MANAGING CHANGE IN HETEROGENEOUS
AUTONOMOUS DATABASES

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Sudarshan Sudhir Chawathe
March 1999

(© Copyright 1999 by Sudarshan Sudhir Chawathe
All Rights Reserved

i

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Héctor Garcia-Molina
(Principal Adviser)

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Jennifer Widom

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Serge Abiteboul

Approved for the University Committee on Graduate
Studies:

il

v

Abstract

Information relevant to a task at hand is often scattered across a collection of hetero-
geneous, autonomous databases. Individual databases in such a collection are owned
and managed by independent, and often competing, entities that cooperate to only
a limited extent. For example, the collection of databases used in the construction
of a building includes databases owned by the architect, the construction company,
the electrical contractor, and so on. Such autonomous database collections are also
common on the Internet. For example, the collection of Internet databases with infor-
mation about San Francisco consists of databases operated by several competing enti-
ties. Making effective use of such collections of heterogeneous, autonomous databases
presents several challenges due to the absence of traditional database facilities such
as locks, transactions, and standard query languages. In particular, understanding
and controlling how such databases evolve is an important problem that traditional
database techniques are ill-equipped to address.

Managing evolving information in heterogeneous, autonomous databases requires
(1) a method for detecting changes in data without access to traditional database
control facilities such as triggers, transactions, and locks, and (2) a method for repre-
senting and querying these changes in a uniform manner. To address the first issue,
we present efficient methods for detecting changes between snapshots of databases.
Our methods are based on mapping the change detection problem to the problem
of computing a concise representation of the difference between two labeled trees.
We present the design and implementation of our algorithms for computing a concise
difference between two trees, and study their performance both analytically and ex-

perimentally. An important distinguishing feature of our tree differencing algorithms

is that they model changes using a rich set of edit operations. In addition to oper-
ations that insert and delete a node, and update node labels, our algorithms model
subtree operations such as move and copy. Using a rich set of edit operations results
in a more succinct and usable description of tree differences.

To address the second issue, we present a data model, DOEM, and query language,
Chorel, for representing and querying changes in structured and semistructured data.
A key feature of DOEM and Chorel is that they represent and query changes directly
as first-class entities, instead of as the difference between database states. We de-
scribe how we use these ideas to implement CORE, a database system for historical
semistructured data. We also describe the design and implementation of QSS, a ser-
vice that supports subscriptions to interesting changes in heterogeneous, autonomous
databases. QSS uses a powerful subscription language to specify the changes of in-
terest.

Using the techniques of this dissertation, we have implemented the C® system for
managing change in heterogeneous, autonomous databases. We describe the design

and implementation of C® and our experiences with the system.

vi

Dedicated to my parents, Sarala and Sudhir Chawathe.

Vil

viii

Acknowledgements

My advisor, Hector Garcia-Molina, deserves the first thank you. Not only did Hector
introduce me to interesting topics in the database field, he was also always willing
to discuss my ideas, not matter how strange they were. From him, I have hopefully
learned not only how to do research, but also how to interact effectively with students
and colleagues. Jennifer Widom advised me on many technical topics throughout my
Stanford years and provided a model for organization, planning, and balancing work
with the rest of life. Serge Abiteboul helped me sort through my ideas on query
languages and provided yet another great perspective on academic life. Thanks to
Jeff Ullman for serving on my oral committee and for many fruitful discussions over
the years. Gio Wiederhold, my academic grandfather, gave me the big picture on
many issues, including how to drive a Volkswagen in Kanpur. The examples set by
Hector, Jennifer, Serge, Jeff, and Gio played an important part in my decision to
continue in academia.

I would like to thank all my other collaborators at Stanford. Anand Rajaraman
was receptive to my idea of implementing a new difference program as a weekend
project and made substantial contributions to the early work on LaDiff. (The project
missed the time estimate by only a few years.) Vineet Gossain and Dan Liu made
substantial contributions to the implementations of the CORF and ()SS components
of C?. Thanks are also due to all members, past and present, of the Lore and Tsimmis
projects.

The Stanford Database Group provided a great environment for both work and
play. Among other things, I will miss the fine food and company at the Friday lunch

meetings, the fiery discussions at the Thursday brownie meetings, and field trips

X

that often involved sex (elephant seals at Afio Nuevo) and violence (paint-ball in
the Santa Cruz mountains). My officemates, Brad Adelberg and Yue Zhuge, deserve
special mention for making sure I had something to do whenever I didn’t feel like
working. It’s hard to imagine an office that’s more fun. Ramana Yerneni joined
our office when Brad left, and continued the fine tradition. Marianne Siroker was
instrumental in making sure all official business got done without much effort on my
part.

I was fortunate to meet some great people during my stay at Stanford. A special
thank you to Amy McMullen for all the wonderful times. Thanks also go out to
Venkat, Amy, Luca, Francoise, Jan, Dorothy, Cindy, and Melanie. The Stanford
experience would have been much less enjoyable without friends like these. A number
of institutions helped make sure 1 didn’t get too carried away with work: TGIF,
CoHo, Calffe Trieste, Cactus, F/X, SoFA, and Tahoe.

I dedicate this work to my parents, Sarala and Sudhir Chawathe, to whom I owe
the greatest debt. I am also indebted to my sister, Supriya Pappu. I could not have
come this far without their constant love, support, and sacrifices. Thanks to Ameya
and Chamundeshwari for introducing me to the joys of being an uncle. Thanks are
also due to the rest of my family, especially my grandparents. A special thank you
goes out to my grandfather Manohar Goray.

This research was sponsored by by the Air Force Rome Laboratories under DARPA
Contract F30602-95-C-0119, by the Air Force Wright Laboratory Aeronautical Sys-
tems Center under DARPA Contract F33615-93-1-1339, and by equipment grants
from Digital Equipment Corporation and IBM Corporation. The conclusions and
opinions in this dissertation are those of the author and are not necessarily endorsed
by any of these sponsors. The author makes no warranty of any kind, either expressed
or implied, with regard to the programs and results contained in this dissertation, and
shall not be liable in any event for incidental or consequential damages in connection
with, or arising out of, the furnishing, performance, or use of such material.

This document was typeset by the author in a paperless environment using TEX,

IATRX, fig, Appliz, ghostview, and emacs.

Contents

Abstract
Acknowledgements

1 Introduction
1.1 Motivation
1.2 Research Issues
1.3 Application Domainso

1.4 Dissertation Organization

2 Related Work
2.1 Change Detection
2.1.1 Strings and Sequences oL
2.1.2 Ordered Trees
2.1.3 Unordered Trees
2.2 Representing and Querying Changes
2.2.1 Heterogeneous Databases and Schemas
2.2.2 Semistructured Databases
2.3 Data Integration Lo

3 Overview
3.1 Integrating Heterogeneous Databases
3.2 Detecting Changes o o
3.3 Managing Changes L o

xi

ix

O~ Ut N =

3.4 Summary ... e 33
Detecting Changes in Ordered Trees 35
41 OVerview o e 36
4.1.1 Edit Operations, Edit Scripts, and Costs 39
4.2 Generating the Edit Seripto 43
4.2.1 Outline of Algorithm 43
4.2.2 Aligning Children oo oL 46
4.2.3 The Complete Algorithm 48
4.3 Finding Good Matchings oL 51
4.3.1 Matching Criteria for Keyless Data 53
4.3.2 A Simple Matching Algorithm 56
4.3.3 A Faster Matching Algorithm 58
4.3.4 Analysis of Matching Algorithms 59
4.4 Delta Trees o o 61
4.5 Implementation oo 63
4.6 Empirical evaluation of FastMatch 64
4.7 Summary ... 71
Detecting Changes in Unordered Trees 74
5.1 Introductiono 75
5.2 Model and Problem Definition 77
5.2.1 Edit Operations and Edit Scripts 78
5.2.2 Cost Model 81
5.3 Method Overview 82
5.3.1 The Induced Graph 84
5.3.2 Pruning the Induced Graph 85
5.3.3 Finding an Edge Cover L. 86
5.3.4 Generating the Edit Scripto 87
5.4 Edge Covers and Edit Scriptso 90
5.4.1 Edge Cover Induced by an Edit Script 90
5.4.2 Using Edge Covers 94

xii

5.4.3 Generating an Edit Script from an Edge Cover 97

5.5 Finding the Edge Cover 119
5.5.1 An Edge-wise Cost Function 120
5.5.2 Bounds on Edge Costs 121
5.5.3 Pruning 124
5.5.4 Computing a Min-Cost Edge Cover 126

5.6 Implementation and Performance 127

D7 SUmMmary . .o o.o. oo e e e 131

Parallel Transformations 133

6.1 Introduction and Overview 134

6.2 Transformation Model L. 138

6.3 Representative Signatures of Transformations 143

6.4 Computing Signatures L oL Lo 158

6.5 SUMMATY ot e e e e 160

Representing and Querying Changes 162

7.1 Introductiono 162
7.1.1 Motivating Examples oL 163
7.1.2 Overview 164
7.1.3 Contributions o 165

7.2 The Object Exchange Model 166
7.2.1 Changes in OEM« . v v i vt 168
7.2.2 OEM Histories 170

7.3 Representation of Changes 172
7.3.1 DOEM Representation of an OEM History 173
7.3.2 Properties of DOEM Databases 174

7.4 Querying Over Changes 176
7.4.1 Lorel Overview 176
7.4.2 Chorel 177
7.4.3 Chorel Semanticso 180

7.5 Implementing DOEM and Chorel 182

x1il

7.5.1 Encoding DOEM in OEM 183

7.5.2 Translating Chorel to Lorel 185
7.5.3 Implementationo 187
7.6 Virtual Annotations and Snapshot-based Access 189
7.6.1 Snapshot-based Access 189
7.6.2 Semantics of during 192
7.6.3 The at Construct Lo 193
7.6.4 The snap Construct L. 194
7.6.5 Implementing during by translation 196
7.6.6 Object Deletion and Garbage Collection 198
7.7 A Query Subscription Serviceo 199
7.7.1 @Ss Implementation oL 204
7.8 SUMIMATY o v vt 206
System Implementation 208
8.1 User Interactions Lo 208
81.1 Using TDift 210
8.1.2 Using QSS 211
81.3 Using CORE 218
8.2 System Interactions oL 223
82.1 Polling 226
8.2.2 Filtering and Browsing L. 231
8.3 Summary e e 234
Experimental Evaluation 237
9.1 Experiments Using Real Data 237
9.1.1 Effectiveness of Pruning 238
9.1.2 Quality and Edge Cost Estimates 241
9.1.3 Running Time. oo 249
9.2 Experiments Using Synthetic Data 251
9.2.1 Effectiveness of Pruning 253
9.2.2 Quality and Edge Cost Estimates 255

X1V

9.3 Summary e 260

10 Conclusion 262
10.1 Summary of Dissertation Results 262
10.1.1 Change Management Framework 262

10.1.2 Differencing Algorithms oL, 263

10.1.3 Database System for Historical Semistructured Data 264

10.1.4 The C® System 265

10.2 Future Work oo 266
10.2.1 Comparing Data o 266

10.2.2 Managing Historical Semistructured Data 268

10.2.3 Extending the C® System 271
Bibliography 277

XV

List of Tables

4.1 Mark-up conventions used by LaDiff. 65
4.2 Mismatched paragraphs in FastMatch. 71

xvi

List of Figures

1.1

2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

Heterogeneous, autonomous databases in the construction industry
The need for flexible label comparison functions

Conceptual architecture of the C2 system
Changes in autonomous databases

Sample output from TDift

Running example (dashed edges represent matching)
Edit operations on atree L
Applying the edit script of Example 4.1.1
Running example: after align phase
Running example: after insert phase
Running example: after delete phase
A matching with misaligned nodes
Algorithm EditSeripto
Functions AlignChildren and FindPos used by Algorithm FditSeript .
Algorithm Mateho
Algorithm FastMatch oo
Delta tree for edit script in Example 4.1.1
Old version of documento
New version of document oL
Output document (marked up)

Relation between the weighted and unweighted edit distances

XVil

4.17

5.1
5.2
5.3
5.4
3.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24

6.1
6.2
6.3

7.1

Running time of FastMatch

Edit operations on labeled trees L.
The trees for the running example in Section 5.3.
The Induced Graph for the trees in Figure 5.2
The induced graph of Figure 5.3 after pruning
A minimum-cost edge cover of the induced graph in Figure 5.4
Annotating edges in the edge cover of Figure 5.5
Annotated edges of the edge cover of Figure 5.5
Example 5.4.1: the initial edge cover
Example 5.4.1: the final edge cover
CtoS: generating delete operationso L.
CtoS: generating copy-related operations
CtoS: bookkeeping for free copies
CtoS: finding spare images for copy
CtoS: bookkeeping for free images L.
CtoS: generating move operations
CtoS: generating update operations
CtoS: generating glue-related operations
CtoS: bookkeeping for free glueso
CtoS: finding spare images for glueo L.
CtoS: generating insert operations
Distributing edge costs fairlyo
Applying pruning ruleso oL L Lo
System Architectureo oo

Effectiveness of pruningo oo

Applying a linear edit script. o oL
Applying the transformation in Example 6.2.1
The trees in Example 6.3.1 L.

The OEM database in Example 7.2.1.

xviil

7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19

9.1
9.2

The OEM database in Example 7.2.2
The DOEM object in Example 7.3.1.
Encoding a DOEM object in OEM: node annotations
Encoding a DOEM object in OEM: arc annotations
System architectureo
Encoding a DOEM object in OEM: node annotations
Encoding a DOEM object in OEM: arc annotations
A Query Subscription Service based on DOEM and Chorel

System architectureof Qss oL

Restaurant reviews from the Palo Alto Weekly
New version of reviews with changes marked
Old version of reviews with changes marked
The eGuide Web database: movie section
The eGuide Web database: theater details
Menu of common polling queries for eGuide
Some polling query templates from the eGuide wrapper
Menu of common filter queries
Specifying the polling frequency
QQSS subscription review screen Lo
A result for the subscription NR-titles
CORE query interface oL
Result of the query “select ViewRoot;” on the NR-titles database .
Result of the query in Figure 8.12 on the NR-titles database
Architecture of the C3system
The eGuide database: query interface
An OEM load fileo
An incremental DOEM load file

Browsing a filter query result 0oL

Effectiveness of pruning for eGuide data

Effect of pruning on quality for eGuide data

X1X

174

9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17

Comparison of edge cost estimation methods; tick =1 246

Comparison of edge cost estimation methods; tick =0.1. 246
Comparison of edge cost estimation methods; tick =0.05 247
Comparison of edge cost estimation methods; tick =0.01 247
Running time for eGuide data 249
Running time for eGuide data 250
Components of total running time for eGuide data 251
Effectiveness of conservative pruning for synthetic data 254
Effect of pruning on quality for synthetic data 254
Quality and edge cost estimates; D =0 256
Quality and edge cost estimates; D =02 257
Quality and edge cost estimates; D =04 257
Quality and edge cost estimates; D =06 258
Quality and edge cost estimates; D =08 258
Quality and edge cost estimates; D =1 259

XX

Chapter 1
Introduction

We are witnessing a proliferation of databases that are heterogeneous in their design
and content, and that are operated by independent, often competing, organizations.
Managing a collection of such heterogeneous, autonomous databases as a coherent in-
formation system necessitates a significant rethinking of several database techniques.
In particular, managing the evolution of information stored in such a system is an
important problem that is ill-addressed by conventional methods. In this dissertation,
we present techniques for detecting, storing, querying, and monitoring changes in an
environment of heterogeneous, autonomous databases.

We begin by introducing heterogeneous, autonomous databases in Section 1.1. Us-
ing an extended example, we describe how these databases differ from those studied
in traditional database literature. We motivate the need for new database techniques
by describing the dependence of traditional techniques on assumptions that are in-
valid for heterogeneous, autonomous databases. In Section 1.2, we briefly discuss
the key research issues raised by the need for managing change in heterogeneous,
autonomous databases. In Section 1.3, we present some examples of heterogeneous,
autonomous databases from diverse application domains. Finally, Section 1.4 outlines

the organization of the rest of this dissertation.

2 CHAPTER 1. INTRODUCTION

Relational ' Limited
DBMS f Cooperation y
\

~ -

Public
Interface

Structural

. Architect
Engineer
> Proprietary Plumbing
@ Application Contractor

Figure 1.1: Heterogeneous, autonomous databases in the construction industry

1.1 Motivation

Traditional database research has focused on centralized database systems in which
all data resides in a single database. More recent work has addressed parallel and
distributed database systems, which store data in a collection of tightly coupled
databases interconnected by a communication network. However, two key assump-
tions underlying these techniques are homogeneity and centralized control of the
databases in the system. As a result, they are not applicable to heterogeneous and
autonomous collections of databases. We elaborate on these terms using an example
of such a collection.

Consider the collection of databases involved in the design and construction of a
building. (Here, and in what follows, we use the term database to mean any organized
collection of data. In addition to conventional relational and object databases, we
include data from sources such as bibliographic information systems, file systems,
world-wide web servers, and proprietary application systems.) A large number of
independent parties are involved in the design and construction effort; Figure 1.1
depicts three such parties: the architect, the structural engineer, and the plumbing
contractor. Fach of these parties typically maintains one or more private databases.

Since these databases developed over time, in different organizations, and for dif-

fering goals, they are heterogeneous; that is, they differ widely in characteristics such

1.1. MOTIVATION 3

as data models, query languages, access restrictions, and support for transactions,
concurrency control, and locking. In our example, the structural engineer’s database
is stored in a relational database system, while the architect’s database is simply a
collection of files in a format used by a program for computer-aided design. The
plumbing contractor’s database is part of a proprietary application.

Traditional database techniques typically assume that the component databases
in a distributed database system are homogeneous, making such techniques inappli-
cable to a heterogeneous database environment. In particular, such databases are
assumed to be homogeneous in features such as the data models they support, the
query language used to access their data, and the transaction and control primitives
they support. Often, the assumptions of homogeneity are even more stringent. For
example, many commercial products assume not only that the component databases
are relational databases supporting the SQL2 query language [DD93], but also that
they are identical versions of the same product from the same database system vendor.

Since the databases we study are typically owned by independent organizations,
they are also autonomous; that is, they cooperate to only a limited extent, and do
not expose sensitive or critical information to each other. Such database autonomy
is most often motivated by business and legal reasons. Thus, even if facilities such
as transactions, locks, and triggers exist in a database system (such as the structural
engineer’s relational database system in our example), they are typically not made
available to the other databases in the collection. As shown in Figure 1.1, each
database in the collection has a private interface that is available only to internal
users, and a separate, and typically much more restricted, public interface that is
presented to external users.

Prior work in distributed and federated databases typically assumes that the
databases are centrally administered, making such work inapplicable in an autonomous
environment. In particular, distributed or federated databases are assumed to be de-
signed in a top-down fashion with the objective of supporting a group of applications
efficiently. For example, techniques used for query processing in distributed databases
assume that the data has been partitioned across the databases based on a careful

analysis of the data, functional dependencies, and expected query mix. In contrast,

4 CHAPTER 1. INTRODUCTION

the environment we study consists of databases that were not designed to facilitate
interoperation. They are preexisting databases designed for differing purposes that
we now wish to interconnect and use as a coherent system. In our ongoing con-
struction example for instance, the architect’s database is designed to facilitate and
optimize the operations the architect is most likely to make, and may not support
the operations of interest to a structural engineer.

Another reason traditional techniques are inapplicable to heterogeneous, au-
tonomous databases is their assumption of a high level of trust amongst the com-
ponent databases. The component databases are often required to perform a number
of critical, and potentially dangerous, operations on behalf of each other. These
operations include holding locks on data, exposing transaction commit states, and
executing triggers. In an autonomous environment such sharing of critical resources
between the component databases, which may belong to competing companies, is
not plausible. Even if the owner of a database does not expect the owners of other
databases to be malicious, the need to maintain organizational independence and
accountability precludes sharing of critical database resources. For example, it is
very unlikely that the structural engineer in our ongoing example would permit the
architect to hold locks on the structural database, since such sharing of locks risks
corrupting the structural database by factors beyond the structural engineer’s control.

In addition to the differences in methods used by component databases to manage
their data, there are also significant differences in the database contents themselves.
The database contents are often mutually incompatible and inconsistent. For exam-
ple, the plumbing contractor’s database contains the locations, sizes, and types of
pipes in the building; this information may be missing from the structural engineer’s
database. Similarly, the structural engineer’s database may contain information on
the physical properties of the beams and columns used in the building, but this in-
formation may be absent from the plumbing contractor’s database. The architect’s
database may contain information about decorative features that is absent from the
other databases. Further, since the architect may be working on a slightly newer
version of the design than that used by the structural engineer, the two databases

may disagree, for example, on the heights of some windows.

1.2. RESEARCH ISSUES 3

Despite all these differences among the component databases, a collection of het-
erogeneous, autonomous databases, such as the one in our ongoing construction ex-
ample, represents a common reality, giving rise to the need to manage the collection
as an integrated information system. For example, the final design of the building, as
described by the collection of databases in our example, must be consistent. Thus,
the location and thickness of a wall in the architect’s database must be identical to
the corresponding information in the structural engineer’s database. In addition to
this requirement of final consistency, the design databases of the parties involved in
the construction need to be periodically synchronized with each other, and changes
made by one party need to be propagated to affected parties in a timely manner. For
example, if the architect modifies her database to reduce the clearance above a ceiling,
the plumbing contractor may need to reroute pipes that no longer fit in the available
space. Note that although such consistency requirements are similar to those found
in traditional databases, there are important differences due to the autonomous en-
vironment in which the databases operate. Complete global consistency at all times

is neither required nor practicable. We elaborate on these issues in Chapter 3.

1.2 Research Issues

In the above discussion, we motivated the need for a system to manage change in
heterogeneous, autonomous databases. We also explained the reasons conventional
database techniques cannot be used for this purpose. We now summarize the research
issues raised by the design and implementation of a change management system for
heterogeneous, autonomous databases. We present only a brief description of the

issues here, with details deferred to Chapter 3.

Data Integration: Users of heterogeneous, autonomous database collections find
it very cumbersome to learn and use the interface offered by each component
database. They prefer a single, integrated interface to all the information in
the database collection, irrespective of which database a particular data item
resides in. The need to provide an integrated view over heterogeneous database

collections raises several issues: First, we need a common data model that is

6 CHAPTER 1. INTRODUCTION

general enough to encompass a wide variety of database types. Next, we need
a method to translate queries over this general data model to queries on the
underlying database, and similarly, to translate the results from the underlying
database to the integrating model. Further, we need a query language that
allows us to access and combine data from multiple sources, and methods for
implementing and optimizing such queries. Although such data integration is
not a focus of this dissertation, our work is designed to mesh well with such work,
and our change management system makes use of data integration techniques

in addition to the techniques of this dissertation.

Data that has been integrated from several diverse sources is typically semi-
structured, meaning it has structure, but the structure may be irregular and
incomplete, and may not conform to a fixed schema. This semistructured na-
ture of the data in heterogeneous, autonomous databases introduces additional
challenges in managing change in these databases. Most existing database tech-
niques rely heavily on the existence of a stable and precise schema, and are thus

inapplicable in a semistructured context.

Detecting Changes: A basic requirement of the change management system sug-
gested in Section 1.1 is a method for detecting changes in heterogeneous, au-
tonomous databases. Since we do not, in general, receive notifications of changes
before or after they are made, we must use methods that detect changes by com-
paring snapshots of data. Although the problem of comparing data has been
studied before, the characteristics of the data in a heterogeneous collection of
databases pose challenges that require the development of new techniques for
this purpose. We need data comparison techniques that can cope with the
semistructured nature of the data, making effective use of the structure when
available, but without assuming its presence in all cases. In Chapter 3, we de-
scribe how we map this problem to the problem of finding a concise description
of the difference between two trees. In later chapters, we present the design,
analysis, implementation, and experimental evaluation of tree differencing al-

gorithms.

1.3. APPLICATION DOMAINS 7

Representing and Querying Changes: Once we have detected changes using our
differencing techniques, we need a method to systematically store and query
these changes. Again, as a result of the semistructured nature of the data, we
cannot use existing database techniques for this purpose. In this dissertation, we
present a data model, called DOEM, for storing changes in semistructured data
together with the data itself. We also present the design and implementation of
a language, called Chorel, that allows us to query over historical semistructured

data stored in a DOEM database.

Monitoring Changes: A system to manage change in heterogeneous, autonomous
databases should include a facility for monitoring changes that are of inter-
est. In order to implement such subscriptions to changes, we need a general-
purpose language for specifying interesting changes. Further, we need tech-
niques to implement subscriptions expressed in this language. The autonomy

of the databases we consider makes these tasks particularly challenging.

1.3 Application Domains

Collections of heterogeneous, autonomous databases are becoming increasingly com-
mon. The principal reason for this increase is a proliferation of databases due to their
falling costs. As the number of databases grows, administering them centrally quickly
becomes impracticable. In Section 1.1, we presented an example of heterogeneous,
autonomous databases from the domain of distributed design and construction. We
now discuss a few other scenarios where such databases are found.

Consider the collection of databases found in large organizations such as multi-
national companies or major universities. These databases often number in the hun-
dreds, and are designed, managed, and operated by relatively independent groups
within the organizations. One group may operate a legacy IMS database, another
may operate a modern relational database system, while a third group may use its own
proprietary database system. For example, contact information for people in the Com-

puter Science department at Stanford is stored in several separate databases, including

8 CHAPTER 1. INTRODUCTION

a proprietary database designed and maintained by the department, a university-wide
database maintained by the registrar’s office, and the private databases of research,
teaching, and recreational groups within the department. These databases differ
widely in their data models, user interfaces, query facilities, reliability, and cover-
age. Currently, there is no systematic method used to manage the evolution of this
collection of databases. Instead, people are expected to maintain consistent informa-
tion in all these databases manually. As a result, these databases are often mutually
inconsistent. The use of techniques in this dissertation would permit, for example,
automatic notification when changes of a certain kind are made in one or more of
these databases. Further, using DOEM and Chorel, one could query past states of
these databases in order to generate a list of people whose database entries have been
inconsistent for more than a week, so that these people could be notified to correct
the situation.

Recent technical and market developments have led to an explosive growth in
the number and variety of networked databases, especially on the World-Wide Web
[BLCGY92, W3C98]. The thousands of databases available on the Web are operated
by independent, often competing, organizations, and vary widely in their design,
data model, query facilities, accessibility, reliability, and consistency. Further, these
databases rarely support the kinds of low-level access mechanisms required by tra-
ditional data management techniques. Using the techniques in this dissertation in
this environment yields significant benefits. As a simple example, suppose we are
interested in three Web sites. The first contains listings of show times in local movie
theaters, the second contains movie reviews from a newspaper, and the third contains
traffic reports from a television channel [PAW98, EG98, KRO98]. These three Web
databases are operated by three separate organizations, and therefore exhibit a high
degree of heterogeneity and autonomy. Further, the information contained in these
databases changes frequently. Movie reviews and listings are updated once or twice
a week, and traffic reports are updated every ten minutes. Monitoring and react-
ing to these changes is often of interest. For example, we may wish to be notified
whenever a local theater adds a matinee show for any movie that has been received

good reviews from the newspaper. Further, we may wish to be notified of any traffic

1.4. DISSERTATION ORGANIZATION 9

problems near the theater. In Chapter 8, we describe a detailed example from this
domain, illustrating how the techniques of this dissertation implement the desired
functionality.

As another example, consider the increasingly common Web sites that sell books,
compact discs, and other merchandise [AMA98, BN98, MBL98, CDN98, LND9Sg|.
Comparison shopping by visiting each of these Web sites is extremely tedious be-
cause such Web sites have vastly different interfaces. Often, these differences are
intentional, since the parent organizations wish to distinguish themselves from their
competitors. Using data integration techniques such as those developed in the Tsim-
mis project at Stanford [CGMH194], a convenient comparison shopping service can
be implemented [JUN98]. Such a service asks a shopper for the desired product char-
acteristics, such as the name of a book’s author or the genre of music, and presents
the shopper with a list of products that qualify, along with their prices and sources.
Using the techniques in this dissertation, we can go even further. For example, if
we are interested in a flat-panel computer monitor with a price less than $1000, but
there are no such monitors currently on sale, we can set up a subscription that au-
tomatically monitors the relevant Web sites and notifies us when qualifying products
become available. Our change management system, described in Chapter 8, supports
such notifications and other, more complex, subscriptions to interesting changes in

heterogeneous, autonomous databases.

1.4 Dissertation Organization

In Chapter 2, we discuss prior work in related fields. We focus on high-level similari-
ties and differences between prior work and our work, deferring detailed comparisons
to later chapters that present our techniques in detail. In Chapter 3, we present
an overview of our framework for managing change in heterogeneous, autonomous
databases. We present the conceptual architecture of the C® change management
system, and identify its key modules and the subproblems they address. (The name
C? suggests the three principal facets of change management: Changes, Configura-

tions, and Consistency.)

10 CHAPTER 1. INTRODUCTION

Chapter 4 presents our techniques for detecting changes by comparing snapshots
of data modeled using ordered trees. In this chapter, we model changes using node
insertion, deletion and update, and subtree move operations. We present an algo-
rithm that uses domain characteristics to yield efficient, optimal solutions for a large
class of data. Our ability to model subtree moves in addition to the node operations
used by prior work leads to a more compact, and intuitively more desirable, descrip-
tion of differences between trees. Some of the work in this chapter is reported in
[CRGMW96].

Chapter 5 studies a similar change-detection problem for data that is modeled
using unordered trees. In this chapter, we model changes using not only the earlier
insert, delete, move, and update operations, but also subtree copy and uncopy opera-
tions. These additional operations allow us to describe changes more succinctly, and
in a manner that is typically more useful to an application. We illustrate the benefits
of our rich set of change operations, and describe the challenges in detecting such
changes. We show how certain unintuitive descriptions of changes can be avoided by
suitably restricting edit scripts, and present algorithms based on these ideas. Some
of the work in this chapter is reported in [CGM97].

In Chapter 6, we present an alternative method of modeling transformations on
tree-structured data. Instead of using a procedural description of changes, we intro-
duce a declarative description that is roughly analogous to applying edit operations in
parallel. This method of modeling transformations not only results in simpler change
detection algorithms, but also produces change descriptions that are typically easier
to understand compared to those that use the procedural model.

Chapter 7 describes how we store and query changes detected using the techniques
from earlier chapters. We describe the OEM model for representing semistructured
data, and the Lorel language for querying it. We then present our extension to OEM,
called DOEM, that allows us to store the history of a semistructured database together
with its content. We also present the syntax and semantics of our language, called
Chorel, for querying semistructured data and its history. We describe how Chorel
is implemented using a translation-based technique that allows us to take advan-

tage of existing databases for semistructured and object data. Further, we illustrate

1.4. DISSERTATION ORGANIZATION 11

the application of these ideas by describing the design and implementation of a ser-
vice that supports subscriptions to interesting changes in heterogeneous, autonomous
databases. Some of the work in this chapter is reported in [CAW9S, CAW99].

In Chapter 8, we describe our implementation of the C? system for managing
change in heterogeneous, autonomous databases. We describe the three major mod-
ules of our system: TDiff, which implements our differencing algorithms; CORFE,
which implements Chorel, and ¢SS, which implements subscriptions to changes. We
first describe the facilities provided by C?, and illustrate their use with the help of an
extended example. We then describe how the C? modules interact with each other
and with modules from related projects in order to implement these facilities. We
also discuss the experiences we have had in using the C?® system to monitor some
databases on the Web.

In Chapter 9 we present the results of the experimental evaluation of our tree
differencing algorithms. We study both the running time of our algorithms, and the
quality of the solution they produce, presenting results for synthetically generated
inputs as well as real inputs from the C? system. We conclude in Chapter 10 by
summarizing the contributions of this dissertation and discussing promising directions

for future work in related fields.

Chapter 2

Related Work

In this chapter we discuss prior work in topics related to this dissertation. In Sec-
tion 2.1, we summarize work related to the problem of detecting changes by comparing
snapshots of data, indicating how it differs from our work presented in Chapters 4-6
and 9. Section 2.2 discusses how prior work in temporal and hypothetical databases,
and recent work on semistructured databases, relates to our design and implementa-
tion of a database system for historical semistructured data presented in Chapter 7.
In Section 2.3, we briefly describe work in the field of data integration, indicating
how our implementation of a change management system, described in Chapter 8,
builds on this work. This chapter provides a high-level overview of related work;
detailed comparisons with our techniques are found in the chapters describing those

techniques.

2.1 Change Detection

The research literature contains a substantial body of work on the topic of comparing
snapshots of data for detecting changes. We begin by discussing work on the problem
of comparing strings and sequences, which has received the most attention in the
literature. We then discuss work on the problem of comparing data that is more

structured, such as data represented using ordered and unordered trees.

12

2.1. CHANGE DETECTION 13

2.1.1 Strings and Sequences

Early interest in the problem of string comparison was motivated by applications such
as spelling correction, and focused on relatively short strings (words). Later work
has focused on comparing larger data for applications such as text comparison and
version control. For example, [WF74] defines a string-to-string correction problem
as the problem of finding the best sequence of insert, delete, and update operations
that transform one string to another. The problem is developed further in [Wag75],
which adds the “swap” operation to the list of edit operations. These papers also
introduce the structure of a “trace” or a matching between the characters of the
strings being compared as a useful tool for computing an edit script. A simpler change
detection problem for strings, using only insertions and deletions as edit operations
has been studied extensively [Mye86, Ukk85, WMG90]. The idea of a longest common
subsequence (LCS) replaces the idea of a trace in this simpler problem.

A variant of the algorithm presented in [Mye86, Ukk85] for computing the longest
common subsequence is implemented as the UNIX diff utility [HHS*98]. This diff
program adds a number of features to the basic LCS algorithm to make it more usable.
For example diff has options for grouping neighboring differences in hunks, ignoring
whitespace and blank lines, ignoring the case of letters, and ignoring lines matching
a specified regular expression. The diff program also includes a number of heuristics
that improve performance at a small risk of producing a non-minimal solution. The
output produced by diff can also be postprocessed in a variety of ways to make it
more usable. For example, the ediff program highlights the differences computed by
diff in the contexts of the two files being compared [Kif95]. It also selectively refines
the differences by invoking diff on matching groups of lines to detect finer-grained
differences which are then highlighted.

Given our goal of detecting changes in structured and semistructured data found
in heterogeneous, autonomous databases, the biggest shortcoming of the work on com-
paring sequence data is that such algorithms do not take the hierarchical structure of
the data into account. For example, when comparing documents, the structure im-
posed by paragraphs, sections, itemized lists, chapters, and so on, is ignored. Thus, a

line in one file containing a section heading may be matched to a list item in the other,

14 CHAPTER 2. RELATED WORK

or a sentence may be matched to a sentence in a different paragraph although there is
a reasonable match for it in its own paragraph. Furthermore, these algorithms cannot
detect subtree operations such as moves and copies. Moves are reported as deletions
and insertions, and copies simply as insertions. Thus, if a paragraph is moved from
one section to another, it is reported as a deletion of some lines in the first section
and an insertion of some lines in the other. Change detection facilities found in some
application programs suffer from similar shortcomings. For example, Microsoft Word
has a revisions feature that can detect simple updates, inserts, and deletes of text.
However, it cannot detect moves or other subtree operations. WordPerfect has a mark
changes facility that can detect some simple move operations. However, there are re-
strictions on how documents can be compared (on either a word, phrase, sentence,
or paragraph basis). These approaches also do not generalize to non-document data.
In brief, all the algorithms mentioned above work with strings or sequences, and are
not suitable for computing changes in the structured and semistructured data found

in the environments motivated in Chapter 1.

2.1.2 Ordered Trees

We can think of strings as ordered trees of height 1. When we consider more general
ordered trees, the problem of detecting changes is more challenging than the string
comparison problem because, intuitively, we need to find changes that account for not
only the order among siblings, but also the ancestor relation. However, some simpler
formulations of the ordered tree change detection problem can be solved efficiently.
For example, if the only edit operations are insertions and deletions of subtrees,
[Sel77] presents an efficient solution that is similar in spirit to the algorithm in [WF74].
Another formulation, using insertion, deletion, and label-update operations is studied
in [ZS89], which presents a dynamic programming algorithm to solve the problem.
The algorithm can be further improved if we assume all edit operations to have unit
cost [SZ90].

Our algorithm for change detection in ordered trees, presented in Chapter 4, differs

from prior work such as [ZS89] in three major ways: First, we use a different set of

2.1. CHANGE DETECTION 15

tree edit operations. In particular, in addition to node insertions, deletions, and
label updates, we also permit subtree moves. As we will see in Chapter 4, subtree
moves significantly improve the usability of the changes detected between trees, and
also make the problem more challenging. Although we may attempt to detect moves
using a postprocessing step, the results of such techniques can be far from optimal,
especially when the number of differences is large [WZS95]. Further, in our work
insertion and deletion operations operate only on leaf nodes, while in [ZS89] they are
permitted to operate on interior nodes. The two sets of edit operations are equivalent
in the sense that any state reachable using one set is also reachable using the other.
The application domain usually determines which edit operations are more natural.
In a general tree structure, the delete operation of [ZS89], which makes the children
of the deleted node the children of its parent, is natural. However, in an object
hierarchy, this may be undesirable due to restrictions on types and composite-object
memberships. (For example, an object representing a library may have a number of
book objects as subobjects. If a book is deleted, it is unnatural to have the subobjects
of book (such as author, title, etc.) become subobjects of the library object.)

The second major difference between the work in Chapter 4 and prior work is
that we make some assumptions about the nature of the data being represented. Our
algorithm always yields correct results, but if the assumptions do not hold it may
produce suboptimal results. Because of our assumptions, we are able to design an
algorithm with a lower running-time complexity. In particular, our algorithm runs
in time O(ne + 62), where n is the number of tree leaves and e is the “weighted
edit distance” (typically, e < n). The algorithm in [ZS89] has time complexity
O(n?*log?n) for balanced trees, and higher for unbalanced trees. The assumptions
made by the algorithm in Chapter 4 are particularly well suited to documents and
ordered semistructured data in formats such as HTML and XML commonly found
on the Web [RHe98, BPSM98].

The third major difference between our change detection work in both Chapter 4
and 5 and prior work is a more subtle one: All prior work that we are aware of as-
sumes that the function used to compare node labels satisfies the triangle inequality.

That is, for any three labels a, b, and ¢, a label-comparison function f that returns

16 CHAPTER 2. RELATED WORK

Figure 2.1: The need for flexible label comparison functions

the cost of updating one label to another must satisfy f(a,¢) < f(a,b)+ f(b,¢). Now
this requirement alone may sometimes cause problems. For example, in an applica-
tion merging two structured databases containing personnel records, we may wish to
permit two ten-digit phone numbers to match provided either the first six digits (area
code and exchange) match or the last seven digits (exchange and extension) match.
If both these conditions are false, the comparison function returns a very high value
to effectively prevent the nodes from matching. Thus we have the following situation
that does not satisfy the triangle inequality: f(415.723.0587,415.723.6805) = 0.3,
f(415.723.6805, 650.723.6805) = 0.1, f(415.723.0587,650.723.6805) = 10.

A more serious problem caused by the triangle inequality assumption of prior
work is that most such work also requires the label comparison function to satisfy
an extended form of the triangle inequality involving special labels & and &. For
notational convenience, insertion of a node with label [is often modeled as the edit
operation upd(&,[); similarly, deletion is modeled using upd(l,S). The extended
triangle inequality assumption then requires that f(ly,l3) < f(l1,8) + f(B,l2); that
is, the cost of updating label i to [, cannot be greater than the cost of deleting a
node with label [; and inserting a node with label [;. In effect, techniques relying
on this assumption do not offer any way for the application to indicate that certain
nodes must never be matched to one another. For example, consider matching the

two trees T} and T, that contain, respectively, the subtrees ¢; and ¢, suggested by

2.1. CHANGE DETECTION 17

Figure 2.1. (This example is an abstraction of the eGuide database used in our
implementation described in Chapter 8.) Given the semantics suggested by the labels
of t; and t,, it is clearly undesirable to match one to the other. However, if the two
subtrees occur in similar positions in their respective trees, techniques that rely on
the triangle inequality assumption will always match them to each other. In contrast,
our techniques in Chapters 4, 5, and 6 allow us to use a more flexible label comparison
function that assigns an arbitrarily high cost to updating the labels in #; to those in
to.

Unfortunately, allowing a more flexible label-comparison function, while leading
to more usable results, also makes it difficult to use traditional approaches based on
dynamic programming to solve the change detection problem. Informally, dynamic
programming solutions to the tree change detection problem use the following ar-
gument: Since the triangle inequality described above holds, it is not necessary to
consider matching nodes that are “too far away.” In particular, using the triangle
inequality assumption, it is possible to derive results that constrain the kinds of node
matchings that need to be considered. For example, it is often possible to rule out
matchings that do not preserve the ancestor relation or the order among siblings
[7589]. Without the triangle inequality assumption, we need to consider other tech-

niques to simplify the problem; our techniques are presented in Chapters 4, 5, and 6.

2.1.3 Unordered Trees

The problem of detecting changes in unordered trees by computing a minimum-cost
edit script that transforms one tree to another is inherently harder than the analo-
gous problem for ordered trees. Even very simple formulations of this problem are
extremely hard to solve. For example, [ZWS95] presents a proof of the A"P-hardness
of a formulation that uses insertion, deletion, and label-update operations. The proof
is by reduction from the ezact cover by three-sets problem, which is known to be A/P-
hard. Similar techniques can be used to show that most general formulations of this
problem are hard.

Given the hardness of the problem, it seems necessary to explore techniques that

18 CHAPTER 2. RELATED WORK

rely on substantially restricting the problem, and heuristic techniques. An example of
the former strategy is [ZWS95], which formulates a restricted version of the problem in
which one can only insert and delete nodes with zero or one children. (This algorithm
is also generalized to unrooted trees.) An example of the latter strategy is [SWZS94],
which explores the effectiveness of standard search techniques such as probabilistic
hill climbing.

As was the case for ordered trees, a major difference between prior work and our
work presented in Chapters 4 and 5 is that we consider a much richer set of edit
operations. In addition to the standard node insertion, deletion, and label update
operations, we also permit subtree operations such as moves and copies. For example,
when we compare documents, our techniques detect changes such as moved sections
and copied paragraphs. Prior techniques detect such changes only as their component
insertions and deletions, thus losing valuable information.

Another distinguishing feature of our work, also similar to the case for ordered
trees, is that we do not insist that the function used to compare labels satisfy the
triangle inequality. Note that when we consider unordered trees, assuming the triangle
inequality does not lead to any significant simplification of the problem. In particular,
the hardness result mentioned above still holds.

In general, there are several formulations of the problem of detecting changes in
snapshots of data. In addition to being useful for managing change in autonomous
databases, such techniques have applications in many other domains. For example,
[Yan91] describes the application of a technique similar to that in [Sel77] to identify
syntactic differences between versions of a program. The formulation that is most
profitable to use depends on the application at hand. In an application with a small
amount of data (e.g., structured catalogue entries), or when we are willing to spend
more time (e.g., biochemical structures), more thorough search algorithms may be
preferred. However, in applications with large amounts of data (e.g., object hier-
archies, database dumps), or with strict running-time requirements, we would use
our algorithm. The efficiency of our method is based on exploiting certain domain
characteristics. Even in domains where these characteristics may not hold for all of

the data, it may be preferable to get a quick, correct, but not guaranteed optimal,

2.2. REPRESENTING AND QUERYING CHANGES 19

solution using our approach. The variations we have explored in this dissertation are
those we have found well-suited to our purpose of managing change in autonomous

databases.

2.2 Representing and Querying Changes

Consider the general problem of representing and querying the history of a database
in addition to its current state. Prior work on this topic takes one of the following
two approaches. The first approach, which we call the snapshot-collection approach,
models the history of a database as a collection of database states, or snapshots. In
this model, a change operation takes a database from one state to the next. The
states are ordered, usually linearly, based on some parameter, usually time or version
number. In addition to permitting queries on the current database state, this model
permits any other state of the database to be queried. This approach is used by
temporal databases [SA86, So091]. The second approach, which we call the snapshot-
delta approach, models the history of the database using a single database snapshot
and a collection of deltas. In this model, we obtain various states of the database by
starting with a single snapshot and applying some sequence of deltas to it. We use
the snapshot-delta approach in our work. An early, simple example of this approach
is the use of delta relations in active databases and trigger languages [Buc96, WC96a,
Mel96]. In such work, changes to a relation R are represented using two relations,
Rt and R™, where R = R,..,, — Ry4, and R~ = R,y — R,...,. More recently, this
approach has been used by work on hypothetical database systems, which permit
queries over database states obtained by applying a set of deltas to the current state
[GHJ96, DHR96, GHI7].

The traditional approach to representing and querying changes in a database
models changes to only the content of a database, not its schema, which is assumed to
be fixed. That is, only those database changes that are consistent with the schema are
modeled. For example, in relational databases such techniques model the insertion,
deletion, and update of tuples in a relation. They do not model other kinds of changes

to the database, such as creation and removal of relations, addition and removal of

20 CHAPTER 2. RELATED WORK

relation attributes, and changes in key constraints. Similarly, for object databases,
traditional techniques model only changes that are consistent with the schema. For
example, changes such as modifying a class by adding or removing a data member,
defining a new class, and changing the subtype hierarchy are not modeled. Therefore,
traditional techniques for representing change in a database cannot model any change
that causes an explicit (by design of the administrator) or implicit (as a result of new

data with different characteristics) change in the schema.

2.2.1 Heterogeneous Databases and Schemas

The reliance of traditional work on a fixed schema causes serious difficulties when
working with heterogeneous, autonomous databases. First, designing a relational
or object schema for the data found in heterogeneous databases is extremely diffi-
cult. For example, consider trying to design a schema for the Web site of a news-
paper [NYT98, WP98]. These databases are more similar to structured documents
than they are to traditional databases, and they rarely adhere to a strict code of
presentation and semantics. Intuitively, the reason for the difficulties in modeling
heterogeneous databases using a schema is the following: FEvery schema relies on a
set of assumptions. For example, relational database schema design is guided by
the presence and absence of functional dependencies [Arm74, UlI88]. Heterogeneous
databases by their very nature lack the consistency, stability, and structure implied
by these assumptions. These difficulties are exacerbated when the data of interest
comes from not one but several databases that have been integrated because, as the
number of integrated databases grows, the likelihood of any assumption being valid
for all the databases drops sharply. Further, even if we are fortunate enough to find a
schema that works for the collection of heterogeneous databases under consideration,
there is no guarantee that we will not soon encounter new data that does not conform
to this schema, since any assumptions the schema makes are not guaranteed to hold
in the source data. (This problem is analogous to the problems one may expect if
functional dependencies in a relational database are guessed by observing only the

current state of the database. Although the current state of the database may not

2.2. REPRESENTING AND QUERYING CHANGES 21

contradict the guessed dependencies, it is likely that a future database state will.)
As a result of these difficulties in schema design for heterogeneous databases, many
systems that work with such data are forced to use a degenerate schema of the form
(1d, type, value), effectively reducing a database system to a storage system. Using
such a degenerate schema results in complex queries for even simple retrieval tasks
and adversely affects the performance of the database system.

The difficulties caused by changes in schema have been noted in earlier work,
and techniques have been proposed for managing schema evolution. For example,
the ORION object database system includes facilities that allow the class hierarchy
defining the database schema to be modified [BKKKS87]. However, an important
assumption made by such work is that schema changes are made only rarely (e.g.,
once a year). Consequently, such techniques often rely on some manual intervention
and perform a significant amount of database restructuring for each schema change.
Therefore, these techniques are not useful if the schema is expected to change more

rapidly, as is the case for heterogeneous databases.

2.2.2 Semistructured Databases

One may observe that the above arguments about the disadvantages of relying on
a fixed schema when working with heterogeneous databases are valid even if we are
interested in modeling a simple, non-historical database. Indeed, similar observations
have led to recent work on the topic of semistructured databases [AQM*96, MAGT97,
BDHS96, Abi97]. Informally, semistructured databases are databases that have some
structure; however, this structure is irregular, incomplete, and subject to frequent
changes. Such databases are often described as schema-less. In contrast to conven-
tional database systems that first define a schema and then populate the database,
semistructured database systems first populate a database using a very general data
model and then try to infer and use the regularities in the data. The greatest advan-
tage of using such a semistructured data model with heterogeneous databases is that
we do not need to perform the difficult and tedious task of designing and maintaining

an integrating schema.

22 CHAPTER 2. RELATED WORK

The disadvantage of a semistructured data model is that the implementation of
common database system functions becomes more challenging. For example, the
tasks of data layout, query processing and optimization, and indexing can no longer
rely on a fixed schema and therefore require new techniques. There has been recent
preliminary work on such topics. For example, techniques for inferring structure and
regularity in semistructured databases are studied in [NUWC97, GW97], and [MW9S]
describes the application of query optimization techniques to the Lorel language for
querying semistructured data [AQM196]. However, much work remains to be done
in the emerging topic of semistructured databases. In particular, representing and
querying changes in semistructured databases is significantly more challenging than
it is in databases with a fixed schema. To our knowledge, our work presented in
Chapter 7 is the first to address this important problem.

We now summarize the major differences between our work presented in Chapter 7
and prior work. The first difference is the data model used. Most prior work uses
the relational data model in which there is a simple notion of changes: tuples in
a relation may be inserted, deleted, or updated. Such changes are modeled using
one of the two approaches (snapshot-collection and snapshot-delta) mentioned above.
However, these are not the only changes that can be made to a relational database.
We can also create new relations, destroy existing ones, modify the definitions of
relations, add or remove key constraints, and so on. Such changes, which are ignored
by traditional work on representing and querying changes in relational databases, are
captured by our work.

Another major difference between our work and prior work is that we treat changes
as first-class entities, not only in data representation, but also in our query language.
Prior work, such as [DHR96], adopts the following strategy for querying a historical
or hypothetical database: Some subset of the changes represented in the database
are selected and applied to the current state of the database, producing another
(historical or hypothetical) state. This state is then queried in the standard manner.
In contrast, our query language presented in Chapter 7 allows a finer-grained mixing
of the application of changes and querying.

Yet another distinguishing feature of our work is that our data model and query

2.3. DATA INTEGRATION 23

language use very few primitives. In addition to simplifying the implementation and
use of our system, a smaller number of primitives imposes fewer requirements on the
kinds of data we can represent. For example, it is extremely tedious to coerce data
obtained from the Web into a regular structure, relational or object based. Even with
advances in standards such as XML, the structure of the data remains unreliable and
fluid. Thus, using a simple graph-based model that makes very few assumptions

about the structure of the data being modeled has significant advantages.

2.3 Data Integration

Although data integration is not the focus of this dissertation, our framework for
managing change in heterogeneous, autonomous databases, described in Chapter 3,
includes modules that rely on data integration techniques. In particular, our im-
plementation of the C® change management system, described in Chapter 8, uses
modules from the Tsimmis project on data integration [CGMH194, LYV*98].

The goal of data integration is to shield a casual user of multiple heterogeneous
databases from the intricacies of the differences in data models, query languages,
and access methods supported by these databases. For example, an integrated view
over two personnel databases, one relational and the other object-oriented, presents
all employee records in the same manner irrespective of the database to which an
individual record belongs. One can find, for example, employees hired in the past
year by posing a single query over the integrated view without worrying about details
of the underlying relational and object query languages and schemas.

We need to address the problem of data integration at several levels, ranging from
simple, syntactic integration to complex, semantic integration. Although the bound-
ary between syntactic and semantic integration depends on the representation used,
it is useful to intuitively position integration tasks on a continuum ranging from tasks
requiring only simple translation to those requiring complex reasoning. For example,
the task of integrating design databases that store measurements using different units
(e.g., inches and centimeters) requires only simple translation. Integrating product

catalogs that list prices using different currencies is a more difficult task, since the

24 CHAPTER 2. RELATED WORK

conversion rates between currencies depend on a number of complex factors. As an
example of difficult semantic integration, consider the task of integrating the account-
ing databases of two companies. This task requires a detailed understanding of the
accounting principles used by the companies in order to design a suitable mapping
between the databases. For instance, a person considered as a consultant by one
company may be treated as an employee by another. Thus, answering even a simple
query asking for the names of employees in the two companies is difficult.

Given the complexity of semantic integration, an integration strategy that uses
only fully automated techniques is not likely to succeed. Most recent work in data
integration has therefore focused on designing techniques that facilitate and partially
automate the task of integrating diverse sources. A common strategy is to use modules
called wrappers to translate data from the data model used by a source database to the
data model used for integration [HBGM*97]. Further integration is achieved using
mediators, which are modules that interact with wrappers and other mediators in
order to support an integrated view of data from multiple sources [Wie92]. The work
described in this dissertation builds on this framework of wrappers and mediators
used for data integration. Chapters 3 and 8 describe how the C? system interacts
with wrappers and mediators.

We may classify data integration techniques into two broad categories: lazy and
eager [Wid96]. The lazy approach, which we also call the virtual integration ap-
proach, performs query translation, query execution, and data translation and inte-
gration only when it is needed to execute a query. As described above, this approach
uses wrappers and mediators to integrate data from diverse sources. The Tsimmis
project has developed methods for rapid implementation of wrappers and mediators.
Wrappers are generated by specifying query and data translation using a high-level
language based on pattern-matching [PGGMU95, HGMC*97, HBGM197]. Similarly,
mediators are generated from high-level specifications using a language that is similar
to Datalog [PGMU96, PAGM96, LYV*T98, UW97]. Similar techniques for integrating
data using wrappers and mediators have been developed in several other projects,
including Rufus [SLST93], Garlic [CHST95], SIMS [ACHK93|, Pegasus [ADD194],
and the Information Manifold [KLSS95].

2.3. DATA INTEGRATION 25

In contrast to the lazy approach to data integration, the eager approach, which we
also call the materialized integration or data warehousing approach, captures all the
data of interest from the source databases in advance of any query execution. This
data is translated, integrated, and stored in a central database called the warehouse.
User queries over the integrated view are then answered by simply querying the ware-
house. This approach is taken by the Whips project at Stanford [HGMWT*95] and
other data warehousing projects [Inm92]. The task of translating and integrating data
using the eager approach is quite similar to that using the lazy approach. Materialized
integration uses modules called grabbers to extract data from the source databases.
Many of the wrapper implementation techniques based on pattern-matching are ap-
plicable to grabbers. However, unlike wrappers, grabbers extract data when the
warehouse is set up, without waiting for any queries.

