuplanguage (XML) 1.0. World Wide Web Consortium Recommenda-tion. Available at http://www.w3.org/TR/1998/REC-xml-19980210,February 1998.[Buc96] A. Buchmann. The active database management system manifesto:A rulebase of ADBMS features. ACM SIGMOD Record, 25(3):20{49,September 1996.

BIBLIOGRAPHY 279[CACS94] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From struc-tured documents to novel query facilities. In Proceedings of the ACMSIGMOD International Conference on Management of Data, 1994.[Cat96] R. Cattell. The Object Database Standard: ODMG-93 Release 1.2.Morgan Kaufmann Publishers, San Francisco, California, 1996.[CAW98] S. Chawathe, S. Abiteboul, and J. Widom. Representing and query-ing changes in semistructured data. In Proceedings of the InternationalConference on Data Engineering, pages 4{13, Orlando, Florida, Febru-ary 1998.[CAW99] S. Chawathe, S. Abiteboul, and J. Widom. Representing andquerying history and changes in semistructured data. Theoryand Practice of Object Systems, 1999. To appear. Available athttp://www-db.stanford.edu.[CCY94] S. Chawathe, M-S. Chen, and P. Yu. On index selection schemes fornested object hierarchies. In Proceedings of the International Confer-ence on Very Large Data Bases, pages 331{341, 1994.[CDN98] The cdnow.com online music store. http://www.cdnow.com, 1998.[CDW98] The CDW online computer store. http://www.cdw.com/, 1998.[CGL+97] S. Chawathe, V. Gossain, X. Liu, J Widom, and S. Abiteboul.Representing and querying changes in heterogeneous semistructureddatabases (demonstration description). Technical report, StanfordUniversity Database Group, November 1997. Available athttp://www-db.stanford.edu.[CGM97] S. Chawathe and H. Garcia-Molina. Meaningful change detection instructured data. In Proceedings of the ACM SIGMOD InternationalConference on Management of Data, pages 26{37, Tuscon, Arizona,May 1997.

280 BIBLIOGRAPHY[CGMH+94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakon-stantinou, J. Ullman, and J. Widom. The Tsimmis project: Integrationof heterogeneous information sources. In Proceedings of 100th Anniver-sary Meeting of the Information Processing Society of Japan, pages7{18, Tokyo, Japan, October 1994.[CGMW94] S. Chawathe, H. Garcia-Molina, and J. Widom. Constraint manage-ment for autonomous distributed databases. Data Engineering Bulletin,17(2):23{27, 1994.[CGMW96] S. Chawathe, H. Garcia-Molina, and J. Widom. A toolkit for constraintmanagement in heterogeneous information systems. In Proceedings ofthe International Conference on Data Engineering, pages 56{65, 1996.[CHS+95] M. Carey, L. Haas, P. Schwarz, M. Arya, W. Cody, and R. Fagin. To-wards heterogeneous multimedia information systems: The Garlic ap-proach. In Proceedings of the Fifth International Workshop on ResearchIssues in Data Engineering (RIDE): Distributed Object Management,pages 123{130, Los Angeles, California, 1995.[Clu98] S. Cluet. Designing OQL: allowing objects to be queried. InformationSystems, 23(5):279{305, July 1998.[CRGMW96] S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Changedetection in hierarchically structured information. In Proceedings ofthe ACM SIGMOD International Conference on Management of Data,pages 493{504, Montr�eal, Qu�ebec, June 1996.[DD93] C. Date and H. Darwen. A Guide to the SQL Standard. Addison-Wesley, Reading, Massachusetts, 1993.[DHR96] M. Doherty, R. Hull, and M. Rupawalla. Structures for manipulat-ing proposed updates in object-oriented databases. In Proceedings ofthe ACM SIGMOD International Conference on Management of Data,Montr�eal, Qu�ebec, 1996.