The lazy and eager approaches to integration have the advantages and disadvan-
tages that are characteristic of lazy and eager strategies in general. For example, the
lazy approach avoids performing work not required for query execution, while the
eager approach permits faster and more reliable query execution after initial ware-
house set-up. The eager approach also requires techniques for keeping the integrated
data stored in the warehouse up-to-date. This problem is similar to the material-
ized view maintenance problem [BLT86]; however, the heterogeneity and autonomy
of the source databases introduce additional complications and there has been recent
work to address these issues [ZGMHW95, HZ96]. As we will describe in Chapters 3
and 8, the € system uses a combination of the virtual and materialized integration

approaches.

Chapter 3
Overview

In this chapter, we present a brief overview of our strategy for managing change in
heterogeneous, autonomous databases. We sketch the architecture of the C? change
management system and briefly describe its key components. The details of the
techniques used to implement these components are deferred to later chapters. (As
indicated in Chapter 1, whe name C? suggests the three principal facets of change
management: Changes, Configurations, and Consistency.) Recall from Chapter 1
that throughout this dissertation we use the term databases to denote heterogeneous,
autonomous collections of data. In addition to the well studied relational and object-
oriented database systems, we use the term databases to denote collections of un-
structured or semistructured data in various data formats. For example, we include
data stored in formats such as plain text, HTML, XML, SGML, ASN.1, Bibtex, Refer
and MIF, and data that is accessible through protocols such as SMTP, FTP, NNTP,
HTTP, Finger, and WHOIS [RHe98, BPSM98, Gol90, Uni93, Lam94, Pos82, PR85,
KL86, FGM*97, Zim90, HSF85]. Our interest lies in managing a collection of such
diverse databases as a coherent information system; in particular, we are interested in
managing change in these databases. In what follows, we refer to the heterogeneous,

autonomous databases that we wish to manage as the source databases.

26

3.1. INTEGRATING HETEROGENEOUS DATABASES 27

3.1 Integrating Heterogeneous Databases

Given the heterogeneity in the data models, query languages, and access methods
of the source databases, we first need a strategy to avoid the proliferation of special
techniques needed to interact with each different kind of database. We would like to
present the users of our system a unified view of the data in all the source databases,
irrespective of the characteristics of the source database from which a particular
data item is obtained. For this purpose, we need an integrating data model that is
simple and general enough to encompass a wide variety of source data models. As
discussed in Chapter 2, semistructured data models are particularly well suited to
this purpose. We use the Object Frchange Model (OEM), which was devised as part
of the Tsimmis project, as our integrating model [PGMW95, CGMH194]. In OEM, a
database is simply a rooted, labeled, directed graph. Nodes in this graph have labels
denoting data content, and arcs have labels denoting the relationship between the
nodes they connect.

We would also like to present our users with a single query language to query over
the data integrated from all the source databases, irrespective of the particular query
languages supported by the databases containing data relevant to the query. We use
the Lorel query language, designed as part of the Lore project to query over integrated
data represented in OEM [AQM196, MAG197]. The central idea in Lorel is the use of
general path expressions. These are sequences of labels, including optional wildcards
and regular expressions, that intuitively match certain paths in the OEM graph. (We
describe OEM and Lorel in detail in Chapter 7.) Thus our strategy is to support a
uniform abstraction, in OEM, of the source databases, and to support Lorel queries
over this abstraction.

In order to implement the above strategy for accessing heterogeneous databases
using OEM and Lorel, we need the ability to translate Lorel queries to the native
query languages of the source databases, and to translate the results of the native
query (in the native data format) to OEM. The modules that implement the above
functionality are called wrappers. Wrapper implementation techniques have been

studied in several works, including [PGGMU95, AK97, HGMC*97, HBGM197], and

28 CHAPTER 3. OVERVIEW

\’/ Subscribe T
.to Changes .~ Browse
' ‘ changes

TDiff

Query and
Browse DOEM

| o
| Wrapper L 7 Mediator | ¢~ | Wrapper

\ \ Autonomous DBs | |

Figure 3.1: Conceptual architecture of the C? system

3.2. DETECTING CHANGES 29

we do not describe them in this dissertation. Briefly, there is one wrapper for each
source database. This wrapper accepts a Lorel query, and translates it into a suitable
query in the native query language of the source database. Often, the translated query
is one that returns a superset of the desired results since the exact query may not be
supported by the source. The native query is executed by sending it to the source
database, and the results are filtered if needed, and translated to OEM. In order to
combine data from multiple heterogeneous databases, we use mediators, which are
modules that interact with wrappers and other mediators [Wie92, PGMU96]. An
example of a simple mediator is a fusion mediator that combines data from two or
more databases [PAGM96]. Wrappers and mediators thus provide the rest of the
system with a simple abstraction of source databases: Source databases accept a

Lorel query and return OEM results.

3.2 Detecting Changes

In order to manage changes in the source databases, we must first detect them. The
autonomy and heterogeneity of these databases necessitates special techniques for this
purpose. Consider the comparison depicted in Figure 3.2. In a traditional database
system, the only way to access the database is through the database management
system (DBMS). In particular, the database can be modified only through the DBMS.
Thus detecting changes to the database is a matter of simple bookkeeping. In contrast,
an autonomous database system may or may not be stored using a DBMS. Even if
a database uses a DBMS, the DBMS interface is private and accessible only to the
owner of the database (for autonomy reasons). An external user of such a database
can access the database only through a restricted public interface that accepts queries
and returns results. As discussed above, a data integration system typically accesses
such databases through a wrapper. Thus we need techniques to detect changes in the
source databases using only the wrapper interface.

In some cases, a source database provides some additional functionality that is
useful for detecting changes. For example, a Web site listing books for sale may

offer a feature to notify users when books of a certain type arrive. Such trigger and

30 CHAPTER 3. OVERVIEW

Changes? | O Changes?
@) | User/
TUser | " Query Result
N D | *
/\Owner ‘
V‘Changes \ Wrapper
| |
PBMS e Public |
* } . Interface
o5l 1 pOwner 1
_ | rvate | g
Changes DBMS? ‘ ADB«’
Traditional database Autonomous database

Figure 3.2: Changes in autonomous databases

notification mechanisms, when supported, can be used to aid the change detection
process. However, in general we cannot rely on the existence of such facilities, and
need a method for detecting changes based only on the query interface provided by
wrappers.

Thus, in order to detect changes in the source databases, we need to poll these
databases and detect changes by comparing the old and new data snapshots. More
precisely, we periodically send a query to the wrapper of a source database, resulting
in a sequence of query results over time. We compare each pair of successive results
and detect any differences between them. The query results returned by Tsimmis
wrappers are tree structured. Therefore, we need a method to compare two snapshots
of tree structured data and detect changes between them. In order to make this tree
comparison more precise, we need to define the type of trees we consider, the edit
operations used to modify them, the manner in which such edit operations are applied,
and the properties desired of the detected changes. For example, a trivial way to
describe the difference between any two trees is to indicate that all the nodes in one
tree are deleted, followed by the insertion of the nodes in the second tree. Although

technically correct, such a description is not very useful if, for example, the two trees

3.2. DETECTING CHANGES 31

i | Forward | Reload || Home | Search |Metscape|| Print | Security || |

|§|_Cafe Borrone, 1010 El Camino Real, Menlo Park, 327-0830

|§|_ A cross between an elegant sidewalk cafe and a busy Berkeley coffee house,
Borrone offers light entrees such as nutmeg-spiced chicken salad and spinach quiche,
along with some of the best coffee drinks around. You'll find state-of-the-art
sandwiches and desserts, featuring Rose's vanilla custard. @ It’s all delicious, but it’s
not the cheapest meal in town. Decor is bookstore chic, and Kepler's Books &
Magazines is just across the way. On warm evenings you can dine outside in the
courtyard. [@ Open Mon.-Fri. 7 a.m.-11 p.m., Sat. 9 a.m.-11 p.m., Sun. 9 a.m.-5 p.m. No
credit cards. (Reviewed May 23, 1990)

@ o Cafe Fino, 544 Emerson St., Palo Alto, 326-6082

@ e This classy piano bar is part of Freddie Maddalena’s little culinary empire
that includes his larger, namesake restaurant next door. @ Maddalena bills the
larger restaurant as “traditionally romantic.” @ What makes his smaller cafe fun
is the untraditional romance of the place. @ Ladies who lunch feel comfortable

1 & - [a'al] & 1 41 T L' n - h % Fali T 17

=0 I

Figure 3.3: Sample output from TDiff

differ only in a single node. In Chapters 4, 5, and 6, we present different formulations
of the tree differencing problem, and present techniques for solving them.

Using our tree differencing techniques, we have implemented the T'Diff module
of the C® system. This module takes two data snapshots as input and presents as
output a concise description of the differences between them. We have also developed
a graphical interface that presents the computed differences as mark-up on the input
data. For example, a version of TDiff specialized for HT ML data takes two Web pages
as input and produces as output a marked-up HTML document in which inserted,
deleted, updated, and moved textual units are indicated using icons. Figure 3.3
shows an excerpt from the output of TDiff on two versions of a Web page listing
restaurant reviews from the Palo Alto Weekly [PAW9S]. Each icon represents an
edit operation, with the color indicating the type of the operation, and the shape
indicating the textual unit (sentence, paragraph, or section). Clicking on an icon
reveals more information about the edit operation. For example, clicking on a red

dot, which signifies a deleted sentence, results in the display of a marked-up copy of

32 CHAPTER 3. OVERVIEW

the old version of the document, with the deleted sentence highlighted. We describe
our implementation in more detail in Chapter 8. Of course, generating a specialized
version of TDiff for every new kind of source data we encounter is not practical.

Instead, as described above, the C? system uses wrappers to translate such data into

OEM, and a single version of TDiff that operates on OEM data.

3.3 Managing Changes

The graphical interfaces to the C® system allow us to browse the changes between two
OEM snapshots. However, just as browsing a database is not practical once the size
of the database grows beyond a few kilobytes, browsing changes becomes impractical
when we are dealing with large amounts of data. We need a method for systematically
storing and querying these changes. Note that we need the ability to store and query
changes over several versions of the data, not just the two most recent ones. In
particular, since we use OEM as our integrating data model, we need techniques to
represent, store, and query historical OEM data, that is, OEM data and the changes
made to it over time. In Chapter 7 we present our extension to OEM that allows us
to model data and changes in a simple and general manner. We call this extension
DOEM, for Delta-OEM. DOEM is well suited to browsing marked-up versions of OEM
data using a method similar to the one in Figure 3.3 for HTML data. In addition,
DOEM is well suited to querying using a general-purpose, powerful, query language.
We have designed a query language, called Chorel, for historical data represented in
DOEM. Chapter 7 describes the syntax, semantics, and implementation of Chorel.
Chorel extends Lorel to permit querying not only the current state of a semistructured
database, but also its history of changes. For example, we can write a query over
the history of a Web database with movie listings to find horror movies that began
showing in one theater within one week of when they stopped showing in another
[EG98]. Using the techniques in Chapter 7, we have implemented a database system
for historical semistructured data. This database system is called CORE, for Change
Object Repository, and is implemented by extending the Lore database system for
OEM data. Thus changes detected by our TDiff module are stored in a DOEM

3.4. SUMMARY 33

database in the CORE module, which permits browsing and querying.

The last major component of the C® change management system is QSS, which
stands for Query Subscription Service. Using the TDiff and CORE modules, Q5SS
supports subscriptions to changes in the source databases. For example, a QSS sub-
scription over a Web site with movie listings may request that it be notified whenever
a new action movie starts showing at a theater in Palo Alto. The syntax, semantics,
and implementation of such subscriptions are described in Chapter 7. The QSS mod-
ule also acts as a driver for the rest of the 2 system. It polls the source databases
at appropriate times by sending a query to the wrapper, sends the new and previous
result to TDiff, and installs any changes detected by TDiff in the appropriate DOEM
database in CORE. Further, it executes Chorel queries over the DOEM databases
stored in CORE in order to detect changes that satisfy some subscription, and sends
any such changes to the subscription owner. Our implementation of the C* system is

described in more detail in Chapter 8.

3.4 Summary

In this chapter, we outlined our high-level strategy for addressing the problem of
managing change in heterogeneous, autonomous databases. We presented the con-
ceptual architecture of the C® system, including the modules we use from the related
projects Tsimmis and Lore. In order to limit the amount of special-purpose design
required due to the heterogeneity of source databases, we use a simple graph-based
integrating model called OEM, and conceptually map all data to this format. We
use template-based wrappers from the Tsimmis project to translate queries and data
between the OEM model and the models used by the source databases. Further inte-
gration is achieved using a network of mediators that support powerful mechanisms to
combine and transform data. Although the design and implementation of wrappers
and mediators, along with other topics in data integration, are interesting research
issues, they are not the focus of this dissertation; therefore we do not discuss them
in detail.

Since we cannot assume the availability of sophisticated notification facilities,

34 CHAPTER 3. OVERVIEW

detecting changes in autonomous databases requires techniques to compute changes
by comparing snapshots of data. We briefly described how we formalize these ideas
by defining a tree differencing problem. In Chapters 4, 5, and 6, we study in detail
the formulation and solution of such tree differencing problems.

Since we use a semistructured data model, OEM, as our integrating model, the
tasks of representing, storing, and querying the changes detected by our differencing
techniques present some unique challenges. We have developed a data model, DOEM,
and a query language, Chorel, for historical semistructured data to address these chal-
lenges. We present DOEM and Chorel in Chapter 7, which also describes a powerful
subscription service called QSS. An important feature of our work on representing
and querying changes is the treatment of changes as first class concepts.

In this chapter, we described only briefly the manner in which the work to be
described in later chapters contributes to the task of building a change management
system for heterogeneous, autonomous databases. We present the details in Chap-

ter 8, which describes the C? system from both user and implementor standpoints.

Chapter 4

Detecting Changes in Ordered
Trees

In Chapter 3 we described the high-level architecture of our change management
system, and noted that a key component of our system is a module that detects
changes by comparing snapshots of structured or semistructured data. In the next
three chapters, we describe techniques for detecting changes in this manner. In this
chapter, we focus on algorithms for detecting changes in data that is modeled using
layered, ordered trees. We formalize the change detection problem as the problem of
computing a minimum-cost edit script that transforms the tree modeling one snapshot
to the tree modeling the other. In order to detect changes that are more meaningful
to an application or end user, we permit our edit scripts to contain not only the
traditional node insertion, deletion, and update operations, but also operations that
move entire subtrees. We use domain characteristics to simplify the problem, and
present an efficient algorithm that is optimal for data with these characteristics. We
introduce a convenient representation of an edit script as a delta tree, and describe
our implementation of a differencing program based on these ideas. In summary, the

main contributions of this chapter are the following:

o a formal definition of the problem of detecting changes in structured and semi-

structured data given the old and new versions of the data;

35

36 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

o efficient algorithms for computing a minimum cost edit script between two trees;
e analytical and empirical performance studies of our algorithms;

o a general scheme, called a delta tree, to represent changes in hierarchically

structured information.

o a powerful LaDiff system for detecting and representing changes in hierarchi-

cally structured Latex documents that demonstrates the utility of our approach.

The remainder of this chapter is organized as follows. Section 4.1 describes our
general approach, divides our problem into two distinct subproblems, and provides
preliminary definitions. Our algorithms for solving the two subproblems are discussed
in Sections 4.2 and 4.3. Section 4.4 describes delta trees. In Section 4.5 we describe the
application of our techniques to hierarchically structured documents. Our empirical
performance study is described in Section 4.6, and are followed by a chapter summary

in Section 4.7.

4.1 Overview

In this section, we formulate the change detection problem and split it into the fol-

lowing two subproblems which are discussed in later sections:
e Finding a “good” matching between the nodes of the two trees;

¢ Finding a minimum “conforming” edit script for the two trees given a computed

matching.

We first introduce these problems informally using an example. The formal definitions
follow in Section 4.1.1, which also introduces some notation and terms used in the
rest of the chapter.

Recall, from Section 7.1, that we wish to detect changes between snapshots of
data represented using ordered trees—trees in which the children of each node have
a designated order. Hereafter, when we use the term “tree” we mean an ordered

tree. We consider trees in which each node has a label and a value. These trees are

4.1. OVERVIEW 37

S@ Sb) S Sd S) S@ S s Sd Se S
N \ \ \ | s | . ’

\ \ N mm=—= bmmffmm = 4 /

Figure 4.1: Running example (dashed edges represent matching)

natural abstractions of the OEM data model that we briefly introduced in Chapter 3.
(Details of how OEM data is mapped to ordered trees are in Chapter 7.) We also
assume that each tree node has a unique identifier; identifiers may be generated by
our algorithms when they are not provided in the data itself. Note that the nodes
that represent the same real-world entity in different versions may not have the same
identifier. We refer to the node with identifier z as “node z” for conciseness.

As a running example, consider trees T} and T, shown in Figure 4.1, and ignore
the dashed lines for the moment. The number inside each node is the node’s identifier
and the letter beside each node is its label. All of the interior nodes have null values,
not shown. Leaf nodes have the values indicated in parentheses. (These trees could
represent two structured documents, where the labels D, P, and S denote Document,
Paragraph, and Sentence, respectively. The values of the sentence nodes are the
sentences themselves.) We are interested in finding the delta between these two trees.
We will assume that T represents the “old” data and T; the “new” data, so we want
to determine an appropriate transformation from tree 17 to tree T5.

Our first task in finding such a transformation is to determine nodes in the two
trees that correspond to one another. Intuitively, these are nodes that either remain
unchanged or have their value updated in the transformation from Ty to Ty (rather
than, say, deleting the old node and inserting a new one). For example, node 5 in T}
has the same value as node 15 in T3, so nodes 5 and 15 should probably correspond.
Similarly, nodes 4 and 13 have one child node each, and the child nodes have the same

value, so nodes 4 and 13 should probably correspond. The notion of a correspondence

38 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

between nodes that have identical or similar values is formalized as a matching be-
tween node identifiers. Matchings are one-to-one. We say that a matching is partial
if only some nodes in the two trees participate, while a matching is total if all nodes
participate. Hereafter, we use the term “matching” to mean a partial matching unless
stated otherwise.

Hence, one of our problems is to find an appropriate matching for the trees we are
comparing. We call this problem the Good Matching problem. In some application
domains the Good Matching problem is easy, such as when data objects contain
object identifiers or unique keys. In other domains, such as structured documents,
the matching is based on labels and values only, so the Good Matching problem is
more difficult. Furthermore, not only do we want to match nodes that are identical
(with respect to the labels and values of the nodes and their children), but we also
want to match nodes that are “approximately equal.” For instance, node 3 in Figure
4.1 probably should match node 14 even though node 3 is missing one of the children
of 14. Details of the Good Matching problem—including what constitutes a “good”
matching—are addressed in Section 4.3. A matching for our running example is
illustrated by the dashed lines in Figure 4.1.

We say that two trees are tsomorphic if they are identical except for node identi-
fiers. For trees T1 and T3, once we have found a good (partial) matching M, our next
step is to find a sequence of “change operations” that transforms tree T} into a tree T
that is isomorphic to Ty. Changes may include inserting (leaf) nodes, deleting (leaf)
nodes, updating the values of nodes, and moving nodes along with their subtrees.
Intuitively, as 7} is transformed into 77, the partial matching M is extended into a
total matching M’ between the nodes of 7| and T3. The total matching M’ then
defines the isomorphism between trees 7] and T;. We call the sequence of change
operations an edit script, and we say that the edit script conforms to the original
matching M provided that M’ 2 M. (As will be seen, an edit script conforms to
partial matching M as long as the script does not insert or delete nodes participating
in M.) Edit scripts are defined in more detail shortly.

We would like our edit script to transform tree T as little as possible in order

to obtain a tree isomorphic to 75. To capture minimality of transformations, we

4.1. OVERVIEW 39

introduce the notion of the cost of an edit script, and we look for a script of minimum
cost. Thus, our second main problem is the problem of finding such a minimum cost
edit script; we refer to this as the Minimum Conforming Edit Script (MCFES) problem.
The remainder of this section formally defines edit operations and edit scripts. Our
algorithm for the MCES problem is presented in Section 4.2, and Section 4.3 presents
our algorithm for the Good Matching problem. Note that we consider the MCES
problem before the Good Matching problem, despite the fact that our method requires
finding a matching before generating an edit script. As will be seen, the definition of
a good matching relies on certain aspects of edit scripts, so for presentation purposes

we consider the details of our edit script algorithms first.

4.1.1 Edit Operations, Edit Scripts, and Costs

We now formalize the concepts we introduced informally above. We define the op-
erations we use for editing trees, describe how a sequence of such edit operations is

used to transform a tree, and define the cost of such a sequence of edit operations.

Edit Operations

In an ordered tree, if nodes vy, ..., v,, are the children of node u, then we call v; the
ith child of w. For a node x, we let [(x) denote the label of x, v(x) denote the value
of &, and p(x) denote the parent of x if x is not the root. We assume that labels are
chosen from a fixed but arbitrary set. In the definitions of the edit operations, T}
refers to the tree on which the operation is applied, while T; refers to the resulting

tree. The four edit operations on trees are the following:

Insert: The insertion of a new leaf node x into 11, denoted by INS((x,l,v),y, k). A
node x with label [and value v is inserted as the kth child of node y of Tj.
More precisely, if uy, ..., u,, are the children of y in T, then 1 < k < m+1 and
Upyevny Up_1, T, Uk, . . ., Uy are the children of y in T5. The value v is optional,

and is assumed to be null if omitted.

Delete: The deletion of a leaf node @ of Ty, denoted by del(x). The result T is the

same as Ty, except that it does not contain node x. del(x) does not change the

40 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

INS((6,A fo0),3,2) MOV(3,1,3)
@ @ DEL(6) @ @ MOV(3,1,2)
® ® © ® ©
A(foo)

Figure 4.2: Edit operations on a tree

relative ordering of the remaining children of p(x). This operation deletes only
a leaf node; to delete an interior node, we must first move its descendents to

their new locations or delete them.

Update: The update of the value of a node x in T, denoted by upd(x,val). Ty is

the same as Ty except that in Ty, v(a) = val.

Move: The move of a subtree from one parent to another in 7}, denoted by
MOV(x,y, k). Ty is the same as Ti, except @ becomes the kth child of y. The

entire subtree rooted at = is moved along with x.

Figure 4.2 shows examples of edit operations on trees. In the figure, node 6 has label

A and value foo. The labels and values of the other nodes are not shown.

Edit Scripts

Informally, an edit script gives a sequence of edit operations that transforms one
tree into another. Formally, we say Ty = T, when T} is the result of applying the
edit operation e; to Tj. Given a sequence K = ey, ..., e, of edit operations, we say
Ty 5 T,11 1f there exist Ty, ..., T, such that T} 57,5 ... Ti1- A sequence
E of edit operations transforms Ty into Ty if T 5 T] and T is isomorphic to Ts.
(Recall that two trees are isomorphic if they differ only in the identifiers of their
nodes.) We call such a sequence of edit operations an edit script of Ty with respect

to Ty. Notice that an edit script does not tell us how the original matching between

4.1. OVERVIEW 41

Sec(foo)

S(b) Mov(5,11,1)

Figure 4.3: Applying the edit script of Example 4.1.1

Ty and T} should be modified to obtain the total matching between 7| and T5. This

will be done as the edit script is generated; see Section 4.2.

Example 4.1.1 Consider the trees T} and T shown in Figure 4.3. The following

edit script below transforms 77 into T5:
INS((11, See, foo), 1,4),MOV(5,11,1), del(2), upd(9, baz)

Figure 4.3 also shows the intermediate trees in the transformation specified by the

above edit script. (The last update is not shown in order to save space.)

A Cost Model for Edit Scripts

Given two trees, in general there are many edit scripts that transform one tree to the
other. Even when an edit script must conform to a given matching, there may be
many correct scripts. (Recall that we defined the concept of an edit script conforming

to a matching in Section 4.1.) For example, the following edit script, when applied

42 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

to the initial tree in Example 4.1.1, produces the same final tree as that produced by
the edit script in the example:

INS((11, See, foo), 1,4), del(6), del(7), del(5),
INS((12,5,a),11,1),1NS((13,.5,b),11,2), upd(9, baz)

Intuitively, this edit script does more work than necessary, and is thus an undesirable
representation of the delta between the trees. To formalize this idea, we introduce
the cost of an edit script.

We first define the costs of edit operations and then use these costs to define the
cost of edit scripts. The cost of an edit operation depends on the type of operation and
the nodes involved in the operation. Let c¢p(a), ¢z(x), and ey(x) denote respectively
the cost of deleting, inserting, and updating node x, and let cps(x) denote the cost
of moving the subtree rooted at node x. In general, these costs may depend on the
label and the value of x, as well as its position in the tree. In this chapter, we adopt
a simple cost model where deleting and inserting a node, as well as moving a subtree,
are considered to be unit cost operations. That is, ep(x) = ¢;(x) = ep(x) = 1 for all
x.

Now consider the cost cy(x) of updating the value of a node x. We assume that
this cost is given by a function, compare, that evaluates how different z’s old value
v is from its new value v’. This compare function takes two nodes as arguments and
returns a number in the range [0,2]. Although the nature of the compare function
is arbitrary, it should be consistent with the costs of the other edit operations in the
following sense: Suppose x is moved, and its value v is updated so that v is very
similar to v’. Then compare(v,v’) should be less than 1, so that the cost of moving
and updating z is less than the cost of deleting = and replacing it with a new node
with value v'. If v and v’ are very different, we would rather have the edit script
contain a delete/insert pair, so the update cost should be greater than 1. Finally, the
cost of an edit script is the sum of the costs of its individual operations. We can now
state our problem succinctly as follows:

Problem Definition: Given two trees T} and T3, find a minimum-cost edit script

that transforms 7} into 75.

4.2. GENERATING THE EDIT SCRIPT 43

We solve this problem in two steps:
1. We find a (partial) matching M between the nodes of Ty and Ts.

2. We then find a Minimum Conforming Edit Seript (MCES) for Ty, Ty and M,
that is, an edit script that conforms to M, and that transforms T} into 7% such
that there is no other edit script conforming to M that transforms 7 into 75

and has a lower cost.

Of course, this two-step procedure will result in the desired minimum-cost edit script
only if we select an appropriate matching in the first step. We discuss how that is
done in Section 4.3. For presentation purposes, it is more convenient to discuss the

second step first, in the next section.

4.2 Generating the Edit Script

In this section we describe how we solve the Minimum Conforming Edit Seript prob-
lem motivated in the previous section: Given a tree Ty (the old tree), a tree Ty (the
new tree), and a (partial) matching M between their nodes, generate a minimum cost
edit script that conforms to M and transforms 7} to T5. Our algorithm starts with
an empty edit script £ and appends edit operations to F as it proceeds. To explain
the working of the algorithm, we apply each edit operation to T} as it is added to
E. When the algorithm terminates, we will have transformed 7} into a tree that is
isomorphic to T,. In addition, the algorithm extends the given partial matching M
by adding new pairs of nodes to M as it adds operations to . When the algorithm

terminates, M is a total matching between the nodes of T7 and T5.

4.2.1 Outline of Algorithm

The algorithm is most easily described as consisting of five phases: the update phase,
the align phase, the insert phase, the move phase, and the delete phase. We describe
each phase in turn. Let us call a node that is not matched in M an unmatched node.

The partner of a matched node is the node to which it is matched in M. We use our

44 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

running example from Figure 4.1. We are required to find a minimum cost edit script
that transforms 7 into T5, given the matching M shown by the dashed lines in the
figure.

The Update Phase: In the update phase, we look for pairs of nodes (z,y) € M
such that the values at nodes @ and y differ. For each such pair (in any order) we add
the edit operation upd(z,v(y)) to E (recall that for a node x, v(x) denotes the value
of x), and we apply the update operation to Ti. At the end of the update phase, we
have transformed T} such that v(z) = v(y) for every pair of nodes (x,y) € M.

S@ S0 S Sd S SO
-~ " 4 7 s

©
\ \ R Gttt ettt ,——— .

Figure 4.5: Running example: after insert phase

The Align Phase: Let the partner of a node denote the node to which it is
matched (by a given matching). Suppose (x,y) € M. We say that the children of «
and y are misaligned if ¥ has matched children v and v such that u is to the left of v
in T} but the partner of u is to the right of the partner of v in T5. In Figure 4.1, the

children of the root nodes 1 and 11 are misaligned. In the align phase we check each

4.2. GENERATING THE EDIT SCRIPT 45

pair of matched internal nodes (z,y) € M (in any order) to see if their children are
misaligned. If we find that the children are misaligned, we append move operations
to K to align the children. We explain how the move operations are determined in
Section 4.2.2 below. In our running example, we append MOV(4, 1,2) to F, and we
apply the move operation to Ti. The new T} is shown in Figure 4.4.

The Insert Phase: We assume, without loss of generality, that the roots of T}
and Ty are matched in M. (If the roots of T} and Ty are not matched in M, then
we add new dummy roots that are matched.) In the insert phase, we look for an
unmatched node z € T, such that its parent is matched. Suppose y = p(z) (i.e.,
y is the parent of z) and y’s partner in 77 is . We create a new identifier w and
append INS((w,l(z),v(z)),z,k) to E. The position k is determined with respect to
the children of = and z that have already been aligned with respect to each other;
details are in Section 4.2.3. We also apply the insert operation to T} and add (w, z)
to M. In our running example we append INS((21,5,¢),3,3). The transformed T}
and the augmented M are shown in Figure 4.5. At the end of the insert phase, every

node in 75 is matched but there may still be nodes in T} that are unmatched.

Figure 4.6: Running example: after delete phase

The Move Phase: In the move phase we look for pairs of nodes (z,y) € M such
that (p(z),p(y)) € M. (Recall from Section 4.1.1 that p(x) denotes the parent of x.)
Suppose v = p(y). We know that at the end of the insert phase, v has some partner u
in T1. We append the operation MOV(x, u, k) to F, and we apply the move operation
to Ty. Here the position k is determined with respect to the children of u and v that

have already been aligned, as in the insert phase. At the end of the move phase T} is

46 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

Figure 4.7: A matching with misaligned nodes

isomorphic to Ty except for unmatched nodes in Ty. In our running example, we do
not need to perform any actions in this phase.

The Delete Phase: In the delete phase we look for unmatched leaf nodes x € Tj.
For each such node we append del(x) to F and apply the delete operation to Ty. (Note
that this process will result in a bottom-up delete—descendents will be deleted before
their ancestors.) At the end of the delete phase T; is isomorphic to Ty, F is the final
edit script, and M is the total matching to which F conforms. Figure 4.6 shows the
trees and the matching after the delete phase.

4.2.2 Aligning Children

The Problem: The align phase of the edit script algorithm presents an interesting
problem. Suppose we detect that for (z,y) € M, the children of & and y are mis-
aligned. In general, there is more than one sequence of moves that will align the
children. For instance, in Figure 4.7 there are at least two ways to align the children
of nodes 1 and 11. The first consists of moving nodes 2 and 4 to the right of node 6,
and the second consists of moving nodes 3, 5, and 6 to the left of node 2. Both yield
the same final configuration, but the first one is better since it involves fewer moves.

To ensure that the edit script generated by the algorithm is of minimum cost,
we must find the shortest sequence of moves to align the children of = and y. Our
algorithm for finding the shortest sequence of moves is based on the notion of a longest
common subsequence, described next.

Longest Common Subsequence: Given a sequence S = ajay...a,, a sequence

4.2. GENERATING THE EDIT SCRIPT 47

S’ is a subsequence of S if it can be obtained by deleting zero or more elements from
S. That is, " = a;, . ..a;,, where 1 <1y <1y <...<1, <n. Given two sequences S
and Sy, a longest common subsequence (LCS) of Sy and Sy, denoted by LCS(57, 52),

is a sequence S = (1,y1) ... (2, yr) of pairs of elements such that
1. x1...2 is a subsequence of Si;
2. Y1 ...y is a subsequence of S5;

3. for 1 <@ <k, equal(x;,y;) is true for some predefined equality function equal;

and

4. there is no sequence S’ that satisfies conditions 1, 2, and 3 and is longer than

S.

The length of an LCS of S; and S, is denoted by |LCS(S51, 52)|. O

We use an algorithm due to Myers [Mye86] that computes an LCS of two sequences
in time O(N D), where N = | S| +|52| and D = N —2|LCS(Sy, S2)|. We treat Myers’
LCS algorithm as having three inputs: the two sequences 57 and 5, to be compared,
and an equality function equal(x,y) used to compare & € Sy and y € 5 for equality.
That is, we treat it as the procedure LCS(Sy, Sy, equal).

The Solution: The solution to the alignment problem is now straightforward.
Compute an LCS S of the matched children of nodes = and y, using the equality
function equal(u,v) that is true if and only if (u,v) € M. Leave the children of = that
are in S fixed, and move the remaining matched children of = to the correct positions
relative to the already aligned children. In Figure 4.7, the LCS is 3, 5,6 (matching the
sequence 12,13, 14). The moves generated are MOV(2, 1,5) and MOV (4, 1,5). Lemma 1
below shows that our LCS-based strategy always leads to the minimum number of

moves.

Lemma 1 For sequences Sy and Sy and an equality function equal such that each
element in Sy is equal to exactly one element in Sy and vice versa, the minimum

number of moves of elements of S required to align the elements of S; and Sy s

|Sl|— |LCS(51,SQ)| O

48 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

1. E+e M+ M

2. Visit the nodes of 7% in breadth-first order
/¥ this traversal combines the update, insert, align, and move phases */

(a) Let & be the current node in the breadth-first search of 75 and let y = p(z). Let z be
the partner of y in M'. (*)

(b) If « has no partner in M’

i. k < FindPos(x)
ii. Append INS((w, a,v(x)), 2z, k) to E, for a new identifier w.
iii. Add (w,#) to M’ and apply INs((w, a, v(x)), 2, k) to T1.
(c) else if z is not the root /* « has a partner in M' */

i. Let w be the partner of # in M’, and let v = p(w) in T3.

ii. If v(w) # v(x)
A. Append upd(w,v(z)) to E.
B. Apply upd(w,v(x)) to Ti.

. If (y,v) ¢ M’
A. Let z be the partner of y in M'. (*)
B. k « FindPos(x)
C. Append Mov(w,z, k) to E.
D. Apply Mov(w, z, k) to T3.

(d) AlignChildren(w, x)
3. Do a post-order traversal of T1. /* this is the delete phase */

(a) Let w be the current node in the post-order traversal of 77.

(b) If w has no partner in M’ then append del(w) to E and apply del(w) to T3.

4. F is a minimum cost edit script, M’ is a total matching, and 77 is isomorphic to 5.

Figure 4.8: Algorithm FEditSeript

Proof. Suppose we can use fewer moves. Then consider the elements of 57 that
were not moved and their “partners” in S;. They would form a common subsequence

longer than |LCS (57, 52)], a contradiction. O

4.2.3 The Complete Algorithm

We now present the complete algorithm to compute a minimum cost edit script £
conforming to a given matching M between trees T} and T,. In the algorithm, we
combine the first four phases of Section 4.2.1 (the update, insert, align, and move

phases) into one breadth-first scan on T5. The delete phase requires a post-order

4.2. GENERATING THE EDIT SCRIPT 49

Function AlignChildren(w, x)
1. Mark all children of w and all children of x “out of order.”

2. Let S7 be the sequence of children of w whose partners are children of # and let S; be the
sequence of children of # whose partners are children of w.

Define the function equal(a,b) to be true if and only if (a,b) € M’.
Let S « LCS(Sy, S, equal).
For each (a,b) € S, mark nodes a and b “in order.”
For each a € S1, b € Sy such that (a,b) € M but (a,b) € S
(a) k < FindPos(b)
(b) Append Mov(a,w, k) to E and apply Mov(a, w, k) to T7.
(c) Mark a and b “in order.”

S O e W

Function FindPos(x)
1. Let y = p(x) in Tz and let w be the partner of z (v € T}).
2. If x 1s the leftmost child of y that is marked “in order,” return 1.

3. Find v € T, where v is the rightmost sibling of = that is to the left of and is marked “in
order.”

4. Let u be the partner of v in Tj.

5. Suppose u is the ith child of its parent (counting from left to right) that is marked “in order.”
Return ¢ 4 1.

Figure 4.9: Functions AlignChildren and FindPos used by Algorithm FditSeript

traversal of Ty (which visits each node after visiting all its children). The order in
which the nodes are visited and the edit operations are generated is crucial to the
correctness of the algorithm. (For example, an insert may need to precede a move, if
the moved node becomes the child of the inserted node.) The algorithm applies the
edit operations to T} as they are appended to the edit script £. When the algorithm
terminates, 77 is isomorphic to Ty. The algorithm also uses a matching M’ that is
initially M, and adds matches to it so that M’ is a total matching when the algorithm
terminates.

The algorithm is shown in Figure 4.8. It uses two procedures, AlignChildren
and FindPos, shown in Figure 4.9. The two statements in Algorithm FEditSeript
that are marked with (*) claim that certain nodes have partners. These claims are

substantiated in the proof of the following theorem about the correctness and running

50 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

time of our algorithm:

Theorem 1 Algorithm EditScript computes the minimum cost edit script that con-
forms to the given matching M, and it does so in time O(N D) where N is the number
of nodes in the two trees and D is the number of misaligned nodes. (Typically D is
much smaller than N.) O

Proof. We first show that the edit script £ that is generated transforms T; to T,
and conforms to M. The proof is in two stages.

In the first stage we show that at the end of the breadth-first traversal of T, the
subtree of Ty corresponding to only its matched nodes (under M') is isomorphic to 7.
The proof is by induction on the number of nodes visited so far by the breadth-first
search. The induction hypothesis is the following: Consider the subtree T3 of T, that
contains only nodes that have already been visited by the breadth-first search. Let
T} be the subtree of Ty that contains only partners of the nodes in T3. Then T} is
isomorphic to Ty. Moreover, every node in T3 is matched to some node in 77 in M’.
The details of the induction are straightforward and are omitted.

In the second stage we show that the post-order traversal of T} deletes all the
unmatched nodes in 77, so that T} becomes isomorphic to 13. The only problem we
may face is that some node that we wish to delete has children and so the deletion is
not a legal operation. Suppose some unmatched nodes in T} are not deleted. Let x
be a “lowest” such node in 77, i.e., a node that occurs before all other such nodes in
the post-order numbering. Then it follows from the first part of the proof that = does
not have any children in 77. Hence x could have been deleted during the post-order
traversal of T}, a contradiction.

Thus £ transforms 77 to T,. It is also clear that £ conforms to M because F
never deletes any nodes that are matched by M. We also note that the inductive
proof used in the first stage shows that the claims made by the statements marked
with a (*) in Algorithm FEditScript are indeed correct.

We now show that E is a minimum cost edit script. Any edit script conforming

to M must contain at least:

e one insert operation corresponding to each unmatched node in Ty;

4.3. FINDING GOOD MATCHINGS 51

e one delete operation corresponding to each unmatched node in T}; and

e one move operation corresponding to each pair of matched nodes (z,y) € M

such that (p(x),p(y)) € M (call these inter-parent moves).

It is clear that Algorithm FditSeript generates precisely the above inserts, deletes,
and inter-parent moves. All that remains is to show that the algorithm also generates
the fewest possible intra-parent moves (moves that change the relative ordering of
siblings). Such moves are generated only in Function AlignChildren. That the min-
imum possible number of such moves is generated is an immediate consequence of
Lemma 1. Hence £ is a minimum cost edit script.

We first define the notion of misaligned nodes. Suppose & € Ty and y = p(x). A
move of the form M (z,y, k) for some k is called an intra-parent move of node x; such
moves are generated in the align phase of the algorithm. The number of misaligned
nodes of T} with respect to 7% is the minimum number of intra-parent moves among
all minimum cost edit scripts. Other than in Function AlignChildren, the breadth-first
search and post-order traversal perform a constant amount of work for each node in T}
and Ty. Let |z| denote the number of children of node x. For matched nodes w € T}
and @ € Ty, let d(x,w) denote the number of misaligned children of x and w. Then
Function AlignChildren aligns the children of w and x in time O((|w| + |2])d(w,)).
Hence the total running time is O(N D). O

4.3 Finding Good Matchings

In this section we consider the Good Matching problem, motivated in Section 4.1. We
want to find an appropriate matching between the nodes of trees T} and T, that can
serve as input to Algorithm FditSeript.

As discussed in the introduction, if the data has object ids, then the matching
problem is trivial. However, our focus here is on applications where information
may not have keys or object-ids that can be used to match “fragments” of objects

in one version with those in another. For example, the objects we are comparing,

52 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

say sentences or paragraphs, may simply be characters with no meaningful object-
id. In other cases the objects may have database identifiers but the ids may not be
consistent between the two versions. For instance, the record representing a pillar
in the architect’s database may have id 778899, but the same pillar in a subsequent
version may have id 12345. Here again, we need to match the pillars based on the
value of the record (e.g., location and height of the pillar), as well as by its relationship
to other objects (e.g., are the two pillars in the same room?). We use the term keyless
data for hierarchical data that may not have identifying keys or object-ids. (Note that
we are not ruling out keys for some objects; if they exist they can be used to match
those objects quickly.)

When comparing versions of keyless data, there may be more than one way to
match objects. Thus we need to define matching criteria that a matching must
satisfy to be considered “good” or appropriate. In general, the matching criteria will
depend on the domain being considered. One way of evaluating matchings that is
desirable in many situations is to consider the minimum cost edit scripts that conform
to the matchings (and transform T3 into T%). Intuitively, a matching that allows us
to transform one tree to the other at a lower cost is a better matching. Formally, for
matchings M and M’ we say that M is better than M’ if a minimum cost edit script
that conforms to M is cheaper than a minimum cost edit script that conforms to M’.
Our goal is to find a best matching, that is, a matching M that satisfies the given
matching criteria and such that there is no better matching M’ that also satisfies the
criteria.

Unfortunately, if our matching criterion only requires that matched nodes have the
same label, then finding the best matching has two difficulties. The first difficulty is
that many matchings that satisfy only this trivial matching criterion may be unnatural
in certain domains. For example, when matching documents, we may only want to
match textual units (paragraphs, sections, subsections, etc.) that have more than a
certain percentage of sentences in common. The second difficulty is one of complexity:
the only algorithm known to us to compute the best matching as defined above (based
on post-processing the output of the algorithm in [ZS89]) runs in time O(n?) where n
is the number of tree nodes [Zha95]. To solve the first difficulty, we restrict the set of

4.3. FINDING GOOD MATCHINGS 33

matchings we consider by introducing stronger matching criteria, as described below.
These criteria also permit us to design efficient algorithms for matching. In the rest
of this section, we describe some matching criteria for keyless data, using structured

documents as an example.

4.3.1 Matching Criteria for Keyless Data

Our goal in this section is to augment the trivial label-matching criterion with addi-
tional criteria that simultaneously yield matchings that are meaningful in the domains
of the data being considered, and that make possible efficient algorithms to compute
a best matching.

Our first matching criterion states that nodes that are “too dissimilar” may not

be matched with each other. For leaf nodes, this condition is stated as follows.

Matching Criterion 1 For leaf nodes # € Ty and y € Ty, (x,y) can be in a matching
only if {(x) = l(y) and compare(v(z),v(y)) < f for some parameter f such that
0 < f < 1. (Recall that [(2) and v(z) denote the label and value of node x, and
that compare is defined in Section 4.1.1 as a function used for determining the cost

of updating a leaf node.) O

We also want to disallow matching internal nodes that do not have much in com-
mon. Here a more natural notion than the value (which is often null in the label-value
model) is the number of common descendants. Let us say that an internal node x
contains a node y if y is a leaf node descendent of z, and let || denote the number of
leaf nodes x contains. The following constraint allows internal nodes = and y to match

only if at least a certain percentage of their leaves match (where ¢ is a parameter):

Matching Criterion 2 Consider a matching M containing (x,y), where z is an

internal node in T} and y is an internal node in 75,. Define

common(x,y) ={(w,z) € M |z contains w,and y contains z}

54 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

Then in M we must have () = [(y) and

|common(x,y)

>t
max([z], |y[)

for some ¢ satisfying % <t < 1. O

Recall, from the introduction to this chapter, that one of the features of our work
is that we use domain characteristics to design efficient algorithms. We now introduce
these domain characteristics and formalize them by stating two assumptions that they
let us make.

The hierarchical keyless data we are comparing has labels, and these labels usually
follow a structuring schema, such as the one defined in [ACM95]. Many structuring

schemas satisfy an acyclic labels condition, formalized in the following assumption:

Assumption 2 There is an ordering <; on the labels in the schema such that a node

with label [; can appear as the descendent of a node with label {5 only if {; <; [5.

In schemas where this condition is not satisfied, we can use domain semantics to
merge labels that form a cycle, so that the resulting schema satisfies this condition.

Our next assumption states (informally) that the compare function is a good
discriminator of leaves. It states that given any leaf s in the old document, there
is at most one leaf in the new document that is “close” to s, and vice versa. For
example, consider a world-wide web “movie database” source listing movies, actors,
directors, etc. A tree representation of this data may contain movie titles as leaves.
This assumption says that, when comparing two snapshots of this data, a movie title

in one snapshot may “closely resemble” at most one movie title in the other.

Assumption 3 For any leaf x € Tj, there is at most one leaf y € T, such that
compare(v(x),v(y)) < 1. Similarly, for any leaf y € Ty, there is at most one leaf
x € Ty such that compare(v(z),v(y)) < 1. O

This assumption may not hold for some domains. For example, legal documents

may have many sentences that are almost identical. The algorithms we describe

4.3. FINDING GOOD MATCHINGS 35

below are guaranteed to produce an optimal matching when Assumption 3 holds.
When Assumption 3 does not hold, our algorithm may generate a suboptimal, but
still correct, solution. However, we can often post-process such a suboptimal solution
to obtain an optimal solution. We discuss this issue further in Section 4.6.
Matching Criteria 1 and 2 and the assumptions that we have introduced above al-
low us to simplify the best matching problem as follows. (Recall that a best matching
is a matching that can be used to produce an edit script of the lowest cost among all
matchings satisfying the Matching Criteria.) We say that a matching is maximal if it
is not possible to augment it without violating the Matching Criteria. We can show
that our Matching Criteria imply that there is a unique maximal matching. Further-
more, given our assumptions, we can show that this unique maximal matching is also
the best matching. These statements are formalized in Theorem 4 stated below after

a couple of preliminary lemmas.

Lemma 2 For matchings M and M’ that satisfy Matching Criterion 1 if M C M’
then M is not better than M’'. O

Proof. For matchings M and M’ satisfying the value constraint, the cost of moving
and then updating a node is no more than the cost of deleting and inserting a node.
Suppose M’ is obtained from M by adding to M the match (x,y). Then any edit script
conforming to M will contain operations that delete the node = and insert another
node corresponding to y, whereas an edit script conforming to M’ can replace the

insertion and deletion by a move and an update and be no more expensive. a

Lemma 3 Suppose Ty and Ty satisfy the acyclicity condition for labels and Assump-
tion 3 holds. For any internal node x € Ty, there is at most one internal node y € Ty
such that the pair (x,y) satisfies the match threshold constraint. Similarly, for any
internal node y € Ty, there is at most one internal node x € Ty such that the pair

(x,y) satisfies the match threshold constraint. O

Proof. Suppose that node = € T} has two “partners” y and z in T, satisfying the

match threshold constraint. Then we must have

|common(x,y)

>t
max([z], |y[)

56 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

1. M« ¢
2. Mark all nodes of 77 and 75 “unmatched.”

3. Proceed bottom-up on tree T}

For each unmatched node x € Ti, if there 1s an unmatched node y € 75 such that
equal (x,y) then

i. Add (z,y) to M.
1. Mark # and y “matched.”

Figure 4.10: Algorithm Match

and
|common(x, z)| -

max(|z, |2)
The acyclicity condition implies that y and z can have no common descendents, so
we must have

|common(x,y)| + |common(x, z)| > 2t|x|

which is impossible since ¢ > 1/2. A symmetric argument holds, reversing 77 and T5.

a

Theorem 4 (Unique Maximal Matching) If 7} and 75 are trees satisfying Match-
ing Criteria 1 and 2 and Assumptions 2 and 3, then there is a unique maximal match-
ing M of the nodes of T} and T;. Moreover, M is also the unique best matching that

satisfies the matching criteria. O

Proof. Follows directly from Lemmas 2 and 3. O

4.3.2 A Simple Matching Algorithm

Theorem 4 allows us to construct a straightforward algorithm to obtain the best
matching that satisfies our matching criteria. For each node x € Tj, we simply
compare with each unmatched node y € T, that has the same label as . We

use the following function equal for leaf nodes, where f is a parameter such that

4.3. FINDING GOOD MATCHINGS 57

0< f<1:

true if [(x) = l(y) and compare(v(x),v(y)) < f

false otherwise

equal(x,y) = {

We use the following function equal for internal nodes (¢ > % is a parameter):

true if {(x) = I(y) and leommon(z)| -

equal(x,y) = max(|z],[y])
’ { false otherwise
The algorithm must match leaves before matching internal nodes to ensure that the

equality function for internal nodes can be evaluated. Figure 4.10 shows this simple

matching algorithm, which we call Algorithm Match.

Example 4.3.1 We illustrate our simple matching algorithm on the trees from our
running example in Figure 4.1. The algorithm first examines each leaf node of T}
in turn, and attempts to pair it with a leaf node of T;. This process produces the

following matching of leaf nodes:
M = {(5,15),(7,16),(8,18),(9,19),(10,17)}

The algorithm then tries to pair nodes with the label P, and adds the pairs (2,12),
(3,14), and (4, 13) to the matching. Finally, pairing nodes with label D yields the pair
(1,11). The final matching that results is shown in Figure 4.1 using dashed lines. O

In Section 4.3.4 we show that the running time of Algorithm Match is proportional
to

nc -+ mn (4.1)

where n is the total number of leaf nodes in 77 and T3, m is the total number of
internal nodes in 77 and T3, and ¢ is the average cost of executing compare(x,y) for
a pair of leaf nodes x and y. (Section 4.5 describes how we compare sentences in our

implementation.)

58 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

1. M« ¢
2. For each leaf label [do
(a) Sy « chaing, ().
(b
(c
(d
(e
3. Repeat steps 2a through 2e for each internal node label .
Figure 4.11: Algorithm FastMatch

Sy + chaing,(l).
les « LCS(S1, Sa, equal).
For each pair of nodes (z,y) € les, add (z,y) to M.

)
)
)
)

Pair unmatched nodes with label { as in Algorithm Match, adding matches to M.

4.3.3 A Faster Matching Algorithm

We can significantly reduce the number of comparisons in Algorithm Match when T}
and Ty are nearly alike, which is often the case in practice. We modify Algorithm
Match to Algorithm FastMatch, shown in Figure 4.11. Algorithm FastMatch uses
the longest common subsequence (LCS) routine, introduced earlier in Section 4.2.2,
to perform an initial matching of nodes that appear in the same order. Nodes still
unmatched after the call to LCS are processed as in Algorithm Match. The function
equal in the LCS call is as defined in Section 4.3.2.

In Algorithm FastMatch we assume that all nodes with a given label [in tree T
are chained together from left to right. Let chainy(l) denote the chain of nodes with
label [in tree T. Node & occurs to the left of node y in chaing(l) if « appears before
y in the in-order traversal of T" when siblings are visited left-to-right.

To help us analyze the running time of Algorithm FastMatch, we define the
weighted edit distance ¢ between trees T} and T, as follows. Let £ = ejey...¢,
be the shortest edit script that transforms T4 to T;. Then the weighted edit distance
is given by

GZZU)Z'

1<i<n

4.3. FINDING GOOD MATCHINGS 59

where w;, for 1 <1 < n, is defined as follows:

1 if e; is an insert or a delete
w; = § |z| if €; is a move of the subtree rooted at node x

0 if ¢ is an update

Recall that || denotes the number of leaf nodes that are descendants of node z.
Intuitively, the weighted edit distance indicates how structurally different the two
trees are, where the degree of difference associated with moving a subtree is given by
the number of leaves in that subtree.

In Section 4.3.4 below we show that the running time of Algorithm FastMatch is
proportional to

(ne + 62)0 + 2lne (4.2)

where n and ¢ are the same as in Formula (4.1) of Section 4.3.2, [is the number
of internal node labels, and e is the weighted edit distance between Ty and T;. A
comparison of Formula (4.2) with Formula (4.1) shows that Algorithm FastMatch
is substantially faster than Algorithm Match when e is small compared to n, as is

typically the case. Section 4.6 presents results from our empirical performance study

of Algorithm FastMatch.

4.3.4 Analysis of Matching Algorithms

For a label a, let n, be the total number of nodes with label a in T} and T5. Let ¢,
be the average cost of computing equal(x,y) for nodes = and y with label a. Then
Algorithm Match takes time O(nZc,) to match nodes with label a. Thus, the total
time taken by the algorithm is proportional to 3 ,c; nic,, where L is the set of all
labels that appear in T} or T5.

To simplify our analysis, let us assume that L is made up two disjoint subsets of
labels— P, the set of labels of leaf nodes, and (), the set of labels of internal nodes.
Further, let us assume that all leaf node comparisons have the same average cost,
that is, ¢, = ¢ for all « € P. Let n be the total number of leaf nodes in 77 and
T,. Then matching leaf nodes takes time O(n*c). For an internal node label b € @,

60 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

computing equal(x,y) for nodes @ and y with label b requires us to intersect the leaf
nodes they contain, which takes time proportional to min(|z|, |y|). If we assume that,
on average, |x| = n/n, for nodes x with label b, then we may approximate ¢, by n/ny,
and so matching nodes with label b takes time O(nyn). Thus, the total time taken
by Algorithm Match is proportional to

n’ec +n Z np.
beR

If we denote by m the total number of internal nodes in T} and T3, then m = 37, ne,
and so the running time of Algorithm Match is O(n*c + mn).

For a label a, let d, = n, — les,. Then Algorithm FastMatch takes time propor-
tional to (n.d, +d?)c, to match nodes with label a. Let us make the same assumptions
as in the analysis of Algorithm Match. Then matching leaf nodes takes time that is
proportional to (nd+ d*)c, where d = 3",cp d,. For internal nodes with label b, let us
once again assume that ¢, = n/n,. Now, remembering that d, < nj, and so dic, < nd,,
the time taken to match nodes with label b is proportional to 2nd,. Hence the total
time taken by Algorithm FastMatch is proportional to

(nd + d2)c + Z 2ndy,.
beR

Now let e be the weighted edit distance between trees T} and 75, as defined in Section
4.3.3. It is clear that for any label b, we have d, < e. Hence the running time of
Algorithm FastMatch is bounded by

(ne + 62)0 + 2lne

where [= |Q)| is the number of labels of internal nodes in T and T5.

4.4. DELTA TREES 61

Figure 4.12: Delta tree for edit script in Example 4.1.1

4.4 Delta Trees

In this section we describe a representation for deltas in hierarchically structured data
that is more natural and useful than edit scripts for certain scenarios. As we have seen
above, an edit script gives us the sequence of operations needed to transform one tree
to another, and thus is a simple “operational” representation of deltas. One problem
with edit scripts is that they refer to tree nodes using node identifiers. Node identifiers
may be system-generated and thus not meaningful to the user. Furthermore, the flat,
sequential structure of an edit script may make it difficult to use for querying and
browsing hierarchical deltas.

In a relational database, deltas usually are represented using delta relations: For
a relation R, delta relations inserted(R) and deleted(R) contain the tuples inserted to
and deleted from R, while delta relations old-updated(R) and new-updated(R) contain
the old and new values of updated tuples [GHJ*93, WC96b]. One can contrast this
representation with the relational version of an edit script, which would (presum-
ably) be a list of tuple-level inserts, deletes, and updates, possibly based on tuple
identifiers. We are interested in a representation comparable to delta relations but
for hierarchically structured data.

We define a structure called a delta tree for representing deltas. Intuitively, one
can think of a delta tree as “overlaying” an edit script onto the data using node

annotations. (In this sense, a delta tree differs from a delta relation in that delta

62 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

relations are kept separate from the original data. In practice delta relations often are
joined with their corresponding relation [WC96b], and we are effectively representing
this join explicitly.) As an example, the delta tree corresponding to the edit script
from Example 4.1.1 is shown in Figure 4.12. Note that we do not need node identifiers
since the annotated nodes are at the appropriate positions in the delta tree.

More formally, let T} and T3 be two trees. A delta tree for T7 with respect T3 is
a tree AT such that, in addition to a label and value, each node in AT has exactly

one of the following annotations:

e IDN, indicating that the node corresponds to a node in the original tree. (In

Figure 4.12, IDN annotations appear as blanks.)
e UPD(v), indicating that the value of the node is updated to v.
e INS(/,v), indicating that the node is inserted with label [and value v.
e DEL, indicating deletion of the subtree rooted at the node.

e MOV(x), indicating that the node is moved to the position of the “marker node”

x.
e MRK, indicating that the node is the destination of a move operation.

A correct delta tree for T} with respect to T must have the property that there is at
least one edit script F such that:

1. F transforms 7} to T15.

2. There is a total order over the nodes of AT such that outputting the edit
operations corresponding to the node annotations in this order yields edit script

E.

Note that there may be more than one such edit script. In general, we are interested
in correct delta trees corresponding to minimum cost edit scripts.
In our implementation of the algorithms described in Sections 4.2 and 4.3, we

construct the delta tree directly as a side-effect of producing an edit script. Essentially,

4.5. IMPLEMENTATION 63

this is achieved by modifying algorithm FEditScript (Section 4.2) to emit a call to add
a node to the delta tree every time an operation is added to the edit script being
computed. Our implementation uses the delta tree representation rather than the

edit script in order to produce meaningful output, as described in the next section.

4.5 Implementation

To validate our method for computing and representing deltas, as well as to have
a vehicle for studying the performance of our algorithms, we have implemented a
program for computing and representing changes in structured documents. Below,
we describe the implementation of this program, called LaDiff. We focus on Latex
documents, but the implementation can easily handle other kinds of structured doc-
uments (e.g., HTML) by changing the parsing routines. Our performance study is
presented in Section 4.6.

LaDiff takes as input two files containing the old and new versions of a Latex
document. These files are first parsed to produce their tree representations (the old
tree and new tree, respectively). Currently, we parse a subset of Latex consisting
of sentences, paragraphs, subsections, sections, lists, items, and document. It is easy
to extend our parser to handle a larger subset of Latex , and we plan to do so in
the future. Next, the edit script and delta tree are computed using the algorithms of
Sections 4.2-4.3. Our program takes the match threshold ¢ (Section 4.3) as a parame-
ter. Our comparison function for leaf nodes—which are sentences—first computes the
LCS (recall Section 4.2.2) of the words in the sentences, then counts the number of
words not in the LCS. Interior nodes (paragraphs, items, sections, etc.) are compared
as described in Section 4.3. Finally, a preorder traversal of the delta tree is performed
to produce an output Latex document with annotations describing the changes.

We now illustrate a sample run of LaDiff. We show only a short example, based
on an excerpt from the TEXbook [Knu86], that illustrates some of the change detec-
tion features. Our implementation uses a modified version of the LCS algorithm from

[Mye86]. Note that we cannot use the LCS algorithm used by the standard UNIX

64 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

diff program, because it requires inequality comparisons in addition to equality com-
parisons.

Figures 4.13 and 4.14 show the old and new versions of the example document. We
tried the UNIX diff program on these documents, and the output was not very useful.
Figure 4.15 shows the output of LaDiff. The conventions used by LaDiff for mark-
ing various changes in the output document are shown in Table 4.1. Sentence level
changes are marked using changes in font: inserted sentences are in bold font, while
deleted and updated sentences are in small and italic fonts respectively. Sentence
moves are marked by putting the sentence in small font, labeling it, and referencing
the label with a footnote at the new position of the sentence. (See the first and last
sentences in the third section in Figure 4.15, for example.) Paragraph changes are
marked using marginal notes indicating whether the paragraph is inserted, deleted,
moved, or updated. In the case of paragraph moves, the old position of the para-
graph is marked with a label which is referenced from the marginal note in its new
position. (See the third paragraph in Figure 4.15, for example.) Changes in sections,
subsections, and itemized lists are marked using similar schemes, as summarized by
the table.

Note that sentences, as well as other textual units, may be moved and updated
at the same time. The mark-up conventions used by LaDiff allow us to mark these
changes simultaneously. For example, the first sentence in Figure 4.15 is in italic font,
indicating that it was updated, and also has a footnote telling us that it was moved
from position S1 (near the end of the document).

We can see that LaDiff properly detects insertions, deletions, updates, and moves
of sentences and paragraphs. Representing the changes in an intuitive manner is a

challenging problem, and we plan to work on it further.

4.6 Empirical evaluation of FastMatch

In Section 4.3 we presented Algorithm FastMatch to find a matching between two
trees, and we stated that its running time is given by an expression of the form ryc+rs.

In this expression, ry represents the number of leaf node comparisons (invocations of

4.6. EMPIRICAL EVALUATION OF FASTMATCH

1 First things first

Computer system manuals usually make dull reading, but take heart: This one
contains JOKES every once in a while, so you might actually enjoy reading it.
(However, most of the jokes can only be appreciated properly if you understand
a technical point that is being made—so read carefully.)

Another noteworthy characteristic of this manual is that it doesn’t always
tell the truth. When certain concepts of TEX are introduced informally, general
rules will be stated; afterwards you will find that the rules aren’t strictly true.
Tn general, the later chapters contain more reliable information than the earlier
ones do. The author feels that this technique of deliberate lying will actually
make it easier for you to learn the ideas. Once you understand a simple but
false rule, it will not be hard to supplement that rule with its exceptions.

2 Another way to look at it

In order to help you internalize what you're reading, exercises are sprinkled
through this manual. It is generally intended that every reader should try every
exercise, except for questions that appear in the “dangerous bend” areas. If you
can’t solve a problem, you can always look up the answer. But please, try first to
solve it by yourself; then you’ll learn more and you’ll learn faster. Furthermore,
if you think you do know the solution, you should turn to Appendix A and check
it out, just to make sure.

3 Conclusion

The TEX language described in this book is similar to the author’s first attempt
at a document formatting language, but the new system differs from the old
one in literally thousands of details. Both languages have been called TEX; but
henceforth the old language should be called TEX78, and its use should rapidly
fade away. Let’s keep the name TEX for the language described here; since it is
so much better, and since it is not going to change any more.

Figure 4.13: Old version of document

Textual Unit Edit Operation

Insert ‘ Delete ‘ Update ‘ Move
Sentence Bold font ‘ Small font ‘ Italic font | Footnote, label
Paragraph Marginal note Marginal note, label
[tem Marginal note Marginal note, label
Subsection Annotation(ins,del,upd,mov) in heading
Section Annotation(ins,del,upd,mov) in heading

Table 4.1: Mark-up conventions used by LaDiff.

65

66

CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

1 Introduction

The TEX language described in this book has a predecessor, but the new system
differs from the old one in literally thousands of details. Computer manuals usu-
ally make extremely dull reading, but don’t worry: This one contains JOKES
every once in a while, so you might actually enjoy reading it. (However, most of
the jokes can only be appreciated properly if you understand a technical point
that is being made so read carefully.)

2 The details

English words like ‘technology’ stem from a Greek root beginning with letters
Tex...; and this same Greek work means art as well as technology. Hence the
name TEX, which is an uppercase of Tey.

Another noteworthy characteristic of this manual is that it doesn’t always tell
the truth. This feature may seem strange, but it isn’t. When certain concepts
of TEX are introduced informally, general rules will be stated; afterwards you
will find that the rules aren’t strictly true. The author feels that this technique
of deliberate lying will actually make it easier for you to learn the ideas. Once
you understand a simple but false rule, it will not be hard to supplement that
rule with its exceptions.

3 Moving on

It is generally intended that every reader should try every exercise, except for
questions that appear in the “dangerous bend” areas. If you can’t solve a
problem, you can always look up the answer. But please, try first to solve it
by yourself; then you’ll learn more and you’ll learn faster. Furthermore, if you
think you do know the solution, you should turn to Appendix A and check it
out, just to make sure. In order to help you better internalize what you read,
exercises are sprinkled through this manual.

4 Conclusion
Both languages have been called TEX; but henceforth the old language should
be called TEX78, and its use should rapidly fade away. Let’s keep the name TEX

for the language described here, since it is so much better, and since it is not
going to change any more.

Figure 4.14: New version of document

4.6. EMPIRICAL EVALUATION OF FASTMATCH

1 (uwpd) Introduction

[The TgX language described in this book is similar to the author’s first attempt
at a document formatting language, but the new system differs from the old one
in literally thousands of details.]!
dull reading, but don’t worry: This one contains JOKKES every once in a while,
so you might actually enjoy reading it. (However, most of the jokes can only be
appreciated properly if you understand a technical point that is being made—so
read carefully.)

Computer manuals usually make extremely

2 (ins) The details

English words like ‘technology’ stem from a Greek root beginning with letters
Tex...; and this same Greek work means art as well as technology. Hence the
name TEX, which is an uppercase of Tex.

Another noteworthy characteristic of this manual is that it doesn’t always
tell the truth. This feature may seem strange, but it isn’t. When
certain concepts of TEX are introduced informally, general rules will be stated;
afterwards you will find that the rules aren’t strictly true. 1In general, the later
chapters contain more reliable information than the earlier ones do. The author feels that
this technique of deliberate lying will actually make it easier for you to learn
the ideas. Once you understand a simple but false rule, it will not be hard to
supplement that rule with its exceptions.

3 Mowving on

S2:[In order to help you internalize what you're reading, exercises are sprinkled through this manual.]
It is generally intended that every reader should try every exercise, except for
questions that appear in the “dangerous bend” areas. If you can’t solve a
problem, you can always look up the answer. But please, try first to solve it
by yourself; then you’ll learn more and you’ll learn faster. Furthermore, if you
think you do know the solution, you should turn to Appendix A and check it
out, just to make sure. [In order to help you better internalize what you read,
exercises are sprinkled through this manual]?

4 Conclusion

S1:[The TEX language described in this book is similar to the author’s first attempt at a document
formatting language, but the new system differs from the old one in literally thousands of details.]
Both languages have been called TEX; but henceforth the old language should
be called TEX78, and its use should rapidly fade away. Let’s keep the name TEX
for the language described here, since it is so much better, and since it is not
going to change any more.

"Moved from S1
2Moved from S2

Figure 4.15: Output document (marked up)

P1

Inserted para

Moved from P1

67

68 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

function compare), ¢ is the average cost of comparing leaf nodes, and ry represents the
number of node partner checks. Partner checks are implemented in LaDiff as integer
comparisons. We know that r; is bounded by (ne + €*), and that r, is bounded by
2lne, where n is the number of tree nodes, e is the weighted edit distance between
the two trees, and [is the number of internal node labels. The parameter e depends
on the nature of the differences between the trees (recall the definition of weighted
edit distance in Section 4.3.3).

There are two reasons for studying the performance of FastMatch empirically.
The first reason is that the formula for the running time contains the weighted edit
distance, e, which is difficult to estimate in terms of the input. A more natural
measure of the input size is the number of edit operations in an optimal edit script,
which we call the unweighted edit distance, d. We can show analytically that the
ratio e/d is bounded by logn for a large class of inputs, but we believe that in real
cases, its value is much lower than logn. We therefore study the relationship between
e and d empirically. The second reason is that we would like to test our conjecture
that the analytical bound on the running time of FastMatch is “loose,” and in most
practical situations the algorithm runs much faster.

For our performance study, we used three sets of files. The files in each set
represent different versions of a document (a conference paper). We ran FastMatch
on pairs of files within each of these three sets. (Comparing files across sets is not
meaningful because we would be comparing two completely different documents.) In
Figure 4.16 we indicate how the weighted edit distance (e) varies with the unweighted
edit distance (d), for each of the three document sets. Recall that n is the number
of tree leaves, that is, the number of sentences in the document. We see that the
relationship between e and d is close to linear. Furthermore, the variance with respect
to the three document sets is not high, suggesting that e/d is not very sensitive to
the size of the documents (n). The average value of e¢/d is 3.4 for these documents.

In Figure 4.17 we plot how the running time of FastMatch varies with the weighted
edit distance e. The vertical axis is the running time as measured by the number of
comparisons made by FastMatch and the horizontal axis is the weighted edit distance.

Note that the analytical bound on the number of comparisons made by FastMatch

4.6. EMPIRICAL EVALUATION OF FASTMATCH

120 T
n=485 ¢
n=600 +
n=325 o
©
100 B
>
o
T 80 - o 1
P o
=
8 o
z o °
° °
E 60 & ° 7
e}
o]
< <&
.QE)’ + o o
= 40 " + E
o
20 o o * -
+
+
0 Il Il Il Il Il Il Il
0 5 10 30 35 40

15 20 25
(Unweighted) edit distance (d)

Figure 4.16: Relation between the weighted and unweighted edit distances

9000 T

n=485 ¢
n=600 -+
8000 - + n=325 O

7000 B

6000 - 1

5000 - + 1

4000 1

Number of comparisons
<&
a

3000 - 1

2000 - 1

1000 | B

0 Il Il Il Il Il
0 20 40 60 80 100 120
Weighted edit distance (e)

Figure 4.17: Running time of FastMatch

70 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

is much higher than the numbers depicted in Figure 4.17; on the average, FastMatch
makes approximately 20 times fewer comparisons than those predicted by the analyt-
ical bound, supporting our conjecture that the analytical bound on the running time
is a loose one. We also observe that Figure 4.17 suggests an approximately linear
relation between the running time and e, although there is a high variance. This
variance may be explained by our first observation that the actual running time is far
below the predicted bound.

Another issue that needs to be addressed is the effect of Assumption 3 on the qual-
ity of the solution produced by FastMatch. Recall from Section 4.3 that FastMatch
is guaranteed to produce an optimal matching only when Assumption 3 holds. When
Assumption 3 does not hold, the algorithm may produce a suboptimal matching. We
describe a post-processing step that, when added to FastMatch, enables us to convert
the possibly suboptimal matching produced by FastMatch into an optimal one in
many cases: Proceeding top-down, we consider each tree node = in turn. Let y be the
partner of = according to the current matching. For each child ¢ of = that is matched
to a node ¢ such that parent(c’) # y, we check if we can match ¢ to a child ¢’ of y,
such that compare(c, ¢”) < f, where f is the parameter used in Matching Criterion 1.
If so, we change the current matching to make ¢ match ¢”. This post-processing phase
removes some of the suboptimalities that may be introduced if Assumption 3 does
not hold for all nodes.

Even with post-processing, it is still possible to have a suboptimal solution, as
follows: Recall that FastMatch begins by matching leaves, and then proceeds to match
higher levels in the tree in a bottom-up manner. With this approach, a mismatch at
a lower level may “propagate,” causing a mismatch at one or more higher levels. Our
post-processing step will correct all mismatches other than those that propagated
from lower levels to higher levels. It is difficult to evaluate precisely those cases
that in which this propagation occurs without performing exhaustive computations.
However, we can derive a necessary (but not sufficient) condition for propagation, and
then measure that condition in our experiments. Informally, this condition states that
in order to be mismatched, a node must have more than a certain number of children

that violate Assumption 3, where the exact number depends on the match threshold

4.7. SUMMARY 71

Match threshold (): 05106 |0.7]0.8]|09]1.0
Upper bound on mismatches (%): | 0.4 | 1 31 71 910

Table 4.2: Mismatched paragraphs in FastMatch.

t. Actually, this condition is weak; a node must satisfy many other conditions for the
possibility of a mismatch to exist, and even then a mismatch is not guaranteed.

For the same document data analyzed earlier, Table 4.2 shows some statistics
on the percentage of paragraphs that may be mismatched for a given value of the
match threshold ¢. For example, we see that with ¢ = 0.6, we may mismatch at
most 1% of the paragraphs. A lower value of ¢ results in a lower number of possible
mismatches. We see that the number of mismatched paragraphs is low, supporting
our claim. Since the condition used to determine when a mismatch may occur is a
weak one, the percentage of mismatches is expected to be much lower than suggested
by these numbers. Furthermore, note that a suboptimal matching compromises only
the quality of an edit script produced as the final output, not its correctness. In many
applications, this trade-off between optimality and efficiency is a reasonable one. For
example, when computing the delta between two documents, it is often not critical if

the edit script produced is slightly longer than the optimal one.

4.7 Summary

In this chapter, we studied the problem of detecting changes from snapshots of struc-
tured or semistructured data that is represented using ordered trees. We formalized
the change detection problem as the problem of finding a minimum-cost edit script
that transforms one given tree to the other. We defined an edit script to be a sequence
of operations that may insert or delete a node, update the label of a node, or move a
subtree. We described the benefits of modeling changes using not only the traditional
insert, delete, and update operations, but also the powerful subtree move operation
that we introduced in this chapter.

Our solution to this change detection problem is based on the use of a matching

72 CHAPTER 4. DETECTING CHANGES IN ORDERED TREES

between the nodes of the two input trees. The relation between matchings and edit
scripts is formalized by our definition of the conformance of an edit script to a match-
ing. Using this definition of conformance, we described a two-step strategy to solve
the change detection problem. We first described the second step: Given a matching
between the two input trees, we presented a method for computing a minimum-cost
edit script that conforms to that matching. Next, we presented methods for com-
puting such a matching in the first place. We proved that our methods result in an
optimal solution under some reasonable assumptions.

We studied our algorithms both analytically and empirically. By making use of
domain characteristics, our algorithms are able to compute differences significantly
faster than those studied in prior work. We proved that an upper bound on the
number of comparisons made by our FastMatch algorithm is (ne + e?)c + 2Ine, where
n is the number of tree nodes, e is the weighted edit distance between the trees, [is the
number of interior node labels, and ¢ is the cost of the function used to compare values
of leaf nodes. We showed empirically that e is typically a small constant times the
unweighted edit distance. Further, we showed empirically that for the dataset studied,
the number of comparisons made by FastMatch are approximately 20 times smaller
than the analytical bound. Although the results of our methods are guaranteed to
always be correct, they are guaranteed to be optimal only when the values in the leaf
nodes of the input trees are not too similar to each other. We described a simple
postprocessing step that results in optimal solutions for a large class of inputs that
do not satisfy this assumption.

While edit scripts provide a good theoretical basis for computing the differences
between two trees, they are not convenient for storing and browsing such differences.
We therefore defined delta trees, which store differences alongside the data they mod-
ify, and thus allow us to conveniently browse data marked up with the detected
changes. In Chapter 7, we describe how the idea of delta trees is extended to provide
a general purpose data model and query language for changes in semistructured data.
Finally, we illustrated the application of these ideas by describing our implementation
of a program for computing and presenting changes in structured documents.

In the next two chapters, we continue our study of the change detection problem.

4.7. SUMMARY 73

In Chapter 5, we address the problem of detecting changes when data is represented
using unordered trees that do not have the layered structure assumed in this chapter.
Further, we allow subtrees to be not only moved, but also copied and uncopied. By
using the subtree operations move, copy, and uncopy, edit scripts can describe changes
in a succinct and intuitively appealing manner. For example, when comparing two
versions of a license agreement, we can detect not only sentences that have been moved
from one paragraph to another, but also sentences and paragraphs that have been
copied. However, these subtree operations may also be combined in a complicated
manner resulting in edit scripts that are intuitively unusable. For example, an edit
script may repeatedly copy, move, and uncopy slightly different portions of a subtree,
resulting in a change description that is very difficult to understand and use. In
Chapter 5, we discuss such complications in detail and present a solution based on
restricting edit script to disallow problematic sequences of edit operations.

In Chapter 6 we explore an alternative formulation of the change detection prob-
lem. Instead of the conventional linear edit script model, we use a model of tree
transformations that is based on the idea of applying edit operations in parallel. This
formulation allows us overcome the difficulties due to problematic sequences of edit
operations in a manner that is simpler and more elegant than the solution based
on linear edit scripts. This model of parallel transformations also results in simpler

algorithms for change detection.

Chapter 5

Detecting Changes in Unordered
Trees

In Chapter 4, we presented algorithms for comparing snapshots of data that is repre-
sented using ordered trees. Ordered trees are a natural abstraction of structured or
semistructured data that has a meaningful order among components. For example,
documents consist of sections that have ordered paragraphs as components, para-
graphs consist of an ordered list of sentences, and so on. However, we often encounter
data that has no inherent ordering. For example, consider the set of students in a
class, or the result of a query asking for stores selling a certain product. We need to
model such data using unordered trees.

In this chapter, we present techniques to compare unordered trees by computing
a minimum-cost edit script that transforms one tree to the other. In addition to
modeling unordered trees, in this chapter we also extend our set of tree edit oper-
ations by adding operations to copy and uncopy subtrees. Similar to the subtree
move operations described in Chapter 4, these new subtree operations result in more
meaningful and usable results when comparing data. Further, unlike in Chapter 4
where we imposed significant restrictions on our edit scripts to yield a more efficient
algorithm, in this chapter we follow a more general approach that is applicable to a
larger collection of data. Instead of assuming that the data has certain characteristics,

such as “few” duplicates, we present algorithm MH-DIFF (for meaningful, hierarchical

74

5.1. INTRODUCTION 75

difference), which handles all data, with performance improving when the input data

has certain characteristics.

5.1 Introduction

We describe tree differences using move, copy, and uncopy operations in addition to
the more traditional insert, delete, and update operations. Thus, if a substructure
(e.g., a section of text, a shift register) is moved to another location, our algorithm will
report it as a single operation. (This feature is shared by our ordered tree comparison
algorithm described in Chapter 4.) Traditional change detection algorithms report
such changes using an edit script that deletes all the nodes in the moved subtree
and then inserts identical nodes at the new location of the subtree. An application
or person using such an edit script is unable to easily detect that the deleted and
inserted nodes are simply components of a subtree move operation. Similarly, if the
substructure is copied (e.g., a second shift register is added which is identical to one
already in the circuit), then our algorithm will identify it as such. Traditional change
detection algorithms (and our algorithm in Chapter 4) report such changes using a
sequence of node insertion operations, thus losing the information that the new nodes
are simply copies of some existing nodes.

Note that detecting moves and copies becomes more important if the moved or
copied subtree is large. For instance, if we are comparing file systems, and a large
directory with thousands of files is mounted elsewhere, we clearly do not wish to
report the change as thousands of file deletes followed by thousands of file creations.

The problem of comparing unordered trees is inherently more complex than the
analogous problem for ordered trees. Most formulations of this problem (including
ours, described in this chapter) are NP-hard. Even a simple problem formulation
that uses only insert, delete, and update operations can be shown to be NP-hard by
reduction from the “exact cover by three-sets” problem [ZWS95].

Algorithm MH-DIFF provides a heuristic solution, which is based on transforming
the problem to the “edge cover domain.” That is, instead of working with edit scripts,

the algorithm works with edge covers that represent how one set of nodes match

76 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

another set. In this transformation, the costs of the edit operations are translated
into costs on the edges of the cover.

In Chapter 4 we defined a variant of the change detection problem for ordered
trees, using subtree moves as an edit operation in addition to insertions, deletions,
and updates, and presented an efficient algorithm for solving it. That algorithm
uses domain characteristics to find a solution efficiently. A major drawback of the
algorithm in Chapter 4 is that it assumes that the number of duplicates (or near
duplicates) in the labels found in the input trees is very small. Another drawback of
of the algorithm in Chapter 4 is that it assumes each node of the input trees has a
special tag that describes its semantics. (For example, an ordered tree representing a
document may have tags “paragraph,” “section,” etc.) Furthermore, that algorithm
assumes the existence of a total order <; over these tags such that a node with tag
t; cannot be the child of a node with tag ¢5 unless ¢; < ¢,. While these assumptions
are reasonable in a text comparison scenario, there are many domains in which they
do not hold. Here, on the other hand, here we drop these assumptions, and introduce
copy operations. This leads to an algorithm that is very different from the one in
Chapter 4, and that yields a heuristic solution in worst-case O(n?) time, where n is
the number of nodes, but most often in roughly O(n?) time.

In summary, the main contributions of this chapter are the following:

o We formulate a change detection problem for unordered trees. Our formulation
includes move and copy operations, and uses a flexible cost model for edit

operations.

o We present MH-DIFF, an efficient algorithm for computing meaningful edit-

scripts that are very close to the minimal cost edit script.

o We present experimental results showing how close to optimal the MH-DIFF so-
lutions are. We also experimentally evaluate the key parameter that determines

the running time of MH-DIFF in practice.

The rest of this chapter is organized as follows. In Section 5.2, we describe the data

model used in this chapter and present the formal definition of the change detection

5.2. MODEL AND PROBLEM DEFINITION 77

problem that we study in this chapter. Section 5.3 presents a quick overview of our
algorithm for solving this problem. In Section 5.4, we describe how the essential
features of an edit script are represented using an edge cover. We define the edge
cover representing an edit script, and present an algorithm for recovering an edit script
from such an edge cover. This correspondence between edit scripts and edge covers
allows us to compute a minimum-cost edit script by first finding the corresponding
edge cover. Section 5.5 describes how such an edge cover is found. In Section 5.6,
we present our implementation of MH-DIFF and briefly describe its performance. A
detailed performance study is presented in Chapter 9. We summarize the chapter in

Section 5.7.

5.2 Model and Problem Definition

We use rooted, labeled trees as our model for structured data. These are trees in
which each node n has a label [(n) that is chosen from an arbitrary domain £. Unlike
the ordered trees studied in Chapter 4, these trees do not specify an order among
the children of a node. Unordered trees are a natural abstraction of several kinds
of data in the Object Fxchange Model (OEM) (introduced in Chapter 3). The type
of tree (ordered or unordered) best suited to represent some OEM data depends on
the nature of the data and its domain. For example, if we are comparing OEM
representations of structured documents, which have an inherent order among their
components, an abstraction using ordered trees is natural. On the other hand, if
we are comparing OEM representations of semistructured databases (introduced in
Chapter 1) describing books in a library, an abstraction using unordered trees is
natural.

As in Chapter 4, the problem of snapshot change detection in structured data is
thus the problem of finding a way to edit the tree representation of one snapshot to
that of the other. (However, as described below, in this chapter we use a larger set of
edit operations to describe changes.) We denote a tree T by its nodes N, the parent
function p, and the labeling function [, and write T = (N, p,[). The children of a
node n € N are denoted by C(n).

78 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

We begin by defining the tree edit operations that we consider. Since there are
many ways to transform one tree to another using these edit operations, we define
a cost model for these edit operations, and then define the problem of finding a

minimum-cost edit script that transforms one tree to another.

5.2.1 Edit Operations and Edit Scripts

In the following, we will assume that an edit operation e is applied to Ty = (Ny, p1, 1),
and produces the tree Ty = (N, p2,l2). We write this as T} = Ty,. We consider the

following six edit operations:

Insertion: Intuitively, an insertion operation creates a new tree node with a given
label, and places it at a given position in the tree. The position of the new
node n in the tree is specified by giving its parent node p and a subset C' of
the children of p. The result of this operation is that n is a child of p, and
the nodes (', that were originally children of p, are now children of the newly

inserted node n.

Formally, an insertion operation is denoted by INS(n,v,p,C), where n is the
(unique) identifier of the new node, v is the label of the new node, p € Ny
is the node that is to be the parent of n, and C C C(p) is the set of nodes
that are to be the children of n. When applied to Ty = (Ny,p1,11), we get a
tree Ty = (Na,p2,ls), where Ny = Ny U {n}, p2(n) = p, pa(c) = n,Ve € C,
pa(c) = pi(c),Ve € Ny — C, ly(n) = v, and ly(m) = [1(m),Vm € Nj.

Deletion: This operation is the inverse of the insertion operation. Intuitively, del(n)
causes n to disappear from the tree; the children of n are now the children of

the (old) parent of n. The root of the tree cannot be deleted.

Formally, a deletion operation is denoted by del(n), where n € Ny and n is not
the root of Ti. When applied to Ty = (N1, p1,11), we get a tree Ty = (Na, pa, [2)
with Ny = Ny — {n}, p2(c) = p1(n),Ye € C(n), p2(c) = p1(e)Ve € Ny — C(n),
and ly(m) = [1(m),Vm € Ns.

Update: The operation upd(n,v) changes the label of the node n to v.

5.2. MODEL AND PROBLEM DEFINITION 79

Formally, an update operation applied to Ty = (Ny, p1, (1) is denoted by upd(n,v),
where n € Ny, and produces To = (Na,p2,ls), where Ny = Ny, py = py,
l3(n) = v, and ly(m) = [1(m),Ym € Ny — {n}.

Move: A moveoperation MOV(n, p) moves the subtree rooted at n to another position
in the tree. The new position is specified by giving the new parent of the node,

p. The root cannot be moved.

Formally, a move operation applied to Ty = (N1, p1, (1) is denoted by MOV(n, p),
where n,p € Ny, and p is not in the subtree rooted at n. (The last restriction is
necessary to disallow moving a subtree to a node in the same subtree, since the
resulting structure would not be a tree.) The resulting tree is Ty = (N2, pa, (2),

where Ny = Ny, [=11, p2(n) = p, and pa(c) = p1(c), Ve € Ny — {n}.

Copy: A copy operation CPY(m,p) copies the subtree rooted at n to a another
position. The new position is specified by giving the node p that is to be the

parent of the new copy. The root cannot be copied.

Formally, a copy operation applied to T1 = (Ny, p1,11) is denoted by cPY(n, p),
where n,p € Ny, and n is not the root. Let T5 = (N3, ps,(3) be a new tree
that is isomorphic to the subtree of T} rooted at n, and let n’ be the root
of T5. The result of the copy operation is the tree Ty = (N, p2,ls), where
Ny = Ny U N, Io(m) = l1(m),¥Ym € Ny, ls(m) = ls(m),Ve € Ns, po(n') = p,
p2(m) = pr(m),¥Ym € Ny, and pa(m) = ps(m),Vm € Ns.

Glue: This operation is the inverse of a copy operation. Given two nodes n; and ny
such that the subtrees rooted at ny and ng are isomorphic, GLU(ny,ns) causes
the subtree rooted at ny to disappear. (It is conceptually “united” with the
subtree rooted at ny.) The root cannot be glued. Although the GLU operation
may seem unusual, note that it is a natural choice for an edit operation given
the existence of the CPY operation. As we will see in Example 5.2.1, inverting
an edit script containing a CPY operations results in an edit script with a GLU
operation. This symmetry in the structure of edit operations is useful in the

design of our algorithms.

80 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

Formally, a glue operation applied to Ty = (N1, p1, (1) is denoted by GLU(n1,nz).
Let T3 be the subtree rooted at nq, and let Ty = (N4, ps,l4) be the subtree
rooted at ny. The precondition of this GLU operation is that T} is isomorphic
to T5 — Ty. The result of the glue operation is the tree Ty = (Nz, pa, (2), where
Ny = Ny — Ny, pa(e) = pi(c), Ve € Ny, and ly(c) = l1(¢), Ve € Na.

In addition to the above tree edit operations, one may wish to consider operations
such as a subtree delete operation that deletes all nodes in a given subtree. Similarly,
one could define a subtree merge operation that merges two or more subtrees. We do
not consider such more complex edit operations in this chapter, but note that some
of these operations, (e.g., subtree deletes) may be detected by post-processing the
output of our algorithm.

We define an edit script to be a sequence of zero or more edit operations that
can be applied in the order in which they occur in the sequence. That is, given a
tree Tp, a sequence of edit operations € = ey, €9, ..., €; 1s an edit script if there exist
trees T;, 1 < i < k such that Tj_y = T}, 1 < i < k. We say that the edit script £

transforms Ty to 1%, and write Tj £ 1.

Example 5.2.1 Consider the tree T depicted in Figure 5.1. We represent the iden-
tifier of each node by the number inside the circle representing the node. The label
of each node is depicted to the right of the node. Thus, the root of the tree 77 has an
identifier 1, and a label a. Figure 5.1 shows how T} is transformed by applying the
edit script to & = (INs(11,¢,1,{9}),MOV(2,6),cPY(7,1)) Ty. Similarly, if we start
with the tree Ty in the figure, the edit script & = (GLU(12,7),MOV(2,1), del(11))
transforms 1t back to 7;. We write T} N Ty, and T, & 1. O

When an edit script is applied to tree, as in Example 5.2.1, the node identifiers in
the initial and final state of the tree determine a mapping between the nodes in the
two states. Note however, that in an instance of a change detection problem, we are
given two trees, without any correspondence between their node identifiers. That is,
in a change detection problem involving the trees T} and T5 of Figure 5.1, the node
identifiers of T3 would be unrelated to those of T;. We will discuss this issue further

in Section 5.3.

5.2. MODEL AND PROBLEM DEFINITION 81

ins(11, g, 1, {9}).
del(11)

Figure 5.1: Edit operations on labeled trees

5.2.2 Cost Model

Given a pair of trees, there are, in general, several edit scripts that transform one tree
to the other. For example, there is the trivial edit script that deletes all the nodes of
one tree and then inserts all the nodes of the second tree. There are many other edit
scripts that, informally, do more work than seems necessary. Formally, we would like
to find an edit script that is “minimal” in the sense that it does no more work that
what is absolutely required. To this end, we define a cost model for edit operations
and edit scripts.

There are two major criteria for choosing a cost model. Firstly, the cost model
should accurately capture the domain characteristics of the data being considered.
For example, if we are comparing the schematics for two printed-circuit boards, we
may prefer an edit script that has as few inserts as possible, and instead describes
changes with moves and copies of the old components. However, if we are comparing
text documents, we may prefer to see a paragraph as a new insertion, rather than a

description of how it was assembled from bits and pieces of sentences from the old

82 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

document. Secondly, the cost model should be simple to specify, and should require
little effort from the user. For example, a cost model that requires the user to specify
dozens of parameters is not desirable by this criterion, even though it may accurately
model the domain.

Another issue is the trade-off between generality of the cost model and difficulty
in computing a minimum-cost edit script. For example, a very general cost model
would have a user-specified function to determine the cost of each edit operation,
based on the type of the edit operation, as well as the particular nodes on which it
operates. However, such a model is not amenable to the design of efficient algorithms
for computing the minimum-cost edit script, since it does not permit us to reason
about the relative costs of the possible edit operations.

With the above criteria in mind, we propose a simple cost model in which the
costs of insertion, deletion, move, copy, and glue operations are given by constants,
Cis Cdy Cm, Ce, and c¢g, respectively. Furthermore, given the symmetry between INS
and DEL, and CPY and GLU, it is reasonable to use ¢; = ¢4, and ¢, = ¢,. Since,
intuitively, a MOV operation causes a smaller change than either cPY or GLU |,
it is also reasonable to use ¢, < c¢.. Note, however, that our algorithms do not
depend on these relationships between the cost parameters. The cost of an update
operation depends on the old and new values of the label being updated; that is,
c(upd(n,v)) = ¢,(vo,v), where vy is the old label of n, and ¢, is a domain-dependent
function that returns a non-negative real number.

Finally, the cost of an edit script €, denoted by ¢(€), is defined as the sum of the
costs of the edit operations in €. That is, ¢(&) = 3 4ee ¢(d).

Problem Statement: Given two rooted, labeled trees T} and T3, find an edit script
& such that &€ transforms 77 to a tree that is isomorphic to Ty, and such that for every

edit script £ with this property, C'(£') > C(€).

5.3 Method Overview

In this section, we present an overview of algorithm MH-DIFF for computing a minimum-

cost edit script between two trees. We present our algorithm informally using a

5.3. METHOD OVERVIEW 83

Figure 5.2: The trees for the running example in Section 5.3.

running example; the details are deferred to later sections.

Consider the two trees depicted in Figure 5.2. We would like to find a minimum-
cost edit script that transforms tree T} into tree T5. The reader may observe that these
trees are isomorphic to the initial and final trees from Example 5.2.1 in Section 5.2.
Note, however, that there is no correspondence between the node identifiers of T} and
T5 in Figure 5.2. This is because in Example 5.2.1 we applied a known edit script to
a tree, transforming it to another tree in the process, whereas in this section, we are
trying to find an edit script, given two trees with no information on the relationship
between their nodes. Therefore, our first step consists of finding a correspondence
between the nodes of the two given trees.

For example, consider the node 8 in Figure 5.2. We want to find the node in T,
that corresponds to this node in 7). The dashed lines in Figure 5.2 represent some
of the possibilities. Intuitively, we can see that matching the node 8 to the node 51
does not seem like a good idea, since not only do the labels of the two nodes differ,
but the two nodes also have very different locations in their respective trees; node 8
is a leaf node, while node 51 is the root node. Similarly, we may intuitively argue
that matching node 8 to node 62 seems promising, since they are both leaf nodes and
their labels match. However, note that matching a nodes based simply on their labels
ignores the structure of the trees, and thus is not, in general, the best choice. We

make this intuitive notion of a correspondence between nodes more precise below.

84 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

010 (H)

T1 nodes

POOOEO®

complete bipartite graph

HEREH®®OEE®®OOE 0O

T2 nodes

Figure 5.3: The Induced Graph for the trees in Figure 5.2

5.3.1 The Induced Graph

Consider the complete bipartite graph B depicted in Figure 5.3, consisting of the
nodes of 17 at the top, and the nodes of T, at the bottom, plus the special nodes
& and &. (For clarity, not all edges of the graph are shown in Figure 5.3.) We call
B the induced graph of Ty and Ty. The dashed lines in Figure 5.2 correspond to the
edges of the induced graph. Intuitively, we would like to find a subset K of the edges
of B that tells us the correspondence between the nodes of T} and T,. If an edge
connects a node m € T} to a node n € T, it means that n was “derived” from m.
(For example, n may be a copy of m.) We say m is matched to n. A node matched to
the special node @ indicates that it was inserted, and a node matched to © indicates
that it was deleted. Note that this matching between nodes need not be one-to-one;
a node may be matched to more than one other nodes. (For example, referring to
Figures 5.2 and 5.3, node 6 may be matched to both node 54 and node 59.) The only
restriction is that a node be matched to at least one other node. Thus, finding the
correspondence between the nodes of two trees consists essentially of finding an edge
cover of their induced graph. (An edge cover of a graph is a subset K of the edges of
the graph such that any node in the graph is incident on at least one edge in S.)
The induced graph has a large number of edge covers (this number being expo-
nential in the number of nodes). However, we may intuitively observe that most of
these possible edge covers of B are undesirable. For example, and edge cover that
maps all nodes in T} to &, and all nodes in 75 to & seems like a bad choice, since
it corresponds to deleting all the nodes of T} and then inserting all the nodes of T5.
We will define the correspondence between an edge cover of an induced graph and an

edit script for the underlying trees formally in Section 5.4.2, where we also describe

5.3. METHOD OVERVIEW 85

how to compute an edit script corresponding to an edge cover. For now, we simply
note that, given an edge cover of the induced graph, we can compute a corresponding
edit script for the underlying trees. Hence, we would like to select an edge cover of

the induced graph that corresponds to a minimum-cost edit script.

5.3.2 Pruning the Induced Graph

We noted earlier that many of the potential edge covers of the induced graph are
undesirable because they correspond to expensive and undesirable edit scripts. In-
tuitively, we may therefore expect a substantial number of the edges of the induced
graph to be extraneous. Our next step, therefore, consists of removing (pruning) as
many of these extraneous edges as possible from the induced graph, by using some
pruning rules. The pruning rules that we use are conservative, meaning that they
remove only those edges that we can be sure are not needed by a minimum-cost edit
script. We discuss pruning rules in detail in Section 5.5.3, presenting only a simple
example here.

As an example of the action of a simple pruning rule, consider the edge e¢; = [5, 53],
representing the correspondence between nodes 5 and 53 in Figure 5.2. Suppose
that the cost cy(a,ac) of updating the label a of node 5 to the label ac of node
53 is 3 units. Furthermore, let the cost of inserting a node and deleting a node be
1 unit each. Then we can safely prune the edge [5,53] because, intuitively, given
any edge cover K; that includes the edge e;, we can generate another edge cover
that excludes ey, and that corresponds to an edit script that is at least as good as
the one corresponding to Kj. As an illustration of such pruning, consider the edge
cover Ky = Ky — {e} U{[5,5],[®,53]}. This edge cover corresponds to an edit
script that deletes the node 5, and inserts the node 53. These two operations cost a
total of 2 units, which is less than the cost of the update operation suggested by the
edge e in edge cover K. We therefore conclude that the edge [5,53] in our running
example may safely be pruned. In Section 5.5.3 we present Pruning Rule 2, which is

a generalization of this example.

86 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

Figure 5.4: The induced graph of Figure 5.3 after pruning

5.3.3 Finding an Edge Cover

By applying the pruning rules to the induced graph of our running example (Sec-
tion 5.5.3), say we obtain the pruned induced graph depicted in Figure 5.4. Although
the pruned induced graph typically has far fewer edges than the original induced
graph does, it typically still contains more edges than needed to form an edge cover.
In Section 5.4.2 we will see that we need only consider edge covers that are minimal,
that is, edge covers that are not proper supersets of another edge cover. In other
words, we would like to remove from the pruned induced graph those edges that are
not needed to cover nodes. For example, in the pruned induced graph shown in Fig-
ure 5.4, having all four of the edges [7,61], [7,63], [9,61], and [9, 63] is unnecessary; we
may remove either [7,63] and [9,61]; or [7,61] and [9,63]. However, it is not possible
to decide a priori which of these options is the better one; that is, it is not obvious
which choice would lead to an edit script of lower cost. With pruning, on the other
hand, there was no doubt that certain edges could be removed.

One way to decide among these options is to enumerate all possible minimal edge
covers of the pruned induced graph, find the edit script corresponding to each one
(using the method described later in Section 5.4.2), and to pick the one with the least
cost. However, given the exponentially large number of edge covers, this is obviously
not an efficient algorithm. To compute an optimal edge cover efficiently, we need
to be able to determine how much each edge in the edge cover contributes to the
total cost of an edit script corresponding to an edge cover containing it. That is,
we need to distribute the cost of the edit script corresponding to an edge cover over

the individual edges of the edge cover. Once we have a cost defined for each edge

5.3. METHOD OVERVIEW 87

Figure 5.5: A minimum-cost edge cover of the induced graph in Figure 5.4

in the pruned induced graph, we can find a minimum-cost edge cover using standard
techniques based on reducing the edge cover problem to a weighted matching problem
[PS82, Law76]. For example, if the edges [7,61], [7,63], [9,61], and [9, 63], have costs
0, 1.3, 0.2, and 2.4, respectively, then we generate an edge cover that includes [7,61]
and [9,61], and excludes [7,63] and [9, 61].

Note, however, that such a reduction of the edit script problem to an edge cover
(and thus, weighted matching) problem cannot be exact, given the hardness of the
edit script problem (unless P = NP, since we are considering a polynomial-time
reduction). Indeed, our method of assigning costs to edges of the induced graph
(Section 5.5.1) is only approximate, and thus the minimum-cost edge cover is not

guaranteed to produce the best solution for the edit script problem.

5.3.4 Generating the Edit Script

Returning to the pruned induced graph of our running example, let us assume that
we have gone through the process of determining the cost of each edge, and have
computed a minimum-cost edge cover according to these costs, obtaining the edge
cover depicted in Figure 5.5. Our next step consists of using this edge cover to
compute an edit script that transforms the tree T) to the tree T;. Our algorithm
CtoS (Cover-to-Script) for this purpose is described in Section 5.5. Here, we briefly
illustrate some of the ideas used by the algorithm by considering its action on an edge
in the edge cover for our running example.

Consider the edge ¢; = [7,52] of the edge cover depicted in Figure 5.4. In Fig-

ure 5.6, we depict this edge in relation to the original trees. (We also depict two

88 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

Figure 5.6: Annotating edges in the edge cover of Figure 5.5

other edges from the edge cover. The edge cover edges are shown as dashed lines in
Figure 5.6. We observe that there is one other edge in the edge cover that is inci-
dent on node 7, viz. [7,61], suggesting that the node 7 was copied either directly,
or indirectly (due to one of its ancestors being copied). Furthermore, we note that
the parent (node 4) of node 7 is matched to the parent (node 55) of node 61 (i.e.,
the edge [4,55] exists in the edge cover), while the parent of node 52 is not matched
to the parent of node 7. This matching of the parents suggests that node 61 is the
original instance of node 7, while node 52 is the copy. We therefore generate a copy
operation that copies the subtree rooted at node 7 to the location of node 52. A
convenient way of depicting this copy operation is by annotating the corresponding
edge ([7,52] in our example) with a CPY mark; this scheme allows us to talk about
edit operations without having to refer to explicit node identifiers. Edges that do not
correspond to any edit operation (e.g., [6,57] in our example) are annotated with a
NIL mark. In the sequel, we will use such edge annotations interchangeably with the
actual edit operations that they represent.

Consider next the edges [8,53] and [8,62]. Although both these edge cover edges
are incident on node 8, neither of them corresponds to a CPY operation, since the
copy 52 of node 8 is generated “for free” when node 7 is copied. Therefore, both
these edges are annotated NIL. Proceeding thusly, we annotate all the edges in the
edge cover of our running example, to obtain the annotated edge cover depicted in

Figure 5.7, which shows only the edges with non-nil annotations, for clarity. These

5.3. METHOD OVERVIEW 89

Figure 5.7: Annotated edges of the edge cover of Figure 5.5

annotations correspond to the following edit script:
(INS(g,1,{9}), MOV(2,6), cPY(7,1))

We see that this edit script is identical to the one in Example 5.2.1, which happens to
be a minimum cost edit script for our example. Of course, the above edit operations

may also be listed in the following order
(MOV(2,6), cPY(7,1),INs(g, 1,{9}))

Both edit scripts have the same final effect, and have the same cost. In general, all
edit scripts corresponding to a set of annotated edges have the same overall effect
and the same cost.

For the above example MH-DIFF produces a minimum-cost edit script, but it may
sometimes not find one with globally minimum cost. In Section 5.6 we evaluate how
often this happens and we briefly discuss how one could perform additional searching
in the neighborhood of the script found by MH-DIFF.

This concludes the overview of MH-DIFF. To summarize, the process consists
of constructing an induced graph from the input trees, pruning the induced graph,
finding a minimum-cost edge cover of the pruned induced graph, and finally, using
this edge cover to obtain an edit script. In the following sections, we describe these

phases in detail. For ease of presentation, we present these phases in a different order

90 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

than the order in which they are performed. In particular, in Section 5.4, we begin
by formally defining the correspondence between and edit script and an edge cover
of the induced graph. In that section, we also describe the method for generating
an edit script from an edge cover of the induced graph. In Section 5.5, we describe
how the cost of an edit script is distributed over the edges of the corresponding edge
cover of the induced graph. In that section, we also describe how this cost function
is approximated by deriving upper and lower bounds on the cost of an edge of the
induced graph, and how these bounds are used to prune the induced graph. Since
finding a minimum-cost edge cover for a bipartite graph with fixed edge costs is a
problem that has been previously studied in the literature [PS82, Law76], we do not
present the details in this chapter.

5.4 Edge Covers and Edit Scripts

In this section, we describe algorithm Ct0S, which generates an edit script between
two trees, given an edge cover of their induced graph. Before we can describe this
algorithm, we need to understand the relationship between an edit scripts between
two trees and edge covers of their induced graph. Therefore, we first define the edge
cover induced by an edit script. That is, we describe how, given an edit script between
two trees, we generate an edge cover of the induced graph. (Note that this process is
the reverse of the process the algorithm CtoS performs. However, a definition of this

reverse process is needed for the description of the algorithm.)

5.4.1 Edge Cover Induced by an Edit Script

In Section 5.3, we introduced the graph induced by two trees 77 and T3 as the complete
bipartite graph B = (U,V,U x V), with U = Ny U{&} and V = Ny U{&} (where
Ny and Nj are the nodes of Ty and Ty, respectively). Let € be an edit script that
transforms T} to T5; that is, T} 4 T5. We now define the edge cover K (&) induced by
E. Intuitively, we obtain K (&) as follows. Create a copy T5 of T, and introduce an

edge between each node in T and its copy in T5. Apply the edit script to T3, moving,

5.4. EDGE COVERS AND EDIT SCRIPTS 91

d a f CC @
a%\II edges [n, n+30] exist implicit|yaC

Figure 5.8: Example 5.4.1: the initial edge cover

copying, etc. the end-points of the edges with the nodes they are attached to as nodes
are moved, copied, etc. Thus, when an a node n € T3 is copied, producing node n’,
any edge [m,n] is split to produce an new edge [m,n’]. The other edit operations are
handled analogously. Furthermore, an edge between the special nodes & and & is
added initially, and removed when it is no longer needed to cover either & or &. The

following example illustrates the above ideas.

Example 5.4.1 Consider the edit script from Example 5.2.1, and the initial tree T}
from Figure 5.1. As described above, our first step consists of creating a copy 75 of
T}, and adding an edge between each node of T7 and its counterpart in T5. We also
add the special nodes & and &, along with an edge connecting them. The result of
this step is depicted in Figure 5.8. For clarity in presentation, the edges between the
nodes of T} and their counterparts in T3 are not shown in Figure 5.8; instead, we
encode these edges using the node identifiers of Ty and T;. That is, as indicated in
the figure, imagine an edge [n,n + 30],Vn = 1...10.

Our next step consists of applying the edit script from Example 5.2.1 to the tree
T5. To enable this application of the edit script for T to T3, we change the node
identifiers in the edit script from the identifiers of the nodes of T} to those of T3,
obtaining & = (INS(41,¢,31,{39}), MOV(32,36), cPY(37,31)). As a result of the
INS operation, a node with identifier 41 and label ¢ is inserted as a child of node 31,
and node 37 is made its child. In addition, we add an edge [6,41] to the induced

edge cover. Next, consider the action of the MOV operation, which moves node 32

92 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

Figure 5.9: Example 5.4.1: the final edge cover

to become a child of node 37. This operation does not add any new edges to the
edge cover. (The existing edges [2,32] and [3,33] continue to exist.) Finally, the cPY
operation creates a copy of the subtree rooted at node 36, and inserts this copy as a
child of node 31. In addition, the edges [7,42] and [8,43] are added to the edge cover.
The result is depicted in Figure 5.9, (which also omits edges [n,n 4+ 30],¥Vn =1...10
for clarity). Note that the transformed tree T5 is now isomorphic to the tree T3 in

Example 5.2.1, so that essentially, we now have an edge cover of the induced graph

of Ty and 75.

Let us now formalize the intuitive definition of the edge cover induced by an
edit script presented in the above example. Let £ be an edit script that transforms
T, to Ty; that is, T N Ty. We now define K (&), the edge cover (of the induced
graph of Ty and T5) induced by £. Let T5 be a tree that is isomorphic to Ty, with f
being the isomorphism. Thus, f : T} — T3 is a one-to-one, onto function that pre-
serves the parent-child and label relationships defining labeled trees. More precisely,
label(f(m)) = label(m), and parent(f(m)) = f(parent(m)) for all nodes m € Ty. Let
us extend f to Ty U {&} and Ty U {&} by defining f(6) = &). We will now define
how, given the edit script £, we derive a mapping ¢(&), called the mapping induced
by &, from the isomorphism f. We will see that the mapping ¢ is an onto mapping

from T} to Ty, and is thus isomorphic to an edge cover of the induced graph B.

5.4. EDGE COVERS AND EDIT SCRIPTS 93

Base case: If the edit script is empty, that is if € = (), then g = f.

Inductive case: The edit script is non-empty. Let d be the last edit operation in the
edit script &; that is, &€ = £'.d for some edit script &'. Let T, be the tree script
obtained by applying &£ to T}; that is, T} 5Ty Let ¢’ be (inductively) the mapping
induced by &’; that is ¢’ = g(&’). We have the following cases, based on the last edit

operation d. (Recall the formal definitions of the edit operations from Section 5.2.)
Case 1: d is an update operation. Then ¢g(&) = g(&’).
Case 2: d is an insert operation INS(n,{,p,C). Then g(&) = g(&") U {(FH,n)}.

Case 3: d is a delete operation del(n). If n € Ty, then g(&) = g(E') U {(n,5)}, else
9(&) = g(&).

Case 4: d is a move operation MOV(ny,ny). Then ¢(&) = g(&').