BIBLIOGRAPHY 281[EG98] The Gate eGuide. http://www.sfgate.com/eguide/, 1998.[FGM+97] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hy-pertext transfer protocol|HTTP/1.1. Available athttp://www.w3.org/Protocols/rfc2068/rfc2068, January 1997.Network Working Group Request for Comments 2038.[GCCM96] R. Goldman, S. Chawathe, A. Crespo, and J. McHugh. A standardtextual interchange format for the Object Exchange Model (OEM).Technical report, Stanford University Database Group, 1996. Availableat http://www-db.stanford.edu/.[GH97] T. Gri�n and R. Hull. A framework for implementing hypotheticalqueries. In Proceedings of the ACM SIGMOD Conference on Manage-ment of Data, pages 231{242, Tucson, Arizona, May 1997.[GHJ+93] S. Ghandeharizadeh, N. Hull, T.D. Jacobs, J. Castillo, M. Escobar-Molano, , S.-H. Lu, J. Luo, C. Tsang, and G. Zhou. On implementinga language for specifying active database execution models. In Proceed-ings of the Nineteenth International Conference on Very Large DataBases, Dublin, Ireland, August 1993.[GHJ96] S. Ghandeharizadeh, R. Hull, and D. Jacobs. Heraclitus: Elevatingdeltas to be �rst-class citizens in a database programming language.ACM Transactions on Database Systems, 21(3):370{426, September1996.[GMS87] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the ACM SIG-MOD International Conference on Management of Data, pages 249{259, San Francisco, California, December 1987.[Gol90] C. Goldfarb. The SGML handbook. Oxford University Press, 1990.[GW97] R. Goldman and J. Widom. DataGuides: Enabling query formula-tion and optimization in semistructured databases. In Proceedings of

282 BIBLIOGRAPHYthe Twenty-third International Conference on Very Large Data Bases,Athens, Greece, 1997.[HBGM+97] J. Hammer, B. Breunig, H. Garcia-Molina, S. Nestorov, V. Vassalos,and R. Yerneni. Template-based wrappers in the Tsimmis system. InProceedings of the Twenty-Third ACM SIGMOD International Confer-ence on Management of Data, Tucson, Arizona, 1997.[HGMC+97] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Ex-tracting semistructured information from the web. In Proceedings of theWorkshop on Management of Semistructured Data, pages 18{25, Tus-con, Arizona, May 1997. Available at http://www-db.stanford.edu.[HGMW+95] J. Hammer, H. Garcia-Molina, J. Widom,W. Labio, and Y. Zhuge. TheStanford Data Warehousing Project. IEEE Data Engineering Bulletin,Special Issue on Materialized Views and Data Warehousing, 18(2):41{48, June 1995.[HHS+98] M. Haertel, D. Hayes, R. Stallman, L. Tower, P. Eggert., and W. Davi-son. The GNU di� program. Texinfo system documentation, 1998.Available through anonymous FTP at prep.ai.mit.edu.[HSF85] K. Harrenstien, M. Stahl, and E. Feinler. Nicname/Whois. Technicalreport, SRI International, October 1985. Internet Engineering TaskForce Network Working Group RFC 954.[HZ96] R. Hull and G. Zhou. A framework for supporting data integration us-ing the materialized and virtual approaches. In Proceedings of the ACMSIGMOD International Conference on Management of Data, pages481{492, Montreal, Canada, June 1996.[IMD98] The Internet Movie Database. http://www.imdb.com/, 1998.[Inm92] W. Inmon. EIS and the data warehouse: A simple approach to buildingan e�ective foundation for eis. Database Programming and Design,5(11):70{73, November 1992.

BIBLIOGRAPHY 283[JUN98] The Junglee online shopping guide. Available athttp://www.junglee.com/wcomm/wcoverview.html, 1998.[Kif95] M. Kifer. EDIFF|A comprehensive interface to di� for Emacs 19.Available through anonymous FTP at ftp.cs.sunysb.edu in/pub/TechReports/kifer/ediff.tar.Z, 1995.[KL86] B. Kantor and P. Lapsley. Network news transfer protocol. Technicalreport, University of California, San Diego, February 1986. InternetEngineering Task Force Network Working Group RFC 977.[KLSS95] T. Kirk, A. Levy, J. Sagiv, and D. Srivastava. The information mani-fold. Technical report, AT&T Bell Laboratories, 1995.[Knu86] D. Knuth. Computers and Typesetting. Addison-Wesley, Reading, Mas-sachusetts, 1986.[KRO98] Online tra�c updates from KRON Newscenter 4.http://www.sfgate.com/traffic/, 1998.[Lam94] L. Lamport. Latex: A Documentation Preparation System User's Guideand Reference Manual. Addison Wesley Longman, Inc., July 1994.[Law76] E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,Rinehart and Winston, 1976.[LND98] The Lands' End online retail store. http://www.landsend.com, 1998.[LYV+98] C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y. Papakonstantinou,J. Ullman, and M. Valiveti. Capability based mediation in Tsimmis. InProceedings of the ACM SIGMOD International Conference on Man-agement of Data, page 564, Seattle, Washington, June 1998.[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore:A database management system for semistructured data. SIGMODRecord, 26(3):54{66, September 1997.