Case 5: d is a copy operation CPY(ny,ny). Let {1 be the subtree rooted at ny, and
let ¢} be the subtree isomorphic to ¢; that is created as a result of this copy

operation. Let i be the isomorphism between ¢; and ¢]. Then ¢g(&) = g(&')Uh.

Case 6: d is a glue operation GLU(ny,n3). Let ¢; be the subtree rooted at ny, and
let t5 be the subtree (isomorphic to #1) rooted at ny. (Recall that the subtree
t; disappears as a result of this glue operation, being “united” with the subtree
t5.) Let h be the isomorphism between t; and 3. Let ' = (n, g(&")(n))Vn € t;.
Then g(€) = g(E)Uh = 1.

Finally, if the & node and the © node are both mapped to more than one node, we
remove [@, ©] from the mapping. Now observe that after performing the operations
indicated above for all the edit operations in &, Tj is transformed to a tree that is
isomorphic to Ty (by the definition of &), so that the mapping ¢g(€) may be viewed
as an onto mapping between T} and 7T,. An onto mapping between the nodes of T}
and Ty is isomorphic to an edge cover of the bipartite graph induced by T} and Tb;
thus ¢g(€) defines the edge cover induced by an edit script.

94 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

5.4.2 Using Edge Covers

The goal of using an edge cover is that it should capture the essential aspects of an
edit script; that is, no important information should be lost in going from an edit
script to the edge cover induced by it. However, there are certain edit scripts for which
this property does not hold. For example, consider an edit script & that inserts a
node p as the parent of ten siblings (children of the same parent) nq,...,no, then
moves p to another location in the tree, and finally deletes p. The node p is absent
from both the initial tree and the final tree. Therefore, an edge cover of the initial
and final trees contains no record of the temporary insertion of node p. Thus, we
have lost some information in going from &, to the edge cover.

Is the fact that our edge covers cannot capture edit scripts like & a problem? On
the one hand, & could be the minimum cost edit script MH-DIFF is trying to find.
For example, say that insert, delete, and move operations all cost one unit. The cost
of & would then be the cost of one insert, plus the cost of one move, plus the cost of
one delete, for a total cost of 3. If we do not use the “bulk move trick” that & uses,
we need to move each of ny,...,nyo individually, for a cost of 10. Thus, & could be
the minimum cost edit script, and if we rule it out, then MH-DIFF would miss it.

On the other hand, scripts like & do not represent transformations that are mean-
ingful or intuitive to an end user. In other words, if a user saw &, he would not un-
derstand why node p was inserted, since it really has no function in his application.
True, the costs provided by the user are intended to describe the desirability of edit
operations, but if we abuse these numbers we can end up with “tricky” scripts like
&, that are more confusing than helpful.

Another example of a potentially unintuitive edit script is the following: Consider
an edit script & that moves a node n; to become a child of another node ny, then
makes several copies of the subtree rooted at ny (thus making copies of n; as well),
and finally deletes the original copy of ny. This edit script moves n; to a place where
it does not need to be (under ns) only to generate free copies of n;.

The cause of the unintuitive nature of the edit scripts described above is an in-

teraction between different edit operations, which gives rise to a “compound” effect.

5.4. EDGE COVERS AND EDIT SCRIPTS 95

For example, in the edit script & above, the effect of the move operation is com-
pounded because it acts on a node that was previously inserted. Similarly, in edit
script & above, the effects of the copy operations are compounded because they act
on a subtree into which a node was previously moved. Our approach is to disallow
such unintuitive compound effects by restricting the interleaving of edit operations in
an edit script. In particular, we require that edit operations be performed in a fixed
order: deletes, copies, moves, updates, glues, inserts. This structuring requirement
disallows tricks such as temporary insertion of a node, and complicated interleaving
of move, copy, and glue operations.

Unfortunately, this structuring requirement also disallows some intuitive sequences
of operations. For example, it does not allow an edit script that deletes a node
produced as a result of a CPY operation. Thus, an edit script cannot copy a subtree
containing 100 nodes if 99 of them are needed, because it would be unable to delete
the unwanted copy of the 100th node. An analogous situation exists for INS and
GLU operations. To mitigate this problem, we add a phase of deletions after copies,
called ghost deletions. During this phase, only nodes produced by copy operations
are permitted to be deleted. Furthermore, these deletions can act only on leaf nodes.
(An interior nodes may be deleted only if all all its descendants are also deleted.)
Analogously, we permit a phase of insertions, called ghost insertions, before the glue
phase. Any nodes inserted in this phase must be removed by glue operations in the
subsequent glue phase. Furthermore, nodes may be only inserted as leaves. (That is,
interior nodes must be inserted before the insertion of their descendants.)

A reasonable restriction to impose on edit scripts is the following: Edit scripts may
only copy subtrees from the original source. That is, instead of copying a subtree ¢’
that was produced by copying some other subtree ¢, we copy ¢ itself. We could express
this restriction by disallowing copies of copied subtrees. However, such a restriction
would have the following undesirable side-effect: If a subtree is copied to some node
n, then from that point on none of the ancestors of n can be copied. We therefore
rephrase our restriction as follows: When a subtree ¢ is copied, any subtree t’' it
contains that was produced by copies are ignored. That is, the copy operation acts

only on ¢t —t'. We impose a symmetrical restriction on glue operations. Finally, just

96 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

as we do not permit inserted nodes to be deleted, we disallow the gluing of nodes
produced by copies.

More precisely, we define structured edit scripts to be edit scripts with the fol-
lowing properties: (1) No node is operated on by more than one structure-changing
edit operation. (All edit operations except update are structure-changing.) (2) Edit
operations are performed in phases, and the phases are ordered as follows: deletes,
copies, moves, ghost deletes, updates, ghost inserts, glues, inserts. (3) In the ghost
deletes phase, only nodes produced by copy operations are deleted. In the ghost
inserts phase, only nodes that are later removed using glue operations are inserted.
Ghost insertions and deletions operate only on leaf nodes. (4) A node produced by
one copy operation is not copied by another. Similarly, a node that is the target of a
glue operation is not the source of another glue operation. (5) A node produced by
a copy operation is not glued.

We now describe how the above restrictions on structured edit scripts yield sim-
plifications in the mapping between edge covers and scripts. A minimal edge cover
is an edge cover that is not a proper superset of an edge cover. Minimal edge covers

have the following useful characterization:

Lemma 4 An edge cover is minimal if and only if it does not contain any path of

length three. a

Proof To see that a minimal edge cover K cannot contain a path of length three,
suppose ni, Nz, nz,ny is a path in K. That is, [n;,n;q] € K,i = 1...3. Then
K —{[n2,ns]} is an edge cover contradicting the minimality of K. Conversely, if K is
non-minimal, there is some edge [nq, ns] € K such that K’ = K —{[n2,ns]} is an edge
cover. Then K’ contains at edges [ny, nz] and [n3, ny) for some ny and ny, implying a
three-path nq,nq, n3, ny in K. a

Structured edit scripts have the following important property that allows us to

consider only minimal edge covers in the rest of the chapter.

Lemma 5 The edge cover induced by a structured edit script is a minimal edge cover

(and thus does not contain a path of length three). O

5.4. EDGE COVERS AND EDIT SCRIPTS 97

Proof Due to Lemma 4, it suffices to show that the edge cover induced by a structured
edit script does not contain a three-path. Since the induced graph is bipartite, any
three-path that is not incident on the special nodes & and &. is of the form n’, m,n, m’
such that m,m’ € T} and n,n’ € T;. Now the only edit operation that causes the
induced cover to include more than one edge incident on a node m € T} is copy.
Therefore, m, n, and n’ are acted on by some copy operation. We can similarly argue
that m, n, and m’ are acted on by some glue operation. However structured edit
scripts cannot glue a node that has been acted on by a copy operation, thus implying
no such three-path can exist in their induced edge covers. For the case of edges
incident on the @ and © nodes, we note that possibility of a three-path is avoided by
the definition of the induced edge cover because it removes the edge [P, ©] whenever
there are multiple edges incident on both ¢ and &. Thus there can be no three-path

in the edge cover induced by a structured edit script. a

5.4.3 Generating an Edit Script from an Edge Cover

We now describe how, given a minimal edge cover K of the graph induced by trees T}
and Ty, we compute a minimum-cost edit script corresponding to this edge cover. In
particular, we present algorithm CtoS, for cover-to-script. The input to the algorithm
consists of two rooted labeled trees T} and T, and and a minimal edge cover K of
their induced graph IG(Ty,T). As output, the algorithm CtoS produces an edit
script € with the following properties:

1. &€ is a valid edit script with respect to Ty. That is, the operations in £ can be
applied to Ty in order, and € is a structured edit script (see Section 5.4.2).

2. & transforms T} to a tree isomorphic to 13. That is, T} £ T5.
3. The edge cover induced by & isomorphic to K.

4. There is no edit script with the above properties that has a lower cost than

that of £. That is, if £ is an edit script satisfying properties 1-3 above, then
c(&E) > ¢(€).

98 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

We now explain the method used by CtoS, summarized by the pseudo-code in
Figures 5.10-5.20. The algorithm proceeds in phases that roughly reflect the phases
of a structured edit script. The phases are named after the kinds of edit operations
they produce. For example, the procedure phaseDel in Figure 5.10 describes the delete
phase of the algorithm, which produces delete operations. A slight amendment to this
rule is that the copy and glue phases, outlined in Figures 5.11 and 5.17 respectively,
also produce some move operations. Intuitively, these are move operations used to
take advantage of the free copies and glues described earlier.

We now describe some notation that is used by the pseudocode in Figures 5.10—
5.20. As explained in Section 5.3, it is convenient to represent the edit operations in
an edit script using an annotation on the corresponding edge of the edge cover. In the
pseudo-code, these annotations are stored in sets P,, where n is the name of the phase.
For example, Pdel is the set of annotations representing delete operations. These sets
are initialized to the empty set. Annotations are generated using a function Annot,
which takes as argument details of the corresponding edit operation; each annotation
thus generated has a unique identifier The variable annNil is initialized to a special
annotation representing the null edit operation.

We refer to edges belonging to the given edge cover K as K-edges. We say two
nodes are matched to each other if there is a K-edge connecting them. In order to
simplify the pseudo-code, if K contains the special edge [P, ©], this edge is removed
from K during initialization. For each tree node m, we keep track of the number
of “free images of m” (i.e., copies of m obtained as a result of one of its ancestors
being copied) in the set m.F. For each such free image, m.F' contains the annotation
representing the edit operation that is responsible for the free image. Initially, m.F
is the singleton set {annNil} representing the original image of the node m in tree
Ti.)

We use F(x) do denote the set of K-edges that are incident on the node x. We
use the function nnda(m) to denote the nearest proper ancestor m’ of m such that
[m',©] € K. Intuitively, this function returns the nearest non-deleted ancestor of a
node in Ti. Analogously, we use the function nnia(n) to denote the nearest proper

ancestor n’ of n such that [®,n’] € K. Intuitively, this function returns the nearest

5.4. EDGE COVERS AND EDIT SCRIPTS 99

procedure phaseDel(tree T1, tree T2, cover K) {
for each edge e = [m, 8] € K do {
annl < Annot(del(m));
e.respAnn < annNil;
Pdel « Pdel U { annl };
partner < partner — { (m, ©) };
m.F = §;

Figure 5.10: CtoS: generating delete operations

non-inserted ancestor of a node in Ty. We also use the function nnid(n) to denote the
set of nearest non-inserted descendants of a node n in T3. More precisely, we have

the following, where p is the parent function for tree T5:
nnid(n) = {n |35 € ZT :p'(ny) =nAVi=1,...,5—1:[@,p'(n)] € K}

We define a relation partner between the nodes of T} = Ty U {&} and T)f =
T, U{6}. Initially, partner is the relation defined by the given edge cover K, less the
special edge [®,©]. As the algorithm proceeds, the partner relation is modified in
such a way that when the algorithm terminates, partner is an isomorphism between
the tree Ty obtained by applying the generated edit script to a working tree 75 that is
isomorphic to Ty, and Ty. We use partners(m) to denote the set of nodes n such that
(m,n) € partner. The pseudo-code for CtoS uses a function pick Partner(m) to in-
tuitively denote the unique, final partner of a node m. More precisely, if partners(m)
is a singleton set {n}, pickPartner returns n; otherwise pickPartner returns a place-
holder string “pp(m)” that will be replaced by the partner of m (guaranteed to be
unique) when the algorithm terminates. We generalize pickPartner to a set M of
nodes in Tj as follows: pickPartner(M) = {pickPartner(m) | m € M}.

The first phase of the algorithm is the delete phase (Figure 5.10), in which we
generate an edit operation DEL(m) for each node m that is matched to the special

node &. We claim that any edit script that matches m to © must contain this del

100 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

procedure phaseCpy(tree T1, tree T2, cover K) {
for each node m € T'1, in pre-order, do {
(| 2(m)| > 1) {
for each edge el = [m, nl] € E(m) such that
[nnda(m), nnia(nl)] € K, do {

e2 « [nnda(m), nnia(nl)];
ann? ¢ e2.respAnn;
if(ann2 € m.F) doCNil(el, €2);
else doMovOrCpy(el);

}

for each edge el = [m, nl] € E(m) such that
[nnda(m), nnia(nl)] ¢ K, do {
doMovOrCpy(el);
}

}

else if([m, 0] € K) {
let E(m) = { el };
el.respAnn < annNil,;
m.F « m.F — { annNil };

}
if(fm, o] & K) {
for each annotation ann2 € m.F do {
annl < Annot(del(m.ann2));
Pgdel « Pgdel U { annl } — { ann2 };

Figure 5.11: CtoS: generating copy-related operations

operation, due to the following observations: Firstly, any node matched to & is absent
from the final tree. Furthermore, there are only two ways in which a node can be
made to disappear: either it is deleted explicitly, or it is glued to some other node.
(We use here the fact that structured edit scripts cannot first glue a node to another
and then delete the second node.) However, the second method will not result in m
matching & in the edge cover induced by the script; instead, m will match the node
to which it was glued. Therefore we can safely produce a DEL(m) operation for all

such nodes m.

5.4. EDGE COVERS AND EDIT SCRIPTS 101

procedure doCNil(edge el, edge €2) {

let el = [m, nl];
ann? < e2.respAnn;
m.F + —= { ann2 };

el.respAnn + ann2;
if(ann2 # annNil) {

partner + partner —= { (m, nl) } + { (m.ann2, nl) };
}

Figure 5.12: CtoS: bookkeeping for free copies

The next phase of the algorithm, summarized in Figure 5.11, generates copy op-
erations and move operations used to correctly position copies. In particular, it looks
for sets two or more of K-edges incident on a common node m € T;. Note that from
Lemma 5, and the observation that minimal edge covers cannot contain any path of
length three, it follows that if ¢ = [m, n] is such an edge, there can be no other K-edge
incident on n. We call such a set of edges a flower with base m. This set of edges
represents copies of the node m. However, as we have seen in Section 7.1.2, some of
the copies of m could be produced as a result of some ancestor of m being copied. We
call such copies free copies of m. Our algorithm considers flowers in preorder of the
base nodes. As copy operations are generated for some node m, we also keep track
of the number of free copies of nodes in the copied subtree. Knowing the number
of available free copies allows us to determine exactly which flowers correspond to
explicit copy operations and which correspond to implicit (free) copies. Furthermore,
any unused free copies are nodes that need to be deleted after the copy operation is
performed. These are the ghost deletions we introduced above. Finally, note that a
free copy may need to be moved to its final location; this situation is easily detected
by checking whether the parents of the affected nodes match.

The update phase of the algorithm is straightforward, and produces an update
operation for each edge [m,n] such that the labels of m and n differ. Since we are

considering only structured edit scripts, there is no way to avoid such an update; in

102 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

procedure doMovOrCpy(edge el) {

let el = [m, nl];

if(|m.F| > 1) {
ann2 + pick(m.F);
m.F + m.F — { ann2 };
annl < Annot(mov(m.ann2, pickPartner(nnia(nl))));
el.respAnn + ann2;
Pmov « + { annl };
if(ann2 # annNil) {

partner < partner —= { (m, nl) } U { (m.ann2, nl) };

}

}

else {
annl + Annot(cpy(m, pickPartner(nnia(nl))));
el.respAnn + annl;
Pcpy < Pepy U { annl };
partner + partner — { (m, nl) } U { (m.ann2, nl) };
updFSets(annl, m);

}

Figure 5.13: CtoS: finding spare images for copy

procedure updFSets(Annot annl, node m) {
for each child ¢ of m do updFSetsAux(annl, c);
}

procedure updFSetsAux(Annot annl, node m) {

if(fm,©] ¢ K and [®,n] € K) m.F « m.F U { annl };
for each child ¢ of m do updFSetsAux(annl, c);

Figure 5.14: CtoS: bookkeeping for free images

5.4. EDGE COVERS AND EDIT SCRIPTS 103

procedure phaseMov(tree T1, tree T2, cover K) {
for each edge e = [m, n] € K such that

[B(m)] = |E(n)| = 1do {

if([anda(m), nnia(n)] € K) ; else {
annl < Annot(mov(m, pickPartner(nnia(n)))));
Pmov « U { annl };

}

e.respAnn < annNil;

m.F < m.F — { annNil };

n.F < mF — { annNil };

Figure 5.15: CtoS: generating move operations

procedure phaseUpd(tree T1, tree T2, cover K) {
for each pair (m, n) € partners such that
m#®, n#6,and [(m) # l(n) do {
annl < Annot(upd(m, I(n)));
Pupd « U { annl };

Figure 5.16: CtoS: generating update operations

104 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

particular, tricks like updating a node and then copying it are disallowed.

The glue phase of the algorithm, summarized by the pseudo-code in Figures 5.17,
5.18, and 5.19, is analogous to the copy phase. A notable difference is the use of
a function correspPartner(n,a) to determine the node m in Ty that is matched by
a K-edge to n, and that is glued by the annotation a. We can compute this node
m using the bookkeeping relation gr maintained by the glue phase. More precisely,
as we argue below, the set P = {z | ¢r(x,n,a) is guaranteed to be the singleton
{m,n,a}. Similarly, the insert phase, summarized in Figure 5.20, is analogous to
the delete phase. Intuitively, the only major difference between these phases and the
earlier copy and delete phases is that these phases perform actions from 73’s point of
view instead of TY’s; it is thus useful to consider them “mirror images” of the earlier
phases.

Given the sets of annotations produced by algorithm CtoS, the final edit script is
produced by generating the edit operation suggested by each annotation, and then
ordering these operations in phases as required by our definition of structured edit
scripts earlier. Within each phase, edit operations are ordered as follows: Delete,
ghost delete, move, and glue operations are ordered using any bottom-up order for
Ti. Insert, ghost insert, and copy operations are ordered using any top-down order
for T,. Update operations are ordered arbitrarily.

Discussion: In the rest of this section, we argue that the edge cover produced by
algorithm CtoS satisfies the four properties listed earlier.

The edge cover induced by an edit script £ is defined operationally as follows:
We start with 7} and a working tree T3 isomorphic to Ty. The initial working set
of edges K, contains edges corresponding to the isomorphism Iy between T} and T5.
We apply the edit script € to T5, resulting in a sequence of trees Ty, T, ..., Ty. When
a node is inserted in the (regular) inserts phase, we match it to @; when a node is
inserted in the ghost inserts phase, we do not add any edges to K,,. When a node is
deleted in the (regular) deletes phase, we redirect any K ,-edges incident on it to the
special node &; when a node is deleted in the ghost deletes phase, we simply remove
any K ,-edges incident on it. When a node is updated or a subtree is moved, there

is no change in in K,,. When a subtree is copied, we add to K, an edge from each

5.4. EDGE COVERS AND EDIT SCRIPTS 105

procedure phaseGlu(tree T1, tree T2, cover K) {
for each node n € T2, in pre-order, do {
it 20| > 1) {
for each edge el = [m1, n] € E(n) such that
[nnda(m1), nnia(n)] € K, do {
e2 « [nnda(ml), nnia(n)];
ann? ¢ e2.respAnn;
if(ann2 € n.F) doGNil(el, e2);
else doMovOrGlu(el);
}
for each edge el = [m1, n] € E(n) such that
[nnda(m1), nnia(n)] ¢ K, do {
doMovOrGlu(el);
}

}

else if([B,n] ¢ K) {
let E(n) = el;
el.respAnn < annNil,;
n.F « n.F — { annNil };

}
if([®,n] ¢ K) {
for each annotation ann2 € n.F do {
annl < Annot(ins(n*,l(n), correspPartner(p(n),ann2)));
Pgins < Pgins U { annl };
gr < gr U { (n* n, ann2) };

Figure 5.17: CtoS: generating glue-related operations

106 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

procedure doGNil(edge el, edge €2) {
let el = [m1, n];
ann? < e2.respAnn;
n.F < nF — { ann2 };
el.respAnn + ann2;
gr < gr U { (ml, n, el.respAnn) };
if(ann2 # annNil) {
partner + partner — { (ml, n) };
}

Figure 5.18: CtoS: bookkeeping for free glues

procedure doMovOrGlu(edge el) {

let el = [m1, n];

if(|n.F| > 1) {
ann2 + pick(n.F);
n.F < nF — { ann2 };
annl < Annot(mov(ml, correspPartner(nnia(n), ann2)));
Pmov < Pmov U { annl };
el.respAnn + ann2;
gr < U { (ml, n, el.respAnn) };
if(ann2 # annNil) {

partner < partner — { (ml, n) };

}

}

else {
annl < Annot(glu(ml, pickPartner(n)));
Pglu « Pglu U { annl };
el.respAnn + annl;
partner + partner — { (ml, n) };
updFSets(annl, n);

}

Figure 5.19: CtoS: finding spare images for glue

5.4. EDGE COVERS AND EDIT SCRIPTS 107

procedure phaselns(tree T1, tree T2, cover K) {
for each edge e = [®,n] € K do {
annl < Annot(ins(n*, I(n), pickPartner(p(n)), pickPartner(nnid(n))));
e.respAnn < annNil;
Pins « Pins U { annl };
partner < partner — { (¢, n) } U { (n*, n) };
n.F « 0;

Figure 5.20: CtoS: generating insert operations

newly created node to the partner of its original copy. When a subtree is glued, we
redirect edges incident on each node in the subtree that disappears (the “source” of
the glue operation) to that node’s counterpart in the subtree that remains (the target
of the glue operation). Finally, if either of & and & is exposed (not covered by the
edges in K,), we add the edge [, 6] to K. The final set of edges thus obtained is
an edge cover of the induced graph of Ty and Ty, IG(T1,T;). We call this set of edges
the edge cover induced by £, and denote it by K; = K(€).

An edge cover K is minimal if no proper subset of K is an edge cover. It is
easy to verify that a minimal edge cover does not contain any path of length three.
We further require that a minimal edge cover of [G/(T},T) not contain any paths of
length two incident on either of the special nodes & and &.

In the following discussion, we use the following notational convention: A primed
node m! represents a node in some working tree Tj,j € [3, f] such that if m! € T5
then there is a node m; € T such that [;(m;,m’). (Recall that [is the isomorphism
between Ty and T3. Note that if m! ¢ T;, there is no requirement regarding the
existence of a node m; € T}.)

Property 1: Valid Structured Edit Script: We now argue that the edit script
& produced by the algorithm is a valid structured edit script for the tree 77. In
particular, we show that each edit operation is valid, and that the edit script is

structured. In the following discussion of edit operations, we use T' to refer to the

108 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

working tree at the time an edit operation is applied. That is, for an edit operation
d € £, T is the tree obtained by applying & to T3, where T3 is a tree isomorphic to
Ty, and &' is the prefix of £ up to, and not including, d.

Consider first any delete operation produced by the algorithm in procedure
phaseDel. This operation is of the form del(m’). (The pseudocode in Figure 5.10
assumes that the edit script operates on the tree T}, whereas we argue based on its
operation on the isomorphic tree T3; we thus replace each reference to m € T by
m’ € T5.) In order to be valid, the identifier m’ must refer to a node that exists in 7.
Clearly, since m exists in T, and since T3 is isomorphic to T, m’ exists in T5. Only
delete and glue operations make nodes disappear. Glue operations are performed
after deletes; therefore m’ cannot disappear due to a glue operation. Furthermore,
m’ cannot disappear due to some other delete operation because phaseDel considers
each node in T} at most once. Therefore, the delete operation is valid.

Next, consider any copy operation produced by the algorithm in procedure
phaseCpy. This operation is of the form epy(m/, pick Partner(nnia(ny))). In or-
der to be valid, m’ and pickPartner(nnia(ny)) must refer to nodes that exist in
T. By the reasoning used for delete operations above, we can argue that m’ ex-
ists in T'. We assume, without loss of generality, that K matches the root of T}
uniquely to the root of Ty, and vice versa. Therefore, nnia(n;) exists in Ty. Let
pick Partner(nnia(ny)) = m,. By the definition of nnia(ny), m/, cannot be an in-
serted node. If my € T, we know m), € T' because no node that has a partner in 75
is ever deleted by phaseDel, and because there are no glue operations before copy
operations. Suppose m/, is produced as a result of a copy operation. By the top-down
ordering of the copy phase (procedure orderOps), m/, is produced before this copy
operation is applied. Furthermore, m/, cannot subsequently be deleted (since there
are no deletes between copy operations) or be glued (since glue operations are per-
formed after copy operations) before this copy operation. Therefore m} exists in T
and this copy operation is valid.

Now consider any move operation produced by the algorithm in procedure
doMovOrCpy. This operation is of the form mov(m'.ann2, pick Partner(nnia(nl))).

As above, we can argue that pickPartner(nnia(nl))) exists in T'. Note that ann2

5.4. EDGE COVERS AND EDIT SCRIPTS 109

is obtained from m.[". If ann2 is the null annotation annNil, m'.ann2 refers to the
original node m’; we can argue, as above, that m’ is not removed by any previous
edit operation. If ann2 is not null, we note that the only time an annotation is added
to m.F is when one of the ancestors of m’ is marked to be copied, thus implying
an indirect copy of m’; m’.ann2 denotes this copy. Now, m’.ann2 cannot be glued
before this move operation because all glue operations are performed after all move
and copy operations. Furthermore, m’.ann2 cannot be deleted because ghost deletes
are performed after moves. Thus, m’.ann2 exists in T', and this move operation is
valid.

Using arguments similar to those above, it is easy to establish that the ghost delete
operations produced by phaseGlu, the update operations produced by phaseUpd, and
the move operations produced by phaseMov are valid.

Now consider any glue operation produced by the algorithm in procedure
doMovOrGlu. This operation is of the form glu(m/, pick Partner(nnia(n))). As above,
we can argue that m} and m} = pick Partner(nnia(n))) exist in T'. In order for this
glue operation to be valid, the subtree st(m}) rooted at m} must be isomorphic to
the subtree st(m}) rooted at m); we now demonstrate this isomorphism.

In particular, we show that st(m/) and st(m}) are both isomorphic to a specially
constructed tree, nist(n). Intuitively, nist(n) is obtained from st(n) by “short cir-
cuiting” any nodes in st(n) that are matched to . More formally we define the
nodes, parent function, and label function of nist(n) as follows: nist(n) = (N',p',l')
where N’ = {n’ € st(n)|[®,n] € K}, and Vn' € nist(n), p'(n') = nnia(n’) and
I'(n') =1(n). Let T, be the working tree just before the glue phase, and let p, be its
parent function.

Consider the edge ¢; = [my,n]; let e;.respAnn = a. Consider the relation gr
constructed in phaseGlu. It is easy to observe that for each node y € nist(n) there is
exactly one node & € st(m}) such that (x,n,«) € gr. We therefore define a function
g @ nist(n) — st(m]) as follows: ¢(y) = « where (x,y,a) € gr. We know that
pg(m?) = nnda(m;)" for each m, € T,, and p'(y) = nnia(y) for all y € Ty. Therefore,

it is easy to see that ¢ preserves the parent and label functions.

110 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

Let us now show that ¢ is a one-to-one function. Consider a node y € nist(n).
If g(y) is an inserted node y*, clearly y* is not referenced by g¢r again, and thus
y* % gy') for y' # y. If g(y) is a node m} such that [m;,n] € K, note that |E(n)| > 1
implies |E(m;)| = 1 (due to minimality of K'), so that there can be no other edge in K
incident on m;, and therefore m; cannot be ¢g(y’) for any ¥’ # y. Thus ¢ is a one-to-one
function from nist(n) to st(m}) that preserves the parent and label functions.

Let us now show that ¢ maps nist(n) onto st(mj}); that is, we show that for each
x € st(m)), there is a y € nist(n) such that ¢g(y) = «. If x is an inserted node, it
must be ghost inserted, since regular insertions are performed after the glue phase.
Thus (x,y,) is is added to gr for some y and o when z is inserted, and we have
g(y) = «. If x is produced by a copy, « will be skipped when this glue operation is
performed due to detectGluSkips. If = is not produced by an insertion or a copy
operation, then @ = mj such that [mgs, ns] € K for some nz € Ty. It is easy to see that
[pg(m5), p'(ns)] € K. Since we know mf € st(m}) and [my,n] is the only edge in K
that is incident on m7, it follows that ns € nist(n), implying that (z,n,a’) is added
to gr when node ns is handled by phaseGlu. We thus have g(ns) = x, showing that
g is onto. We have thus shown that ¢ is a one-to-one, onto function from nist(n) to
st(m}) that preserves the parent and label functions; therefore st(m}) is isomorphic
to nist(n). We can argue analogously that st(mf) is also isomorphic to nist(n), so
that st(m/) and st(m)) are isomorphic, and the glue operation is valid.

Using an argument analogous to that used for phaseMovOrCpy, we can show that
the move operations in doMovorGlu are valid. Now consider an insert operation pro-
duced by phaseIns. This operation is of the form ins(n*,l(n), pick Partner(p(n)),
pick Partner(nnid(n))). Trivially, we avoid using existing identifiers for the newly cre-
ated nodes as n*, and the label [(n) is valid. Let pickPartner(p(n)) = mj. If m} is not
an inserted node, we can argue, as we have done while discussing other edit operations,
that m} € T. If m{ is an inserted node, we note that insert operations are performed in
a top-down T3 order, so that m/ is inserted before this insert operation. Thus, m| € T
in both cases. We can argue as before that each node x € pick Partner(nnid(n)) exists
in T'. The only remaining condition for validity of this insert operation is that in 7',

p(x) = m] for all @ € pickPartner(nnid(n)). In the discussion of Property 2, we will

5.4. EDGE COVERS AND EDIT SCRIPTS 111

show that for m € Ty, n € T, such that [m,n] € K, we have partner(p;(m),nnia(n)),
where p; is the parent function of the tree T} just before the insert phase. Therefore,
in T; we have p;(x) = pickPartner(nnia(n)) for all @ € pick Partner(nnid(n)). Now
if nnia(n) = p(n), we have m} = pickPartner(nnia(n)) giving the required result
p(x) = mi. If nnia(n) # p(n), the insertion of nodes corresponding to nodes between
nnia(n) an n proceeds in a top-down manner, and each inserted node has all nodes
in pick Partner(nnid(n)) as its children. Thus, when n* is inserted, p(x) = m{. Thus
this insert operation is valid. The validity of insert operations produced in phaseGIns
follows by a similar argument.

We have shown above that each edit operation produced by the algorithm is valid.
We now show that the resulting edit script is a structured edit script. The procedure
orderOps ensures that the edit operations are performed in the order required of
structured scripts. All the insert operations in Pgins produced by phaseGlu insert
leaf nodes since the last argument (set of children) is (). It is easy to verify that any
node deleted in Pgdel is a leaf node because if any of its original children are not
deleted, then they are moved to another location before the delete operation. The
top-down by T, ordering of copy operations, and procedure detectCpySkips ensure
that a copied subtree is not further copied; similarly, glued subtrees are not subjected
to further glue operations. Furthermore, no node produced by by a copy operation
is ever glued because of detectCpySkips and detectGluSkips. Therefore, the edit
script generated by the algorithm is a valid structured edit script.

Property 2: Transformation 7} LN Ty: We now show that the edit script &
produced by the algorithm transforms T3 (a tree isomorphic to Ti) to a tree T}
that is isomorphic to T5. In particular, we show that the partner relation is an
isomorphism between Ty and T;. We begin by showing that pariner is a one-to-one
relation between Ty and T5. First, observe that the algorithm never adds a partner to
a node that already has one or more partners; similarly, the algorithm never removes
a partner for a node that has exactly one partner without also adding another partner
for it. Thus, once a node has exactly one partner at some stage in the edit script,
it will continue to have exactly one partner for the rest of the script. In particular,

this fact implies that nodes in T3 that have exactly one partner, also have exactly one

112 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

partner in Ty. A similar argument holds for nodes in 7,. Consider a node m’ € Tj
such that [m, 5] € K; m' is deleted and is thus absent from T}. Now consider a node
n € Ty such that [®,n] € K; for such a node n, the procedure phaselIns produces an
insert operation to create a node n* which then becomes the sole partner of n.

Now consider a node m' in T3 that originally has multiple partners. In pro-
cedure phaseCpy, all of m”’s partners except those connected to m via an edge
with respAnn = annNil are removed. Observe further that there is always exactly
one edge with this property incident on m (because an edge [m,nl] is assigned a
respAnn of annNil either because it is the only edge incident on m, or because
the edge [nnda(m),nnia(nl)] has respAnn = annNil). Therefore it follows that all
but one partners of m’ are removed by procedure phaseCpy. An analogous argu-
ment shows that all but one partners of a node n in T, that originally has multi-
ple partners are removed by procedure phaseGlu. (In this case, we initially have
partner(m;,n)V[im;,n] € FE(n). In phaseGlu, (m;,n) is removed from partner for
all e, = [m;,n] € F(n) except when ei.respAnn = annNil. As before, we argue
that there is exactly one edge in E(n) with this property; say that edge is [ma,n].
Then after the glue phase, we have partner(n) = ms.) Finally, note that the partner
relation is initially complete (that is, every node in Ty U T3 has at least one partner),
and further, whenever new nodes are added, they are assigned a partner. Therefore,
the partner relation between the final tree T; and the tree T} is also complete. Thus
we have shown that partner is a one-to-one and complete relation between 7T'; and
Ts.

We now show that the partner relation preserves the parent function; that is,
ps(partner(n)) = partner(p(n)) for all nodes n € Ty, where p; is the parent function
of Ty. First, note the following property, which is easily verified from the actions of
the algorithm: If [m,n] € K, m € Ty, n € Ty, and m' € T}, then partner(m’,n)
when the algorithm terminates. (Recall that m’ € T3 is a node such that [;(m,m’)
where [; is the isomorphism between Ty and T5.) Note also that the only three ways
of changing the parent of an existing node are (1) moving the node, (2) deleting its

parent, and (3) inserting a node as its parent.

5.4. EDGE COVERS AND EDIT SCRIPTS 113

Case 1: [®,n] € K: In this case, procedure phaseIns changes the partner of n from
@ to m’, where m’ is a newly created node. We see that the parent of this node is the
(final) partner of the node p(n); that is, partner(n) = m’ and p;(m’) = partner(p(n))
as required.

Case 2: dmy : [my,n] € K,my # @: Let T; denote the working tree immediately
before the insert phase, and let p; be the parent function for T;. In each of the three
sub-cases below, we show below that Im}, : partner(mb, n)Apartner(p;(m}), nnia(n)).
Then, if p(n) = nnia(n), we have p;(m}) = p;(m}), which gives us the required
result. Otherwise, [@,p(n)] € K, so that phaseIns produces an insert operation
creating a node m} such that partner(mj, p(n)). Since n € nnid(y) for all y between
p(n) and nnia(n) (inclusive), partner(n) (i.e., m} is made a child of mj, giving
p(my) = partner(p(n)) as required. In the following, assume for now that nnda(m,)’
is not glued (directly or indirectly) implying that if m/ is not moved, deleted, or
glued, then p;(m}) = nnda(m,)’. (We will do away with this assumption later.)
Case 2.1: |E(my)| = |E(n)| = 1: Consider the two possibilities in procedure phaseMov.
If my is moved, its new parent is the final partner of nnia(n); it is easy to ver-
ify that the parent just before the insert phase, p;(my), is also the final partner of
nnia(n), giving partner(p;(my),nnia(n)) as required. If my is not moved, we know
[nnda(my), nnia(n)] € K, implying partner(nnda(m,)’,nnia(n)) (due to R1). Now
since all nodes between m/| and nnda(m;)" are deleted due to phaseDel, we have
pi(m}) = nnda(my)’. Thus we have the required partner(p;(m}), nnia(n)).

Case 2.2: |E(mq)| > 1,|E(n)| = 1: In this case, (m},n) (for some node mY) is added
to the partner relation in either (1) procedure doCNil or (2) procedure doMovOrCpy.
In scenario (1), [nnda(m),nnia(n)] € K which, since nnda(my) = p;(m}), gives
partner(p;(mf),nnia(n)) as needed. In scenario (2), m] is either moved to, or created
by a copy at, pick Partner(nnia(n)); thus partner(p;(m}),nnia(n)) as needed.

Case 2.3: |E(mq)| = 1,|E(n)| > 1: After the glue phase, partner(n) = ms, where
[m2, n] is the unique edge in E(n) with respAnn = annNil. We note that if phaseGlu
invokes doGNil, [nnda(m),nnia(n)] € K, implying partner(nnda(my)’,nnia(n)),
which gives partner(p;(m}),nnia(n)) (using p;(m}) = nnda(my)’). If phaseGlu in-

vokes doMov0rGlu, p;(m}) = correspPartner(nnia(n),annNil) = partner(nnia(n));

114 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

Thus partner(p;(mb),nnia(n)) in this case too.

Now let us return to our assumption that nnda(my)" is not glued and show that it
is not necessary for our argument. If nnda(my)" disappears due to a glue operation,
we know that in the subtree that is the target of the glue operation, there is a node
mY such that st(nnda(m,)’) is isomorphic to st(m%). Therefore st(m}) contains a
node m/ such that p(m}) = mj. Furthermore, since st(m}) is the target of the glue
operation, partner(mf,n), and partner(mb,nnia(n)); thus mj and m/ can replace
nnda(my)" and m/ (respectively) in the above argument.

The partner relation also preserves the label function; that is, [(partner(m)) =

[(m) for all nodes m € Ty U Ty, This fact follows easily from the action of procedure
phaseUpd. We have thus demonstrated a relation partner between Ty and T that is
one-to-one and complete, and that preserves the parent and label functions; that is,
partner is the required isomorphism between 7Ty and T5.
Property 3: Induced Cover: We now show that the edge cover K; = K(&) (of the
Induced Graph of Ty and T}) induced by the edit script £ produced by the algorithm
is isomorphic to the given edge cover K (of the Induced Graph of Ty and T3). We
first show that for each edge ¢ = [my,n] € K (m; € Tjf, ny € T5), there exists a
corresponding edge €' = [my, partner(ny)] € Ky such that partner(ny) € Ty, where
we define partner(®, @) and partner(S,) for notational convenience.

The edge e; = [5,5] is a special case: It is easy to see that if K; and K are
isomorphic ignoring e,, then they are also isomorphic considering e;. If ny = &
and m; # @, the node m/ is deleted by &, due to procedure phaseDel. Therefore,
[m1, 8] € Ky, giving [mq, partner(ny)] € Ky (using partner(6) =). If m; = & and
n1 # &, a node m/ is inserted by € due to procedure phaseIns. Therefore, [6,m]] €
K. Since phaselns also ensures partner(mf,ny), we have [mq, partner(n,)] € K; as
needed. Given the above, in the rest of this discussion of Property 3 we assume that
my # @& and ny # 6.

If |E(my)| = |E(ny)| = 1, we have partner(m/,ny) due to procedure phaseMov.
We know that [my,m}] € Ks. If [my,m]] € Ky, we have the required result. If not,
it must be the case that m/ disappears at some stage in the edit script. A node can

disappear in only two ways: Either it is deleted or it is glued. Since K is minimal, m,

5.4. EDGE COVERS AND EDIT SCRIPTS 115

is not matched to &; therefore phaseDel does not generate a delete operation for m/.
Furthermore, phaseCpy deletes only nodes produced as a result of a copy operation,
and therefore cannot delete m}. In phaseGlu glue operations are produced only for
edges with |E(n)| > 1, which excludes m/ from being glued directly. Suppose m] is
glued indirectly due to a glue operation acting on one of its ancestors. If this case,
the edge [my, m}] gets transferred to [mq, m}], where m) is the node corresponding
to m} in the subtree that is the target of the glue operation; furthermore, we have
m!, = partner(ny), so that m} effectively takes the place of m] in our argument.
Thus, [my, partner(ny)] € Ky as needed.

If |[E(m1)] > 1 and |F(n1)| = 1, partner(ny) is assigned some node mf in
phaseCpy. The node m/ is obtained from the pool of copies of m/, as accounted
for in the set m.F. (The node m/, may be either the original m}, or a copy of m]
produced by a copy operation acting on m/ or one of its ancestors.) Since a copy of a
node receives copies of all edges incident on the original, [my, m}] € K3, and no node
that is removed from m.F is ever deleted or glued, it follows that [my,m}] € K.
Since m}, = partner(ny), we have [mq, partner(ny)] € K; as required.

If |[F(m1)] =1 and |E(ny)| > 1, phaseGlu sets partner(n;) to the node m’ where
[ms,n1] is the unique (see the discussion of Property 2) edge incident on n; with
respAnn = annNil, which implies that m} is never the source of a glue operation.
Furthermore, since there are no deletes after glues, mj € Ty giving [mq,mj] € K’ as
needed.

Thus, we have shown that for every edge in K, there is a corresponding edge in
K. We can argue in the reverse direction in an analogous manner; that is, we can
show that for every edge [mq,m}] € Ky, there is an edge [my, partner(m))] € K.
Thus we conclude that A" and K are isomorphic.

Property 4: Minimum Cost: We now show that there can be no edit script with
Properties 1-3 above that costs less than the edit script € produced by our algorithm.
Let & be any edit script that satisfies Properties 1-3. From the definition of an
induced edge cover, it follows that & must produce an insert operation for each edge
[®,n1] € K; similarly, it must produce a delete operation for each edge [m, 0] € K.

Therefore, £ cannot have any fewer insert or delete operations than €. Furthermore

116 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

since the deletion of a node m/, present in the initial tree T3 produces an edge [m2, O]
in the induced script, £ cannot delete any nodes that are present in the original tree
other nodes m! such that [m;,&] € K. Similarly, since the insertion of a node m}
that remains in the final tree T results in an edge [, m%] in the induced cover, &
cannot insert any nodes that remain in the final tree other than those matched to
some node ny € Ty such that [®,ns] € K. (Thus, the only insert operations that &£
may have that are not in £ are ghost inserts; similarly the only delete operations that
&' may have that are not in € are ghost deletes.) Let I, be the isomorphism between
T: = &(T3) and T.

Let us now consider the copy operations produced by the algorithm. From the
definition of the edge cover induced by an edit script, and from the fact that K (&)
is isomorphic to K, we have the following: If E(m;) = {e;}f_, where ¢; = [my,n],
then & must copy m) (directly or indirectly) at least & — 1 times. Since £ performs
copy operations before any move operations, the only way an indirect copy of m}
can be made is by copying a node m) such that my is an ancestor of my in Tj.
Structured edit scripts cannot delete or glue a node that is either the source of, or is
produced by, a direct copy operation. Therefore, an edit script cannot make unneeded
copies of a node for the purpose of creating copies of nodes in its subtree since
the surplus copies cannot be removed. Therefore, if m] is a node that is indirectly
copied 7 times, then there is some my € 17 such that ms is an ancestor of m; and
|E(m2)| = 7+ 1. Thus, the number of times a node m} is copied indirectly is
ie(mfy) = max{|E(x)] — 1 : anc(x,m1)}. It is easy to see that the algorithm counts
exactly te(m}) + 1 using the set my.F'; that is, ic(m)) = |mq1.F| — 1. Therefore, &
must produce all the copy operations produced by the algorithm in phaseCpy.

Let € be an edit script that transforms 75 to Ty. Let I3 be the isomorphism
between Ty and T, and let [5 be the isomorphism between Ty and Ts. Let copied(z, y)
denote that the node y is produced by copying the node x (directly or indirectly).
By considering the effect of each edit operation in an edit script on its induced edge
cover, we can establish the following result:

R1: For all my € Ty and ny € Ty, [my,n1] € K(E) if and only if one of the fol-
lowing holds true: (1) Imy € Ty : I1(my,m}) A Lx(mf,nq); (2) Imy € Ts,mly € Ty :

5.4. EDGE COVERS AND EDIT SCRIPTS 117

copied(m’,mb) A I1(my,m7) A Ly(mb,ny).

Let us now consider move operations. The only operations that change the parent
of an existing node are move, and interior node insertion and deletion. However, the
deletion of an interior node x changes the parent function in a restricted manner:
The new parent of each of its children C(z) is set to a’s parent before the deletion.
Similarly, the insertion of an interior node y changes the parent function in a restricted
manner: Fach of y’s new children are required to be children of y’s parent before the
insertion.

Consider nodes m} € T5 and ny € Ty such that [5(m/,ny). In the working tree
Ty just after the deletion phase, py(m}) = nnda(m,)’. Suppose m} is not moved by
E'; then in the working tree T; just before the insertion phase, we have p;(m}) =
nnda(my)" because there are no interior node inserts or deletes between T, and T;.

Case 1: The partner of p(ny) is not inserted; that is, p(n1) = nnia(ny). Isomor-
phism requires that I5(p(m}), p(n1)), that is, I5(nnda(my)’, nnia(n,)), which implies
[nnda(my), nnia(ny)] € K(&'), due to R1.

Case 2: The partner of p(ny) is inserted; that is p(nq) is a proper descendant of
nnia(ny), and Iy(m%, p(ny)) for some inserted node m). Let anc(x,y) denote that
x is an ancestor of y. Let m) be the inserted node such that Iy(mj,ng), where
anc(ng,ny) and p(ny) = nnia(ny). Observe that the truth value of (x,y) € anc is
not affected by the insertion of a node z # z,y. Therefore, our choice of nj; and
the fact that [} preserves the anc relation implies anc(mj, m}). Now m) cannot
be an ancestor of nnda(m,)" because if it were, nnda(m;)" would have to match a
node between n; and nnia(ny), which is impossible since only inserted nodes can
match nodes between n; and nnia(ny). Furthermore, no node can exist (in the
current or any later working tree) between m) and nnda(m;)" because such a node
would have to match a node between ny and p(ny), which is absurd. Therefore,
p(my) = nnda(m,y)’, so that Ij(p(m).),p(nk)) gives Iry(nnda(m,)’,nnia(ny)). Using
R1, we thus have [nnda(my),nnia(n,)] € K(&').

We have shown that for each pair of nodes m) € Ts, ny € Ty such that Ir(m],ny),
if m/ is not moved, [nnda(my),nnia(ny)] € K(&'). It follows that a move operation is

required for each edge [m,n] € K such that [nnda(m),nnia(n)] ¢ K. Thus, for each

118 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

move operation produced by phaseMov, there must be a corresponding move operation
in £. Similarly, we can argue that the move operations produced in phaseMov0rCpy
or phaseMov0rGlu must also be produced by &£'. (A subtlety is that the choice, if
any, of which surplus copies of a node are to be deleted, and thus which copies are
to retained, and moved as needed, is immaterial for the cost of an edit script since
ghost deletions of a node require that all its children be deleted or moved earlier in
the script; an analogous situation exists for ghost insertions.)

Let us now consider update operations. Consider an edge [m,n] € K such that
m € Ty, n € Ty, and [(m) # [(n). Using R1, we have one of the following three cases:
(1) |[E(m)| = |E(n)| = 1 and [5(m/,n). Clearly this requires an update operation
to change the label of m'. (2) |E(n)| = 1, E(m) = {[m,n;]}r,, and there are k
nodes x1,...,x such that ; = m’V copied(m’, x;) and I)(x;,n;). In this case, since
[(x;) = l(m) # l(n), we need k update operations to change the labels of x;. (Note
that since copies are done before updates, the label of each x; must be updated
separately, even if there exist n;,n;,7 # j such that [(n;) = l(n;).) (3) |E(m)| =1,
E(n) = {[ms,n]}i_,, and all but one of the nodes m/ are glued to some node m/ such

that I5(mj,n). If m = m,, clearly m’ must be updated. If m # m,, m’is glued to

!
p?

m' must be updated. If [(m]) = I(m') # l(n), we note that both m; and m’ must

my,, so that m' must be identical to the label of m;. Now if [(m]) = I(n), clearly
be updated to I(n) because there can be no updates after a glue operation. Thus, in
all cases, we have shown that each edge [m,n] € K such that m € Ty, n € T5, and
[(m) # I(n) necessitates an update operation. By considering the action of previous
phases of the algorithm on the partner relation, it is easy to verify these are exactly
the update operations produced by our algorithm in phaseUpd. Thus £ has no fewer
update operations than &.

Finally, we can argue using the ideas described above that & must include all the
glue and move operations produced by the algorithm in phaseGlu. Thus we conclude

that £ contains all the edit operations in &€, and therefore costs no less than £.

5.5. FINDING THE EDGE COVER 119

5.5 Finding the Edge Cover

In this section we describe how MH-DIFF finds a minimal edge cover of the induced
graph. The resulting cover will serve as input to algorithm CtoS (Section 5.4).
Our goal is to find not just any minimal edge cover, but one that corresponds to
a minimum-cost edit script. Let us call such an minimal edge cover the target cover.

Consider an edge e in our pruned induced graph. To get to the target cover, MH-
DIFF must decide whether e should be included in the cover. To reach this decision,
it would be nice if MH-DIFF knew the “cost” of e. That is, if e remains in the target
cover, then it would be annotated (by algorithm CtoS) with some operation, and we
could say that the cost of this operation is the cost of e. Unfortunately, we have a
“chicken and the egg problem” here: CtoS cannot run until we have the target cover,
and we cannot get the target cover until we know the costs it will imply. To break
the impasse, our approach uses the following idea:

Instead of trying to compute the actual cost of €, we compute an upper and lower
bound to this cost. These bounds can be computed without the knowledge of which
other edges are included in the target cover, and serve two purposes: Firstly, they
allow us to design pruning rules that are used to conservatively eliminate unnecessary
edges from the induced graph. Secondly, after pruning, the bounds can guide our
search for the target cover.

As an enhancement, we actually use a variation on the edge cost suggested above.
The following example shows that simply “charging” each annotation to the edge it
is on is not entirely “fair.” We are given a tree T containing two nodes, ny; and n,
with the same label [. Furthermore n; has children ny; and ny; with labels a and b,
respectively, and ny has children ny; and nyy with labels ¢ and d, respectively. Suppose
T, is a logical copy of Ty. (That is, T1 and Tj are isomorphic.) Consider an edge cover
that matches each node in T to its copy in T3 except that it “cross matches” n; and
ny across the trees, as shown in Figure 5.21. Given this edge cover, algorithm CtoS
will produce a move operation for each of the nodes ni, n12, n21, and nq;. However,
these move operations were caused not by any mismatching of the nodes nyy, nio,

Na1, O Moz, but instead, by the mismatching of n; and ny. Therefore it would be

120 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

Figure 5.21: Distributing edge costs fairly

intuitively more fair to charge these move operations to the edges responsible for the
mismatch, viz. [nq,n5] and [ng,n{]. To achieve this, we use the following scheme:
If e is annotated with INS, DEL, or upd in the target cover, we do charge e for this
operation. However, if e is annotated by MOV, CPY, or GLU, then the parent of e,
and not e is charged. We call the edge costs computed in such a fashion fair costs.
In summary, MH-DIFF first computes upper and lower bounds for the fair cost of
each edge in the pruned induced graph. These bounds are then used to prune edges
in the induced graph, and finally to search for the target cover. We begin by defining

the fair cost of an edge below.

5.5.1 An Edge-wise Cost Function

Let K be an annotated minimal edge cover. For an edge e € K, if the annotation on e
is MOV, CPY, or GLU, let ¢,(e) denote the cost of that operation. If e is annotated with
INS, DEL, or UPD, then let ¢;(e) denote the cost of the operation. Furthermore, let
E(m) be the set of edges in K that are incident on m, that is, F(m) = {[m,n] € K}.
Let C(m) be the set of the children of m. We then define the fair cost of each edge

[m,n] € K as follows:

CK([mvn]) = 08(771‘7”)
+ SNEm)| > o cl[m',n])

m/'€C(m) [m! n']eK

5.5. FINDING THE EDGE COVER 121

Z Z cx([m’,n’]) (5.1)

Note that this cost depends on KA, and thus is not a function of e alone. The
following lemma states that the above scheme of distributing the cost of an edge
cover over its component edges is a sound one; that is, adding up the cost edge-wise

yields the overall cost of the edge cover.

Lemma 6 If K is an annotated, minimal edge cover of the graph induced by two
trees, then ¢(K) =3 cx ci(e). O

Proof By accounting. Recall that the cost ¢(K) of an annotated edit script is the
sum of the costs of the annotations in K (where the cost of each annotation is equal
to the cost of the edit operation it represents). Each annotation in K is on some
edge e € K. If the annotation is an upd, it is charged (by cx(e)) to the edge e itself.
For other annotations, each node of e is charged for half the cost of the annotation.
Furthermore, the cost of each node is distributed evenly over all edges ¢’ € K incident
on its parent. Since the special edge between the (dummy) roots of the two trees
being considered is never annotated (without loss of generality), it follows that the

two methods of accounting for the cost of an annotated edge cover are equivalent. O

5.5.2 Bounds on Edge Costs

Although Lemma 6 suggests a method of distributing the cost of an annotated edge
cover (and thus an edit script) over the component edges, the cost of each edge
depends on the other edges present in the edge cover, and is thus not directly useful
for computing a minimum-cost edge cover. However, we use that distribution scheme
to derive upper and lower bounds on the fair cost ¢k (e) of an edge e over all minimal
edge covers K.

Intuitively, given that the cost of any upd annotation on an edge is charged to
that edge (by Equation 5.1), a simple choice for the lower bound on the cost of an
edge [m,n] is simply the cost ¢,(m,n) of updating the label m to that of n. However,

we can do a little better. In some cases, selecting an edge [m,n] (as part of the edge

122 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

cover being constructed) may force some of the children m’ of m to be moved to n.
In particular, this happens for those children of m’ for which there is no edge that
could possibly match m’ to a child of n. We call such moves forced moves. In cases
where we can determine a forced move exists, the cost of a MOV is added to the lower
bound cost. However, according to Equation 5.1 not all the cost of a forced move
goes to edge [m,n]. In the worst case, the number of edges incident on m, |E(m)|, is
large, leaving [m,n] with an insignificant contribution. However, if |E(m)| is greater
than 1, we know by Lemma 5 that |E(n)| = 1, so forced moves on the n side would
contribute to [m,n]. Thus, we may add the minimum of the second and the third
terms in Equation 5.1 to the lower bound function.

Formally, let £ be the set of edges in the induced graph of Ty and T,. (As we
will see later, although F initially includes all edges in the complete bipartite graph,
the pruning of edges results in successive reduction of the size of F.) For notational
convenience, let us also define ¢, (m, n) to be ¢,(m,n) if m and n are regular nodes, 0
if (m=&)AN(n=0),¢iflm=&)A\(n#6),and ¢; if (m # &) A (n = S). Further,
we define the forced move cost, ¢, s(m',n) of a node m’ € Ty with respect to another
node n € Ty as follows: ¢, ¢(m/,n) = ¢y, if I’ € C(n) such that [m’,n'] € £, and 0
otherwise. The cost ¢, s(m,n’) is defined analogously. The lower bound fair cost, ¢y,

of an edge can then be expressed as follows:

clb([mv n]) = cw(mv n)—l'

%min{ D7 em(min), > cmf(m,n’)}
m!€C (m) n'€0(n)

For notational convenience in defining the upper bound, let us now define a con-
ditional move cost, ¢p.. Intuitively, ¢,.(m’,n) costs one MOV cost unless there is a
partner of m’ that is a child of n. Formally, ¢,,.(m’,n) = 0, if In’ € C'(n) such that
[m',n'] € F, and ¢, otherwise. The cost ¢,.(n',m) is defined analogously. Using
reasoning similar to that used for deriving the lower bound cost above, we arrive at

the following definition for the upper bound fair cost, ¢, of an edge:

cu([m,mn]) = ew(m,n)

5.5. FINDING THE EDGE COVER 123

+
DN — DN

(c.(|E(m)] = 1) 4 cpme(m’,n))

m/eC(m)

W) = 1) + ee(n’,m))
n’EC(n
Note that both ¢,;(¢e) and ¢ (e) can be computed without knowledge of the target
cover. Furthermore, the following lemma states that the above definitions of ¢,(€)
and ¢p(e), are upper and lower bounds, respectively, on the fair cost contribution

ck(e) of edge e to any minimal edge cover K that contains e.

Lemma 7 Let B = (U, V, E) be the bipartite graph induced by trees Ty and Ty. Let
B' = (U, V,E"), where E' C E. Let K denote the collection of all minimal edge covers
of B'. We then have the following inequalities:

eple) < }Pei}%c[((e) and cu(e) > %ea}%(c]((e)

a

Proof Given an edge [m, n] in a minimal edge cover K, the upper bound cost function
assumes the worst possible case. In particular, it assumes that, for each child m' of
m, a cost of ¢. and ¢,, respectively, is incurred for all but one edges incident on m/;
the remaining edge is assumed to incur a cost ¢, for a move. (Recall that we assume
that CPY and GLU both cost more than a MOV .) The only exception is when there
is an edge [m/,n’] for some child n’ of n; such an edge clearly does not involve a
move, and therefore contributes 0 units to the cost. An analogous worst-case scenario
is assumed for each child n’ of n. Furthermore, the cost of [m,n] is highest when
|E(m)| = |F(n)| = 1, which is what the upper bound function assumes, resulting in
the overall upper bound.

Similarly, the lower bound function assumes the best possible case for each child
m’ of m. In particular, it assumes that no cost is incurred on behalf of m’ except
in those cases where matching m to n would force a child m’ to be moved; in such
a case, a cost contribution of ¢,, is added. Furthermore, note that the cost of an

edge [m,n] is lower as E(m) and F(n) are bigger. However, since K is restricted

124 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

Figure 5.22: Applying pruning rules

to be a minimal edge cover, at least one of F(m) and E(n) must be a singleton set
(containing just the edge [m,n]), or else there would be a path of length three in K,
contradicting Lemma 5. Therefore, the cost of [m, n] includes at least the lower of the
two costs propagated from each of m, and n. Since this is precisely what the lower

bound function defines ¢, to be, we see that the inequality for ¢; holds. O

5.5.3 Pruning

We now use the upper and lower bound functions for the cost of an edge as defined
above to introduce the pruning rules we use to reduce the size of the induced graph
of the two trees being compared. Let e; = [m,n] be any edge in the induced graph,
as shown in Figure 5.22. Let e3 be any edge incident on m, and let e3 be any edge
incident on n. Intuitively, our first pruning rules tries to remove edges with a lower
bound cost that is so high that it is preferable to match each of its nodes using some

other edges, given the existence of such edges with a suitably low upper bound cost.

Pruning Rule 1 Let C; = max{e¢y, ceoco b If en(er) > cw(es) + cunles) + 2C; then

prune eg.

Example 5.5.1 To illustrate this rule, consider a tree T} containing, among others,
two childless nodes 1 (label f) and 2 (label g). Similarly, T3 contains childless nodes
3 (label g) and 4 (label f), among others. Say the costs ¢, ¢., and ¢, are one unit
each, while the update costs are ¢,(f,g) =3, and ¢, (f, f) = cu(g,9) = 0. Let us now
consider if edge e; = [1,3] can be pruned because edges e; = [1,4] and es = [2, 3]
exist. Since the nodes have no children, it is easy to compute ¢p(er) = ¢.(f,9) = 3,

cun(€2) = e (f, f) =0, and eup(es) = cu(g,9) = 0. Since C; = 1, we see that Pruning

5.5. FINDING THE EDGE COVER 125

Rule 1 holds and e; can be safely removed. The intuition is that in the worst case we
can replace e; by edges e; and e3. Using the latter edges could introduce at most the
costs cup(e2) and eyp(es), plus the cost of two MOV, CPY, or GLU operations. The last
factor can arise, for instance, if node 2 ends up being matched not only to node 3 but
to another node in T,. This means that node 2 needs to be copied, which would not
have been necessary if we had kept edge e; and not used e,. Similarly, the removal
of edge e; may cause an extra glue operation for node 4. However, even in this worst
case scenario, the costs would be less than the cost of updating the label of node 1

to that of node 2, so we can safely remove the [1,2] edge.

a

Our second pruning rule (already illustrated in Section 5.3) states that if it is less
expensive to delete a node and insert another, we do not need to consider matching

the two nodes to each other. More precisely, we state the following:
Pruning Rule 2 If ¢;(er) > cq(m) + ¢;(n) then prune e;.

Note that the above pruning rules are simpler to apply if we let e; and e3 be the
minimum-cost edge incident on m and n, respectively. The following lemma tells us

that the pruning rules are conservative:

Lemma 8 Let E, be the set of edges pruned by repeated application of Pruning
Rules 1 and 2. Let Ky be any minimal edge cover of the graph B. There exists a
minimal edge cover Ky such that (1) Ky N E, =10, and (2) C(K,) < C(Ky). a

Proof The proof is by induction on the cardinality of F,. When |E,| = 0, the lemma
is trivially true. Now assume that the lemma is true whenever |E,| < k, for any
k> 0. We will show that the lemma is also true when |F,| = k+ 1. Each (successful)
application of a pruning rule adds one edge to £,. Consider the edge e; that was
pruned last. Using the induction hypothesis for] = E, — {e}, we can generate an
edge cover K| such that (1) KU B, = 0, and (2) C(K{) < C(Ky).

If K| does not contain ey, let Ky = K. If K| contains e;, we modify K7 to obtain

K, as follows. If e; was pruned using Pruning Rule 1, then let Ky = K| — {e;} U

126 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

{e€3, €3}, where €5 and e3 are the edges used in the application of Pruning Rule 1. Else,
e; was pruned using Pruning Rule 2; in this case, let Ky = Kj—{e1 }U{[n1, 5], [F, na]},
where e; = [nq,na].

Clearly, Ky U E, = (). Since K| is an edge cover of B, and since the only nodes
that could be possibly exposed as a result of removing e; from K| (namely, ny and
ns) are covered by the edges added to K7 to obtain K3, it follows that K is also an
edge cover of B. From the definition of the pruning rules, and Lemma 7 we see that
C(K,) < C(K7) < C(Ky). O

The pruning phase of our algorithm consists of repeatedly applying Pruning
Rules 1 and 2. Note that the absence of edges raises the lower bound function, and
lowers the upper bound function, thus possibly causing more edges to get pruned.
Our algorithm updates the cost bounds for the edges affected by the pruning of an
edge whenever the edge is pruned. By maintaining the appropriate data structures,
such a cost-update step after an edge is pruned can be performed in O(nlogn) time,

where n is the number of nodes in the induced graph.

5.5.4 Computing a Min-Cost Edge Cover

After application of the pruning rules described above, we obtain a pruned induced
graph, containing a (typically small) subset of the edges in the original induced graph.
In favorable cases, the remaining edges contain only one minimal edge cover. However,
typically, there may be several minimal edge covers possible for the pruned induced
graph. We now describe how we select one of these minimal edge covers.

We first approzimate the fair cost of every edge e that remains after pruning by its
lower bound e (e). (We could have also use the upper bound, or an average of both
bounds, since this is only an estimate.) Then, given these constant estimated costs, we
compute a minimum-cost edge cover by reducing the edge cover problem to a bipartite
weighted matching problem, as suggested in [PS82]. Since the weighted matching
problem can be solved using standard techniques, we do not present the details in
this chapter, noting only that given a bipartite graph with n nodes and e edges, the

weighted matching problem can be solved in time O(ne). For our application, e is

5.6. IMPLEMENTATION AND PERFORMANCE 127

the number of edges that remain in the induced graph after pruning.

5.6 Implementation and Performance

In this section, we describe our implementation of MH-DIFF, and discuss its analytical
and empirical performance. Figure 5.23 depicts the overall architecture of our imple-
mentation, with rectangles representing the modules (numbered, for reference) of the
program, and other shapes representing data. Given two trees Ty and T as input,
Module 1 constructs the induced graph (Section 5.3.1). This induced graph is next
pruned (Module 2) using the pruning rules of Section 5.5.3 to give the pruned induced
graph. In Module 2, the update cost for each edge in the induced graph is computed
using the domain-dependent comparison function for node labels (Section 5.2.2). The
next three modules together compute a minimum-cost edge cover of the pruned in-
duced graph using the reduction of the edge cover problem to a weighted matching
problem [PS82]. That is, the pruned induced graph is first translated (by Module 3)
into an instance of a weighted matching problem. This weighted matching problem
is solved using a package (Module 4) [Rot] based on standard techniques [PS82]. The
output of the weighted matching solver is a minimum-cost matching, which is trans-
lated by Module 5 into Ky, a minimum-cost edge cover of the pruned induced graph.
Next, Module 6 uses the minimum-cost edge cover computed, to produce the desired
edit script, using the method described in Section 5.4.2).

Recall that since we use a heuristic cost function to compute a minimum-cost edge
cover, the edge cover produced by our program, and hence the edit script may not
be the optimal one. We have also implemented a simple search module that starts
with minimum-cost edge cover K, (see Figure 5.23) computed by our program and
explores its neighborhood of minimal edge covers in an effort to find a better solution.
The search proceeds by first exploring minimal edge covers that contain only one edge
not in Ky. Next, we explore minimal edge covers containing two edges not in Ky, and
so on. The intuition is that we expect the optimal solution to be “close” to the initial
solution Ky. Although, in the worst case, such an exploration may be extremely

time-consuming, note that as a result of pruning edges, the search space is typically

128 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

(1) Induced
Graph [—(Induced (2) Pruner

M Builder Graph

(4) weighted (3) Edge cover

matching to wt. match

solver Tranglator

v
. KO
min-cost (5)t'c\:'ifgr”g min-cost CO\(/i)I‘ 0
matching . edge cover :
ranslator Script

Figure 5.23: System Architecture

much smaller than the worst case.

We have used our implementation to compute the differences between query results
as part of the Tsimmisand C®projects at Stanford [CGMHT94, CGLT97]. These
projects use the OEMdata model, which is a simple labeled-object model to represent
tree-structured query results. In particular, we have run our system on the output
of Tsimmisqueries over a bibliographic information source that contains information
about database-related publications in a format similar to BibTeX. Since the data
in this information source is mainly textual, we treat all labels as strings. For the
domain-dependent label-update cost function, we use a weighted character-frequency
histogram difference scheme that compares strings based on the number of occurrences
of each character of the alphabet in them. For example, consider comparing the
labels “foobar” and “crowbar.” The character-frequency histograms are, respectively,
(a:1,b:1,f:1,0:2,r:1) and (a:1,b:1,¢c:1,0:1,7:2,w:1). The difference histogram
is (c:=1,f:1,0:1,r:—1,w:—1). Adding up the magnitudes of the differences gives

us 5, which we then normalize by the total number of characters in the strings (13),

5.6. IMPLEMENTATION AND PERFORMANCE 129

and scale by a parameter (currently 5), to get the update cost (5/13) * 5 = 1.9.

Let us now analyze the running time of our program. Let n be the total number
of nodes in both input trees Ty and T3. Constructing the induced graph (Module 1,
in Figure 5.23) involves building a complete bipartite graph with O(n) nodes on each
side. We also evaluate the domain-dependent label-comparison function for each pair
of nodes, and store this cost on the corresponding edge. Thus, building the induced
graph requires time O(kn?), where k is the cost of the domain-dependent comparison
function. Next, consider the pruning phase (Module 2). By maintaining a priority
queue (based on edge costs) of edges incident on each node of the induced graph, the
test to determine whether an edge may be pruned can be performed in constant time.
If the edge is pruned, removing it from the induced graph requires constant time,
while removing it from the priority queues at each of its nodes requires O(logn) time.
When an edge [m, n] is pruned, we also record the changes to the costs ¢,,.(m, p(n)),
Cme(n,p(m)), ems(m,p(n)), and ¢, s(n, p(m)), which can be done in constant time.
Thus, pruning an edge requires O(logn) time. Since at most O(n?) are pruned, the
total worst case cost of the pruning phase is O(n?logn). Let e be the number of edges
that remain in the induced graph after pruning. The minimum-cost edge cover is
computed in time O(ne) by Modules 3, 4, and 5. The computation of the edit script
from the minimum-cost edge cover can be done in O(n) time by Module 6. (Note
that the number of edges in a minimal edge cover is always O(n).)

The number of edges that remain in the induced graph after pruning (denoted
by e above) is an important metric for three main reasons. Firstly, as seen above,
a lower number of edges results in faster execution of the minimum-cost edge cover
algorithm. Secondly, a smaller number of edges decreases the possibility of finding
a suboptimal edge cover, since there are fewer choices that need to be made by the
algorithm. Thirdly, having a smaller number of edges in the induced graph reduces
exponentially the size of the space of candidate minimal edge covers that the search
module needs to explore.

Given the importance of the metric e, we have conducted a number of experi-
ments to study the relationship between e and n. We start with four “input” trees

representing actual results of varying sizes from our Tsimmissystem. For each input

130 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

10% edits: < —
20% edits: + :||:

2 —_—

T 1

Edges after pruning (e)

50 100 150 200 250

Number of nodes (n)

Figure 5.24: Effectiveness of pruning

tree, we generate a batch of “output” trees by applying a number of random edits.
The number of random edits is either 10% or 20% of the number of nodes in the input
tree. Then for each output tree, we run MH-DIFF on it and its original input tree. The
results are summarized by the graph in Figure 5.24. The horizontal axis indicates the
total number of nodes in the two trees being compared (and hence, in the induced
graph). The vertical axis indicates the number of edges that remain after pruning
the induced graph. Note that the ideal case (best possible pruning) corresponds to
e = [n/2], since we need at least [n/2] edges to cover n nodes, whereas the worst

? (no pruning at all). For comparison, we have also plotted e = n/2 and

case is e =n
e = n? on the graph in Figure 5.24. We observe that the relationship between e and
n is close to linear, and that the observed values of e are much closer to n/2 than to
n?.

Note that in Figure 5.24 we have plotted the results for two different values of d,
the percentage of random edit operations applied to the input tree. We see that, for
a given value of n, a higher value of d results in a higher value of e, in general. We
note that some points with a higher d value seem to have a lower value of e than the
general trend. This is because applying d random edits is not the same as having the
input and output trees separated by d edits, due to the possibility of redundant edit
operations. Thus, some data points, even though they were obtained by applying d

random edits, actually correspond to fewer changes in the tree.

5.7. SUMMARY 131

We have also studied the quality of the initial solution produced by MH-DIFF.
In particular, we are interested in finding out in what fraction of cases our method
produces suboptimal initial solutions, and by how much the cost of the suboptimal
solution exceeds that of the optimal. Given the exponential (in €) size of the search
space of minimal edge covers of the induced graph, it is not feasible to try exhaus-
tive searches on large datasets. However, we have exhaustively searched the space
of minimal edge covers, and corresponding edit scripts, for smaller datasets. We ran
50 experiments, starting with an input tree T} derived as in the experiments for e
above, and using 6 randomly generated edit operations to generate an output tree.
We searched the space of minimal edge covers of the pruned induced graph exhaus-
tively for these cases, and found that the MH-DIFF initial solution differed from the
minimum-cost one in only 2 cases out of 50. That is, in 96% of the cases MH-DIFF
found the minimum-cost edit script, and of course it did this in much less time than
the exhaustive method. In the two cases where MH-DIFF missed, the resulting script

cost about 15% more than the minimum cost possible.

5.7 Summary

In this chapter, we studied the problem of detecting changes from snapshots of struc-
tured or semistructured data that is represented using unordered trees. As in Chap-
ter 4, we formalized this problem as the problem of computing a minimum-cost edit
script that transforms one tree to another. However, the edit scripts studied in this
chapter consist not only of operations that insert and delete nodes, update labels, and
move subtrees, but also of operations that copy, and uncopy subtrees. Further, unlike
the algorithms presented in Chapter 4, the work described in this chapter does not
assume that the input trees have special properties such as layering. These changes
to the problem definition, along with the fact that detecting changes in unordered
trees is provably harder than the analogous problem of ordered trees, required us to
rethink our strategy for solving the change detection problem.

Although the subtree operations of move, copy and uncopy are intuitive to use,

they may often be interleaved in a complex manner to produce unintuitive results.

132 CHAPTER 5. DETECTING CHANGES IN UNORDERED TREES

We illustrated such unintuitive edit scripts and described the difficulties they pose. In
order to overcome these difficulties, we defined a structured edit script, in which the
interleaving of different types of edit operations is restricted. We described how
structured edit scripts allow us to benefit from the advantages of our expressive
subtree operations while avoiding troublesome sequences of edit operations.

We defined the induced graph of two trees, and described the correspondence
between minimal edge covers of this graph and structured edit scripts between the
two trees. We presented an algorithm that uses this correspondence to compute a
minimum-cost edit script. Since the problem is NP-hard, our algorithm uses heuristics
to produce a good initial solution, followed by an optional search for better solutions.
In practice, we have found that the initial solutions generated by our method are often
optimal or close to optimal, allowing us to skip the search step. In Chapter 9, we
study the performance of our method in more detail. In the next chapter, we study
an alternate approach to avoiding the problems caused by arbitrary interleaving of
subtree operations such as move, copy, and uncopy. In particular, we present a
declarative specification of differences between trees that leads to simpler algorithms

for change detection.

Chapter 6
Parallel Transformations

In Chapter 5 we presented techniques for computing differences between snapshots
of data represented using unordered trees. We described the problems caused by edit
scripts that combine edit operations on subtrees in a complex manner, yielding unin-
tuitive results. In that chapter, we addressed these problems by defining structured
edit scripts that restrict the interleaving of different types of edit operations. In this
chapter, we explore an alternate method of overcoming the problem of unintuitive
interleaving of edit operations: using a different model of tree transformation. Unlike
the edit script model, which transforms trees procedurally by applying the operations
in an edit script in sequence, this model transforms trees declaratively by functionally
specifying the result of applying a transformation to a tree. Informally, we may think
of this model as applying the edit operations in parallel. In addition to being more
elegant than the restrictions required by structured edit scripts, this new model also
results in simpler algorithms for finding a minimum-cost transformation between two
trees. A slight drawback of this model is that it is often difficult for a person to
understand the effect of a single edit operation independently of the other operations
in the transformation. However, in many cases this drawback is not a significant

problem and is outweighed by the advantages.

133

134 CHAPTER 6. PARALLEL TRANSFORMATIONS

6.1 Introduction and Overview

As in Chapter 5, we study the problem of comparing rooted, unordered, labeled trees,
such as those depicted in Figure 6.1. These trees may represent, for example, listings
from a Web database containing information about movies. As in earlier chapters,
tree nodes are represented by circles; each node has a label, indicated next to it, and
an identifier, indicated inside the circle. In our Web example, the label of node 3 may
represent a section heading, and its child nodes the paragraphs in the section. Recall
from Chapters 4 and 5 that we use node identifiers for notational convenience only;
we do not assume that these identifiers are object-identifiers or keys that can be used
to match nodes in one tree with those in the other. (However, in cases where such
object identifiers or keys exist, we can take advantage of them.)

Figure 6.1(a) also illustrates how changes to a tree T can be represented by a
linear edit script, such as those we studied in Chapters 4 and 5: & = (epy(5,2),
cpy(4,6), mov(4,5)). Recall that such a script is a sequence of edit operations that
transforms T; into T]. For example, the first operation in our script, ¢py(5,2), makes
a copy of the 77 node 5, and places it under node 2. The new node has a new
identifier, in this case 6. The edit operations commonly used in the literature are
node insertion, node deletion, and node relabeling. Here, as in Chapter 5, we extend
this set of edit operations by adding the subtree operations move, copy, and uncopy
(or glue). As argued in Chapter 5, these operations allow us to express changes more
succintly than is possible using only the three traditional operations. For example,
when comparing structured documents, saying that a paragraph was moved is more
helpful than saying that the sentences in the paragraph were deleted and then inserted
somewhere else.

As in earlier chapters, our goal is to find a compact representation of the changes
between two trees. If we use linear edit scripts, our goal is to find a “minimum-cost”
script that transforms the first tree into one that is isomorphic to the second. We
assign costs to operations and look for a minimum-cost script to ensure that the script
does not do more work than needed. Unfortunately, this method of describing changes

using linear edit scripts has several problems when used with subtree operations such

6.1. INTRODUCTION AND OVERVIEW 135

cpy(5,2)

b(2) c(3)
dl® b@

Figure 6.1: Applying a linear edit script.

as moves and copies.

The first problem is that it is difficult to understand an edit operation on its
own, because its effect depends on the operations preceding it in the edit script.
For example, consider the following edit script applied to T in Figure 6.1(a): & =
(mov(4,5), cpy(5,2)). If we focus on the copy operation, we would intuitively expect
it to produce a copy of node 5, with node 2 as the parent. However, because of the
preceding move, the copy actually produces a copy of both nodes 4 and 5. In fact,
&> has the same effect as the script & discussed earlier. This equivalence is not clear
from the edit scripts themselves; we need to actually apply the edit scripts to discover
it.

Another problem with the linear edit script model is that it may result in very
unintuitive edit scripts. For example, consider structured documents, and suppose
the cost of a copy operation is 5 units, while the cost of a move operation is 1 unit.
Consider now a script that moves the subtree rooted at a node n; to below another
node ny, copies the subtree rooted at ny (thus also making a copy of the n; subtree),
and then moves both the original and the copy of the subtree rooted at ny to other
locations. We observe that the sole purpose of the initial move operation is to get
a “free” copy of the subtree at ny, thus reducing the overall cost of the edit script.
However, this “trick” is not very intuitive in the application context: If n; and ns
represent paragraphs, the above script says that paragraph n; is temporarily moved

under ng, not because ny is at all related to n,, but simply to make it cheaper to

136 CHAPTER 6. PARALLEL TRANSFORMATIONS

make the copies we eventually need of n; that will go elsewhere.

In this chapter we present a novel method to represent changes and to compare
trees that avoids these problems. The intuitive idea is to apply edit operations “in
parallel” as opposed to in sequence. That is, we apply a set of edit operations, called
a transformation, to a tree by first disassembling the given tree into “chunks,” then
operating on each chunk independently, and finally reassembling the resulting chunks
to get the final tree. (In Section 6.2 we describe our model in detail.) Our model is
free from the the unintuitive artifacts resulting from the interdependencies between
edit operations in the linear edit script model. Even more importantly, searching
for a minimum-cost parallel transformation is simpler than searching for a minimum-
cost edit script (when moves and copies are allowed). This simplicity is because
the essential information in a transformation, including its cost, can be compactly
represented in a signature. Thus, we can search for a minimum-cost signature and
then map it back to the corresponding transformation. In this chapter we show
how signatures are constructed, and how they map to transformations. The mapping
between signatures and transformation is independent of the cost model used, making
our methods for detecting changes useful in diverse application domains.

The idea of working with signatures is widely used in the literature of differencing
algorithms, in various forms (such as “traces” or matchings) [WF74, Mye86, 7589,
Yan91]. However, the introduction of move and copy operations makes it hard to
recover a script from a signature, and this makes it difficult to detect changes using
signatures. To illustrate some of these difficulties, Figure 6.1(b) shows the “tradi-
tional” signature of the edit script in Figure 6.1(a). The trees Ty and T3 represent
the initial and final trees (respectively) from Figure 6.1(a). However, note that node
identifiers in Ty are different from those in 7] (and 7}) because we do not know yet
how T, was obtained from Tj. Intuitively, the signature is a relation (dashed lines)
that maps each node in T to the node or nodes in T} from which it is “derived.” For
example, if nodes ny,ny € Ty are copies of a common node m € Ty, the signature
maps m to both n; and nj. Deleted T7 nodes are mapped to a special node © , while
inserted T5 nodes are mapped to a special node @. In our sample script, there were

no inserts or deletes, so the signature just links & to &. (More formally, the signature

6.1. INTRODUCTION AND OVERVIEW 137

is a minimal edge cover of the complete T, T, bipartite graph; see Section 6.3.)

If our search for a minimum-cost signature yields the signature of Figure 6.1(b), it
is hard to recover the corresponding minimum-cost edit script. In particular, we note
that since there are two dashed edges incident on nodes 4 and 5, we may conclude
that these nodes were copied by the edit script. Similarly, since node 4 does not
have a “partner” (by dashed edges) whose parent matches the parent of node 4,
we may conclude that node 4 is moved. With some bookkeeping, this reasoning
recovers the original edit script & = (epy(5,2), ecpy(4,6), mov(4,5)). Unfortunately,
this edit script is not a minimum-cost edit script (assuming, say, unit costs for edit
operations); the edit script & = (mov(4,5), cpy(5,2)) achieves the same result with
one fewer operation. By moving node 4 to under node 5 before node 5 is copied,
we get a “free” copy of node 4. Thus, to recover the minimum-cost edit script from
the signature we would need to consider all such possibilities of saving operations by
“piggy-backing” them on others. As we will see, our parallel transformation model
does not have these problems: it is easy to recover a minimum-cost transformation
from a signature, making the search for a minimum-cost transformation efficient and
simple.

In summary, our main contributions in this chapter are the following:

o We present a novel model for tree transformations that permits expressive op-
erations such as subtree move and copy and avoids the problems caused by

arbitrary interleaving of such operations in a linear edit script model.

o We describe how the essential features of transformations in this model are
captured using representative signatures, and describe how these signatures
simplify algorithms for finding a minimum-cost transformation between two

trees.

o We present algorithms for mapping transformations to signatures and vice-
versa, and describe techniques for computing signatures that produce good

transformations.

The rest of this chapter is organized as follows. We first define our model of

tree transformations in Section 6.2 below. In Section 6.3, we define the signature

138 CHAPTER 6. PARALLEL TRANSFORMATIONS

of a transformation, and formalize the manner in which it succinctly captures the
essence of a transformation by proving our main results of this chapter, Theorems 5
and 6. Section 6.4 presents the application of these ideas by describing methods for
computing a desirable signature for two given trees, and Section 6.5 summarizes this

chapter.

6.2 Transformation Model

Let A/ be a domain of node identifiers, and let £ be a domain of labels. A rooted,
unordered, labeled tree T is a 4-tuple (N,r,p,l), where N C N is called the set of
nodes in 7', r € N is a distinguished node, called the root of T, p: N — {r} - N
is a cycle-free function called the parent function of T', and [: N — L is called the
label function of T. (By cycle-free, we mean p*(n) # n for any n € N and k > 0.)
Henceforth in this chapter, by trees we mean rooted, unordered, labeled trees.

In our model, a transformation is a set of edit operations (defined below). Each
edit operation in a transformation has a unique identifier. In what follows, we often
need a way to refer to nodes produced by insertion or copy operations. (For example,
we may wish to update a node produced by a copy operation.) We use node handles
for this purpose. In particular, we use the following notation for node handles: £(n,?),
where n € N and i € ZT, refers to the copy of node n produced by the copy operation
(with identifier) 7; £(0,2) refers to the node produced by insertion operation ¢; £(n,0)
refers to the node n. We denote the set of all node handles by H. (Here and in the
rest of this chapter, we use type font to represent literal strings, and italics to
represent non-literals.) The edit operations on trees are introduced below, along with

an informal description of their effect; the formal definition follows as Definition 6.2.3.

Delete: del(h, j), where h = £(n,0) for n € N. Intuitively, this edit operation
deletes the node n. (As we shall see later in Definition 6.2.2, the children of n
are either deleted, moved, or glued.) In this and the following edit operations,
the last argument j € Z% is a unique identifier of the edit operation; for brevity,

7 is often omitted when not needed.

6.2. TRANSFORMATION MODEL 139

Insert: ins(h, [, 7), where h € H, | € L, and j € Z*. Intuitively, this edit
operation inserts a node with parent (the node corresponding to) h and label /.

(The newly created node has handle £(0,7).)

Update: upd(h, I, j), where h € H, [l € L, and j € Z*. Intuitively, this edit
operation changes the label of node h to [.

Move: mov(h;, hy, j), where hy = £(n,0) for n € N, hy € H, and j € Z*T.
Intuitively, this edit operation moves the chunk (defined below) rooted at n,

making hy its new parent.

Copy: cpy(hy, hy, j), where hy = £(n,0) forn € N, hy € H , and j € Z*.
Intuitively, this edit operation copies the chunk rooted at n, making hy the

parent of the copy.

Glue: glu(hy, hy, j), where by = £(ny,0) for ny € N, h = £(ny,0) for ny € N,
and j € ZT. Intuitively, glue is the inverse of a copy operation; it causes the

chunk rooted at ny to disappear by “gluing” it over the chunk rooted at ns.

As noted in Section 6.1, the first step to applying a transformation is the dis-
assembly of the given tree into “chunks.” Chunks, or disassembly components (see
below), are produced by breaking up the tree at every node that is “operated on” by

an edit operation. The break up points are called disassembly points.

Definition 6.2.1 Given a tree T' = (N, r,p,l) and a transformation F', we define the
set of disassembly points, dp(T, F'), as follows:

dp(T,F) = {néeN | n=rvVvIdel(f(n0))eFV
dmov(f(n,0),h) € FFV I epy(f(n,0),h) € FV
S glu(f(n,0),) € Fv 3 glulh, f(n,0)) € F)

With reference to a transformation F' applied to a tree T, we define the nearest
disassembly ancestor nda(n,T, F') of a node n € N to be the nearest (not necessarily
proper) ancestor of n that belongs to dp(T, F'). Further, the disassembly component
(“chunk”) of n is defined as de(n, T, F') = {n’ € N | nda(n’) = nda(n)}. 0

140 CHAPTER 6. PARALLEL TRANSFORMATIONS

When discussing a given tree and transformation, we abbreviate nda(n, T, F') by
nda(n), and de(n, T, F') by de(n). Not every transformation as defined above can be
applied to a given tree. Given a tree T" and a transformation F', we define the notion

of wvalidity of I over T as follows.

Definition 6.2.2 A transformation F' is said to be valid for a tree T'= (N, r, p, 1) if
the following conditions hold.

1. The transformation F'is well-formed; that is, the following hold:

a) Identifiers of edit operations in F' are unique.

(
(b

)

) For each node handle f(n,0) appearing in F: n € N.

c) For each f(0,7) in F: ins(h,l,i) € F for some h € H and [€ L.
)

(
(d) For each f(n,i) in F' with i > 0: n € N, and cpy(f(nda(n),0),h,i) € F
for some h € H.

(e) If mov(f(n1,0), f(n2,0)) € F, then ny is not an ancestor of ny in 7.

(f) For each glu(f(n1,0), f(ne,0),7) € F, there exists an isomorphism g¢; be-
tween de(ny) and de(ny). More precisely, there exists a function ¢; :
de(ny) — de(ny) that is one-to-one, onto, preserves the parent function
p, and “preserves labels” in the sense that ¢;(x) = y implies the following:
If upd(x,l) € F then either I(y) =l or upd(y,l) € F; else either [(y) = [(x)
or upd(y,l(x)) € F.

2. For each node n in T', at most one of the following types of edit operations is
in F: del(f(n,0)), epy(f(n,0),n"), glu(f(n,0),h), and glu(h, f(n,0)). Further,
for each n € T', there is at most one operation of the form del(f(n,0)), at most
one operation of the form mov(f(n,0),h), and at most one operation of the

form glu(f(n,0),h) in F. Finally, no node is updated more than once.

3. If F contains del(f(nda(p(n)),0)) or glu(f(nda(p(n)),0),h) (for some n), then
one of del(f(n,0)), mov(f(n,0),h), and glu(f(n,0),h) is in F.

6.2. TRANSFORMATION MODEL 141

The last condition in the above definition is not strictly necessary, but is used to
make deletes (respectively, glues) more symmetrical to inserts (respectively, copies).
Since any children of inserted (copied) nodes need to be inserted, moved, or copied
to that location, we require that any children of a deleted (respectively, glued) node
be deleted, moved, or glued.

For ease of explanation, we henceforth assume, without loss of generality, that no
edit operation acts on the root of a tree. (We can always add an artificial root to
any tree to ensure this property holds.) We are now ready to define the tree F/(T)
obtained by applying a transformation F' to a tree T. Intuitively, we start with a
working copy T of T, and break T’ into chunks (i.e., the disassembly components
defined above). Nodes deleted by F' are removed. Next, copy, update, glue, and move
operations in F' are applied to the chunks of T". Nodes corresponding to insertion

operations in [are created. Finally, the chunks are reassembled to yield the tree

F(T). Formally, we define F(T') as follows:

Definition 6.2.3 Given a tree T' = (N, r,p,[) and a transformation F' valid for T,
the result of applying the transformation F to T is a tree F\(T') = (N', ', p',l') where
N, ¢, ', and [’ are defined below. In the following, we use a skolem function
' N x Z — N such that f'(n,1) intuitively represents the node in 7" referenced by
the node handle £(n,) in F.

N = {n0) | n € N, del(f(n,0)) & F, glul f(nda(n),0),h) & F)
U {f(0,2) | ins(h,l,7) € F}
U {f (nvl) | pr((nda(n),()),h,i) S F}

o= f(r,0

)
F(n2,3), where ins(f(ns, j),1,1) € F
'(ng, 1), if mov(f(n,0), f(na,i)) € F
'(p(n),0), otherwise
(n2,7), it epy(f(n,0), f(na, 7),1) € I
(p(n)

p(n),i), otherwise

TN
'\H
~
N
)
o~
S’
S’

!/

!

f
f
f
f

142 CHAPTER 6. PARALLEL TRANSFORMATIONS

a T E a b5 dg
b3 c(3) ib@% W

b(s)* d(5)"

disassemble_ gperate on "chunks'

Figure 6.2: Applying the transformation in Example 6.2.1

U'(f'(0,7)) = U, whereins(h,ly,i) € F
U(f'(n,i)) = L, if upd(f(n,i), L) € F

[(n), otherwise
O

Example 6.2.1 Consider the tree T' depicted in Figure 6.2, and the following trans-
formation F:: {mov(f(4,0), f(5,0)), cpy(f(4,0), f(5,101)), epy(f(5,0), f(2,0),101)}.
The disassembly points of T" by F' are marked by an asterisk; they are, intuitively, the
nodes in T' that are acted on by edit operations in F' (in addition to the root). The tree
T’s disassembly components also shown in the figure; the stubs on the nodes indicate
the parent of the chunk. The results of applying the operations in F' to the chunks
are indicated using dashed lines. In particular, the operation mov(f(4,0), f(5,0))
results in the parent of the chunk rooted at node 4 to change from node 3 to node 5.
The operation epy(f(5,0), f(2,0),101) results in the duplication of the chunk rooted
at node 5, producing a new node with identifier 6. (Thus, by our node handle no-
tation, 6 = f(5,101).) Similarly, operation cpy(f(4,0), f(5,101)) results in a copy
of the chunk rooted at node 4. Note that the parent of the copy is node 6 because
f(5,101) = 6. Finally, the tree F'(T) obtained by reassembling the chunks (using the
stubs) is also shown.

Note that the result of applying transformation F' to tree T is independent of
the order in which the edit operations in F' are applied. For example, if we had
considered applying the move operation after both copy operations, the result would

be the same as above. Thus we can intuitively understand the effect of each edit

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 143

operation on the chunks without worrying about the actions of other edit operations
in the transformation. For example, we do not have to worry about a copy operation
acting on a chunk resulting in surreptitious copies of other chunks (due to those
chunks first being moved to below the copied chunk), as is the case when using the

linear edit scripts described in Section 6.1. O

Recall (from Section 6.1) that we are interested in finding a minimum-cost trans-
formation between two given trees. We define the cost of a transformation to be the
sum of the costs of its constituent edit operations. The cost of each edit operation is
given by some application dependent function. For example, in an application com-
paring structured documents, the cost of updating (tree nodes representing) words
would depend on how similar the old and new values are. Thus updating “cat” to
“cats” may cost 0.1 unit, while updating “cat” to “dinosaur” may cost 2 units. We
do not discuss details of the cost model in this work, since our main results do not

depend on them.

6.3 Representative Signatures of Transformations

In Section 6.1 we introduced signatures as a concise representation of the essential
information in a transformation. In particular, given a signature S of a transforma-
tion F', one can easily recover a transformation F’ that is essentially identical to F'.
Signatures satisfying this property are called representative signatures, and they are
useful tools for computing a minimum-cost transformation. (Searching in signature
space is more convenient than searching in the space of all possible transformations.)
Below, we first define the signature S(F,T) of a transformation F' applied to a tree T
We then describe how to recover from S(F,T) a transformation F’ that is essentially
identical to /' (as indicated by Theorems 5 and 6), thus showing that our signatures
are representative.

Intuitively, we may think of generating signatures by using the following proce-
dure: We start with the given tree T" and a tree T’ that is isomorphic to T'. We create
signature edges (as distinguished from tree edges) connecting each node in T' to its

partner in 7" (based on the isomorphism). We apply the transformation F' to 17,

144 CHAPTER 6. PARALLEL TRANSFORMATIONS

updating our set of signature edges in the process as follows: When a node is deleted,
signature edges incident on it are redirected to &; similarly, we introduce signature
edges connecting inserted nodes to . When a subtree is copied, we connect the copy
¢ of a node n to all the nodes to which n is connected; glues are handled analogously.
Moves and updates do not affect the set of signature edges. We are then left with a set
of signature edges connecting nodes in T' to nodes in the transformed 7T’. Formally,

we have the following definition for signatures:

Definition 6.3.1 Let /' be a transformation that is valid for a tree T'= (N, r, p, (),
and let F(T) = (N',r',p/,l').. We define the signature of F' on T to be a relation
S(F,T) C (NU{&}) x (N'U{&}) as follows. The function f’is from Definition 6.2.3,

the function g; is from Definition 6.2.2, and & and © are distinguished reserved nodes

in V.

S(ET) = {(®,[(0,1) | ins(h,l,7) € F'}
U {(n,©) | del(f(n,0)) € F'}
U {(n, ['(n,49)) | n€F, epy(f(nda(n),0),h,i) € F}
U A{(n, f(n,0)) | n€F, glu(f(nda(n),0),h,j) € F, gj(n,n")}
U {(n, f'(n,0)) | n€F, del(f(n.0)) & F, glu(f(nda(n),0),h) & I'}
U {(®,0) | Ains(...) € F Vv Adel(...) € F}

a

We define the induced graph of two trees Ty = (Ny,r1, p1,{1) and Ty = (Na, ra, p2, [2)
to be the complete bipartite graph IG(Ty,Ty) = (U, V,U x V), where U = Ny U {®}
and V = Ny, U {6}. In general, signatures are edge covers of the induced graph.

However, we will now show that we can restrict our attention to minimal edge covers,

defined below:

Definition 6.3.2 Given a bipartite graph B = (U, V, F), with distinguished nodes
G elUand © € V,aset K C FE is called an edge cover of B if each node in U UV is

incident on at least one edge in K. The set K is said to be a minimal edge cover if

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 145

it is an edge cover that (1) does not contain any paths of length three, and (2) does
not contain any paths of length two ending at ¢ or ©. O

Note that above definition implies that no proper subset of a minimal edge cover
is an edge cover. The following lemma shows that for any tree 7" and valid transfor-

mation F, S(F,T) is a minimal edge cover of IG(T, F(T)).

Lemma 9 For any transformation F valid for a tree T, S(F,T) is a minimal edge

cover of IG(T, F(T)). O

Proof Let us first show that each node in IG(T, F(T)) is incident on at least one
edge in S(F,T). If there is an insert operation in F, then [&, f'(0,¢)] € S(F,T); if
not, [, 5] € S(F,T). Thus, & is covered by S(F,T). An analogous argument holds
for ©. Now consider any node n € T'. If del(f(n,0)) € F, then [n,5] € S(F,T); else
if glu(f(n,0), f(n',0)) € F, then [n, f'(n',0)] € S(F,T); else [n, f'(n,0)] € S(F,T).
Thus, in all cases n is covered by S(F,T'). Now consider anode n’ € T". If n’ = f'(0,1),
then ins(h,l,i) € F, implying [@,n'] € S(F,T); else if n’ = f'(n,0), then (from
Definition 6.2.3) del(f(n,0)) &€ F and glu(f(n,0),h) ¢ F implying [n,n'] € S(F,T);
else n’ = f'(n,1) for ¢ > 0, implying epy(f(n,0),h,i) € F so that [n,n'] € S(F,T).
Thus, in all cases n’ is covered by S(F,T). We have thus shown that each node in
IG(T, F(T)) is covered by S(F,T).

Let us now show that S(F,T') is a minimal edge cover of IG(T, F(T)). We first
show that there is no path of length two ending at @ or ©. Consider an edge [, n'].
From Definition 6.3.1, it follows that n’ = f/(0,1), for some edit operation identifier i.
Using the uniqueness of edit operation identifiers, we see that there can be no other
edge incident such a node n’. Thus there are no paths of length two terminating at
4. An analogous argument shows that there are no paths of length two terminating
at 6.

We now show that there are no paths of length three in S(F,T'). Let, if possible,
ni,ng, N3, ng be a path of length three in S(F,T) such that ny € T, implying ny €
F(T),ns € T,and ny € F(T). Since we have shown that there are no paths of length
two incident on & or &, it follows that n; # &, &, for i = 1...4. From Definition 6.3.1,

146 CHAPTER 6. PARALLEL TRANSFORMATIONS

we see that if n € T' is a node with multiple edges in S(F,T) incident on it, then
nda(n) is acted on by a copy operation in F. Now ns is such a node, implying
epy(nda(ns),x) € F. We also observe that if n’ € F(T) is a node with multiple
edges {[m;,n']} (1 =1...k, k> 1)in S(F,T) incident on it, then n’ = f'(m;x,0),
where * € [1,k], and glu(nda(m;),nda(m;)) € F for all m; # myx; thus there is
a glue operation acting on each nda(m;), ¢ € 1...k. Now ny is such a node, with
edges [n1,ns] and [ns, ny] incident on it. Therefore, there is a glue operation acting on
nda(ns). Thus nda(ns) is acted on by both a copy and a glue operation, contradicting
the validity of F' (Definition 6.2.2). We therefore conclude that no such path exists
in S(F,T), proving minimality.

O

Later we show that the converse of the above lemma is also true; that is, for
every minimal edge cover K of IG(Ty,T,) there exists some transformation F” such
that F'(T1) = Ty, and S(F',Ty) = K. Therefore, when searching for the signature
of a minimum-cost transformation between two given trees, it suffices to search over
the space of all minimal edge covers of their induced graph. Once we have found a
minimal edge cover that is the signature of a minimum-cost transformation, we can
easily recover the actual transformation from it, as described below.

To recover a transformation from a minimal edge cover K of the induced graph of
two trees T and T5, we proceed in two steps. The first step consists of determining
the disassembly points of the required transformation. In the second step, we use
these disassembly points to generate the actual edit operations in the transformation.
Intuitively, we determine the disassembly points of 77 and T3 using K as follows.
First, the tree roots, and the special nodes & and & are deemed disassembly points.
Next, any node whose partners (by K') are in any way “different” from the partners of
its parent is a disassembly point. We say the partners of a node n are “different” from
those of its parent p(n) if there is some partner of n whose parent is not a partner of
p(n), or vice versa. Finally, any partner of a disassembly point is also a disassembly
point. Definition 6.3.3 below presents the formal definition of the cover disassembly
points of trees T1 and T, by an edge cover K of their induced graph; we denote this
set of points by edp(Ty, Ty, K).

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 147

Definition 6.3.3 Let T} = (Ny,7r1,p1,01) and Ty = (Nz,r2, pa,l2) be two trees and
let K be a minimal edge cover of their induced graph B = [G(T1,Ty). We define the
cover disassembly points of Ty and K as the following set: edp(Ty, K') C N.

edp(Ty, K) {r}

{m e N | p(m),n] € K:(Am,n'] € K:p(n')=n)}
{me N | IAm,n] € K:([m',n] € K:(Am" nle K :pm")=m))}

U {meN | [mc]e K}

U {meN | 3[m,n] € K :[p(m),p(n)] ¢ K}

U {meN | m,n] € K:(3[m' n] €K :[p(m'),p(n)] ¢ K)}

U {meN | 3[m,ni],[m,no] € K :p(ni) = p(ns)}

U {meN | I[m,n] € K :(3[m,n],[ma,n] € K : p(m1) = p(m2))}
U [

U [

We define the cover disassembly points of Ty and K as edp(Te, K) ={n € Ty | [m,n] €
K, m€cdp(Ty, K)} U{n € N | [&,n] € K}. We also define the cover nearest dis-
assembly ancestor, ecnda(n), and the cover disassembly component, cde(n), of a node

n € Ty U Ty analogously to the corresponding definitions in Definition 6.2.1. O

The following lemma shows that the set of points given by this definition is exactly
the set of disassembly points of a minimum-cost transformation whose signature is

the given edge cover.

Lemma 10 Let T' = (N,r,p,l) and T' = (N',v',p',l") be two trees, and let K be a
minimal edge cover of their induced graph 1G(T,T").

edp(T, K) = dp(T, F(K,T,T"))
O

Proof Let us first show that cdp(T, K') C dp(T, F(K,T,T")). Let m be any node in
edp(T, K). If m = r, then m € dp(T, F(K,T,T")) since the root is always included
in dp(T, F(K,T,T")) (Definition 6.2.1). If [m,5] € K, then del(m) € F(K,T,T")

148 CHAPTER 6. PARALLEL TRANSFORMATIONS

(by Definition 6.3.6), implying m € dp(T, F(K,T,T")). Now for all m € edp(T, K)
other than those considered above, Definition 6.3.6 generates either a mov, ¢py, or glu
operation, implying m € dp(T, F(K,T,T")). Thus edp(T, K) C dp(T, F(K,T,T")).
Let us now show that dp(T, F(K,T,T")) C edp(T,K). Let m be any node in
dp(T, F(K,T,T"). If m =r, r € cdp(T,K) as required. If del(m) € F(K,T,T'),
Definition 6.3.1 implies [m, 5] € K, implying m € cdp(T, K). Otherwise, either
mov(m, h), epy(m,h), glu(h,m), or glu(m,h) is in F(K,T,T"), implying m is in
edp(T, K). Thus dp(T, F(K,T,T")) C edp(T, K') which, with our earlier result, com-
pletes the proof. a
Once we have determined the disassembly points as described above, we recover
the actual transformation as follows: Nodes matched to the special node & are deleted.
Nodes matched to & indicate nodes to be inserted. A one-to-one (edge cover) edge
incident on a disassembly point signifies a move operation. For a disassembly point
on which & > 1 (edge cover) edges are incident, we generate k— 1 copy operations and
zero or one move operation. The edge for which a copy operation is not generated
is called “distinguished.” The choice of this distinguished edge is significant only
when we can avoid a move operation by choosing as distinguished edge an edge that
connects two nodes whose parents also “match.” This intuition is formalized by the

following definition:

Definition 6.3.4 Let T'= (N,r,p,l) and T" = (N', 7', p',l') be two trees, and let K
be a minimal edge cover of their induced graph IG(T,T"). Without loss of generality,
let [r,7'] be the only edge in K incident on either of r or /. Let E(n) denote the
edges in K that are incident on a node n € N U N'. We define the matched edge set
of anode n € NU N’ —{r,r'} such that [, n],[n,S] € K as the set F'(n) below:

F(n) = {lnn] € Bn) | o), p(n')] € K}, if n € N
{[n',n] € E(n) | [p(n'),p(n)] € K}, otherwise

Further, let us define the distinguished edge de(n) incident on any n € edp(T, K') as

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 149

follows:

de(n) = e, if E(n) ={e}
an arbitrary edge in E'(n), if |[E(n)| > 1, E'(n) £ 0

an arbitrary edge in £(n), otherwise

Note that our definition of de implies de(r) = de(r') = [r,r'], de(m) = [m, 5] for
all [m,68] € K, and de(n) = [@,n] for all [$,n] € K. Furthermore, we extend the
definition of de to all nodes in N U N’ by defining de(n) for n € N U N' — edp(T, K)

as follows:
de(n) = [m,n], where de(enda(n)) = de(enda(m))

(From the definition of edp and enda, it is easy to observe that for any n € NUN' —
edp(T, K), there is exactly one node m such that de(cnda(n)) = de(enda(m)).) O

Given two trees T} and T3, and a minimal edge cover K of their induced graph,
Definition 6.3.6 below presents the details of recovering a transformation F' from K
based on the intuition described above. Recall that we require that 7] = F(T})
be isomorphic to T;. When generating the edit operations in F', we often need to
refer to the node in 7] that corresponds (by the isomorphism) to a certain node in
T;. As described in Section 6.2, nodes are referenced in edit operations using node
handles; i.e., expressions of the form £(n,1i). Thus, we need a way to map each node
in n € Ty to a node handle that represents its partner in T]; we call such a node
handle the representative handle of n, and denote it by h(n). Using the definition
of node handles in Section 6.2, it is easy to observe that the representative handle
of a node n in T, that is matched to @ is £(0,), where 7 is the identifier of the
insertion operation that produces the node in 7] that is isomorphic to n. Further,
for a node n € T, that is matched to exactly one node m € T} by a one-to-one edge,
we have h(n) = £(m,0). The case in which n is matched to more than one node in
Ty is similar; we simply pick the node m such that [m,n] is the distinguished edge

incident on n. Finally, if a node n € T is matched to a node m € T} that has more

150 CHAPTER 6. PARALLEL TRANSFORMATIONS

than one edge incident on it, we have two cases: If [m,n] is the distinguished edge
incident on m, it means that n is the node corresponding to m, and h(n) = £(m,0);
otherwise n represents a copy of m, and h(n) = £(m,:), where ¢ is the identifier
of the copy operation that produces the node in 7] that is isomorphic to n. The

following definition formalizes the above intuition.

Definition 6.3.5 Let T'= (N,r,p,l) and T" = (N’, v, p',l') be two trees, and let K
be a minimal edge cover of their induced graph B = IG(T,T") = (U, V, E). Without
loss of generality, let [r,7’] be the only edge in K incident on either of r or r'. We
define the representative handle h(n) of a node n € T" as follows, where we use type
font to represent literal strings, and italic font to represent non-literals, and where

o is a function that maps edges to arbitrary, unique, positive integers:

h(n) = £(0,0(de(n))), if de(n) = [E,n]
f(m,0), if de(n) = [m,n] = de(m)
f(m,o(de(enda(n)))), if de(n) = [m,n] # de(m)

a

Definition 6.3.6 Let T'= (N,r,p,l) and T" = (N', 7', p',l") be two trees, and let K
be a minimal edge cover of their induced graph IG(T,T"). Without loss of generality,
let [r,7'] be the only edge in K incident on either of r or . We define the transforma-
tion induced by the cover K, denoted by F\(K,T,T") as follows, where m,m’ & {r, &},
ng{r, e}, E(m)={[m,n] € K} U{[n,m] € K}, and edp(T, K) is a short-hand for
edp(T,T'"K)N'T. (We use type font to represent literal strings, and italic font to
represent non-literals, and where o is a function that maps edges to arbitrary, unique,

positive integers.)

F(K,T,T") = {del(£(m,0)) | [m,0]€ K}

{ins(h(p(n)),l(n),i) | [®,n] € K}
U {mov(£(m,0), h(p(n))) | m € edp(T, K), [m,n] € K.
[E£(m)| = [E(n)| =1}

C

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 151

U {mov(£(m,0), h(p(n))) | m € cdp(T. K), [m,n] € K, [E(m)| > L,
de(m) = [m,n], de(enda(p(m))) = [enda(p(m)),n'] # de(n')}
U {epy(£(m,0), h(p(n)),o([m,n])) | m € edp(T, K), [m,n] € K,
[E(m)| > 1, [m,n] # de(m)}
U {mov(£(m,0),h(p(n))) | m € edp(T,K), [m,n] € K, |[E(n)| > 1,

de(n) = [m,n], de(p(n)) # [p(m’), p(n)]}

U {glu(f(m,0),£(m’,0)) | m € cdp(T, K),
[m,n] € K, |E(n)| > 1, [m',n] = de(n), m # m'}

U {upd(h(n)l(n)) | [m,n] € K, [m,n] # de(m), l(m) # U(n),
[E(m)| > 1}

Example 6.3.1 Let T be the initial tree from Example 6.2.1, and let 77 be a tree
isomorphic to the final tree F(T') there, as shown in Figure 6.3. (Note that in Ex-
ample 6.2.1 the final tree is obtained by modifying the initial tree. Here, the two
trees are not related in this manner; hence the tree nodes do not share identifiers.) A
minimal edge cover of their induced graph is indicated using dashed lines. (Note that
this edge cover is in fact the signature of the transformation in Example 6.2.1.) The
cover disassembly points, computed using Definition 6.3.3, are marked by asterisks.
The distinguished edge incident on each node is marked by a small filled circle on that
edge near the corresponding node. Since there are only two nodes with more than one
edge incident on them, the choice of a distinguished edge is nontrivial in these two
cases only. Intuitively, for node 5, we observe that the parent of node 56 is matched
to the parent of node 5; therefore the edge [5,56] is chosen as distinguished. Node 4
is not matched to any node whose parent matches the parent of node 4; therefore,
we select a distinguished edge arbitrarily from those incident on node 4, say [4,53].
(Definition 6.3.4 describes the choice formally.)