284 BIBLIOGRAPHY[MBL98] The musicblvd.com online music store. http://www.musicblvd.com,1998.[Mel96] J. Melton. An SQL3 snapshot. In Proceedings of the Twelfth Interna-tional Conference on Data Engineering, pages 666{672, New Orleans,Louisiana, February 1996.[MW98] J. McHugh and J. Widom. Query optimization for semistructured data.Technical report, Stanford University Database Group, 1998. Availableat http://www-db.stanford.edu/.[Mye86] E. Myers. An O(ND) di�erence algorithm and its variations. Algorith-mica, 1(2):251{266, 1986.[NUWC97] S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe. Representativeobjects: Concise representations of semistructured, hierarchial data.In Proceedings of the International Conference on Data Engineering,pages 79{90, 1997.[NYT98] The New York Times online. http://www.nyt.com, 1998.[PAGM96] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Objectfusion in mediator systems. In Proceedings of the International Confer-ence on Very Large Data Bases, pages 413{424, Bombay, India, Septem-ber 1996.[PAW98] The Palo Alto Weekly online, 1998. http://www.service.com/PAW/.[PGGMU95] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman. Aquery translation scheme for rapid implementation of wrappers. InProceedings of the International Conference on Deductive and Object-Oriented Databases, pages 161{186, Singapore, December 1995.[PGMU96] Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. MedMaker:A mediation system based on declarative speci�cations. In Proceedings

BIBLIOGRAPHY 285of the International Conference on Data Engineering, pages 132{141,New Orleans, February 1996.[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object ex-change across heterogeneous information sources. In Proceedings of theInternational Conference on Data Engineering, pages 251{260, Taipei,Taiwan, March 1995.[Pos82] J. Postel. Simple mail transfer protocol. Technical report, Informa-tion Sciences Institute, University of Southern California, Marina delRey, California, August 1982. Internet Engineering Task Force NetworkWorking Group RFC 821.[PR85] J. Postel and J. Reynolds. File transfer protocol (FTP). Technical re-port, Information Sciences Institute, University of Southern California,Marina del Rey, California, October 1985. Internet Engineering TaskForce Network Working Group RFC 959.[PS82] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization.Prentice-Hall, 1982.[QWG+96] D. Quass, J. Widom, R. Goldman, K. Haas, Q. Luo, J. McHugh,S. Nestorov, A. Rajaraman, H. Rivero, S. Abiteboul, J. Ullman, andJ. Wiener. LORE: A Lightweight Object REpository for semistruc-tured data. In Proceedings of ACM SIGMOD International Conferenceon Management of Data, Montreal, Canada, June 1996.[RHe98] D. Raggett, A. Le Hors, and I. Jacobs (eds.). HTML 4.0 speci�cation.Available at http://www.w3.org/TR/REC-html40/, April 1998.[Rot] E. Rothberg. The wmatch program for �nding a maximum-weightmatching for undirected graphs. Live OR collection. Available athttp://www.orsoc.org.uk/home.html.