Using this information about the cover disassembly points and distinguished edges,

we now use Definition 6.3.6 to obtain a transformation. The edge [4, 54] satisfies the

152 CHAPTER 6. PARALLEL TRANSFORMATIONS

Figure 6.3: The trees in Example 6.3.1

conditions in line 4 of the equation in Definition 6.3.6, resulting in the operation
mov (f(4,0), h(p(54))). Now from Figure 6.3 we observe that p(54) = 53. Fur-
ther, node 53 is matched to node 5, but [5,53] is not the distinguished edge incident
on node 5 (i.e., de(5) # [5,53]); therefore, the representative handle of node 53
is £(5,0([5,53])), where o is simply a function that generates a unique identifier
for each edge. Say o([5,53]) = 501, so that h(p(54)) = h(53) = £(5,501), giv-
ing mov(£(4,0), £(5,501)) as the edit operation generated corresponding to edge
[4,54]. Next, observe that edge [5,53] satisfies the conditions in line 6 of Defini-
tion 6.3.6, resulting in the operation cpy(£(5,0), £(2,0), 501), since h(p(53)) =
h(52) = £(2,0), and o([5,53]) = 501. A similar process for the edge [4,57] re-
sults in the operation cpy(£(4,0), £(5,0)). Definition 6.3.6 does not generate any
more operations, giving {mov(£f(4,0), £(5,501)), cpy(£(5,0), £(2,0), 501),
cpy (£(4,0), £(5,0))} as the recovered transformation.

Observe that the transformation recovered above is essentially identical to that
in Example 6.2.1. Apart from edit operation identifiers, the only difference is that
instead of moving the node 4 to below the original instance of node 5 (and copying
node 4 to below the copy of node 5) as done by that transformation, the above
transformation moves node 4 to below the copy of node 5 (copying node 4 to below
the original instance of node 5). This difference is a result of the freedom in the choice

of a distinguished edge incident on node 4. O

We now state and prove the main results of this chapter as Theorems 5 and 6
below, showing that the transformation I recovered by Definition 6.3.6 from the

signature S(F,T) of a transformation F' on tree T' is essentially identical to F:

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 153

Theorem 5 Let T and 1" be two trees, and let K be a minimal edge cover of their
induced graph IG(T,T"). Then (1) F(K,T,T") is a valid transformation for T, (2)
F(K, T, T(T) is isomorphic to T', and (3) S(F(K,T,T"),T) is isomorphic to K. O

Theorem 6 Let T be a tree, let ' be a transformation that is valid for T', and let
F' = F(S(F,T), T, F(T)). Then F' has the same number of move, copy, and glue
operations as F' (respectively), and the insert, delete, and update operations in F' are

identical to those in I, modulo edit operation identifiers. a

The following lemma is useful in proving the above theorems:

Lemma 11 Let T = (N,r,p,l) and T" = (N',v',p',l') be two trees, and let K be
a minimal edge cover of their induced graph 1G(T,T"). If m,n & cdp(T,K), m #
&, m #r, n# @, and n # v, then [p(m),p'(n)] € K. Consequently, we have
[enda(m), ecnda(n)] € K for all nodes m € N, n € N'. O

Proof Follows from Definition 6.3.3. O
Proof of Theorem 5

Part (1): Let us first show that F = F(K,T,T') is a valid transformation for 7.
The conditions 1(a-e) and 2 in Definition 6.2.2 are easy to verify. Let us consider
condition 3 for some node n such that del(n) € F', and any child ¢ of n. If [¢, 5] € K,
del(f(¢,0)) € F. Otherwise [c,y] € K for some y € T'. Since the only edge in K
incident on n = p(c) is [n, ©] (due to minimality of K" and Definition 6.3.2), it follows
from Definition 6.3.3 that m € cdp(T, K). Definition 6.3.6 shows that every node
m € edp(T, K) such that [m,5] € K is acted on by a mov or glu operation in F.
Thus condition 3 is satisfied. Finally, let us verify condition 1(f) of Definition 6.2.2.
If glu(f(m1,0), f(ms,0),7) € F then [mq,n], [m2,n] € K due to Definition 6.3.6. Let
x be any node in de(my), implying that m; is an ancestor of x. Consider first the case
when p(x) = my. Since & & dp(T, F'), it follows from Lemma 10 and Definition 6.3.3
that Iz, y] € K such that p(y) = n. (We use 3! to denote “there exists a unique.”)
Furthermore, « ¢ dp(T, K) implies y & dp(T,F) = edp(T, K), so that J!a’,y] €
K such that p(a') = my. Thus for any child « of m;, we determine uniquely a

corresponding child 2’ of my, and we define g;(¢) = 2’. By using induction on the

154 CHAPTER 6. PARALLEL TRANSFORMATIONS

depth of a node x in the subtree de(m;y), we extend the definition of g; to all nodes in
de(my). We thus have a one-to-one function g; : de(mq) — de(msz) that preserves the
parent function; by symmetry, it follows that ¢; is also an onto function. Finally, it
is easy to verify that g; “preserves labels” in the sense of Definition 6.2.2. Therefore
F'is a valid transformation for 7'

Part (2): Let us now show that F(T) = (N",r",p" ") is isomorphic to T" =
(N, v, p',1"). Define a function A’ : N' — N intuitively reflecting the representative

handle function A in Definition 6.3.5 as follows:

Win) = F0,0), i hin) = £(0,1)
f'(m,0), if h(n) = f(m,0)
f(m,4), if h(n) = f(m,1)

We claim that A’ is an isomorphism from F(T') to T’. Since there is exactly one
distinguished edge de(n) incident on any node n € F(T'), it follows that h, and hence
h', is a one-to-one function.

Now let us show that A’ is an onto function. Consider any m’ € F(T'), and the
possibilities according to Definition 6.2.3. If m’ = f/(0,¢), we know that ins(...,7) €
F(T), implying de(n) = [&,n] and o(de(n)) = 1, so that h(n) = f(0,7) and h'(n) =
m'. If m" = f'(m,0), we know m € T and del(f(m,0)), glu(cnda(m),...) & F. Thus
[m,8] € S(F,T) and In = cnda(n) € T' : de(enda(m)) = [enda(m),n] = de(n)
(since de(enda(m)) # de(enda(n)) implies glu(f(enda(m),0),...) € F), implying
h(n) = f(m,0) and A'(n) = f'(m,0) = m’. Finally, if m’ = f'(m,i), ¢« > 0 then
epy(f(enda(m),0),...) € F, so that In’ € T" : de(n’) = [enda(m),n] # de(enda(m)).
Now using the definition of edp(T, K') and the fact that m ¢ cdp(T, K), it is easy to
observe that dn € cde(n') @ de(n) = [m,n] # de(m), implying h(n) = f(m,i) and
h'(n) = f'(m,1).

We shall now show that i’ preserves the parent function; that is, we shall
show that A'(p'(n)) = p"(K'(n)) for all n € N, n # . If A'(n) = f(0,7) then
ins(h(p(n)),l(n),7) € F, implying p”(f'(0,7)) = A'(p'(n)) as needed. If n (and there-
fore h(n)) is not a disassembly point, clearly p”(h'(n)) = h'(p'(n)) by Definition 6.2.3.

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 155

If n (and therefore h'(n)) is a disassembly point, we have n = enda(n), m = enda(m),
and the following two cases:

Case 1: h/(n) = f'(m,0). In this case, h(n) = f(m,0), implying de(n) = [m,n]| and
de(m) = de(n) (since m and n are disassembly points) by the definition of the handle
function h. Using the definition of FI(K,T,T"), it is easy to observe that for all the
three of the possibilities (1) |[E(n)| = |[E(m)| =1, (2) |[E(n)| =1, |E(m)| > 1, and (3)
D) > 1, [B(m)| = 1, mov(f(m,0), h(p(n))) € F\, implying p(f'(m,0)) = '(p(n)
as needed.

Case 2: h'(n) = f'(m,7), ¢ > 0. In this case, epy(f(m,0),h(p(n))) € F, implying
p"(f'(m,1)) = h'(p(n)) as needed.

From the definition of A'(n), h(n), and F(K,T,T"), it is easy to see that h’' pre-
serves the label function [. Thus, /2’ is the required isomorphism between 7" and
F(T).

Part (3): Now let us show that S = S(F,T) is isomorphic to K’; more precisely,
we show that [m,n] € K if and only if [m, h'(n)] € S(F,T). (We extend A’ by defining
h'(&) = & for notational convenience.) It is easy to observe that [¢, 5] € K if and
only if [, 0] in S; therefore we will exclude this special edge from our discussion
below.

Consider any [m,n] € K. We will show that [m,h'(n)] € S. lf m = &, ins(...,i) €

F, so that [, f/(0,1)] = [m,h'(n)] € S as required. Otherwise, we have two cases:
Case 1: h'(n) = f'(m,0). If de(n) = [m',n], m’ # m then (by lemma Lemma 11)
[enda(m), enda(n)] and [enda(m'),cnda(n)] belong to K, in turn implying
glu(f(enda(m),0), f(enda(m’),0)) so that [m, f'(m,0)] € 5. Otherwise de(n) =
[m, n], implying glu(f(m,0),...) € F. Now if 3m’ € N : glu(f(m/,0), f(m,0)) € F,
we can argue [m, f'(m,0)] as before; else the absence of glu and del operating on m
gives [m, f'(m,0)] as required.
Case 2: h'(n) = f'(n,1), i > 0. From the definition of the representative handle func-
tion h and the copy operation-generating part of the definition of F(K,T,T") (Defi-
nition 6.3.5), we see that Jepy(f(enda(m),0),m’,i) € F. Therefore, [m, f'(m,i)] € S
as required.

Thus [m,n] € K = [m,h'(n)] € S. Now since A’ : N’ — N" is an isomorphism,

156 CHAPTER 6. PARALLEL TRANSFORMATIONS

all edges in S are of the form [m,h/(n)], where m € N U {64} and n € N' U {5}.
Consider any such edge. If m = @ then A'(n) = f'(0,1), implying [®,n] € K by
Definition 6.3.5. If A'(n) = f'(m,0) then A'(n) = m gives [m,n] € K. Otherwise,
h'(n) = f'(m,1), 1 > 0, implying [m,n] € K again. Thus [m,h/(n)] € S = [m,n] €
K, which together with [m,n] € K = [m,h'(n)] € S, shows that S and K are
isomorphic. a
Proof of Theorem 6

Let T'= (N,r,p,), T" = F(T) = (N',r,p',l'). Consider first any insert operation
ins(h(p'(n)),l(n),1) in F'. From the definition of F(K,T,T'), we know that [$,n] €
S(F,T) such that ([, n]) = 7, which in turn implies ins(h,{,¢) € F and n = f'(0,1)
due to Definition 6.3.1. Since I(f'(0,7)) = [, it follows that { = [(n). If h = f(ns,0),
p'(n) = f'(ny,0); else h = f(ng,1) and p'(n) = f'(ng,i); in either case, h = h(p'(n)).
Thus ins(h(p'(n)),l(n),i) € F.

Consider any delete operation del(f(m,0)) € F’. From the definition of
F(K,T,T"), we obtain [m,5] € S(F,T), which in turn implies del(f(m,0)) € F
due to Definition 6.3.1. The above arguments for insert and delete operations can
also be repeated in the reverse direction.

Consider a node m € T such that |E(m)| = k > 1. Let the set of edge-cover edges
incident on m be E(m) = {[m,n;]}%,. Now since the edge cover is actually S(F,T),
Definition 6.3.1 implies that there are exactly k& — 1 copy operations of the form
epy(f(m,0),h) in F. It is easy to observe that the definition of F'(K,T,T") generates
exactly £ — 1 copy operations for such a node m. Since the above argument can be
repeated for each node m € T, we conclude that the number of copy operations in
I is equal to that number in F”.

The argument for glue operations is analogous to the above argument for copy
operations: Consider a node n € T" such that |F(n)| = k > 1. Let the set of edge-
cover edges incident on n be F(n) = {[m;,n]}X_,. Now since the edge cover is actually
S(F,T), Definition 6.3.1 implies that there are exactly k — 1 glue operations of the
form glu(f(m;,0), f(m/,0)) in I, where m’ € {m;} and m; € {m;} for j=1... k—1.
It is easy to observe that the definition of F'(K,T,T') generates exactly k — 1 glue

operations corresponding to such a node n. Since the above argument can be repeated

6.3. REPRESENTATIVE SIGNATURES OF TRANSFORMATIONS 157

for each node n € T’, we conclude that the number of glue operations in F'is equal
to that number in F.

Now consider move operations. Consider first any move operation in the third
subset of the definition of F(K,T,T"). We know that m € edp(T, K), so that m &
dp(T, F) by Lemma 10. From Definition 6.2.1, we see that a non-root node is in
dp(T, F') only if it is acted on by some edit operations other than update. Now, m
cannot be deleted, because that would imply [m,S] € S(F,T). Furthermore, the fact
that |F(m)| = |E(n)| = 1 indicates that m cannot be subject to a copy or a glue
operation. Consequently, it must be the case that m is moved by F.

Now consider any move operation mov(f(m,0),h(p(n))) in the fourth subset of
the definition of F(K,T,T"). We know that |E(m)| > 1; let E(m) = {[m,n]}X,
where k > 1. As we have seen above, there are k — 1 copy operations of the form
epy(f(m,0),n)in F. Let [m,n*] be the unique edge in F(m) that does not correspond
to a copy operation. Suppose mov(f(m,0),n) ¢ F. Then p'(f'(m,0)) = f'(p(m),0)
by Definition 6.2.3. Now if either del(f(p(m),0)) € F or glu(f(p(m),0),h") € F,
the validity of F' implies mov(f(m,0),h) € F (due to Definition 6.2.2), contradict-
ing our assumption. Therefore, it must be the case that del(f(p(m),0)) € F and
glu(f(p(m),0),h") € F, in turn implying f'(p(m),0) € N’ due to Definition 6.2.3.
Now, using Definition 6.3.1, the above facts yield [p(m), f'(p(m),0)] € S(F,T) = K,
in turn implying £'(m) # 0 in Definition 6.3.6, which gives de(m) € E'(m), contra-
dicting the condition in the fourth subset of Definition 6.3.6. Therefore, we conclude
that /' contains a move operation mov(f(m,0), k). The argument for move operations
in the sixth subset of the definition of F(K,T,T") is analogous to the above.

Finally, let us consider update operations. Consider first an edge [m,n] € S(F,T)
such that |F(m)| = |E(n)| = 1, implying n = f'(m,0). Since l(n) # {(m), clearly
upd(f(m,0),l(n)) € F due to Definition 6.2.3. Now consider an edge [m,n] € S(F,T)
such that |[E(m)| =1 and |E(n)| =k > 1, implying k — 1 glue operations correspond-
ing to k — 1 of the k edges in F(n). Now if [m,n] is the edge not corresponding to
a glue operation, we can argue as above that upd(f(m,0),l{(n)) € F. On the other
hand, if [m,n] is an edge corresponding to a glue operation glu(f(m,0), f(m’,0)), the
condition 1(f) in Definition 6.2.2 requires upd(f(m,0),{(n)) € F'. We have thus shown

158 CHAPTER 6. PARALLEL TRANSFORMATIONS

that all the update operations in F'(K,T,T") for nodes m such that |E(m)| =1 are
also present in F'. Now consider an edge [m,n| € S(F,T) such that |[E(m)| =k > 1
and |F(n)| = 1, implying & — 1 copy operations corresponding to k — 1 of the k
edges in E(n). Now if [m,n] is the edge not corresponding to a copy operation,
we can argue as above that upd(f(m,0),l(n)) € F. On the other hand, if [m,n] is
an edge corresponding to a copy operation epy(f(m,0),h, 1), n = f'(m,i), implying
upd(f(m,i),l(n)) € F since [(m) # [(n) (by Definition 6.2.3). It is easy to show that
the argument for update operations also holds in the reverse direction; that is, an

update operation in F' implies a corresponding one in F”. a

6.4 Computing Signatures

In this section, we briefly describe the application of our ideas presented in earlier sec-
tions. In particular, we outline the benefits of our transformation model, and describe
how signatures can be used to efficiently compute a minimum-cost transformation be-
tween two trees. When managing tree-structured data (e.g., structured query results,
programs, documents, Web sites, circuit designs, and file systems), one often needs
to find differences between related data (e.g., results of running a query at differ-
ent times, two similar circuits, or different versions of a program or document). Such
tree differences can be compactly and effectively captured by the novel transformation
model we have presented here. Our model includes expressive subtree operations, such
as move and copy, which make the detected differences more meaningful to a user.
This model also admits representative signatures, which are compact representations
of the essential information in transformations. These signatures make it possible to
search for a minimum-cost transformation by searching instead for a minimum-cost
signature, knowing that each signature can be mapped back to a transformation. As
discussed in Section 6.1 and below, working with transformation signatures greatly
simplifies algorithms for computing minimum-cost transformations. Our model, re-
sults, and strategy for computing a minimum-cost transformation are independent of
the details of the cost model used. Furthermore, although in this chapter we have

focused on unordered trees, the results adapt easily to ordered trees, making our

6.4. COMPUTING SIGNATURES 159

scheme widely applicable.

A general approach to computing a minimum-cost signature, without using appli-
cation- or domain-specific features, is to use search-based techniques and heuristics.
Recall from Section 6.3 that the signature of any transformation between the input
trees Ty and Ty is a minimal edge cover of their induced graph (which is a bipartite
graph that has an edge between every node in 7Ty and every node in T3). Thus, the
search space that we need to explore is the space of all possible minimal edge covers
of this bipartite graph. Note that this is a much simpler search space than the search
space of all possible transformations between T} and T5. This simplification is a result
of the existence of representative signatures in our transformation model.

Further, we can use pruning rules, such as those introduced in Chapter 5, to elim-
inate edges from the induced graph. Recall that these rules (conservatively) detect
cases when two nodes can never be partners in any minimum-cost transformation
(using upper and lower bounds on the contribution of an induced graph edge to the
cost of a signature). (In addition, we may optionally decide to use aggressive pruning
rules that prune edges if it is “very unlikely” that the corresponding nodes could be
partners.) Eliminating edges from the induced graph greatly reduces the size of the
search space. Next, we use estimates of the cost contribution of induced graph edges
to compute a minimum-(estimated)cost edge cover of the pruned induced graph. Fi-
nally, we search for a better signature in the neighborhood of this initial edge cover,
using techniques similar to those in [WZC95, SWZS94]. In Chapter 9, we present
experimental results that explore some of these options.

We can often further reduce the size of the search space of signatures by using
features of the application domain. For example, consider an application comparing
structured documents. Such documents are often represented using layered, ordered
trees, with layers corresponding to structural elements (such as words, sentences,
paragraphs, and sections). That is, each tree node has an immutable type, and the
tree is layered by a partial order on these types. (For example, sentences are below
paragraphs and sections.) Therefore we do not need to consider any signature that
matches nodes of different types to each other. This fact leads to very effective

pruning of the induced graph, and a corresponding reduction in the size of the search

160 CHAPTER 6. PARALLEL TRANSFORMATIONS

space of its minimal covers.

Due to the simplicity of the relation between signatures and transformation in our
model, we are able to derive tighter bounds on the edge costs described above than
those possible in the linear edit script model. (With linear edit scripts, cost bounds
need to take into account possible “piggy-backing” of edit operations.) These tighter
bounds lead to more effective pruning of the induced graph, and thus give us better
performance. This simplicity also allows us to easily derive better estimates for edge
costs in the induced graph, thus improving the quality of the initial solution, and the
effectiveness of the subsequent search process.

Finally, we can often use domain characteristics in conjunction with the properties
of representative signatures to permit the exact computation of the contribution of
an edge in the induced graph to the total cost of the signature (whereas in general
we use estimates). Consequently, the initial solution that was earlier the estimated
minimum-cost signature is now the actual optimal solution, so that the subsequent
search phase is unnecessary. One such scheme (similar in spirit to the restrictions
on matchings used in [Yan91, ZS89, ZWS95]) results in a simple bottom-up dynamic
programming algorithm that produces optimal solutions if moves, copies, and glues
are restricted to be “local.” (A restriction of local copies, for instance, disallows a
paragraph from being copied outside its section.) Even if these restrictions do not
strictly hold in a given application domain, we may intuitively expect such algorithms

produce solutions that are close to optimal.

6.5 Summary

In this chapter, we described the difficulties encountered when we use the traditional
linear edit script model with expressive subtree operations such as move, copy, and
uncopy. To address these difficulties, we presented a novel model for describing tree
transformations. Unlike edit scripts, which constitute a procedural specification of
the differences between two trees, transformations in our model provide a simple
declarative specification of tree differences. Intuitively, our transformations operate

on a tree by first dividing the tree into components called chunks, then operating on

6.5. SUMMARY 161

these chunks independently of one another, and finally putting the chunks together
to form the final tree.

The essential features of the tree transformations defined in this chapter are com-
pactly represented by their signatures. We defined representative signatures of trans-
formations and presented the simple algorithms used to map transformations and
signatures to each other. Due to the declarative nature of our transformations and
the lack of restrictions such as those required for structured edit scripts in Chapter 5,
these algorithms are extremely simple. Our algorithm to map signatures to trans-
formations, given by Definition 6.3.6, is substantially simpler than the analogous
algorithm for structured edit scripts presented in Section 5.4.3 of Chapter 5.

We also described how some of the techniques used for the linear edit script model,
including those described in earlier chapters, can be adapted to this transformation
model. In particular, we have implemented a program that combines the pruning
techniques from Chapter 5 with the transformations of this chapter. In Chapter 9,
we describe experimental results based on this implementation.

Recall, from Chapter 3, that detecting changes by comparing data snapshots
is an important subproblem of the problem of managing change in heterogeneous,
autonomous databases. In this chapter and Chapters 4 and 5, we studied several
change detection techniques. In the next chapter, we explore how such changes, once
detected, can be represented, stored, and queried in a systematic manner, and in
Chapter 8 we describe how we combine these ideas in the implementation of the C?

system.

Chapter 7

Representing and Querying
Changes

In Chapters 4, 5, and 6, we described techniques for detecting changes in heteroge-
neous, autonomous databases. In this chapter, we address the issue of how these
changes are stored, queried, and managed. Recall from Chapter 3 that the data we
are interested in is semistructured in nature. The lack of a fixed schema inherent in
such data makes it very difficult to use traditional database techniques for represent-
ing and querying historical data. We therefore present a simple and general model,
DOEM (pronounced “doom”), for representing changes in semistructured data. We
also present a language, Chorel, for querying over data and changes represented in
DOEM. We describe our implementation of DOEM and Chorel. We also introduce
a facility that allows users to subscribe to changes in semistructured data, and we

describe its design and implementation based on DOEM and Chorel.

7.1 Introduction

Recall from Chapter 3 that semistructured data is data that has some structure,
but it may be irregular and incomplete and does not necessarily conform to a fixed

schema. Recently, there has been increased interest in data models and query lan-

guages for semistructured data [Abi97, BDHS96, CACS94, CGMH"94, QWG96].

162

7.1. INTRODUCTION 163

We also see increased interest in change management in relational and object data
[GHJ96, DHRY6], and in the related problem of temporal databases [SA86, Soo91].
However, we are not aware of any work that addresses the problem of representing
and querying changes in semistructured data. As will be seen, this problem is more
challenging than the corresponding problem for structured data due to the irreg-
ularity, incompleteness, and lack of schema that often characterize semistructured
data. Nevertheless, our approach, based on graph annotations, is also applicable to

structured graph-based data.

7.1.1 Motivating Examples

The Palo Alto Weekly, a local newspaper, maintains a Web site providing information
about restaurants in the Bay Area [PAW98]. Most of the data in the restaurant guide
is relatively static. But as often happens in database applications, we are particularly
interested in the dynamic part of the data. For example, we are interested in finding
out which restaurants were recently added, which restaurants were seen as improving,
degrading, and so on. These changes can be captured using the differencing techniques
described in Chapters 4, 5, and 6. Figure 3.3 in Chapter 3 depicts some sample output
produced by our differencing program on inputs from the Palo Alto Weekly. (Our
program, Tdiff, is described in detail in Chapter 8.)

For reasonably small documents, browsing the marked-up HTML files produced by
htmldiff to view the changes of interest is a feasible option. However, as documents get
larger and changes become more prevalent and varied, one soon feels the need to use
queries to directly find changes of interest instead of simply browsing. (For example,
the restaurant guide page is currently more than 20,000 lines long, making browsing
very inconvenient.) An example of a simple change query over the restaurant data
is “find all new restaurant entries.” Another example is “find all restaurants whose
average entree price changed.” Just as browsing databases is often an ineffective way
to retrieve information, the same holds for browsing data representing changes. Thus,
for this example, what we need is a query language that allows queries over changes

to (semistructured) HTML pages.

164 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

As another motivating example, consider a typical library system that contains
book circulation information. Suppose we wish to be notified whenever any “popular”
book becomes available where, say, we define a book as popular if it has been checked
out two or more times in the past month. We could partially achieve this goal by set-
ting a trigger on the circulation database that notifies us whenever a book is returned.
However, there are two problems with this approach. First, many library information
systems are legacy mainframe applications on which triggers are not available. Fur-
thermore, even in cases where the library information system is implemented using a
database system that supports triggers, a user often lacks the access rights required
to set triggers on the database. Second, there is often no way to access historical
circulation information, so that we cannot check whether the book being returned
was checked out two or more times recently. In this application too, the data may
be semistructured, especially if the library system merges information from multiple
sources [PAGM96]. Thus, we again need a method to compute, represent, and query

changes in the context of semistructured data.

7.1.2 Overview

Since our goal is to represent changes in semistructured data, we use as a starting
point the Object Exchange Model (OEM), designed at Stanford as part of the Tsimmis
project [CGMHT94]. OEM is a simple graph-based data model, with objects as nodes
and object-subobject relationships represented by labeled arcs. Due to its simplicity
and flexibility, OEM can encode numerous kinds of data, including relational data,
electronic documents in formats such as SGML and HTML, other data exchange
formats (e.g., ASN.1), and programs (e.g., C++). Note that OEM may be thought
of as an extension of the tree-based models used in Chapters 4, 5, and 6 to directed
graphs. The basic change operations in such a graph-based model are node insertion,
update of node values, and addition and removal of labeled arcs. (Node deletion is
implicit by unreachability [AQM*96].) Our change representation model, DOEM (for
Delta-OEM), uses annotations on the nodes and arcs of an OEM graph to represent

changes. Intuitively, the set of annotations on a node or arc represents the history of

7.1. INTRODUCTION 165

that node or arc.

For querying over changes we use a language based on the Lorel language for
querying semistructured data [AQM™96]. In our language, called Chorel (for Change
Lorel), we extend the concept of Lorel path expressions to allow us to refer to the
annotations in a DOEM database. The result is an intuitive and convenient language
for expressing change queries in semistructured data. Although the work in this
chapter is founded on the OEM data model and the Lorel language, the principal
concepts are applicable to any graph-based data model (semistructured or otherwise),
e.g., [BDHS96, Cat96].

Our implementation of DOEM and Chorel uses a method that encodes DOEM
databases as OEM databases and translates Chorel queries into equivalent Lorel queries
over the OEM encoding. This encoding scheme has the benefit that we did not need to
build from scratch yet another database system; instead, we capitalized on an existing
database system for semistructured data. Finally, as an important first application of
DOEM and Chorel, we describe our design and implementation of a query subscription

service that permits users to subscribe to changes in semistructured data.

7.1.3 Contributions

The main contributions of this chapter are as follows:

1. We present a simple and general change representation model for semistructured
data. An important feature of our model is that it represents changes to a
database directly as graph annotations, instead of indirectly as the difference

between old and new database states.

2. We describe the syntax, semantics, and implementation of a query language
over changes to semistructured data. Again, an important advantage of our

query language is that it allows the user to access changes directly.

3. We describe how our system implements this change query language on top of
an existing semistructured database system by encoding the change data and

by translating change queries to ordinary queries.

166 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

4. We show how “virtual annotations” can be used to access implicit information
in our data model. In particular, we describe how our query language (and
its translation-based implementation) is extended to facilitate snapshot-based

access to data.

5. We describe the design and implementation of a query subscription service that
permits users to subscribe to changes in heterogeneous database environments.
A unique feature of our service is that it enables the user to specify very precisely

(using our query language) the changes of interest.

The rest of this chapter is organized as follows. Section 7.2 reviews the Object
Exchange Model (OEM), and introduces OEM change operations and histories. In
Section 7.3, we present our OEM-based change representation model for semistruc-
tured data, DOEM. Section 7.4 describes our change query language, Chorel. In Sec-
tion 7.5, we present the encoding scheme that we use to implement DOEM and Chorel
by translation, and we briefly describe our system implementation. In Section 7.6,
we introduce some extensions to our language that make snapshot-based access in
our data model more convenient. We also describe how our translation-based imple-
mentation of Chorel is extended for this purpose. Section 7.7 describes the query
subscription system we have implemented based on the material in Sections 7.3-7.5.

We conclude in Section 7.8.

7.2 The Object Exchange Model

The Object Exchange Model (OEM) is a simple, flexible model for representing het-
erogeneous, semistructured data. In this section, we begin by briefly describing OEM.
Next, we define the basic change operations used to modify an OEM database. Finally,
we introduce the concept of an OEM history that describes a collection of basic change
operations. Histories form the basis of our change representation model described in
Section 7.3.

Intuitively, one can think of an OEM database as a directed graph in which nodes

correspond to objects and arcs correspond to relationships. FEach arc has a label

7.2. THE OBJECT EXCHANGE MODEL 167

"usualy full"

"Lytton lot 2"
"moderate”

"Lytton” "Palo Alto"

Figure 7.1: The OEM database in Example 7.2.1.

that describes the nature of the relationship. (Note that the graph can have cycles,
and that an object may be a subobject of multiple objects via different relationships.
Example 7.2.1 below illustrates these points.) Nodes without outgoing arcs are called
atomic objects; the rest of the nodes are called complex objects. Atomic objects have
a value of type integer, real, string, etc. An arc (p,[,c) in the graph signifies that
the object with identifier ¢ is an [-labeled subobject (child) of the complex object
with identifier p. Fach OEM database has a distinguished node called the root of the
database. The root is the implicit starting point of path expressions in the Lorel
query language (described in Section 7.4.1). Formally, we define an OEM database as

follows:

Definition 7.2.1 An OEM database is a 4-tuple O = (N, A,v,r), where N is a set
of object identifiers; A is a set of labeled, directed arcs (p,, ¢) where p,c € N and [
is a string; v is a function that maps each node n € N to a value that is an integer,
string, etc., or the reserved value C (for complex); and r is a distinguished node in
N called the root of the database. A node is a complex object if its value is C and
otherwise it is an atomic object. Only complex objects have outgoing arcs. We also

require that every node be reachable from the root using a directed path. a

168 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

Example 7.2.1 We will use as our running example an OEM database describing the
restaurant guide section of the Palo Alto Weekly, introduced in Section 7.1. Figure 7.1
shows a small portion of the data. Note that although the restaurant entries are quite
similar to each other in structure, there are important differences that require the use
of a semistructured data model such as OEM. In particular, we see that the price rating
for a restaurant may be either an integer (10) or a string (“moderate”). The address
may be either a simple string (“120 Lytton”) or a complex object with subobjects
listing the street, city, etc. Note also that although the data has a natural hierarchical
structure, nodes may have multiple incoming arcs (e.g., node nr), and there are cycles
(e.g., the cycle formed by the arcs “parking” and “nearby-eats”). In the sequel, we
refer to this database as Guide. O

7.2.1 Changes in OEM

We now describe how an OEM database is modified. Let O = (N, A,v,r) be an OEM

database. The four basic change operations are the following:

Create Node: The operation creNode(n,v) creates a new object. The identifier n
must be new, i.e., n must not occur in O. The initial value v must be an atomic

value (integer, real, string, etc.) or the special symbol C (for complex).

Update Node: The operation updNode(n,v) changes the value of object n, where
v is an atomic value or the special symbol C. Object n must be either an
atomic object or a complex object without subobjects. (The model requires us
to remove all subobjects of a complex object n before transforming it into an

atomic object.) The value v becomes the new value of n.

Add Arc: The operation addArc(p,l,¢) adds an arc labeled [from object p (the
parent) to object ¢ (the child). Objects p and ¢ must exist in O, p must be

complex, and the arc (p,!, ¢) must not already exist in O.

Remove Arc: The operation remAre(p, [, ¢) removes an arc. Objects p and ¢ must

exist in O, and O must contain an arc (p,[, ¢), which is removed.

7.2. THE OBJECT EXCHANGE MODEL 169

,7~ comment_s” >,
restaurant __ _ ot p2kF----- = n5)
N

________ N \N_~s
--=" ~Jhame “need info"

"Lytton lot 2" "usudly full"

"Lytton” "Palo Alto"

Figure 7.2: The OEM database in Example 7.2.2

If w is a basic change operation that can be applied to O, we say u is valid for
O, and we use u(0O) to denote the result of applying u to O. Note that there is no
explicit object deletion operation. In OEM, persistence is by reachability from the
distinguished root node [AQM™96]. Thus, to delete an object it suffices to remove
all arcs leading to it. A subtlety is that sometimes we need to allow objects to be
“temporarily” unreachable. In particular, when we create a new object, it remains
unreachable until we create an arc that links it to the rest of the database. Thus, when
we consider sequences of changes in Section 7.2.2, we want to permit the result of
atomic changes to (temporarily) contain unreachable objects. The issue is discussed
further in Section 7.2.2 below. Note that users will typically request “higher-level”
changes based on the Lorel update language [AQM™96]; the basic change operations
defined here reflect the actual changes at the database level.

Example 7.2.2 Let us consider some modifications to the OEM database in Exam-
ple 7.2.1. We will use these modifications as a running example in the rest of the chap-
ter. First, on January 1st, 1997, the price rating for “Bangkok Cuisine” is changed
from 10 to 20. This modification corresponds to an updNode operation. On the same

day, a new restaurant with name “Hakata” is added (with no other data). This

170 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

modification corresponds to two creNode operations for the restaurant node and its
subobject, and two addArc operations to add arcs labeled “restaurant” and “name.”
Next, on January 5th, a subobject with value “need info” is added to the “Hakata”
restaurant object via an arc labeled “comment.” This modification corresponds to
one creNode operation and one addArcoperation. Finally, on January 8th the parking
at “Lytton lot 2”7 is no longer considered suitable for the restaurant “Janta,” and the
corresponding arc is removed; this modification corresponds to a remArc operation.
The resulting modified OEM representation of the Guide data is shown in Figure 7.2,
with new data highlighted in bold, and the deleted arc represented using a dashed

arrow. a

7.2.2 0oEM Histories

We are typically interested in collections of basic change operations, which describe
successive modifications to the database. In Chapters 4, 5, and 6, we used sequences
of edit operations, called edit scripts, to model collections of edit operations. Below,
we define histories, which are generalizations of edit scripts to OEM. Histories differ
from the edit scripts of earlier chapters in two major ways: (1) Histories are composed
of operations that edit directed graphs (OEM) instead of trees. (2) In order to allow
the temporary presence of objects that are unreachable from the root of an OEM
database, we divide the operations in a history into sections which may be informally
thought of as transactions. (Recall that any object not reachable from the root of an
OEM database is implicitly deleted.)

We say that a sequence L = uq,ug,...,u, of basic change operations is valid for
an OEM database O if wu; is valid for O;_; for all 7+ = 1...n, where Oy = O, and
O; = ui(O;_1), for i = 1...n. We use L(O) to denote the OEM database obtained
by applying the entire sequence L to O. Also, we say that a set U = {uy,uq,...,u,}
of basic change operations is valid for an OEM database O if (1) for some ordering
L of the changes in U, L is a valid sequence of changes, (2) for any two such valid
sequences L and L', L(O) = L'(0), and (3) U does not contain both addArc(p,l,c)
and remAre(p,l,c) for any p, [, and ¢. We use U(O) to denote the OEM database

7.2. THE OBJECT EXCHANGE MODEL 171

obtained by applying the operations in the set U (in any valid order) to O.

We are now ready to define an OEM history. Assume we are given some time
domain time that is discrete and totally ordered; elements of time are called times-
tamps. Intuitively, consider an OEM database to which, at some time ¢;, a set U; of
basic change operations is applied, then at a later time ¢5, another set U; is applied,

and so on. A history represents such a sequence of sets of modifications.

Definition 7.2.2 An OEM history is a sequence H = (t1,U1),...,(t,,U,), where U,
is a set of basic change operations and ¢; is a timestamp, for 2 = 1...n, and #; < ;41
fore=1...n—1. Wesay H is valid for an OEM database O if, forall i1 =1...n, U;
is valid for O;_1, where Oy = O, and O; = U;(O,;_1) for e = 1...n. a

We now return to the requirement that all objects in an OEM database must be
reachable from the root. An OEM history can be viewed as a sequence Lq,..., L,
of sequences of atomic changes. Within one sequence L; of changes, we relax the
requirement that all objects are reachable from the root so that we can, e.g., create
a node and then create arcs leading to it, as discussed earlier. However, immediately
after each sequence L; has been applied, nodes that are unreachable are considered
as deleted, and the remainder of the history should not operate on these objects. To
simplify presentation, we also assume that object identifiers of deleted nodes are not

reused.

Example 7.2.3 The history for the modifications described in Example 7.2.2 consists
of three sets of basic change operations. It is given by H = ((t1,U1), (12, Uz), (13, Us)),
where t; = 1Jan97, ty = 5Jan97, t3 = 8Jan97, and:

Uy = {updNode(ny,20), creNode(ny,C), creNode(ns, “ Hakata”),

addAre(ny, “restaurant” ny), addArc(ny, “name” ,ns3)}
Uy = {cereNode(ns, “need info”)addArc(ns, “comment” ns)}
Us = {remArc(ng, “parking”,nz)}.

This above history is valid for the OEM database of Figure 7.1. O

172 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

7.3 Representation of Changes

In Chapter 4, we described a simple structure, called a delta tree, for representing
changes between two versions of tree-structured data. Given two trees and the dif-
ferences (edit script) between them, we produce a delta tree corresponding to each
tree by annotating each tree node with the edit operations acting on that node. In
this section, we generalize delta trees for representing changes in directed graphs (not
only trees) and for representing changes across multiple versions (not only two) of the
database As in delta trees, we represent changes to an OEM database by attaching
annotations to the OEM graph, thereby turning it into a DOEM (Delta OEM) graph.
We first introduce the annotations we use and define a DOEM database as an OEM
graph containing these annotations. Next, we describe how an OEM history (defined
in Section 7.2.2) is represented using a DOEM database. Finally, we discuss some
properties of DOEM databases that make them well-suited for representing changes in
semistructured data.

Intuitively, annotations are tags attached to the nodes and arcs of an OEM graph
that encode the history of basic change operations on those nodes and arcs. There is
a one-to-one correspondence between annotations and the basic change operations.

Thus, nodes and arcs may have the following annotations:
e cre(t): the node was created at time ¢.
e upd(t,ov): the node was updated at time ¢; ov is the old value.
e add(t): the arc was added at time t.
e rem(1): the arc was removed at time ¢.

The set of all possible node annotations is denoted by node-annot, and the set of
all possible arc annotations is denoted by arc-annot.

Using the above definitions of node and arc annotations, we now define a DOEM
database. In the following definition, the function fx(n) maps a node n to a set of
annotations on that node and the function f4(a) maps an arc a to a set of annotations

on that arc.

7.3. REPRESENTATION OF CHANGES 173

Definition 7.3.1 A DOEM database is a triple D = (O, fn, fa), where O = (N, A, v,r)
is an OEM database, fy maps each node in N to a finite subset of node-annot, and

fa maps each arc in A to a finite subset of arc-annot. a

7.3.1 DOEM Representation of an oEM History

Given an OEM database O and a history H = (t1,U4), ..., (t,, U,) that is valid for
O, we would like to construct the DOEM database representing O and H., denoted
by D(O,H). D(O, H) is constructed inductively as follows. We start with a DOEM
database Dy that consists of the OEM database O with empty sets of annotations for
the nodes and the arcs of O. Suppose D;_; is the DOEM database representing O and
(t1,U1)y ..y (tiz1, Uizy), for some 1 < ¢ < n. The DOEM database D; is constructed
by considering the basic change operations in U;. Since the history is valid, we can
assume some ordering L; of the operations in U; (Definition 7.2.2). Starting with D,_,
we process the operations in L; in order. Whenever the value of an object is updated,
in addition to performing the update we attach an upd annotation to the node. This
annotation contains the timestamp ¢; and the old value of the object. When a new
object is created or an arc added, in addition to performing the modification, we
attach a c¢re or add annotation with the timestamp ¢;. When an existing arc is
removed, we do not actually remove the arc from the graph; instead, we simply
attach a rem annotation to the affected arc with the timestamp ¢;. Observe that this
representation directly stores the changes themselves, not the before and after images

of the changes, and thus takes the snapshot-delta approach discussed in Chapter 2.

Example 7.3.1 Consider the history described in Example 7.2.3, which transforms
the OEM database of Figure 7.1 to that of Figure 7.2. The corresponding DOEM
database is shown in Figure 7.3. We see that the DOEM database contains several
annotations, depicted as boxes in the figure. For example, the annotations with
timestamp “1Jan97” correspond to the first set of updates. Note that the cre, add, and
rem annotations contain only the timestamp, while the upd annotation also contains
the old value of the updated node (10, in our example). Also note that the removed
“parking” arc from the “Janta” restaurant object to the “Lytton lot 2”7 parking object

174 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

cre add] cre]
add t:1Jan97, t:5Jan97) t:5Jan97)

@ quide \t10an97) restaurant . comment
. name “needinfo"
restaurant restaurant
tl 97 cre

Hakata
name ‘
cuisine
. price address name addicess
nearby-eats
"Bangkok Cuisine’ . address price Indlan
. comment Jant
a "120 Lytton"
207 Great city . . ol
"Lytton lot 2" "usu u
13;(1197 y y moderate
t:
ov:10 . .
“Lytton” "Palo Alto"

Figure 7.3: The DOEM object in Example 7.3.1.

is not actually removed from the DOEM database; instead it bears a rem annotation.

a

7.3.2 Properties of DOEM Databases

We have seen above how a DOEM database is used to represent an OEM database and
its history. We now discuss the advantages of this representation. We say that a
DOEM database D is feasible if there exists some OEM database O and valid history
H such that D = D(O, H). Note that we do not require DOEM databases to record
all changes since creation, i.e., OEM database O need not be empty. DOEM databases

have the following desirable properties:

e It is easy to obtain the original snapshot Oy(D) from a DOEM database D.
Oo(D) contains exactly those nodes in D that do not have a cre annotation.
The arcs of Og(D) are the arcs in D that either have no annotations, or have a

rem annotation as the annotation with the smallest (earliest) timestamp.

e [t is easy to obtain the snapshot at time t, Oi(D), from a DOEM database D.

Starting from the root object of D, we traverse D in preorder. For each node n

7.3. REPRESENTATION OF CHANGES 175

we encounter, we do the following:

1. We find the value v4(n) of n at time ¢ (atomic value or C) as follows: If
n has no upd annotations, then v,(n) = v(n). Otherwise, let upd (1, ovy),
..y upd(tg, ovy) be the upd annotations in fy(n). If tx < ¢, vi(n) = v(n).
Otherwise, pick 7 € [1, k] such that ¢; is the smallest timestamp greater

than t in ty,...,tx; then vi(n) = ov;.

2. If vy(n) = C, continue the preorder traversal by following the arcs ema-
nating from n that were present at time ¢. These are the arcs emanating
from n that either do not have any annotation with timestamp less than or
equal to ¢, or have an add annotation as the annotation with the greatest

timestamp less than or equal to ¢.

o It is easy to obtain the current snapshot from a DOEM database. It is the

snapshot at time ¢, where ¢ is the current time.

e [t is easy to obtain the encoded history H(D) from a DOEM database D. The
history H(D) = (t1,U1), ..., (tn, Uy) is constructed as follows. First, ¢y,...,¢, is
the set of timestamps occuring in D, ordered by time. For each i =1...n, U,

contains the following operations:

L. addAre(p,l,c) (remAre(p,l,¢)), if the arc (p, [, ¢) has the annotation add(t;)
(respectively, rem(t;));

2. updNode(n,v), if n has an annotation upd(t;,ov) and v is the next value
of n. That is, v = ov’ if the next (by time) annotation of n is upd(t;, ov’),

and v = v(n) if n is not updated after ¢;;

3. creNode(n,v), if n has the annotation cre(?;), where v is defined as in

Case 2.

o [t is relatively easy to determine if a given DOEM database D is feasible. We
construct the original snapshot Oy(D) and the encoded history H(D) for D as
above, and test if D(Oo(D), H(D)) = D.

176 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

e Most importantly, if D is feasible, we can show that the OEM database Og(D)
and the history H(D) encoded by D are unique. Thus, a DOEM database
faithfully captures all the information about the history of the corresponding
OEM database.

o As we will see in the next section, it is easy and intuitive to query the history

encoded in a DOEM database.

7.4 Querying Over Changes

In Section 7.3, we have seen how the history of an OEM database is represented by
the corresponding DOEM database. In this section, we describe how DOEM databases
are queried. We introduce a query language called Chorel for this purpose. Chorel
is similar to the Lorel language [AQM196] used to query OEM databases. We begin
with a brief overview of Lorel, followed by a description of the syntax and semantics

of Chorel.

7.4.1 Lorel Overview

Lorel uses the familiar select-from-where syntax, and can be thought of as an ex-
tension of OQL [Clu98, Cat96] in two major ways. First, Lorel encourages the use of
path expressions. For instance, one can use the path expression

guide.restaurant.address. street to specify the streets of all addresses of restau-
rant entries in the Guide database. Second, in contrast to OQL, Lorel has a very
“forgiving” type system. When faced with the task of comparing different types,
Lorel first tries to coerce them to a common type. When such coercions fail, the com-
parison simply returns false instead of raising an error. This behavior, while it may
be unsuitable for traditional databases, is exactly what a user expects when querying
semistructured data. Lorel also provides a number of syntactic conveniences such as
the possibility of omitting the from clause. We do not describe Lorel in detail here
(see [AQM™96]), but only present through a simple example those features that are

needed to understand Chorel.

7.4. QUERYING OVER CHANGES 177

Example 7.4.1 Consider again the OEM database depicted in Figure 7.2. To find all

restaurants that have a price rating of less than 20.5, we can use the following Lorel

query:

select guide.restaurant

where guide.restaurant.price < 20.5;

Note that the query expresses the price rating as a real number whereas the restaurant
entries for “Bangkok Cuisine” and “Janta” in the OEM database shown in Figure 7.2
use an integer and a string, respectively. Furthermore, the third restaurant entry does
not have a price subobject at all. Lorel successfully coerces the integer price 10 to
real, and the comparison succeeds. For the string encoding of the price (“moderate”),
Lorel tries to coerce, but fails, returning false as the result of the comparison. Finally,
for the third restaurant, the missing price subobject simply causes the comparison
to return false. Thus, the result of the above query is a singleton set containing the
restaurant object for “Bangkok Cuisine.” Note that this result is an intuitively rea-
sonable response to the original query, despite the typing difficulties and the missing
data. O

Lorel also allows the use of path expressions that include regular expressions and
wildcards (e.g., “#” matches an arbitrary path of length 0 or more). Such general
path expressions are powerful extensions of the simple path expressions of OQL, and
allow Lorel users to specify complex path patterns in a database graph. Chorel is also
based on extending the notion of path expressions, but in a different direction: We
extend path expressions to allow the annotations in DOEM databases to be specified

and matched.

7.4.2 Chorel

In Chorel, path expressions may contain annotation expressions, which allow us to
refer to the node and arc annotations in a DOEM database. Informally, Lorel path
expressions can be thought of as being matched to paths in the OEM database during

query execution. Analogously, the annotation expressions in Chorel path expressions

178 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

can be thought of as being matched to annotations on the corresponding paths in the

DOEM database.

Example 7.4.2 Consider the DOEM database depicted in Figure 7.3. To find all

newly added restaurant entries only, we can use the following Chorel query:
select guide.<add>restaurant;

The annotation expression “<add>” specifies that only those objects connected to
the “guide” object by a “restaurant”-labeled arc having an add annotation should
be retrieved. For the database depicted in Figure 7.3, this Chorel query returns the

restaurant object with name “Hakata.” O

Not surprisingly, we use four kinds of annotation expressions in Chorel path ex-
pressions: node annotation expressions “cre” and “upd,” and arc annotation expres-
sions “add” and “rem.” Recall that a path expression, e.g., guide.restaurant.price,
consists of a sequence of labels. Arc annotation expressions must occur immediately
before a label, whereas node annotation expressions must occur immediately after
one. (Note that since node and arc annotations use different keywords, no confusion
can arise.) Path expressions containing node or arc annotation expressions are called

annotated path expressions. For instance,
guide.<add>restaurant.price<upd>

is a correct annotated path expression. It requires an add annotation to be present
on the arc labeled “restaurant,” and an upd annotation on the “price” node (i.e., on
the node at the destination of the arc labeled “price”). For simplicity, in this chap-
ter we do not consider path expressions that have annotation expressions attached
to wildcards or regular expressions, however generalizing to allow such annotation
expressions is not difficult.

Annotation expressions may also introduce time variables to refer to the times-

tamps stored in matching annotations, and data variables to refer to the modified

7.4. QUERYING OVER CHANGES 179

values in matching upd annotations. More precisely, the syntax of annotation expres-

sions is as follows:

<Annot | at timeV]> if Annot is in { add, rem, cre }
< upd [at timeV] [from oldV] [to newV |> for upd

where timeV, oldV, and newV are variables. Note that a DOEM database does not ex-
plicitly store the new value of an updated object, however this information is available
implicitly, and can be determined easily as shown in Section 7.3.2.

Let us consider a Chorel query that uses a time variable. Note that we allow users
to enter timestamps using a textual representation, e.g., 4Jan97. In keeping with
Lorel’s extensive use of coercion, any recognizable format is allowed and is converted

automatically to an internal timestamp datatype.

Example 7.4.3 Consider the DOEM database in Figure 7.3. To find all restaurant
entries that were added before January 4th, 1997, we can use the following Chorel

query:

select guide.<add at T>restaurant

where T < 4Jan97;

The Chorel preprocessor will rewrite this query to obtain the following. (We will
explain this rewriting shortly.)

select R
from guide.<add at T>restaurant R
where T < 4Jan97;

The introduced from clause will bind R to all “restaurant” objects that are connected
to the “guide” object via an arc with an add annotation, and will provide correspond-
ing bindings for T'. More precisely, the evaluation of the from clause will yield the
set of pairs (R, T) such that there is a restaurant arc from the guide object to R
that has an add annotation with timestamp 7'. The where clause will filter out the
(R, T) pairs for which T" does not satisfy the condition. For the DOEM database in
Figure 7.3, this query returns the restaurant object for “Hakata.” a

180 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

Once time and data variables have been bound using annotations, they can be used
just like other variables in Lorel or OQL. This feature is illustrated by the following

query, which uses time and data variables in the select clause.

Example 7.4.4 Referring again to the DOEM database in Figure 7.3, suppose we
want to find the names of all restaurants whose price ratings were updated on or
after January 1st, 1997 to a value greater than 15, together with the time of the

update and the new price. We can use the following query:

select N, T, NV
from guide.restaurant.price<upd at T to NV>
gulide.restaurant.name N

where T >= 1Jan97 and NV > 15;

The result of the above query is a single complex object with three components, as
shown below. The label name is chosen by Chorel using the method described in
[AQM™96]. For time and data variables whose labels are not specified by the query,
Chorel chooses the default labels create-time, add-time, remove-time, update-time,

new-value, and old-value.

answer
name ''Bangkok Cuisine"
update-time 1Jan97

new-value 20

7.4.3 Chorel Semantics

We now make the semantics of Chorel queries more precise. As is done for Lorel,
the semantics is described by specifying the rewriting of Chorel queries into OQL-like
queries. However, we need to introduce some additional machinery to handle the
annotation expressions in Chorel queries.

First, the annotation expressions in a Chorel query are transformed into a canon-

ical form that includes all variables. For example, “<add>” is rewritten to “<add at

7.4. QUERYING OVER CHANGES 181

T1>,” and “<upd from X>” is rewritten to “<upd at T2 from X to NV2>.” where
T1, T2, and NV2 are fresh variables. Next, as in Lorel, we eliminate path expressions
by introducing variables for the objects “inside” the path expressions. For exam-
ple, the path expression “a.b.c” in a from clause is converted to “a.b X, X.c Y,”
where X and Y are new range variables. The details of this rewriting are described
in [AQM™196].

At this stage, we have to give a semantics to range variable definitions that may
include annotation expressions (e.g., “X.label Y,” “X.<add at T>label Y”) in the
context of a DOEM database. In the absence of an annotation expression, the se-
mantics of an expression “X.label Y” is that for a binding ox of X, Y is bound to
all objects oy such that there is an arc labeled label from ox to oy in the current
snapshot. Note that by this semantics, a standard Lorel query (without annotations)
over a DOEM database has exactly the semantics of the same query asked over the
current snapshot for that DOEM database. In the presence of annotation expressions,
the semantics requires the existence of the specified annotation, and also provides
bindings for the variables in the annotation expression. The bindings are also speci-
fied by a special rewriting. As an example, the query in Example 7.4.4 is rewritten

to:

select N, T, NV

from guide.restaurant R, R.price P, R.name N,
(T, OV, NV) in wupdFun(P)

where T >= 1Jan97 and NV > 15;

Our rewriting uses the following functions, which extract the information stored

in annotations:

creFun(node) — {time}

updFun(node) — {(time, old-value, new-value)}
addFun(source, label) — {(time, target)}
remFun(source, label) — {(time, target)}

The function creFun(n) returns the set of timestamps found in cre annotations on

182 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

node n. (Note that by our definition of change operations in Section 7.2.1, this
set is either empty or a singleton.) The function updFun(n) returns a set of triples
corresponding to the timestamp, the old value, and the new value in upd annotations
on n. The function addFun(n,l) returns a set of (¢, ¢) pairs such that ¢ is an [-labeled
subobject of n via an arc that has an add(t) annotation. The remFun function is
analogous to addFun. Once this rewriting has been performed, the from, where, and
select clauses of the resulting query are processed in a standard manner.

Above, we have illustrated how variables introduced in the from clause are inter-
preted. Variables may be introduced in the where clause as well. They are treated by
introducing existential quantification in the where clause, extending the treatment of

such variables in Lorel [AQM*96]. Consider the following example:

Example 7.4.5 Consider again the DOEM database of Figure 7.3. Suppose we want
the names of restaurants to which a “moderate” price subobject was added since

January 1st, 1997. We can write the following Chorel query:

select N
from guide.restaurant R, R.name N

where R.<add at T>price = "moderate" and T >= 1Jan97;

The variable T is introduced in the where clause. Therefore, the rewritten where

clause is:

where exists (T, P) in addFun(R,"price")

(P = "moderate" and T >= 1Jan97);

7.5 Implementing DOEM and Chorel

In this section, we describe how we have implemented DOEM databases and Chorel
queries. One approach would be to extend the kernel of the Lore database system
[MAG*97] to allow annotations to be attached to the nodes and arcs of an OEM

database. Given these extensions, the Lorel query engine could be extended to a

7.5. IMPLEMENTING DOEM AND CHOREL 183

Chorel query engine in a straightforward manner based on the semantics specified
in Section 7.4.3. We do not discuss this approach further. Instead, our implemen-
tation uses an alternative approach of implementing DOEM and Chorel “on top of”
Lore. We encode DOEM databases as OEM databases, and we implement Chorel by
translating Chorel queries to equivalent Lorel queries over the OEM encoding of the
DOEM database. In addition to being more modular than the direct implementa-
tion approach (and not affecting Lore object layout or query processing), this ap-
proach can also be adapted easily to other graph-based data models, e.g., those in
[BDHS96, Cat96]. Note that while there are several simple methods of encoding a
DOEM database as an OEM database, the challenge here is to devise an encoding
that permits a simple and valid translation of Chorel queries over the original DOEM
database into Lorel queries over the OEM encoding. For many of the obvious possible
encodings, such query translation proves to be very difficult or impossible.

We begin by explaining how we encode DOEM databases in OEM, followed by a
description of the translation of Chorel queries to Lorel queries for this encoding, and

finally a description of our system implementation.

7.5.1 Encoding DOEM in OEM

Let D be a DOEM database. We encode D as an OEM database Op defined as follows.
For each object o in D, there is a corresponding object o' in Op. Atomic objects are
encoded as complex objects so that we can record their histories using subobjects.
Special labels used by the encoding start with the character “&” to distinguish them
from standard labels occuring in O. The encoding object o’ for DOEM object o has
the following subobjects, listed by their labels. Refer to Figures 7.4 and 7.5.

e &val: If 0 is atomic with current value v, there is a “&val”-labeled arc from o
to an atomic object with value v. If o is complex, there is a “&val”-labeled arc

from o to itself. (The use of this extra edge will soon become clear.)

e &cre: If 0 has a create annotation cre(t), then o’ has a “&cre”-labeled complex

subobject o/ that has a “&time”-labeled atomic subobject with value t.

184 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

t1 t2 2 t3 3

Figure 7.4: Encoding a DOEM object in OEM: node annotations

e gupd: For each update annotation upd(t,ov) attached to o, o' has an “&upd”-
labeled complex subobject o!. The object o/ has a “&time”-labeled atomic
subobject with value ¢, and a “&val”-labeled atomic subobject with the value

before the update (ov).

e [: If the current snapshot for D contains an arc (o,[,p), then Op contains an

arc labeled [from o to the object p’ that encodes p.

e &/-history: If D contains an arc (o,[,p), then Op contains an arc
(o/,&l-history, o)) where o] is a complex object that contains the history of

the [arcs from o to p. The object o; has the following structure:

— &target: There is an arc (o7, &target,p’), where p’ is the object encoding
p.
— &add, &rem: For each annotation add(t) (rem(t)) attached to (o,(,p), there

is an “&add”-labeled (respectively, “&rem”-labeled) complex subobject o,

that has a “&time”-labeled atomic subobject with value ¢.

e &next: For each OEM object o] that encodes a DOEM object o; and its node
annotations, the “&cre”- and “&upd”-labeled subobjects of o} are chained to-
gether in ascending order of the values of their “&time” subobjects using arcs

with label “¢next.” (As we shall see shortly, this chaining is useful for obtaining

7.5. IMPLEMENTING DOEM AND CHOREL 185

DOEM

Figure 7.5: Encoding a DOEM object in OEM: arc annotations

the “new value” corresponding to an update annotation.) Similarly, for each
OEM object ofy ; that encodes a DOEM arc (0;, L, 0;) and the annotations on that
arc, the “&add”- and “&rem”-labeled subobjects of 0;;,; are chained together in
ascending order of the values of their “&time” subobjects using arcs with label
“gnext.” (As we shall see in Section 7.6, this chaining is useful for implementing

snapshot-based access.)

7.5.2 Translating Chorel to Lorel

Given the above encoding of a DOEM database as an OEM database, we now describe
how a Chorel query over a (conceptual) DOEM database is translated into an equiv-
alent Lorel query over an OEM encoding of the DOEM database. In Section 7.4.3 we
described how a Chorel query can be rewritten into an OQL-like query using spe-
cial functions ereFun, updFun, addFun, and remFun. Therefore, in the following we
assume that we are given such a rewritten query.

We simulate the special functions crefun, updFun, addFun, and remFun using ex-
pressions that extract the required values from the OEM encoding of the annotations.
For example, the expression “(T, 0V, NV) in wupdFun(P)” isreplaced with “P.&upd
U, U.&time T, U.&val 0OV, U.&next.&val NV.” From the encoding scheme

described in Section 7.5.1, we see that this expression instantiates the triple (T, 0V,

186 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

NV) to the timestamp, old value, and new value of the update annotations on objects
bound to P. If an expression of the form “(T, C) in addFun(P, 1)” occurs in a
Chorel query, we replace it with “P.&l-history H, H.&add.&time T, H.&target
C.” The case for remove annotations, involving the remFun function, is analogous.
Finally, we replace an expression “T in crefun(P),” with “P.&cre.&time T.”

Note that our encoding scheme ensures that only arcs that exist in the current
snapshot corresponding to the encoded DOEM database are accessible directly via
their labels in the encoding. If an [-labeled arc does not exist in the current snapshot,
its information is stored using an arc with label &/-history, which does not match
the label .

One remaining issue is that in the OEM encoding of a DOEM database, the value
of an atomic object is stored in a “&val”-labeled subobject of the encoding object.
So, for instance, when a query compares an atomic object to a value, we want to use
the value stored in the “&val” subobject for this comparison. Therefore, wherever in
the query the value of a object variable is accessed (i.e., in predicates and function
arguments) we replace the object variable “X” with “X.&val.” Observe that since
there is a “&val”-labeled arc from the encoding of each complex object to itself, we
can safely perform the above transformation for all value accesses of object variables
occuring in the original query, without knowing whether the objects they encode
are atomic or complex (which, in general, we will not know). The transformation is

illustrated by the following example.

Example 7.5.1 Consider the Chorel query in Example 7.4.5. In Section 7.4.3, we
considered the OQL-like rewriting of this query. We now complete this rewriting as
described above, to yield the following Lorel query over the OEM encoding of the
DOEM database in Figure 7.3:
select N
from guide.restaurant R, R.name N
where exists H in R.&price-history :
exists P in H.&target :
exists T in H.&add.&time :
T >

1Jan97 and P.&val = "moderate";

7.5. IMPLEMENTING DOEM AND CHOREL 187

Note that we simulate the range specification addFun(R,”price”) using the “&”-
prefixed subobjects. Further, we use P.&val to access the actual price value (and

not the complex object packaging it with its history). a

Note that the example query returns a set of DOEM objects that represent restau-
rant names. That is, it returns not only the names of the restaurants, but also the
history of these names, if they changed. Returning the DOEM object enables the user
to access both the value and the history of an object.

In the above description, for simplicity we assumed that every atomic object o is
encoded using a complex object o’ that has a &val-labeled subobject with value v(0).
However, in practice we do not encode unannotated atomic objects in this manner;
that is, if an atomic object o has no annotations, we encode it using a simple atomic
object o' with value v(0). In our translation scheme, we replace accesses to the value
of an variable X by X. [&val], which is a Lorel path expression indicating an optional

path component &val.

7.5.3 Implementation

Figure 7.6 depicts the system architecture of CORE, a Change Object Repository
based on DOEM and Chorel.

A DOEM database is first populated by loading a DOEM load file, which is a simple
textual representation of a DOEM database. The Encoder reads this DOEM load file
and produces a Lore load file that encodes the DOEM database using the method
described in Section 7.5.1. The Lore loader reads the OEM load file and stores the
corresponding database in Lore [MAGT97].

When a user invokes a Chorel query on the DOEM database, the query is first
translated into a Lorel query over the OEM encoding of the DOEM database by the
Chorel Translator, using the method described in Section 7.5.2. The resulting Lorel
query is evaluated over the OEM database by the Lore query engine. Note that the
result of the Lorel query contains OEM objects that are encodings of DOEM objects and
annotations. The API (Application Program Interface) Translator translates these
OEM encodings to the corresponding DOEM objects, which can then be displayed by

188 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

1 \ ! 1
Load | : : |
— 1 1

: ! l :
1 | ! 1
: ' : '
] I
1 \ ! 1
Extend i X | |
| Extender | Lore API calls = |
CORE ! | ! |
User User | : | :
1 \ ! 1
I I
Query | Interface | Chorel : | E
R . Trandator 1 . Lore Query |
X : | Engine '
| I
Results Chorel Query Result | | i | :
- + I
I APl | ! I
Navigate Navigational Access | i Navigational Access ™ |
(DOEM API) ! : (Lore API) ! |

Figure 7.6: System architecture

the User Interface.

The User Interface can also be used to browse the DOEM database, either directly,
or starting from the results of a Chorel query. The translation from navigation in the
DOEM database to navigation in the OEM encoding stored in Lore is done by the API
Translator.

A DOEM database can also be extended by adding new data and changes. For
example, consider a DOEM database representing the history of our Guide database
(Example 7.2.1) up to last week. We may want to extend the database to include
this week’s changes when they become available. This capability is handled by the
FExtender, which takes as input an incremental DOEM load file, and uses the Lore API
to modify the encoded DOEM database. We are also in the process of extending Lore
so that it can monitor changes to OEM databases and create and extend corresponding

DOEM databases directly.

7.6. VIRTUAL ANNOTATIONS AND SNAPSHOT-BASED ACCESS 189

7.6 Virtual Annotations and Snapshot-based Ac-

cess

In Section 7.4.2 we have seen how the construct <upd at T from 0ldV to newV>
refers to a virtual annotation upd(t,ov,nv), where t, ov, and nv are, respectively, the
timestamp, the old value, and the new value of an update operation in the history. The
real annotation, upd(t,ov), does not contain the old value, however that information
is available elsewhere in the database. We can extend this idea of virtual annotations
to facilitate access to other implicit information in a DOEM database. As a concrete
example, in this section we introduce virtual annotations that facilitate snapshot-based
access to a DOEM database. We define the semantics of Chorel queries containing
references to virtual annotations by using range functions that are defined over the
real annotations and data in a DOEM database. We describe how to implement this

added functionality by extending the translation-based method of Section 7.5.

7.6.1 Snapshot-based Access

Recall from Section 7.4.3 that an unannotated path expression such as
guide.restaurant.entree.price is evaluated over the current snapshot of a DOEM
database. Sometimes, one may wish to evaluate path expression components over
other (non-current) snapshots. For example, we may wish to refer to the price of an en-
tree at some time T'; we introduce the syntax guide.restaurant.entree.price<at
T>. Similarly, we may wish to refer to the existence of a parking arc between two
objects X and Y at time T'; we use the syntax X.<at T>parking Y in the from clause
of a Chorel query.

Example 7.6.1 Consider the Guide database depicted in Figure 7.3. Suppose we
wish to list the parking areas close to the restaurant “Janta” as of 1st January 1997.

We write the following query:

select P
from guide.restaurant R, R.<at T>parking P

where R.name = "Janta" and T = 1Jan97;

190 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

For the DOEM database depicted in Figure 7.3, this query returns the parking object
with address “Lytton lot 2,” since on 1st January 1997 there was a “parking” arc from
the Janta restaurant object to the Lytton parking object. (This arc was removed on

8th January 1997.) O

When the variable T' occuring in an at annotation expression is bound to a constant
elsewhere in the query (as in the above example), the effect of the annotation expres-
sion on query evaluation is intuitively simple: We evaluate the query as if the path
expression component qualified by <at T> refers to the snapshot of the database at
time T'. As we have seen in Section 7.3.2, the snapshot at time 7' is easily obtained
using the information in a DOEM database. However, if T" is unbound, then unless we
take special precautions we may find ourselves faced with unsafe queries, as illustrated

by the following example.

Example 7.6.2 For the Guide database depicted in Figure 7.3, suppose we are in-
terested in finding the times at which the restaurant “Bangkok Cuisine” had a price

rating less than 15. We write the query as follows:

select T
from guide.restaurant R, R.price<at T> P

where R.name = "Bangkok Cuisine" and P < 15;

The basic problem with this query is that while the database stores only a finite
number of timestamps, the above query would require T' to range over the infinite

number of intermediate timestamp values as well. a

We overcome such difficulties by allowing timestamp variables such as T above to
bind only to those timestamp values that exist explicitly in the DOEM database.
Intermediate timestamp values are represented using intervals [B, F), where B and
E are the begin and end timestamps, respectively. (We use a convention of intervals
that are closed on the left and open on the right; our methods are not dependent on
this convention.)

To introduce this concept of intervals, we add another virtual annotation, called

during, on nodes and arcs, and a corresponding annotation expression “<during B

7.6. VIRTUAL ANNOTATIONS AND SNAPSHOT-BASED ACCESS 191

E>” in the syntax of annotated path expressions. (As we will see in Section 7.6.3,
virtual annotation during in fact subsumes virtual annotation at.) Intuitively, the
construct X<during B E> V in a from clause binds the triple (B, £, V) to all values
{(b,e,v)} such that the object X had value v continuously from time b to time e.
Similarly, the construct X<during B E>1 Y binds the triple (B, E,Y’) to all values
{(b,e,Y)} such that the arc (X,[,Y") existed continuously from time b to time e. We
further require that the above intervals [b, €) be maximal.

When using snapshot-based access, we often need to refer to the current time.
We introduce a distinguished timestamp ¢y for this purpose. More precisely, ¢y is
a special variable whose value during the evaluation of a query is the time at which
that evaluation begins. Similarly, we often need to refer to the initial timestamp cor-
responding to a database; we introduce a distinguished timestamp ¢; for this purpose.
More precisely, each DOEM database has an initial timestamp ; associated with it.
Note that 7 is a constant, and may be negative infinity.

Using the during virtual annotation, the query in Example 7.6.2 may be rewritten

as follows:

select B,E
from guide.restaurant R, R.price<during B E> P

where R.name = "Bangkok Cuisine" and and P < 15;

This query returns a set of pairs {(b,e)} such that at all times during the interval
[0, €), Bangkok Cuisine had a price rating less than 15. For our example database
depicted in Figure 7.3, this query returns the singleton set {(¢7,1Jan97)}, where ¢;
is the initial timestamp of the database.

Note that it is possible to express such snapshot-based queries using only the
basic Chorel constructs described in Section 7.4. However, the resulting queries are
extremely cumbersome. For example, the simple snapshot-based access X.<during

B E>foo Y in a from clause requires a construction such as the following:

from X.<add at B>foo Y, X.<rem at E>foo Z...
where Y = Z and not exists M :

(X.<add at M>foo Y or X.<rem at M>foo Y);

192 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

In reality, the expression is even more complex, since we need to handle the special
cases involving missing annotations on both the “begin” and the “end” side. Thus,
snapshot-based access is an excellent candidate for simplification using virtual anno-

tations.

7.6.2 Semantics of during

We now formalize our intuitive description of the semantics of during annotations.
As in Section 7.4.3, we shall specify the semantics using a rewriting with special
functions for binding range variables. To define the semantics of the arc annotation
expression X.<during B E>1 Y in the from clause of a Chorel query, we introduce a
special function, arcDuring. This function maps a DOEM object o; and label [to a
set of triples {(b, €, 0,)} such that in the history represented by the DOEM database,
the arc (o1,l,02) existed in the time interval [b,e), and [b,€) is maximal (i.e., this
condition fails to hold if we decrease b or increase e¢). We rewrite the from clause
by replacing X.<during B E>1 Y with (B,E,Y) in arcDuring(X,1). (Recall from
Section 7.3.2 that given a DOEM database D, it is easy to obtain the snapshot at time
t, Oy D). Thus the intervals [b, e) in the definition of arcDuring are well defined.)
The function arcDuring has some notable boundary cases: If the earliest annotation
on an arc is rem(ty), then the arc exists in [t7,¢;). (Recall from Section 7.6.1 that ¢;
is the initial timestamp associated with a database and ¢y is the current timestamp.)
Similarly, if the latest annotation on an arc is add(ts), then the arc exists in the
interval [t5,tx]. Finally, if an arc has no annotations, it exists in [¢;, {x].

Now we define the semantics of the node annotation expression X<during B E>
V in the from clause of a Chorel query. To do so, we introduce a special function,
nodeDuring. This function maps a DOEM object o to a set of triples {(b, e, v)} such
that in the history represented by the DOEM database, the object o had value v during
the time interval [b,€), and [b,) is maximal. We rewrite the from clause replacing
X<during B E> Vwith (B,E,V) in nodeDuring(X). (Using Section 7.3.2 we see that
the intervals [b, €), and the corresponding values v, are well-defined.) The function

nodeDuring also has some notable boundary cases: If the earliest annotation on a

7.6. VIRTUAL ANNOTATIONS AND SNAPSHOT-BASED ACCESS 193

DOEM object o is upd(ty,v1) then o has value vy in the interval [t7,¢1). Similarly, if
the latest annotation on o is upd(tg, vg), then o has value v(o0) (the current value) in

[tk,tn]. Finally, if 0 has no annotations, then it has value v(o) in [t7,tn].

Example 7.6.3 Consider the query proposed in Example 7.6.1. Using the during
construct, we can write the following query to return parking for the “Janta” restau-

rant as of 1st January 1997.

select P
from guide.restaurant R, R.<during B E>parking P

where R.name = "Janta" and B <= 1Jan97 and E > 1Jan97;

Using the semantics for during described above, we see that this query is conceptually

rewritten to the following:

select P
from guide.restaurant R, (B,E,P) in arcDuring(R,parking)

where R.name = "Janta" and B <= 1Jan97 and E > 1Jan97;

Consider the DOEM database in Figure 7.3. When R is bound to the restaurant object
“Janta,” function arcDuring results in the tuple variable (B, F, P) ranging over the
singleton set {(¢;,8Jan97,p;)}, where p; is the parking object with address “Lytton
lot 2.7 Since R, B, and F satisfy the predicate in the where clause, the Lytton
parking object will be returned as the query result. a

7.6.3 The at Construct

Examples 7.6.1 and 7.6.3 suggest a simple definition for the edge annotation X.<at
T>1 Y and the node annotation X<at T> V. We define them as abbreviations for
X.<during B E>1 Y and X<during B E> V, respectively, and add the condition B <=
T < E to the where clause. Note that our rewriting requires the variable T occuring
in the at annotation to be bound elsewhere in the query independently of the path
expression component containing at. For example, if we apply this definition of <at

T> to rewrite the query in Example 7.6.1, we obtain the query in Example 7.6.3.

194 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

In cases where the variable T occuring in the <at T> construct is not bound else-
where in the query, the definition of at as an abbreviation for a during expression
fails. For example, if we apply the rewriting to the problematic query of Exam-
ple 7.6.2, which uses <at T> without binding T elsewhere, we get the following query

in which T is still unbound:

select T
from guide.restaurant R, R.price<during B E> P

where R.name = "Bangkok Cuisine" and P < 15 and B <= T and T < E;

In general, this problem can be mitigated by allowing timestamp variables such as
T to bind to intervals instead of single timestamps. However, we do not consider
such extensions further in this chapter. We shall henceforth assume that the <at T>
construct is defined only when T is bound elsewhere in the query independently of

the path expression component containing at.

7.6.4 The snap Construct

Let us now consider a special class of Chorel queries that are useful in studying past
states of a historical database. Intuitively, such queries take the snapshot at some
time ¢, and then evaluate an ordinary (non-historical) query over this snapshot. We
call such queries pure snapshot queries. For example, using our Guide database,
suppose we wish to generate, as of 15th June 1997, the names, price ratings, and
parking addresses for restaurants with a price rating less than 20. That is, we would
like to evaluate the following Lorel (non-historical) query over the OEM database that
is the DOEM snapshot of 15th June 1997:

select R, P, A
from guide.restaurant R, R.price P, R.parking.address A

where R.price < 20;

In reality we are evaluating Chorel queries over our DOEM database. Thus, to express
that the above query should be evaluated over the snapshot of 15th June 1997, we

could qualify each component of each path expression in the query as follows:

7.6. VIRTUAL ANNOTATIONS AND SNAPSHOT-BASED ACCESS

R N
e ‘)O’ |.)%(>0’) N
/}{&time /]\/&time

el My

t1 t2 2 t3 3

Figure 7.7: Encoding a DOEM object in OEM: node annotations

select R, P, A

from guide.<at T>restaurant R, R.<at T>price<at T> P,
R.<at T>parking.<at T>address<at T> A

where R.<at T>price<at T> < 20 and T = 15Jun97;

195

In order to make writing such snapshot queries more convenient, we introduce as a

syntactic convenience the construct <snap T>, with the requirement that T be bound

elsewhere in the query independently of the path expression component containing

snap. The construct X.<snap T>foo Y in a from clause is rewritten to X.<at T>foo

Y; furthermore, any other use of Y in the query is (recursively) rewritten as though

it were qualified by a <snap T>. In particular, Y.bar Z is interpreted as Y.<snap

T>bar Z and recursively rewritten, and accesses to Y’s value are rewritten as Y<at

T>. The where clause is handled analogously. Using this construct, the above query

may now be written more simply as follows:

select R, P, A

from guide.<snap T>restaurant R, R.price P, R.parking.address A

where R.price < 20 and T = 15Jun97;

196 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

7.6.5 Implementing during by translation

We now describe how the translation-based implementation of Chorel described in
Section 7.5 is extended to accommodate the during construct. Refer to Figures 7.7
and 7.8, which depict the OEM encoding of DOEM objects; we have indicated the new
features using dashed lines. (The other features were described in Section 7.5.1.)

Each 0OEM database used to encode a DOEM database has a special complex object
ofy that has one “&time”-labeled atomic subobject o, with value ty. (Recall, from
Section 7.6.1, that ¢, refers to the current time; in the implementation, the value of o,
is the query execution time.) Similarly, there is a special complex object o} that has
one “gtime”-labeled atomic subobject of with value t;. (Recall, from Section 7.6.1,
that 7 is the initial timestamp associated with a DOEM database, and may be negative
infinity.) Note that there is exactly one instance of each of the objects ofy, 0%, o,
and off per database. (To highlight this fact, these objects are depicted using shaded
circles in Figures 7.4 and 7.5.)

In Section 7.5.1, we described the use of “&next”-labeled arcs to chain annotation-
encoding objects in ascending order of the annotation timestamps. We now extend
this chain to include the timestamps ¢; and ¢y as follows. Consider first the encoding
of node annotations, as depicted in Figure 7.4. If a DOEM node o has one or more
node annotations (create or update), then in its OEM encoding, we add a “&next”-
labeled arc from the object encoding the annotation with the largest timestamp to the
special object ofy. The “&next”-labeled arc from o, to o)y in Figure 7.4 is an example
of this case. If the DOEM node o has no annotations, then in the OEM encoding,
we add a “&dcre”-labeled arc from the corresponding node o' to the special node
oy. In Figure 7.4, if 0, were to not have a create annotation, a “&dcre”-labeled arc
from o} to o} would exist. (Since in reality o, does have a create annotation, this
“gdcre”-labeled arc does not exist, and is depicted using a dotted line.)

Now consider the encoding of arc annotations, as depicted in Figure 7.5. If an
arc (01,1, 0,) in the DOEM database has no annotations, then in the OEM encoding of
the database, we add a “&dadd”-labeled arc from o}, to the special object o, where
0}, is the “&/-history”-labeled subobject of 0] that encodes the history of (01,1, 02).

In Figure 7.5, o152 is shown as the object hy. If the arc (o1,[,05) has one or more

7.6. VIRTUAL ANNOTATIONS AND SNAPSHOT-BASED ACCESS 197

DOEM

/ /

/J&time /J"&time

1) QN . -

Figure 7.8: Encoding a DOEM object in OEM: arc annotations

annotations, and the annotation with the largest timestamp is an add annotation,
then the OEM encoding has a “&next”-labeled arc from the corresponding “&add”-
labeled subobject o, of 0/,, to the special object o). In Figure 7.5, we see an example
of such an arc from o/, to o).

Given the above enhancements to our scheme for encoding DOEM in OEM, we
can rewrite Chorel queries containing the during construct as Lorel queries over the
encoding objects. Given a Chorel query with the construct X<during B E> in the
from clause, we replace this construct by the following: X(.&crel .&upd| .&dcre)
A, A.&time B, A.&next.&time E, A.&next.&val V. Similarly, if a Chorel query
has the construct X.<during B E>foo Y in the from clause, we replace this con-
struct by the following: X.&foo-history H, H.&target Y, H(.&add|.&dadd) A,
A.&time B, A.&next.&time E. As in Section 7.5, variables introduced in the where
clause of a Chorel query are treated by introducing existential quantification in the

where clause.

Example 7.6.4 Consider the during-based query in Example 7.6.3. Using the above
rewriting, we obtain the following Lorel query over the OEM database encoding the

Guide DOEM database:

select P

198 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

from guide.restaurant R, R.&parking-history H, H.&target P,
H.&add A, A.&time B, A.&next.&time E
where R.name = "Janta" and B <= 1Jan97 and E > 1Jan97;

7.6.6 Object Deletion and Garbage Collection

Recall that in the OEM data model underlying DOEM and Chorel, there is no explicit
object deletion operation. Instead, persistence is by reachability from the distin-
guished root of the database, and any unreachable objects are implicitly deleted. An
OEM database system must therefore periodically perform garbage collection in or-
der to detect and remove such deleted objects. Between the time an object becomes
unreachable and the time garbage collection is performed, the semantically deleted
object continues to exist in the database. This situation does not pose any difficul-
ties for Lorel queries, since Lorel path expressions cannot access any object that is
unreachable from the root of the current database snapshot. However, in Chorel,
such deleted objects are reachable using annotated path expressions that contain a
“forward jump in time” (i.e., path expressions that refer to a more recent snapshot

from an older one). The following example illustrates the point:

Example 7.6.5 Referring back to our Guide database depicted in Figure 7.3, sup-
pose the arc from the Guide object to the restaurant object for “Bangkok Cuisine”
is removed on 1st July 1997. This arc removal results in the restaurant object for
Bangkok Cuisine, as well as its price, address, street, and city subobjects becoming
unreachable from the root of the database, implying their deletion. In our DOEM
database, however, these objects continue to exist; the only change is that there is
now a remove annotation rem(1.Jul97) on the restaurant arc that was removed. Now
suppose on 15th July 1997 we issue the following query to our DOEM database, asking

for the current price rating of all restaurants that existed as of 1st June 1997:

select P

from guide.<at 1Jun97>restaurant R, R.price P;

7.7. A QUERY SUBSCRIPTION SERVICE 199

Now since the price object for Bangkok Cuisine does not currently exist, the result of
the above query should not contain it. However, there is no way for the Chorel query
engine to detect this situation, since there is no information on either the restaurant
or the price objects that suggests their deletion. (The relevant piece of information
is the rem annotation on the restaurant arc.) Thus the query result will contain the

price rating for Bangkok Cuisine. O

We mitigate the above problem by introducing a delete annotation, which records
the deletion of an object (usually as a result of garbage collection). Suppose that at
time 4, some objects are determined to be newly unreachable from the root of the
database. In the corresponding DOEM database, we mark such newly unreachable
objects (which continue to exist physically) using a del(ts) annotation. We further
ensure that we do not access the value of an object at time t" if that object has a del(t)
annotation with ¢ > ¢. More precisely, we modify the definition of the node During
function in Section 7.6.2 to state that if a node has a del(t;) annotation then its value
after t is undefined. (That is, the most recent time interval is modified from [ty, {n]
to [tk,t4).) The corresponding changes to the translation-based implementation are

straightforward.

7.7 A Query Subscription Service

In Section 7.1, we mentioned as an important application of change management
being able to notify “subscribers” of changes in (semistructured) information sources
of interest to them. In this section, we describe our design and implementation of such
an application, called a Query Subscription Service (QSS), using DOEM and Chorel.
An ordinary query is evaluated over the current state of the database, the results
are passed to the client and then discarded. An example of an ordinary query is
“find all restaurants with Lytton in their address.” In contrast, a subscription query
is a query that repeatedly scans the database for new results based on some given
criteria and returns the changes of interest. An example of a subscription query is
“every week, notify me of all new restaurants with Lytton in their address.” Below,

we describe how subscription queries are specified and implemented in our system.

200 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

time
Freff}:;g;lcgn e o Polling Times
o Source States
Polllng Query
[Ro= {}| Rl R2 v. . Reslts
(tl u1) (t2, U2) (3, u3) L History
'd
Filter Query | DOEM]
Change results y \

Figure 7.9: A Query Subscription Service based on DOEM and Chorel

Supporting subscription queries introduces the following challenges. First, as dis-
cussed earlier, many information sources that we are interested in (e.g., library in-
formation systems, Web sites, etc.) are autonomous [SLI0] and typical database
approaches based on triggering mechanisms are not usable. Second, these informa-
tion sources typically do not keep track of historical information in a format that is
accessible to the outside user. Thus, a subscription service based on changes must
monitor and keep track of the changes on its own, and often must do so based only
on sequences of snapshots of the database states.

Briefly, our approach to constructing a query subscription service over semistruc-
tured, possibly legacy, information sources, is as follows: We access the information
sources using Tsimmis wrappers or mediators [PGGMU95, PGMU96], which present
a uniform OEM view of one or more data sources. We obtain snapshots of relevant
portions of the data and use differencing techniques from Chapters 4, 5, and 6 to infer
changes based on these snapshots. Finally, we use DOEM to represent the changes,
and Chorel to specify the changes of interest. We describe our approach in more
detail next.

A subscription consists of three main components; refer to Figure 7.9. The first
component is a pair of frequency specifications (f,, ff). The polling frequency f,

indicates the times at which data source is to be polled in order to detect changes.

7.7. A QUERY SUBSCRIPTION SERVICE 201

The filter frequency f; indicates the times at which new changes should be evaluated
and reported to the user. Examples of frequency specifications are “every Friday
at 5:00pm” and “every 10 minutes.” The polling frequency implies a sequence of
time instants (f1,%s,%s,...), which we call polling times. Filter times are defined
analogously. (In the actual system, we also consider two other modes: one in which
the polling and/or filter times are obtained following explicit user requests, and the
other in which they are obtained as a result of a trigger on the source database firing,
if the source provides such a triggering mechanism. To simplify the presentation, we
will not describe these modes further here.)

The second component of a subscription is a Lorel query ();, which we call the
polling query. QSS sends the polling (Lorel) query to the wrapper or mediator at
the polling times (¢1,12,3,...) to obtain results (Ry, Rz, Rs,...). An example polling
query is the following. (Recall from Section 7.4.1 that “#” is a special character that
matches any sequence of zero or more labels in a path. We also use the Lorel operator

like for string matching.)

define polling query LyttonRestaurants as
select guide.restaurant

where guide.restaurant.address.# like ") Lytton}";

Let Ro be the empty OEM database, and let R; be the result of the polling query
on the source at time ¢; for i = 1,2,.... Each R; (a Tsimmis query result) is a tree-
structured OEM database. Using differencing techniques described in Chapters 4, 5,
and 6, QSS obtains a history H = (¢1,Uy), ({2, Us), ... corresponding to the sequence
of OEM databases (Rg, Ry1, R2,...). That is, U;(R;—1) = R, for all « > 0. Then, Qss
constructs a DOEM database D(Ry, H) corresponding to this history H and the initial
snapshot Ry, as described in Section 7.3. Thus, intuitively, in the first timestep the
results of the polling query are all “created.” Thereafter, each subsequent timestep
annotates the DOEM database with the changes to the result of the polling query since
the previous timestep. We identify the DOEM database corresponding to a polling
query using the name of the polling query. Thus the name of the DOEM database

corresponding to the above polling query is “LyttonRestaurants.”

202 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

The third component of a subscription is a Chorel query ()., called the filter query,
over the generated DOEM database. In addition to standard Chorel, in (). we can use
a special time variable “t[0]” to refer to the current filter time ¢;, and we can use
“t [-11,” “t[-21,” etc., to refer to the past filter times t5_1, tx_2, etc. (If the current
filter time is t;, we define t[-i] to be t;_; if + < k, and ¢; otherwise, where ¢; is the
initial timestamp associated with the DOEM database of the subscription.) The filter
query describes the data and changes of interest to the user. An example filter query

is the following:

define filter query NewOnLytton as
select R.name, C.name
from LyttonRestaurants.restaurant<cre at T1> R
LyttonRestaurants.cafedcre at T2> C
where R.parking = C.parking and T1 > t[-1] and T2 >= 1Jan97;

Given our definition of the DOEM database “LyttonRestaurants,” this query indi-
cates that the user should be notified of the names of restaurant-cafe pairs on Lytton
street that share a parking area, where the restaurant was newly created since the
last filter time and the cafe was created some time after January 1, 1997. At each
filter time ¢ (k > 0) given by the filter frequency, QSS evaluates (). over the DOEM
database D(Ry, Hy), where Hy = (t1,U1),...,(t;,U;), and t; is the greatest polling

time less than t;, and returns the results to the user.

Example 7.7.1 Consider again the changes to the Guide data described in Exam-
ple 7.2.2, as depicted in Figure 7.2. Suppose we are interested in being notified every
night of new restaurants created in the Guide database since the previous night. We
issue the subscription S = (f, @, Q.), where the frequency specification f is “every
night at 11:30pm,” and the polling query ¢); and filter query (). are Restaurants and

NewRestaurants (respectively) as defined below:

define polling query Restaurants as

select guide.restaurant;

7.7. A QUERY SUBSCRIPTION SERVICE 203

define filter query NewRestaurants as
select Restaurants.restaurant<cre at T>

where T > t[-1];

Suppose we create this subscription S on December 30th, 1996, at 10:00am. The
polling times given by our frequency specification are t; = 30Dec96, to = 31Dec96,
ts = 1Jan97, and so on (all at 11:30pm). At polling time ¢;, QSS sends the polling
query (); to the Guide OEM database, to obtain the result R; consisting of the two
restaurant objects in Figure 7.1. Since Ry is the empty OEM database by definition,
both restaurant objects will have a ¢re annotation in the DOEM database built by Qss.
These annotations all have a timestamp ¢;, while the variable t[-1] in the query Q).
has value negative infinity at ¢;. Therefore, evaluating the filter query). on this
DOEM database returns the two restaurant objects as the initial results to the user.

At polling time ¢35, the Guide database is unchanged, so the result Ry of the
polling query is identical to R;. Consequently, no changes are made to the DOEM
database maintained by Qss. Note also that at time ¢5, t[—1] = 1, so that the create
annotations on the restaurant objects in the DOEM database no longer satisfy the
predicate T > t[-1] in the where clause of ().. Therefore, the result of (). is empty,
and the user does not receive any notification.

Before polling time ¢35, the Guide database is modified by the addition of a new

restaurant object, with name “Hakata,”

as described in Example 7.2.2. Therefore, at
t3, the result Rs of the polling query contains the new restaurant object in addition
to the two old restaurant objects. The new restaurant object is detected by the
differencing algorithm. Accordingly, the DOEM database maintained by QSS now
includes the new restaurant object, with a create annotation cre(ts) on it. Note also
that at this time, t[—1] = ¢5, so that this create annotation satisfies the predicate in
the where clause of ().. Therefore the result of the query (). over the modified DOEM

database contains the new restaurant object “Hakata,” and the user is notified of this

result. O

204 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

user

Subscriptionl TNotificationS

QSC
(client)
Subscription Change Notification

| Qss |
| Subcription| Q¢ Chorel (server) |
: Manager Engine '
I I
I I
1 Subscription I
! Store Ql '
: 0 R1, R2, R3 RLRI :

uery .R2,R3,...| DOEM o
: M anager snapshot M anager Changes OEMdiff :
' results X
I I
' Query Results OEM encoding |
R R I

Tsimmis
Wrapper or Lore
Mediator

Source-specific
Interface .-~

Figure 7.10: System architecture of QSs

7.7.1 qss Implementation

We now provide a brief discussion of some aspects of our implementation of the Query
Subscription Service. Refer to Figure 7.10. The system has a client-server architec-
ture, with one or more client processes (Query Subscription Clients, or QSCs) that
interact with users, and a server process (Qss) that implements the core functional-
ity. A single server process serves multiple clients. QSC implements a user interface
that supports subscription creation and deletion, and also delivers notifications to the
user. The QSs server is the principal component of the QSs system. It consists of five

main modules:

7.7. A QUERY SUBSCRIPTION SERVICE 205

o The Subscription Manager handles all the information relevant to subscriptions.
For each subscription, the Subscription Manager maintains the polling query @),
the filter query ()., the frequency specification f, the identifier of the current
DOEM database (stored in the DOEM Manager described below), as well as

information such as the user name, host name, etc.

o The Query Manager module is responsible for sending polling queries to the

Tsimmis wrapper or mediator and collecting the resulting OEM results; it inter-

faces with the Tsimmis CSL library [CGMH194].

o The OEMdiff module implements the differencing algorithm in Chapter 4 to
compute the history from the snapshot results of the polling query.

e The DOEM Manager maintains the DOEM database corresponding to the se-
quence of polling query results, using the OEMdiff module to compute changes
between successive polling query results. It uses the Lore system [MAGT97] to
store OEM encodings of DOEM databases, using the translation scheme described

in Section 7.5.1.

o The Chorel Engine evaluates the Chorel filter query (). for each subscription
over the corresponding DOEM database. It includes a preprocessor that replaces
the special time variables t [i], if any, in the filter query with the appropriate

timestamps as explained above.

The arrows in Figure 7.10 depict the flow of information in Qss. For each subscrip-
tion, the Subscription Manager uses a timer to invoke the Query Manager with the
polling query); at each polling time ¢;. The Query Manager communicates with the
Tsimmis wrapper or mediator to execute the polling query and to retrieve the result
R;. This result is sent to the DOEM Manager, which forwards R; to the OEMdiff
module along with the previous results R;_;, obtained from the current snapshot of
the DOEM database for this subscription. (Alternatively, the DOEM Manager could
store the previous result in addition to the DOEM database, thereby trading space for
time.) The OEMdiff module compares R;_; with R; to produce the change operations
U such that U(R,—1) = R;. The DOEM Manager then incorporates these changes

206 CHAPTER 7. REPRESENTING AND QUERYING CHANGES

into the DOEM database for this subscription. Finally, the Chorel filter query @), for
this subscription is executed over the updated DOEM database by the Chorel Engine,
and the results are sent to the user via the QScC client.

For certain polling queries, QSS may need to store a large portion of the under-
lying database in order to detect changes accurately. We are exploring the following
ways of limiting the space used for storing DOEM databases: (1) merging the DOEM
databases for several subscriptions that have similar polling queries; (2) making the
client responsible for storing the DOEM databases for its subscriptions; and (3) trad-
ing accuracy for space by storing a smaller state at the expense of not being able
to detect all changes accurately. We are also working on methods for determining

a polling query and filter query automatically from a simpler form of subscription

query.

7.8 Summary

In this chapter we studied the problem of representing, storing, and querying historical
data in the context of heterogeneous, autonomous databases. We motivated the need
for a uniform representation scheme for changes in semistructured data, and for a
query language that allows direct access to changes. We presented a simple data
model, DOEM, for representing historical semistructured data. In DOEM, changes to
data items are represented using annotations on the affected data, making DOEM
particularly well-suited to browsing historical semistructured data marked up with
changes.

In addition to browsing, the DOEM data model also supports a historical query
language called Chorel. An important feature of Chorel is that changes are treated as
first-class, allowing data and changes to be queried in an integrated manner. OQur im-
plementation of a database system for historical semistructured data, called CORE,
is based on the Lore database system for semistructured data. We described how
we implemented CORE as an extension to Lore by using a technique that encodes
DOEM in OEM and translates Chorel queries on a DOEM database to Lorel queries
on its DOEM encoding. Apart from modularity, this implementation strategy makes

7.8. SUMMARY 207

our techniques easily adaptable to other database systems for structured and semi-
structured data.

While data items in the DOEM model have four basic kinds of annotations de-
scribing their history of changes, we can also associate additional virtual annota-
tions with data items. Such virtual annotations are similar to views in traditional
database systems, and can be used for the analogous purpose of providing conve-
nient, customized access to data. We demonstrated how we use virtual annotations
to facilitate snapshot-based access to a historical database. We defined the semantics
of snapshot-based virtual annotations such as <snap> in terms of the base annota-
tions, and described extensions to our translation-based implementation scheme to
accomodate queries containing such annotations.

We also described the design and implementation of a Query Subscription Service
(QSS) that allows us to subscribe to interesting changes in source databases. To
specify interesting changes, QS5 uses a general and powerful subscription language
based on Chorel. We defined the syntax and semantics of this language, and described
its implementation based on our implementations of OEMDiff and CORE. Together
with the techniques for detecting changes described in Chapters 4, 5, and 6, the
techniques of this chapter are the basis of our implementation of the C? change

management system described in the next chapter.

Chapter 8
System Implementation

In this chapter, we describe how we have used the techniques described in previous
chapters to implement the C® system for managing change in heterogeneous, au-
tonomous databases. In Section 8.1 we describe the functionality provided by the C*
system to its users. Using an extended example, we illustrate how the C? system may
be used. In Section 8.2, we describe how this functionality is implemented. Contin-
uing with the extended example, we present the system response to a representative
set of user and external events. Recall that we outlined the high-level architecture
of our system in Chapter 3. Further, in Chapters 4-7 we described the design and
implementation of the major system modules. Therefore, in this chapter, we discuss
only those system implementation details that are not presented in earlier chapters.
In particular, we focus on describing how system modules interact with each other to

provide the overall system functionality.

8.1 User Interactions

A quick glance at Figure 8.15 (described in detail in Section 8.2) suggests that there
are three major user interfaces to the C? system, one each for the three principal
modules: TDiff, CORE, and QSS. Although the QSS interface is the most compre-
hensive of the three, using the TDiff and CORE interfaces separately is often useful.

For example, while QSS is restricted to presenting all data in our integrating data

208

8.1. USER INTERACTIONS 209

Bangkok Cuisine, 407 Lytton Ave., Palo Alto, 322-6533

Bangkok Cuisine, off the beaten path on Lytton Avenue, is intimate, friendly and
inviting. The smells are the first wake-up call to the senses, a fragrant fusion of
barbecue, garlic, sugar, chilies and peanuts. Afier a few minutes, the comfortable
ambience, decorated in soft pinks and greens, seduces you into thinking vou are gazing
at fresh flowers while dining off linen. Such is the charm of the place, because the
napkins and place mats, at lunch at least, are mere paper; the flowers ersatz. Hours:
Monday-Saturday lunch 11 a.m. to 3 p.m.; Sunday-Thursday dinner 5 to 9:30 p.m.;
Friday and Saturday dinner from 5 to 10 p.m. (Reviewed Dec. 10, 1993)

Beausejour, 170 State S5t., Los Altos, 948-1382

Beausejour is run by William and Ahn Yee, who came to the United States from
Vietnam in 1975. The Vietnamese influence shows in the reduced reliance of fat in the
food, and Californian influence can be seen in the use of shiitake mushrooms and
cilantro in sauces where a roux or cream sauce might be more customary. The decor is
unassuming and understated. The monied classes can easily spend $100 or more for

Figure 8.1: Restaurant reviews from the Palo Alto Weekly

i | Forward | Reload || Home | Search |Metscape|| Print | Security || |

|§|_Cafe Borrone, 1010 El Camino Real, Menlo Park, 327-0830

|§|_ A cross between an elegant sidewalk cafe and a busy Berkeley coffee house,
Borrone offers light entrees such as nutmeg-spiced chicken salad and spinach quiche,
along with some of the best coffee drinks around. You'll find state-of-the-art
sandwiches and desserts, featuring Rose's vanilla custard. @ It’s all delicious, but it’s
not the cheapest meal in town. Decor is bookstore chic, and Kepler's Books &
Magazines is just across the way. On warm evenings you can dine outside in the
courtyard. [@ Open Mon.-Fri. 7 a.m.-11 p.m., Sat. 9 a.m.-11 p.m., Sun. 9 a.m.-5 p.m. No
credit cards. (Reviewed May 23, 1990)

@ o Cafe Fino, 544 Emerson St., Palo Alto, 326-6082

@ e This classy piano bar is part of Freddie Maddalena’s little culinary empire
that includes his larger, namesake restaurant next door. @ Maddalena bills the
larger restaurant as “traditionally romantic.” @ What makes his smaller cafe fun
is the untraditional romance of the place. @ Ladies who lunch feel comfortable

1 & - [a'al] & 1 41 T L' n - h % Fali T 17

=0 I

Figure 8.2: New version of reviews with changes marked

210 CHAPTER 8. SYSTEM IMPLEMENTATION

il ©or | Forward | Reioad || Home | Search |metscape| Print | Securty || oo |

|§|_Cafe Borrone, 1010 El Camino Real, Menlo Park, 327-0830

_ A cross between an elegant sidewalk cafe and a busy Berkeley coffee house,
Borrone offers light entrees such as nutmeg-spiced chicken salad and artichoke
quiche, along with some of the best coffee drinks around. You'll find state-of-the-art
sandwiches and desserts, featuring Rose's vanilla custard. Decor is bookstore chic,
and Kepler's Books & Magazines is just across the hall. On warm evenings you can
dine outside in the courtyard. [@] Prices are moderate. Open Mon.-Fri. 7 a.m.-11 p.m.,
Sat. 9 a.m.~11 p.m., Sun. 9 a.m.-5 p.m. No credit cards. (Reviewed May 23, 1990)

|§|_California Cafe, 700 Welch Road, Palo Alto, 325-2233

|§|_|§| Set in the renovated Stanford Barn, the California Cafe is a perfect example of
Silicon Valley chic with its noisy, fun-filled atmosphere. [8] A large, frequently
changing menu offers everything from sandwich platters to full-course meals, with
selections ranging from applewood-smoked meats to more adventuresome entrees such

5 o B | e L 1 gigrt B o 1 ol 1 8

| If

Figure 8.3: Old version of reviews with changes marked

model (OEM), TDiff is free to present data in its native format such as plain text,
HTML, and Latex.

8.1.1 Using TDiff

When presented with two snapshots of data, such as two versions of a Web page,
TDiff computes the differences between these snapshots, and presents the results in
a graphical format that can be conveniently browsed. For example, suppose we are
interested in finding out what has changed in a Web page that lists approximately
200 restaurant reviews from the Palo Alto Weekly [PAW9S]. Figure 8.1 shows an
excerpt from this page. Suppose we are interested in comparing the version of this
Web page from January 1994 with that from November 1995. A version of TDiff
specialized for HTML data takes these Web pages as input, parses them into ordered
trees, and computes the differences between them using the methods of Chapter 4.
The insertions, deletions, updates, and moves thus detected are then displayed using

icons of different colors. TDiff marks changes in both the old and new versions of the

8.1. USER INTERACTIONS 211

document using representative icons. Figures 8.2 and 8.3 depict excerpts from the
marked-up new and old versions of the restaurant reviews. In the interactive system,
the old version is presented with a yellow background in order to clearly distinguish
it from the new one. Similarly, the icons use different colors to represent insertions,
deletions, updates, and moves. By clicking on one of these icons, one can find out
more about the change it represents. When one clicks on an icon in one version, the
corresponding information from the other version is displayed. For example, clicking
on a red dot, which denotes a deleted sentence, results in the display of the old version
of the document with the deleted sentence highlighted.

We have implemented a few special versions of TDiff for data formats such as
plain text, simple HTML, and Latex. In general, the method for studying differences
between versions of data is to first convert the data to OEM format, and then use the
OEM version of TDiff. The TDiff interface allows us to compare only two versions of

data at a time. For a more general solution, we use the QSS interface described next.

8.1.2 Using QSS

Recall, from Chapter 7, that the Query Subscription Service (QSS) module acts as
a driver for the C? system and provides a flexible and general method to monitor
changes to autonomous databases using a subscription metaphor. We have interfaced
our C® system with a number of source databases, including a Web site with traffic
reports, a Web site listing entertainment events, and a bibliographic server. The user
first connects to the QSS server for the source database of interest. For our example,
we use the eGuide Web site, which lists entertainment events for the San Francisco
Bay Area. Figure 8.4 shows a screen-shot from this site. The figure suggests the
natural hierarchical structure of this Web database, consisting of categories such as
movies, restaurants, and events (depicted near the bottom of the figure), subcategories
such as Movies Now Playing, Special Programs, and Showtimes (depicted near the
top), individual listings such as the movie listings (depicted on the left), details of the
movie (depicted on the right), and so on. Each movie listing contains information such

as the rating, running time, critics rating, MPAA rating, a review, and a listing of

212

CHAPTER 8. SYSTEM IMPLEMENTATION

Movies Now Plaving

Rep Theaters & Special Programs

Theaters & Showtimes

‘The Opposite Of Sex
‘Dut Of Sight

‘The Parent Trap
A Perfect Murder

‘Pi

‘Return To Paradise
‘ Rounders

‘Saving Private Rvan
‘Seven Samurai
(1954)

‘Simon Birch

‘Six Days, Seven

‘Slums Of Beverly
Hills

‘Small Soldiers
‘Smoke Signals
‘Snake Eves

‘The Spanish
Prisoner

‘Spike And Mike's

ENTERTAINMENT
LedaThe Gate

Saving Private Ryan

Action, 02:50, Rated R Full Review

(At the AMC 1000, Kabuki, Century Plaza, Empire,
Geneva Drive-In and Vogue) Steven Spielberg's
magnificent tribute to the memory, now fading, of the
American effort in World War II is an overwhelming
experience. "Saving Private Ryan" launches and climaxzes
with two of the greatest extended battle sequences ever put
on film. The first evokes the horror and pity of the
Normandy invasion, and the last is an extraordinary account
of pitched battle. Tom Hanks embodies the spirit of simple
decency, one of the reasons the war was fought. Prepare to
weep.

)

-- Graham, B., SF Chronicle
San Francisco County
AMC 1000 Van Ness

AMC Kabuki 8

12:30-2:45-4:00-7:00-7:45-10:40
1:00-4:15-7:30-10:45

Empire 3 12:00-3:30-8:00
UA Vogue 4:30-8:00

Alameda County

Figure 8.4: The eGuide Web database: movie section

8.1. USER INTERACTIONS 213

AMC 1000 Van Ness
1000 Van Ness, San Francisco
(415)922-4AMC

Prices: Adult 7.50 Child 3.75 Senior 4.75

Title Rating Showtimes for Wednesday, September 16
Mulan G 1:30-3:45

The Parent Trap PG 2:45-5:45-8:30

Saving Private Rvyan R 12:30-2:45-4:00-7:00-7:45-10:40

Lethal Weapon 4 R 5:45-8:20-11:00

Figure 8.5: The eGuide Web database: theater details

theaters that are screening the movie. Clicking on some of these items results in more
detailed information. For example, Figure 8.5 depicts an excerpt of the information
displayed when one clicks on a theater name.

After logging into the QSS server for eGuide, the user is presented with the option
of reviewing her present subscriptions or creating a new one. We first describe the
process of creating a subscription. Elaborating on the formal definition of a sub-
scription in Chapter 7, a subscription consists of a unique name, and the following

components:

Polling Query: Intuitively, this query describes the portion of the source database
that is of interest to the user. More precisely, the polling query is a Lorel query
sent periodically by QSS to the wrapper of the source database in order to
detect changes and generate a history. Each wrapper supports a limited set of
query types, and these are encoded using a list of query templates presented to
the user. Commonly used instantiations of these templates are also presented

using a menu.

Figure 8.6 shows the five commonly used polling queries offered for eGuide.

214 CHAPTER 8. SYSTEM IMPLEMENTATION

2. View Query (query templates)

D User defined view query

D Predefined menu (actual queries)
1. Movies with keyword “action" J
2. Movies with keyword "Palo Alto"

3. Cha 3. R-rated movies with "excellent" little man rating

4. Non-rated movies
. 5. Exhibits with keyword "sea"

|_| L"“ B = By Bl

Figure 8.6: Menu of common polling queries for eGuide

1. Get all movies whose titles, descriptions, etc. contain the keyword $N.
select movie where keyword(movie, $N);

2. Get all movies with title $N.
select movie where movie.title = $N;

3. Get all movies whose titles contain the word $N.
select movie where contains(movie.title, $N);

4. Get all movies with rating $N.
Rating values can be "G", "PG", "PG-13", "R", "NC-17" or "NR".
select movie where movie.rating = $N;
5. Get all movies whose ratings are higher than or equal to $N.

select movie where rating_ge(movie, $N);

Figure 8.7: Some polling query templates from the eGuide wrapper

8.1.