286 BIBLIOGRAPHY[SA86] R. Snodgrass and I. Ahn. Temporal databases. IEEE Computer,19(9):35{42, September 1986.[Sel77] S. Selkow. The tree-to-tree editing problem. Information ProcessingLetters, 6(6):184{186, December 1977.[SL90] A. Sheth and J.A. Larson. Federated database systems for managingdistributed, heterogeneous, and autonomous databases. ACM Comput-ing Surveys, 22(3):183{236, 1990.[SLS+93] K. Shoens, A Luniewski, P. Schwarz, J. Stamos, and J. Thomas. Therufus system: Information organization for semistructured data. InProceedings of the International Conference on Very Large Data Bases,pages 97{107, Dublin, Ireland, August 1993.[Soo91] M. Soo. Bibliography on temporal databases. SIGMOD Record,20(1):14{24, March 1991.[SWZS94] D. Shasha, J. Wang, K. Zhang, and F. Shih. Exact and approximate al-gorithms for unordered tree matching. IEEE Transactions on Systems,Man, and Cybernetics, 24(4):668{678, April 1994.[SZ90] D. Shasha and K. Zhang. Fast algorithms for the unit cost editingdistance between trees. Journal of Algorithms, 11:581{621, 1990.[Ukk85] E. Ukkonen. Algorithms for approximate string matching. Informationand Control, 64:100{118, 1985.[Ull88] J. Ullman. Principles of Database and Knowledge-Base Systems, vol-ume 1. Computer Science Press, 1988.[Uni93] International Telecommunication Union. Speci�cation of Abstract Syn-tax Notation One (ASN.1). Technical report, Telecommunication Stan-dardization Sector of ITU, 1993. ITU-T Recommendation X.208. Avail-able at http://www.itu.int/.

BIBLIOGRAPHY 287[UW97] J. D. Ullman and J. Widom. A �rst course in database systems.Prentice-Hall, Upper Saddle River, New Jersey, 1997.[Vix98] P. Vixie. Red Hat Linux system manual for cron. Available athttp://www.redhat.com, 1998.[W3C98] The World-Wide Web Consortium online. http://www.w3.org/, 1998.[Wag75] R. Wagner. On the complexity of the extended string-to-string correc-tion problem. In Seventh ACM Symposium on the Theory of Compu-tation, 1975.[WC96a] J. Widom and S. Ceri. Active database systems: Triggers and rulesfor advanced database processing. Morgan Kaufmann Publishers, SanFrancisco, California, 1996.[WC96b] J. Widom and S. Ceri. Active Database Systems: Triggers and Rulesfor Advanced Database Processing. Morgan Kaufmann, San Francisco,California, 1996.[WCS96] L. Wall, T. Christiansen, and R. Schwartz. Programming Perl. O'Reilly,second edition, 1996.[WF74] R. Wagner and M. Fischer. The string-to-string correction problem.Journal of the Association of Computing Machinery, 21(1):168{173,January 1974.[Wid96] J. Widom. Integrating heterogeneous databases: Lazy or eager? ACMComputing Surveys, 28A(4), December 1996.[Wie92] G. Wiederhold. Mediators in the architecture of future informationsystems. IEEE Computer, 25(3):38{49, March 1992.[WMG90] S. Wu, U. Manber, and G.Myers. An O(NP) sequence comparison al-gorithm. Information Processing Letters, 35:317{323, September 1990.[WP98] The Washington Post online. http://www.washingtonpost.com, 1998.

288 BIBLIOGRAPHY[WWW+97] D. Wodtke, J. Weissenfels, G. Weikum, A. Dittrich, and P. Muth. hementor workbench for enterprise-wide workow management. In Pro-ceedings of the ACM SIGMOD International Conference on Manage-ment of Data, Tucson, Arizona, June 1997.[WZC95] J. Wang, K. Zhang, and G. Chirn. Algorithms for approximate graphmatching. Information Sciences, 82:45{74, 1995.[WZS95] T-L. Wang, K. Zhang, and D. Shasha. Pattern matching and patterndiscovery in scienti�c, program, and document databases. In Proceed-ings of ACM SIGMOD International Conference on Management ofData, 1995.[Yan91] W. Yang. Identifying syntactic di�erences between two programs.Software|Practice and Experience, 21(7):739{755, July 1991.[ZGMHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View main-tenance in a warehousing environment. In Proceedings of the ACMSIGMOD International Conference on Management of Data, San Jose,California, May 1995.[Zha95] K. Zhang. Personal communication, May 1995.[Zim90] D. Zimmerman. The �nger user information protocol. Technical report,Center for Discrete Mathematics and Theoretical Computer Science,December 1990. Internet Engineering Task Force Network WorkingGroup RFC 1196.[ZS89] K. Zhang and D. Shasha. Simple fast algorithms for the editing dis-tance between trees and related problems. SIAM Journal of Computing,18(6):1245{1262, 1989.[ZWS95] K. Zhang, J. Wang, and D. Shasha. On the editing distance betweenundirected acyclic graphs. International Journal of Foundations ofComputer Science, 1995.