USER INTERACTIONS 215

QSS also offers a list of twelve query templates for movies and four templates
for special events. An excerpt from this list of query templates is displayed
in Figure 8.7. The listing includes the English query, and its equivalent Lorel
version. (The templates also include MSL versions of each query; these are not
shown in the figure.) For our example, we select the “non-rated movies” option

from the menu.

Filter Query: Intuitively, this query describes the changes of which the user wishes

to be notified. More precisely, the filter query is a Chorel query that is pe-
riodically evaluated over the DOEM database representing the historical data
generated by polling queries. This DOEM database is given the reserved name
ViewRoot. As described in Chapter 7, the filter query can also make use of the
special syntax t[-i] to refer to past query evaluation times. Similarly, past
polling query evaluation times are accessed using the syntax t’[-i]. Com-
monly used filter queries are presented in a menu. Note that since every Lorel
query is also a Chorel query, the Chorel query is not required to refer to changes,

although it is typically more useful when it does.

Figure 8.8 lists the five commonly used filter queries offered in the menu for
eGuide. For our example, we write the following Chorel query which returns

the titles of newly added movies along with the times they were added:

select X,T from ViewRoot.<add at T>%.title X where T > t[-1];

Polling Frequency: This frequency specifies when the source database is to be

polled for new changes. The user can select from a menu of commonly used
frequencies as indicated by the screen-shot in Figure 8.9. More generally, we use
the syntax of the Unix cron utility to specify the frequency [Vix98]. A special
value for the polling frequency is Probe, which indicates that polling is to be

performed on explicit user request only.

For our example, we select from the menu “every day at midnight.”

Filter Frequency: This frequency is analogous to the polling frequency, and indi-

cates when the filter query is to be evaluated over the DOEM database of the

216 CHAPTER 8. SYSTEM IMPLEMENTATION

1.0bjects added to the top level since the last checking
select ViewRoot.<add at t>%
where t > t[-1]1;
2.0bjects newly found in the top level since the last checking
select ViewRoot.%<cre at t>
where t > t[-1]1;
3.0bjects removed from the top level since the last checking
select ViewRoot.<rem at t>%
where t > t[-1]1;
4.0bjects newly removed from the top level since the last checking
select X
from ViewRoot.<rem at t1>Y X
where t1 > t[-1] and
forall Y in ViewRoot.<add at t2>% :
X <> Y or t2 <= t[-1] or t1 < t2;
5.0bjects in the top level updated since the last checking
select ViewRoot.%<upd at t>
where t > t[-1];

Figure 8.8: Menu of common filter queries

4. View Query Frequency

[7] Manually probe
[+] Every minutes 12 AM
————— 1 AM

2 AM
[+] Tie with change query 3 AM
[] Advanced View Query T 4 ajpf [crontab format)

[+] Every day at | 12 AM

Month Day 5 apf | Weekday Hour Minute
I | I eam | | i |
7 AM

Figure 8.9: Specifying the polling frequency

8.1. USER INTERACTIONS 217

I|I Back |meard‘ Reload ” Home ‘ Search |Nels|:apEH Print |Sezurily H |

Subscriptions for chaw on eguide

New Subscription | Help

NR-titles-add-w-time

® Subscription Information

@ Last Action : New change query result received at Fri Sep 11 00:00:34 1998
Result is in d63

® Initial View Query Result

@ Change Query Results : d0 di d2 d3 d4 d5 dé d7 d8 d9 di0 dii1 diz2

di3 di4 di5 die di17 di8 di19 d20 d21 d22 d23 d24 d25 d26 d27 d28

del dé2 dé3

1w Manually Probe : Change Query View Query DBoth Queries
€ Unsubscribe

@ Reset

Figure 8.10: QSS subscription review screen

subscription in order to detect new changes of interest. Similar to the polling
frequency, the filter frequency may have the special value Probe, indicating that
the filter query is to be evaluated on explicit user request only. In addition, the
filter query may have the special value Tie, indicating that the filter query is

to be evaluated immediately after each evaluation of the polling query.

For our example, we select the Tie option from the menu.

When we request the creation of a subscription named NR-titles with the pa-
rameters selected above, QSS evaluates the polling and filter query once immediately
in order to establish a baseline for future changes. The results of the filter query
evaluation are returned as the initial result of the subscription. Every midnight fol-
lowing the creation of this subscription, QSS executes the polling query, updates the
DOEM database based on its results, and checks for new changes satisfying the filter
query. New results are stored for review by the subscription owner. (Optionally, the
subscription owner may request an email notification.)

Figure 8.10 shows an excerpt from the subscription review sereen, focusing on the

NR-titles subscription created above. As shown in the figure, QSS presents the set of

218 CHAPTER 8. SYSTEM IMPLEMENTATION

Answer

DOEM-904719668
ViewRoot
title Les Valseuses (Going Places) @
Time-T Wed Sep 2 00:00:35 1998
ViewRoot
title Ulysses (1967) @
Time-T Wed Sep 2 00:00:35 1998

Figure 8.11: A result for the subscription NR-titles

accumulated filter (change) query results. By clicking on any of the result identifiers,
we can view the detailed results. Figure 8.11 is an excerpt from the results screen
displaying the result delivered for NR-titles on the 2nd of September. Recall that
our filter query asks for the titles of newly added NR movies along with the times at
which their additions were detected. The figure shows the titles of two newly added
movies and the corresponding times. The results screen displayed by QSS is an active
one, meaning we can click on links and icons to browse the result in more detail by
navigating the DOEM database of this subscription. As discussed below, we can also

evaluate arbitrary Chorel queries on this database.

8.1.3 Using CORE

Recall, from Chapter 7, that the Change Object Repository (CORFE) module is our
implementation of a historical database system for OEM data. Figure 8.12 displays a
screen-shot of the CORE query screen. In addition to typing in a Chorel query, we
can also restrict the browsable results to some time interval. The semantics of such
timestamp-restricted browsing are as follows: Browsing a DOEM database D with a
timestamp-restriction (B,] disregards all nodes and arcs in D that are not present
in at least one OEM snapshot O;(D) for some timestamp t € (B, E]. (Recall that
we defined the OEM snapshot of a DOEM database in Section 7.3.2 of Chapter 7.)
Note that the timestamp restriction, if any, on browsing of the results of a query

does not change the semantics of query evaluation. That is, the given Chorel query is

8.1. USER INTERACTIONS 219

|F0nuam | Reload ” Home | Search |Nemcape” Print |SecuMy|

CORE

Query: (select Traffic;)

select M.<add=title, M.<addrcategory, M. <addsstar rating, &

from ViewBoot.<add at armovie M

vhere M. <add>category = "Comedy" ;]

Restrict to time interval: |-t ‘ - ‘j,—i ‘ (Mon Nov 17 18:00:00 1997)

Submit

= I

Figure 8.12: CORE query interface

evaluated as before to yield a set of object identifiers (OIDs) as result. It is only the
subsequent browsing of the DOEM database with these OIDs as starting points that
is modified as described above. In addition to being a useful feature for studying past
states of a DOEM database, timestamp-restricted browsing is essential to our method
for storing, retrieving, and browsing QSS results, as described in the Section 8.2.

Using the CORE query interface, we can interactively browse and query any
DOEM database. In particular, we can browse and query the DOEM database im-
plicitly created by each QSS subscription, based on the definitions in Section 7.7 of
Chapter 7. In brief, this DOEM database encodes the history of polling query results
for this subscription. (We discuss the construction of this database in more detail in
Section 8.2.) In the context of our subscription NR-titles introduced above, we can
write the Chorel query “select ViewRoot;” to return the special named object that
is the root of the DOEM database for this subscription.

Figure 8.13 shows a portion of the resulting browsing screen. Since we did not

restrict the browsing to a specified time interval, all objects in the DOEM database

220 CHAPTER 8. SYSTEM IMPLEMENTATION

JI Back | | Reload | Home | Search |Metscape|| Print | Security ||

ViewRoot @
Added at Fri Sep 11 00:00:15 1998
4o movie @ ovw
@ title Buffalo 66 e+¥
Created at Fri Sep 11 00:00:15 1998
@ category Drama @
rating NR e
runtime 01:50 @
star_rating 1 Stars @
@ review First-time director Vincent Gallo stars in this self-consciously
stylized story of a social misfit who's rescued from emotional annihilation
by the girl he kidnaps. With Christina Ricci, Ben Gazzara, Anjelica
Huston. (profanity, bloody images). @
@ full review @
@ title Gallo Scores With "Buffalo '66'/Gritty, comic look at
forgiveness @
@ author Bob Graham, Chronicle Staff Critic @
@ cinema @ @
@ name Lumiere @
@ phone (415)352-0810 @
@ address 1572 California St., San Francisco @
@ time 11:55-2:15-4:35-7:10-9:45 @
@ cinema @ @
@ name Elmwood @
@ phone (510)649-0530 @
@ address 2966 College Avenue, Berkeley @
@ time 2:20-7:20 @
Added at Fri Sep 11 00:00:15 1998
Removed at Sun Sep 13 00:00:12 1998
s~ cinema @ ow
@ name AMC Sunnyvale 6 @
@ time 5:40-8:05 @
@ phone (408)746-3800 e
@ address 2604 Town Center Lane Sunnyvale @
@ cinema @ @

® e @

=0 Il

Figure 8.13: Result of the query “select ViewRoot;” on the NR-titles database

8.1. USER INTERACTIONS 221

are available for browsing by navigating down from the root. The browsing screen
displays one object per line (with line wrapping for details that do not fit on a line).
The distinguished objects that are part of the query result are displayed with the least
indentation; other objects reachable from the distinguished objects are displayed with
indentation proportional to their distance from the distinguished objects. By default,
the display is restricted to objects and links that exist in the current snapshot of
the DOEM database. (See Section 7.3.2 in Chapter 7 for a discussion of snapshots.)
Further, to keep the display manageable, by default only objects reachable from the
distinguished objects using a path of length three or less are displayed. Such defaults
can be easily modified. On each line representing an object, the last label in the path
used to reach the object is displayed in bold font, followed by the value of the object in
normal font if it is an atomic object. (Recall, from Chapter 7, that in our data model
only atomic objects, which are objects that have no outgoing arcs, have values.) We
use a green icon at the beginning of an object’s display line to represent the set of
arc annotations on the last arc (whose label follows) in the path used to reach the
object. Clicking on this icon toggles the detailed display of these arc annotations.
Similarly, we use a blue icon at the end of an object’s display line to represent the set
of arc annotations on that object, and clicking this icon toggles their detailed display.
The icons denoting expanded annotation sets have a triangular arrow pointing to the
details.

Continuing with our example, the result of our trivial query (select ViewRoot;)
is the singleton set containing the special named object. The first line in the results
display depicted in Figure 8.13 corresponds to this special object. The figure indicates
that this ViewRoot object has only one subobject, with label movie. This movie
object in turn has a number of self-explanatory subobjects with labels such as title,
rating, and cinema. Figure 8.13 also indicates that we have expanded the node
annotation for the movie title node, and the arc annotation for the movie arc, and
displays the timestamps of these annotations. Red icons next to a node are used to
represent the set of outgoing arcs that do not exist in the current snapshot of the
DOEM database. Clicking on these red icons toggles the display of such historical
arcs, which are hidden by default. In the display shown in Figure 8.13, we have

222

Nt iau Bool

CHAPTER 8. SYSTEM IMPLEMENTATION

Back | Reload || Home | Search |Metscape|| Print | Security || |

ViewRoot

title Bread, Love and Dreams (Pane, Amore e Fantasia) (1953) @

category Comedy @

Time-A Fri May 15 00:00:32 1998
ViewRoot

category Comedy @

title Sudden Manhattan @

star_rating 1 Stars @

Time-A Tue Jun 2 18:07:42 1998
ViewRoot

category Comedy @

title Qur Hospitality (1923) e

Time-A Thu Aug 20 00:00:38 1998
ViewRoot

category Comedy @

star_rating 3.5 Stars e

title Lisbon Story @

Time-A Fri Aug 21 00:00:30 1998

exp
int
con

we

Figure 8.14: Result of the query in Figure 8.12 on the NR-titles database

anded the removed subobjects of the movie object. The last two cinema objects
he figure (shown in red on screen) are displayed as a result of this expansion. To
firm that these cinema objects are indeed removed subobjects of the movie object,

have also expanded the arc annotations on the arc leading to the penultimate

cinema object. The figure indicates that this arc was added on September 11th and

removed on the 13th. The figure also indicates that we have expanded the removed

sub
sub

for

(cri

objects of this cinema object. The resulting name, time, phone, and address
objects are also displayed in red.

As an example of a more interesting query, consider the following, which looks
movies in the Comedy category and returns their titles, categories, star rating

tic’s rating), and time of addition to the database:

select M.<add>title, M.<add>category, M.<add>star rating, A
from ViewRoot.<add at A>movie M

where M.<add>category = "Comedy";

Figure 8.14 depicts a portion of the result of this query on the DOEM database of

8.2. SYSTEM INTERACTIONS 223

Chorel Browse

Di result

e~ v Ri-1, Ri Filter Q. horel
CORE

Subscr. QSs »
CORE
(server) < Filter Q. result DOEM el

Polling Q ncoded
g olling Q. result Lorel ¢ Fresult
:
DOEM
L
aAutonomous DBs

Figure 8.15: Architecture of the Csystem

(client))
.. @] TOI Cuser)
Subscription¢¢‘ TDiff GUI
C ges

our NR-titles subscription. In keeping with the semistructured nature of the data we
model, it is likely that one or more kinds of subobjects may be missing from some
movie objects in the database. However, our use of a semistructured query language
allows us to conveniently interact with the database in spite of such missing data.
For example, observe that some of the listings in the result do not have star-ratings;
these listings correspond to movie objects in the database that have missing star-
rating subobjects. As with our earlier example, we can interactively browse these
results by expanding annotations, exposing removed subobjects, and so on. CORE
thus provides a powerful and convenient method for iteratively querying and browsing

a historical semistructured database.

8.2 System Interactions

In the previous section, we described the functionality offered by the C?® system

through the TDiff, QSS, and CORE interfaces. In this section, we describe how this

224

ENTERTAIMMENT
OnThe Gate

Gate

Sections
Sports
Entertainment
Technology
Live Views
Traffis

CHAPTER 8. SYSTEM IMPLEMENTATION

Food Music&Nightlife Performance Art Books Events Kids Exhibits

AVIONIIESE 1 Bay Area Movie FINDER=

Fill in one or more of the fields below, then click the Search button.
Keywords: dramal]

Movie Title: I]

Critics' Rating: | Excellent | Good -Average -Fair -Poor

Rating: G PG PG-13 R NC-17
Not Rated
Category:) First-Run Films [“]Special Programs

Figure 8.16: The eGuide database: query interface

8.2. SYSTEM INTERACTIONS 225

functionality is supported. We begin by a brief description of the system architecture
that outlines the function of each module. We then continue with our extended
example from the previous section, using it to describe how these modules interact
with each other.

Figure 8.15 depicts the architecture of the C? system. (This figure is a detailed
version of Figure 3.1 in Chapter 3 and Figure 7.10 in Chapter 7.) The three central
modules of the system are TDiff, CORE, and QSS. QSS acts as a driver for the entire
system and supports subscriptions by using TDiff to compute changes and CORE to
store and query them. TDiff and CORE each support the Graphical User Interfaces
(GUls) described in Section 8.1. They also support the system interfaces described
below. QSS consists of a server module that implements the main change notification
functionality. To provide a variety of notification mechanisms (e.g., email, alerts),
this server can interact with different kinds of query subscription clients (QSCs).
The QSS server uses a private subscription store as a repository for subscription data
such as user-name, password, source database, and other details described below.
Recall, from Chapter 7, that our implementation of CORE is based on an encoding
and translation scheme that uses the Lore semistructured database system as a back-
end database. That is, we encode DOEM databases in OEM, and store the encoded
databases in Lore. We evaluate Chorel queries by translating them to equivalent Lorel
queries on the encoded OEM databases, evaluate these Lorel queries using Lore, and
translate the OEM-encoded results back to DOEM.

Recall, from Chapter 3, that all C® interactions with the source databases are
through Tsimmis wrappers and mediators that support a set of Lorel query tem-
plates, and return results in OEM. Wrapper and mediator implementation techniques
are not a focus of this dissertation and we do not discuss such details here. Further,
for simplicity of exposition, we assume in this chapter that we are interacting with
a Tsimmis wrapper. However, since the interfaces offered by Tsimmis wrappers and
mediators are identical, our system also allows access to one or more source databases
through a mediator. We have implemented and used wrappers that allow our system
to interface with a variety of source databases such as relational databases, propri-

etary bibliographic systems, and Web databases. For example, consider the eGuide

226 CHAPTER 8. SYSTEM IMPLEMENTATION

Web site introduced in the previous section, depicted in Figure 8.4. This Web site also
supports a simple query interface that allows one to search for movies based on titles,
keywords, and a few other criteria, as suggested by Figure 8.16. The wrapper we have
implemented for the eGuide database translates Lorel queries that match a supported
query template into queries using this form interface. The query result presented by
eGuide, in a format similar to that suggested by Figures 8.4 and 8.5, is translated by
the wrapper into an OEM format with subobject structure reflecting the hierarchical
structure suggested by Figures 8.4 and 8.5. The techniques used by the wrapper to
implement such functionality are described in [PGGMU95, HGMC*97, HBGM197].
Briefly, for each query template that is supported by the wrapper, we indicate the
corresponding source query to be sent to the Web site’s search interface. This trans-
lation of queries is specified using pattern matching with placeholder variables. The
set of interlinked Web pages returned as query result by the Web site is converted
into OEM using a powerful navigation and pattern-matching language very similar
to Perl [WCS96].

We now describe the functioning of the rest of the C? system using our exam-
ple subscription NR-titles from the previous section. It may be helpful to refer to
the description of subscription semantics in Section 7.7 of Chapter 7. As soon as
the subscription creation request is submitted, QSS records the subscription data,
such as the user name, the source database, the polling and filter queries, and the

corresponding frequencies in a private subscription data store.

8.2.1 Polling

At each polling time specified by the polling frequency of the subscription, including
the implicit polling time that is the subscription creation time, QSS sends the polling
query to the wrapper for the source database. For our continuing example, the

following Lorel query is sent to the eGuide wrapper.
select movie where movie.rating = '"NR";

This wrapper finds a match between this query and the following template in its

translation database, which uses $1 as a placeholder variable.

8.2. SYSTEM INTERACTIONS 227

select movie where movie.rating = "$1";

The corresponding source query template in the wrapper’s translation database in-
dicates a form (see Figure 8.16) with the rating radio button set to the value of the
variable $1, which is ”NR” in our example. The resulting form is submitted to the
eGuide database, which responds with a collection of interlinked Web pages similar to
that suggested by Figures 8.4 and 8.5. Using pattern-matching with variable binding,
this collection of pages is transformed to the graph-based OEM format.

We use OEM load files to encode OEM data throughout the C? system. Fig-
ure 8.17 depicts an excerpt of the OEM load file generated by our eGuide wrapper.
Recall that OEM data is modeled as a rooted graph O. In order to represent this
rooted graph in the linear format required by a load file, we first select an arbitrary
rooted spanning tree T' of O such that 7" and O have the same node as root. The tree
T is encoded in the load file as follows. Each line in the file represents one node, and
consists of the following fields in order: (1) one plus the depth of the node; (2) the
label of the tree arc leading to the node; (3) the type of the node; and (4) the value
of the node, if the node is of atomic type. For example, the second line in Figure 8.17
encodes a node with incoming tree arc labeled “movie.” This node is at depth 1 in
the tree, and has children labeled title, category, rating, runtime, and so on. (In the
figure, lines beginning with the “+” represent long lines that have been wrapped for
presentation purposes.) Details of an enhanced and extensible version of our load
file format are described in [GCCM96]. We use this extended format to represent
DOEM data in load files by encoding annotations on a node at the end of the line
representing the node, and annotations on an arc at the end of the line representing
the target node.

The OEM load file thus generated is sent to the TDiff module along with the
saved load file from the previous polling time. (At the first polling time, the role of
the saved file is played by a trivial OEM load file representing an empty database.)
TDiff parses these load files and computes a set of changes describing the difference
between them, using our change detection techniques from earlier chapters. Since
our source database is text-based, we treat all values as strings and use the scaled

character frequency histogram difference function described in Chapter 5 to compare

228 CHAPTER 8. SYSTEM IMPLEMENTATION

ViewRoot complex
movie complex
title string The Opposite of Sex
category string Comedy
rating string R
runtime string 01:40
littleman_rating string Little Man Clapping
review string (At the Embarcadero Center Cinema) A likable cast
makes this extremely quirky comedy fun to watch despite a story that strains
credibility. Christina Ricci is a riot as a Lolita wannabe who seduces her gay
brother’s boyfriend. Lisa Kudrow is just as funny in the less showy role of an
uptight schoolteacher. The movie meanders a lot, but the kooky characters
compel you to stay with it. Directed by Don Roos.
full_review complex
title string Ricci Plays the Bad Girl With Abandon in
‘Opposite’
author string Ruthe Stein, Chronicle Staff Critic
cinema complex
name string Palo Alto Square
time string 4:30-9:30
phone string (650)32M-0OVIE
address string Corner of Page Mill Road and El Camino
Real, Palo Alto
cinema complex
name string Towne 3
time string 5:00-9:35
phone string (408)287-1433
address string 1433 The Alameda, San Jose
...[some material skipped]...
movie complex
title string Smoke Signals
category string Comedy
rating string PG-13
runtime string 01:29
...[truncated]...

R+ OR RO+ OOWWW W R

w w w wN

Figure 8.17: An OEM load file

8.2. SYSTEM INTERACTIONS 229

two strings. For other datasets, we use different types such as integers and floating
point numbers.

Recall that our differencing algorithms in earlier chapters are for trees, not for
the general graphs encountered in OEM data. Further, the edit operations used by
TDiff are tree edit operations such as subtree moves that do not have a counterpart
in a more general graph. However, the following two observations allow us to use
these algorithms for OEM data: First, although OEM data is in general not tree
structured, the data generated using Tsimmis wrappers is either tree structured or
has a preferred spanning tree. For example, most Web sites are intuitively mapped
to graphs that are not trees. Several Web pages may point to a common page, and
there are often cycles of Web links. However, in spite of such non-tree features, most
Web databases also have a preferred spanning tree that reflects their hierarchical
structure. In particular, the eGuide database from our running example has a clear
hierarchical structure. Part of this structure is readily apparent in Figure 8.4. Second,
the tree edit operations are easily mapped to the OEM change operations described
in Chapter 7. For example, a subtree move is mapped to one arc addition and one
arc removal. In our implementation, the preferred spanning tree of an OEM graph is
implicit in its linearization as an OEM load file. That is, an OEM load file linearizes
a graph based on the preferred spanning tree; all non-tree arcs are represented using
symbolic references to other nodes and are easily detected during parsing [GCCM96].

The OEM changes thus computed by TDiff are presented in an incremental DOEM
load file, which can be thought of as a simple encoding of an edit script. Figure 8.18
depicts an excerpt from such an incremental load file, one used to load the data
displayed in Figure 8.13 on the 11th of September. Each line in an incremental load
file is a record representing an edit operation, with fields separated using the “.”
character. The first field is always the type of the edit operation. The number and
kind of the following fields depend on the type of edit operation the line represents. (In
Figure 8.18, lines beginning with the “47 character are wrapped lines continuing the
previous ones.) For a node creation operation, denoted by CRE, the second, third, and
optional fourth fields represent, respectively, the identifier, creation timestamp, and

optional value of the created node. As indicated by Figure 8.18, node identifiers are

230

CRE:
ADD:
CRE:
ADD:
CRE:
ADD:
ADD:
REM:
CRE:
ADD:
CRE:
ADD:
CRE:

tdif£42540 :

ViewRoot,

tdiff42541 :

tdif£42540,

tdif£42542 :

tdif£42540,
tdif£42540,
tdiff42468,

tdiff42544 :

tdif£42540,

tdif£42545 :

tdif£42540,

tdiff£42546 :

CHAPTER 8. SYSTEM IMPLEMENTATION

Fri Sep 11 00
tdiff£42540,
Fri Sep 11 00
tdiff42541,
Fri Sep 11 00
tdiff42542,
tdiff24192,
tdiff24192,
Fri Sep 11 00
tdiff42544,
Fri Sep 11 00
tdiff426545,

:00:15 PDT 1998
movie :

title :
category :

rating :
rating :

:00:15 PDT 1998,

runtime :

:00:15 PDT 1998,
star_rating :
Fri Sep 11 00:00:15 PDT 1998,

Fri Sep 11 00:00:15 PDT 1998
:00:15 PDT 1998,
Fri Sep
:00:15 PDT 1998,

"Buffalo 66"

11 00:00:15 PDT 1998

"Drama'"

Fri Sep 11 00:00:15 PDT 1998
Fri Sep 11 00:00:15 PDT 1998
Fri Sep 11 00:00:15 PDT 1998
"01:50"

Fri Sep 11 00:00:15 PDT 1998
"1 Stars"

Fri Sep 11 00:00:15 PDT 1998
"First-time director Vincent

+ Gallo stars in this self-consciously stylized story of a social misfit who'’s
+ rescued from emotional annihilation by the girl he kidnaps. With Christina Ricci,
+ Ben Gazzara, Anjelica Huston. (profanity, bloody images)."

ADD:
CRE:
ADD:
CRE:

tdif£42540,

tdif£42547 :

tdif£42540,

tdif£42548 :

tdiff42646,
Fri Sep 11 00
tdif£42547,

review :
:00:15 PDT 1998

full_review :
Fri Sep 11 00:00:15 PDT 1998,

+ ’66°/Gritty, comic look at forgiveness"

Fri Sep 11 00:00:15 PDT 1998

Fri Sep 11 00:00:15 PDT 1998
"Gallo Scores With ‘Buffalo

Figure 8.18: An incremental DOEM load file

8.2. SYSTEM INTERACTIONS 231

represented as strings. These strings can be thought of as external object identifiers
of objects in the DOEM database stored in CORE. Although these identifiers can be
implemented using Lore names [MAG97], for greater efficiency they are implemented
using a separate symbolic reference index. For a node update operation, denoted by
UPD, the second, third, and fourth fields represent, respectively, the identifier, update
timestamp, and new value of the node. For an arc addition operation, denoted by
ADD, the second, third, fourth, and fifth fields represent, respectively, the identifier,
source node identifier, target node identifier, arc label, and addition timestamp of
the new arc. For an arc removal operation, denoted by REM, fields are analogous to
those for ADD.

The incremental DOEM load file produced by TDiff is then sent to the CORE
module for incremental loading into the DOEM database of the subscription being
serviced. Refer back to Figure 7.6 in Chapter 7 for the internal architecture of the
CORE module. In our example, the edit operations specified by the incremental load
file suggested by Figure 8.18 are applied to the DOEM database of the subscription
NR-titles.

8.2.2 Filtering and Browsing

At each filter time specified by the filter frequency of the subscription being serviced,
including the implicit filter time that immediately follows the initial polling time
(subscription creation time), QSS first replaces any special variables of the form
t[-1] in the query with the appropriate time constants based on the current time
and the stored past filter times for the subscription. (See Chapter 7 for the semantics
of such replacements.) For our continuing example, suppose the previous filter time
is midnight on the 11th of September. Then replacing the t[-1] in the filter query
from the previous section with this timestamp gives us the following Chorel query.

(We use a timestamp format similar to that used by the Unix date utility.)

select X,T
from ViewRoot.<add at T>%.title X
where T > Thu Sep 11 00:00:00 1998;

232 CHAPTER 8. SYSTEM IMPLEMENTATION

This Chorel query is sent to CORE, which evaluates it over the DOEM database
of the subscription NR-titles (using Lore and the translation scheme described in
Chapter 7).

For our example subscription NR-titles, the filter frequency is tied to the polling
frequency, implying that each filter time immediately follows the completion of all
actions required at each polling time. Recall that at the last such polling time, the
changes encoded by the incremental load file suggested by Figure 8.18 were incorpo-
rated into the DOEM database for NR-titles. Thus the newly added details for the
movie “Buffalo 66”7 satisfy the query with X = "Buffalo 66" and T = Fri Sep 11
00:00:00 1998.

If the Chorel query result produced by the CORE module is a nonempty set of
object identifiers, this set needs to be stored for future browsing by the subscription
owner. To store the result set, we create a new named complex object, called the result
object, that has the objects in the result as subobjects. Recall from Chapter 7 that
named objects are points of entry into, and roots of persistence of, Lore and CORE
databases. At each filter time at which a nonempty filter query result is produced,
a unique name is generated for the complex object used to store the result in this
manner, and this mapping between filter times and result object names is maintained
by QSS using the subscription store. Finally, if the subscription owner has requested
notification of new results using email or other methods, a suitable message indicating
the subscription name and filter time is generated and sent.

When a subscription owner visits the subscription review screen depicted in Fig-
ure 8.10 and selects one of the change query results for browsing, QSS maps the times-
tamp of that result to the name of the corresponding result object as discussed above.
Continuing our example of the subscription NR-titles, suppose the subscription owner
requests the change query result dated September 11th. Using the information in the
subscription store, QSS maps this timestamp to the name DOEM-905497234. Next,
QSS retrieves the result object with this name using a simple Chorel query. In
our example, the query is select DOEM-905497234;. The resulting CORE browsing
screen, depicted in Figure 8.19, displays the browsable results of the subscription on

the requested date.

8.2. SYSTEM INTERACTIONS 233

lﬂl Reload ” Home Search NQMCape” Print |Secumy ”

Query
select DOEM-905497234;

Answer

DOEM-905497234
title Buffalo 66 @
Time-T Fri Sep 11 00:00:15 1998

Figure 8.19: Browsing a filter query result

Using named result objects to store and retrieve past results of a subscription as
described above raises a subtle issue related to historical accuracy of the subsequent
browsing. Since the DOEM database of a subscription continues to evolve as new
changes detected by QSS and TDiff are incorporated, the subobject structure visible
while browsing a filter query result using stored result objects (such as the object
named DOEM-905497234 in our example) is in general different from that at the time
the result was produced. For example, suppose the title displayed in Figure 8.19 is
updated to “Buffalo Strikes Back” on the 15th of September, and the owner of our
example subscription NR-titles browses the result of 11th September on the 17th.
Instead of the proper result displayed in Figure 8.19, the result would contain the
new title “Buffalo Strikes Back.” Other changes to the DOEM database can affect
the result in more subtle ways. For example, if the movie “Buffalo 66” received an R
rating on September 14th, such a rating would be visible during browsing the result
depicted in Figure 8.19, resulting in an apparent inconsistency. (Recall that the NR-
titles subscription asks for only NR-rated movies.) To avoid such inconsistencies, we
use the timestamp-restricted browsing introduced earlier. In addition to retrieving
the named result object using a query such as select DOEM-905497234;, we also
restrict the subsequent browsing to the interval [tg,1,], where {g is the subscription

creation time, and ¢, is the timestamp of the result being browsed (11th September in

234 CHAPTER 8. SYSTEM IMPLEMENTATION

our ongoing example). As a result, any changes made after the result was computed
are invisible, and the state of the DOEM database as presented by the browsing

interface is identical to that at time ¢,.

8.3 Summary

In this chapter, we described the design, implementation, and use of the C? system
for managing change in heterogeneous, autonomous databases. We described the
facilities provided by C?, and demonstrated their use using an extended example
based on a popular Web database of entertainment listings. The TDiff component
allows us to compare two versions of a portions of such databases, and to browse
the changes between them using an intuitive graphical user interface. The CORE
component allows us to store, query, and browse a collection of changes gathered
over an extended period of time. Finally, the QSS component implements a powerful
subscription language that allows us to monitor interesting changes in heterogeneous,
autonomous databases.

We described how the C? system supports the above functionality using the tech-
niques from earlier chapters and sister projects such as Tsimmis and Lore. We
use template-based Tsimmis wrappers to contain the heterogeneity of our source
databases by translating data and queries to and from our integrating model, OEM,
and query language, Lorel. We use Tsimmis mediators to integrate data from multiple
wrappers and mediators. We use our tree differencing algorithms from Chapters 4, 5,
and 6 to detect changes in the source databases. Such changes may be directly
browsed or stored in the CORE database system described in Chapter 7. The CORE
system also supports Chorel queries over the history of a database. The implementa-
tion of CORE uses the Lore database management system for semistructured data.
The QSS module implements subscriptions by periodically querying Tsimmis wrap-
pers, computing new changes using TDiff, and computing new subscription results
using CORE.

We have found the C? system to be a valuable tool for managing the complexity

of evolving heterogeneous, autonomous databases. For example, the author makes

8.3. SUMMARY 235

regular use of a QSS subscription similar to the one described in Section 8.1.2 to
be notified of interesting movies playing in one of the few small theaters close to
Stanford. Using CORE’s browsing and querying interface, it is interesting to study
the difference between the kinds of movies that play in these theaters and those that
play in the large cineplexes. We have also found QSS subscriptions on the KRON
traffic reports Web site to be very useful [KRO98]. For example, it is simple to set up
a subscription that sends a notification whenever there are accidents on Highway 280
between Stanford and San Francisco on Friday evenings. Further, the ability to
browse and query accidents and other traffic events from the past is often useful. For
example, on receiving a notification indicating three accidents on Highway 280 one
Friday evening, we can query CORE to find accidents on similar evenings in the past
year to determine whether the current situation is substantially different and thus a
cause for concern.

The stand-alone interface to the TDiff module is also interesting to use. In fact,
one of the most entertaining applications of the C? system has been the study of
how restaurant reviews from the Palo Alto Weekly evolve over time [PAW98]. We
list below a few of the actual changes in the restaurant reviews as detected by TDiff.
Note that due to numerous moves and other structural changes, simpler differencing
algorithms based on computing a longest common subsequence as discussed in Chap-
ter 2 are unable to detect the above changes accurately. These changes to the reviews
reveal far more than the reviews themselves, supporting our claim that changes to

data are often much more interesting than the data itself.

e The sentence “The kitchen just doesn’t make technical errors” in the review
of a prestigious restaurant was changed to “The kitchen rarely makes technical

errors.”

o “In general, the food here is middling to good, but as long as you order carefully,

you’ll do fine” was deleted.

e “Portions are ladylike and the menu is a bit pricey” was changed to “Portions

are ladylike.”

236

CHAPTER 8. SYSTEM IMPLEMENTATION

“The only complaint here is the emphasis on meat; many entrees haven’t a hint

of green vegetables” was deleted.

“The prices are moderate” was changed to “It’s all delicious, but it’s not the

cheapest meal in town.”

“Night life in Palo Alto is nothing to write home about as a rule, but the new

and improved [...] makes things brighter” was deleted.

Y [44

...huge servings of pho.”

The remark “(pronounced furr)” was inserted after

In conclusion, we believe our C? implementation demonstrates both the benefits

of a coherent change management system for heterogeneous, autonomous databases,

and the feasibility of our techniques for building such a system.

Chapter 9
Experimental Evaluation

In this chapter, we present some experimental evaluation of our tree differencing al-
gorithms described in Chapters 5 and 6. We study the effectiveness of our pruning
technique, the quality of the computed differences, the merits of different edge cost
estimation functions, and the running time of our implementation. We present re-
sults both for real data, obtained from the C? system described in Chapter 8, and
synthetically generated data. For the experiments described in this chapter, we used
the parallel transformation model described in Chapter 6 along with the pruning and
cost estimation techniques of Chapter 5. In Section 9.1, we describe the results of
our experiments using real data. Section 9.2 presents analogous results for syntheti-
cally generated data, focusing on how they differ from the results in Section 9.1. We

summarize our results in Section 9.3.

9.1 Experiments Using Real Data

Recall the description of the C® change management system in Chapter 8. One of the
autonomous databases that we used for demonstrating our work is the eGuide Web
database, which contains hierarchically structured information about entertainment
events [EG98]. Our change management system supports subscriptions to changes
in this database. Such subscriptions are implemented by periodically querying the

eGuide database and comparing the new and old results using our tree differencing

237

238 CHAPTER 9. EXPERIMENTAL EVALUATION

algorithm. For our experiments, we used data from a subscription over the portion
of the database describing movies. We gathered a sequence of 151 snapshots of this
data over a period of five months. We then used the 150 pairs of successive snapshots
as inputs to our algorithm. Figure 8.17 in Chapter 8 depicts one of the sample
inputs used in our experiments. The input format lists one object per line, with fields
suggesting the depth, label, type, and optional value of the object. (In Figure 8.17,
long lines, such as the eighth, are wrapped for presentation purposes. For details on
the load file format, refer to Section 8.2.1 in Chapter 8.)

Recall that our tree differencing algorithm uses an arbitrary, domain-dependent
function to compare node labels. Given two labels, this function returns the cost
of updating one to the other. The eGuide dataset consists almost exclusively of
string labels. To compare strings, we use the character frequency histogram difference
function described in Section 5.6 of Chapter 5. Recall that this function is the scaled
sum, over all characters ¢, of the unsigned difference in the frequencies of ¢ in the
two strings. We call the scaling factor tick; a higher tick value results in stricter
comparisons. For example, with tick = 0.1, the cost of updating the string “foo” to
the string “fooos” is 0.1 x (|1 — 1]+ |2—=3|4]0—1]) = 0.2. In our experiments below,
we study the effect of varying tick.

All the studies described in this section were performed on all 150 pairs of input
trees, and in all the charts presented in this section, except Figures 9.7 and 9.8, each

data point is the average result over these 150 trials.

9.1.1 Effectiveness of Pruning

As described in Chapter 5, pruning the induced graph is a very important step in
our method for comparing trees. In addition to exponentially reducing the size of
the search space for min-cost edge covers of the induced graph, better pruning also
results in better initial solutions, as described in Section 9.1.2 below. Recall, from
Chapter 5, that we prune an edge e from the induced graph if the lower bound cost
of e is greater than or equal to some quantity); that is, we prune if ¢;(e) > Q. Such

pruning is conservative; that is, the pruned induced graph is guaranteed to contain

9.1. EXPERIMENTS USING REAL DATA 239

an edge cover no more expensive than any min-cost edge cover of the unpruned
induced graph. In Chapter 5 we conjectured that our pruning rules are excessively
conservative in most situations and suggested that it may be profitable to prune more
aggressively. To test this conjecture, we studied the effect of varying an aggressiveness
parameter A, where we now prune an edge e if ¢(e) > Q(1 — A). Thus A = 0
corresponds to conservative pruning, A = —oo corresponds to no pruning, and values
of A approaching 1 correspond to very aggressive pruning.

We quantify the success of pruning using the excess edge ratio defined as follows,
where |[,| is the number of edges in the induced graph after pruning, and |/] is the

number of edges before pruning.

|| = (man(IT4), |T2) + 1)
]

cer =

Note that an edge cover of the induced graph of trees T} and T, contains at least
min(|Ty|,|Tz2|) + 1 edges. The intuition behind eer is that any edges beyond this
number are in excess; a pruned induced graph with eer = 0 has no excess edges.
A pruned induced graph with no excess edges is a minimum-cardinality edge cover
of the induced graph. However, in our cost model described in Chapter 5, edges
have differing costs. Therefore, a minimum-cardinality edge cover is not, in general,
a minimum-cost edge cover. Thus, in general, the pruned induced graph defined
by a minimum-cost edge cover has eer > (0. Therefore, eer = 0 is only a loose
lower bound on the number of unnecessary edges remaining in an induced graph.
Figure 9.1 indicates how the excess edge ratio varies with pruning aggressiveness for
different values of the label discrimination parameter tick introduced at the beginning
of Section 9.1. As expected, higher values of the aggressiveness parameter A lead
to fewer excess edges. We note that even conservative pruning (A = 0) results in
a more than a 50% reduction in the number of excess edges, indicating that our
pruning technique is very effective for this real dataset. Further, as we prune more
aggressively, the excess edge ratio continues to drop significantly, approaching a value
very close to 0. Figure 9.1 also shows that as tick is lowered, pruning is less successful.

The reason for this result is that a lower value of tick results in node labels appearing

240 CHAPTER 9. EXPERIMENTAL EVALUATION

more similar to each other, in turn lowering the lower-bound edge costs.

One may expect highly aggressive pruning to lead to a deterioration in the quality
of the solution, since with increasing aggressiveness it becomes more likely that the
edges required for a good solution are removed. We therefore studied the effect of
aggressive pruning on the relative cost of the transformation corresponding to the
initial solution produced by our algorithm.

Recall, from Chapter 5, that the cost of a transformation is given by the sum of
the costs of its constituent edit operations; the costs of edit operations are based on a
parametric cost model described in that chapter. Ideally we would like to compare the
cost of a transformation computed by our method to the cost of an optimal (minimum-
cost) transformation. However, given the NP-hardness of the problem and the size
of our input data, computing such an optimal solution is impracticable. Therefore,
to judge the merit of a transformation, we compare its cost to the cost of the best
transformation computed for the given inputs by all our experiments. Although
in general the best computed transformation is not guaranteed to be optimal, by
inspecting several such transformations for our sample data, we found that the best
computed transformation is very often optimal or close to optimal.

We define the relative cost of a transformation F' as ¢(F)/c(F*), where ¢(F)
denotes the cost of F', and ¢(F™*) denotes the cost of the best computed transformation.
Figure 9.2 shows that the relative cost of the solution produced decreases as we prune
more aggressively up to values of A as high as 0.95. This result is explained by noting
that as more edges that are very likely (although not guaranteed) to be undesirable
in an edge cover are pruned, the minimum-cost edge cover computed in the next
step of our method is less likely to contain such undesirable edges. In addition, the
boundary cases that prevent us from conservatively pruning edges that may be pruned
at a higher levels of aggressiveness are typically uncommon; in particular, they are
rare in the eGuide dataset used in our experiments here.

For other datasets, the value of the aggressiveness factor A that gives the best
results is, in general, different. Using an A value that is too low results in less pruning
and a greater chance of making the wrong choices when computing the transforma-

tion. On the other hand, an A value that is too high results in too much pruning and

9.1. EXPERIMENTS USING REAL DATA 241

& tick=1.0
tick = 0.5
tick = 0.05
tick = 0.01

¢ % 4

Excess Edge Ratio

T T
-0.5 -0.2 0.1 0.4 0.7 1
Pruning Aggressiveness

Figure 9.1: Effectiveness of pruning for eGuide data

a greater chance of edges needed for a minimum-cost transformation being removed.
It would be prudent to run a few test cases with different values of A to empirically
determine a suitable value. Our experience with the datasets used in our implemen-
tation described in Chapter 8, as well as the synthetic dataset studied in Section 9.2
indicates that suitable values for A are approximately in the range [0.8,0.95]. Fig-
ure 9.2 also shows that lower values of tick lead to poorer results. A lower tick value
leads to less pruning (as indicated by Figure 9.1), and also reduces the effectiveness

of heuristic functions used to estimate edge costs, as discussed in Section 9.1.2.

9.1.2 Quality and Edge Cost Estimates

Recall from Chapter 5 that, given the hardness of the tree comparison problem, it is
not possible to devise a purely edgewise cost function ¢* on the edges of the induced
graph such that the cost Y.cxc*(e) of an edge cover K is the same as the cost of the
corresponding transformation unless P = NP. Our method therefore uses an edge

cost estimation function ¢’ that approximates such a function ¢*. Such as estimation

242 CHAPTER 9. EXPERIMENTAL EVALUATION

& tick=1
tick=0.1
tick = 0.05
tick =0.01

® %

c(F_computed) / c(F_best)

T T
-0.5 -0.2 0.1 0.4 0.7 1
Pruning Aggressiveness

Figure 9.2: Effect of pruning on quality for eGuide data

function is used to compute a minimum-cost edge cover of the induced graph; this
edge cover intuitively matches nodes in one input tree to their counterparts in the
other. In Chapter 5 we suggested using the lower bound cost of an edge as the
estimated cost. However, it is also possible to use other heuristic cost estimates. We

experimentally evaluated the following edge cost estimation functions:

1. LAB: The estimated cost of an edge [m, n] is the cost of updating the label of
m to that of n. That is, ¢1([m, n]) = ¢,(m,n). This estimate is likely to produce
good results when the node labels of the input data are good discriminators of
the nodes. In particular, if the node labels constitute keys or object identifiers
that are shared between the input trees, this estimate will result in nodes in
one tree being matched to their counterparts in the other. However, if the node
labels are not good discriminators of the nodes, this estimate is likely to serve

as a poor guide for matching nodes.

2. LAB+SS: The estimated cost of an edge [m,n] is the sum of the cost of up-
dating the label of m to that of n and the difference in the sizes of the two

9.1.

EXPERIMENTS USING REAL DATA 243

subtrees. That is, using |st(x)| to denote the size of the subtree rooted at node

x, we have the following:
ca([m,n]) = cu(m,n) + [|st(m)] = [st(n)[|

Intuitively, our first estimate, LAB, ignores the positions of nodes in their trees.
The estimate LAB4SS attempts to address this deficiency of LAB by differen-
tiating nodes using the size their subtrees. This estimate is likely to perform
well for datasets consisting of trees that have a natural layering and in which
matching nodes in different layers to each other is undesirable. For example, if
the input trees are layered in the manner described in Chapter 4, this estimate
will strongly discourage matching nodes in different layers by assigning a high
cost to such edges (due to the high expected difference between the sizes of sub-
trees rooted at nodes in different layers). On the other hand, if the input has
no such layering property (as is the case for our synthetically generated trees
in Section 9.2, this estimate is likely to perform poorly, as it will inordinately

penalize the matching of nodes in different positions in the trees.

. PARM: In this estimation function, we use parameters to determine the pres-

ence of edit operations that may contribute to the cost of an edge. Recall, from
Chapter 5, that one of the major reasons we cannot accurately estimate the
contribution of an edge (to the cost of a transformation derived from a minimal
edge cover containing that edge) is the following: It is not possible to decide
whether the procedure for generating a transformation F'(K') corresponding to
an edge cover K (described in Chapter 6) generates a move, copy, or glue op-
eration corresponding to a given edge e without knowledge of the other edges
in K. If a copy operation is generated corresponding to an edge, the cost of
that operations, c¢ is charged to that edge. In the PARM estimation function,
we estimate this component of the cost of an edge to be pc.co, where pe is a
parameter in [0, 1] that intuitively indicates the likelihood of a copy operation
being generated for an edge. (We use the term likelihood in an informal, and

not statistical, sense.) Similarly, we estimate the glue component of the cost of

244

CHAPTER 9. EXPERIMENTAL EVALUATION

an edge by pg.cq, where pg is a parameter in [0, 1] that intuitively indicates the

likelihood of a glue operation being generated for an edge.

For move operations, we use a similar idea. However, recall from Section 5.5
of Chapter 5 that it is better to charge the cost of a move not to the edges
incident on the moved nodes, but to the edges incident on their parents. In
particular, if a node x is moved, every edge incident on its parent m = p(x) is
charged ey /2|Exk(m)], where Ex(m) is the set edge cover edges incident on m.
Since we do not know |FEx(m)| when we are computing edge cost estimates, we
estimate | Ex(m)| by |E(m)|.pc+1, where E(m) is the set of edges in the pruned
induced graph that are incident on m, and p¢ is the parameter introduced above
to estimate copy costs. Intuitively, this estimate reflects the notion that if copy
operations are more likely, |Ex(m)| is likely to be higher. Thus, if a child «
of a node m is moved, an edge [m,n] is charged ey /2(|E(m)|.pc + 1). Let us
further use a parameter py; that intuitively indicates the likelihood of a node
being moved. Then, since m has |C'(m)| children, the estimated cost due to
moves for an edge [m, n] is ear.par.|C(m)|/2(|E(m)|.pc+ 1). For an edge [m, n],
let us define f = | |C(m)| — |C(n)|| to be the child mismatch factor. We know
that at least f nodes must be moved, deleted, or inserted in any edge cover that
matches m to n. Intuitively, the greater the value of f, the more likely it is that
some of the children of m and n will be moved. We would like to correct the
likelihood of moves py; used above to reflect this intuition. For this purpose,
we use a parameter p), that indicates the additional likelihood of one of the f
mismatched nodes being moved. The correction to apply to the estimated cost

of an edge is then exr.phy,.f/2(|E(m)].pc + 1).

The above argument for the children of m can be repeated for the children of
n, giving the following formula for the estimated cost of an edge [m,n] due to
moves.

com([myn]) = er Pyl 1C(m)] = |C(n)] | + errpar-|C(m)]
o).pc +1)
(

2.(|E(m
errphe- 1C(m)| = C)] | + earpar-|C ()]
2.([E(m)|pe + 1)

9.1. EXPERIMENTS USING REAL DATA 245

The first and second term on the right hand side estimate the cost contribution
of moving the children of m and n, respectively. Putting the estimated costs
due to copies, glues, and moves together, we have the following formula for the

estimated cost of an edge:
cs([m, n]) = pe.co + pa-ca + cem([m,n])

4. LAB4POS: The estimated cost of an edge [m,n] is the label update cost
plus the weighted sum of the differences between the height, depth, number of
children, and number of siblings of m and n. This weighted sum informally
characterizes the difference in the positions of the nodes m and n in their re-
spective trees. Intuitively, the greater the difference in the positions of m and
n, the more likely it is that matching m to n will require a large number of edit
operations in the resulting transformation (in order to change the position of m
in T so that the transformed tree is isomorphic to T3). More precisely, the esti-
mated cost is given by the following, where wj, wy, w., and w; are parameters,
and where h(x), d(z), C(x), and S(x) denote, respectively, the height, depth,

set of children, and set of siblings of node x:

04([m7n]) = cu(m,n)
+ wnlh(m) — h(n)] + wi|d(m) — d(n)|
+ we [|C(m)] = [C(n)] [+ ws.| |S(m)] = [S(n)] |

5. LB: The cost of an edge is estimated using the lower bound derived in Sec-

tion 5.5.2 of Chapter 5.

In order to evaluate the above edge cost estimation functions, we computed a
min-cost edge cover using each of the estimates, and compared the costs of the cor-
responding transformations with each other. For these experiments, we used the
eGuide dataset described at the beginning of Section 9.1. The results are summa-
rized in Figures 9.3, 9.4, 9.5, and 9.6, which plot the relative cost of the computed

transformation against the aggressiveness of pruning for the five estimation functions,

246 CHAPTER 9. EXPERIMENTAL EVALUATION

& model 1

- model 2
% model 3
% model 4
<< model 5

¢(F_computed) / ¢(F_minimum)

1 T L R 1
0 0.5 1

Pruning Aggressiveness

Figure 9.3: Comparison of edge cost estimation methods; tick = 1

3 =
& model 1
= model 2
€ % model 3
E % model 4
= — <+ model 5
EI
L
T
= 2-
3
5
o
e
Q
|
L
T \
\
1 T T 1
-0.5 0 0.5 1

Pruning Aggressiveness

Figure 9.4: Comparison of edge cost estimation methods; tick = 0.1

9.1. EXPERIMENTS USING REAL DATA 247

3 —
& model 1
-+ model 2

e - model 3
> K 2
2 i model 4
c [% model 5
EI
w
o
~ 2 -
P
3
>
o
&
°|
L
Nt
o

1 T T]

-0.5 0 0.5 1

Pruning Aggressiveness

Figure 9.5: Comparison of edge cost estimation methods; tick = 0.05

4,
& model 1
- model 2
£ % model 3
g @ model 4
= <= model 5
EI
L
T
3
5
o
I
8I
L
T
l T T 1
-0.5 0 0.5 1

Pruning Aggressiveness

Figure 9.6: Comparison of edge cost estimation methods; tick = 0.01

248 CHAPTER 9. EXPERIMENTAL EVALUATION

and for different values of the label discrimination parameter tick. We use a dummy
aggressiveness value of —0.5 for experiments in which no pruning is performed.

For all five edge cost estimation functions, more aggressive pruning improves the
quality of the computed solution up to very high values of the aggressiveness param-
eter. This result is consistent with our results of the previous section, which used the
LB estimation function. A related observation is that when no pruning is performed,
all five estimation functions perform almost equally poorly for tick values of 1, 0.1,
and 0.05. The reason for this behavior is that the more sophisticated estimation func-
tions (such as the lower bound estimate) rely on the absence of edges in the induced
graph. For example, if no edges have been pruned then LB degenerates to LAB. For
tick values of 1, 0.1, and 0.05, LB consistently and significantly outperforms all the
others. The result is explained by noting that when the number of edit operations is
relatively small, as is the case for much real data in general, and our sample dataset
in particular, the best-case scenario assumed by LB is close to accurate. The esti-
mate LAB4+POS is the next best performer. When tick is 0.01 we observe that this
estimate gives the best results. The reason for this behavior is that at a very low
tick value node labels become irrelevant for the purpose of matching nodes because
any label can be updated to any other label at a very low cost. (Recall that for
our dataset node labels are strings. With tick at 0.01, changing 100 characters in a
string costs only 1 unit.) Thus it is more prudent to match nodes giving weight to
structural properties. Focusing on the results for the lower bound cost estimate, we
note that as tick decreases, the aggressiveness of pruning required to achieve a given
quality increases. For example, when tick is 1 or 0.1, conservative pruning (aggres-
siveness 0) gives us a relative cost of roughly 1.4. At tick values of 0.05 and 0.01,
this number deteriorates to approximately 1.9 and 3.0, respectively. The inflection
moves from aggression 0 for tick 1 and 0.1 to aggression 0.5 and 0.8 for tick 0.05 and
0.01 respectively. Thus by using a better edge cost estimate, we can attain a higher

quality solution at lower levels of pruning aggressiveness.

9.1. EXPERIMENTS USING REAL DATA 249

80 - .
LI |
%) 60
2 I |
8 |
8 B 1
< o
g 40 "
= |
2
S (]
S [|
14 20 | JI- L]
— i
'l
O‘ T T T T T T T T 1
0 40 80 120 160 200 240 280 320 360

Number of tree nodes

Figure 9.7: Running time for eGuide data

9.1.3 Running Time

Figure 9.7 depicts the effect of input size on running time, where we define input size
to be the sum of the number of nodes in the two input trees. These results are for
experiments using the LB edge cost estimation function, with a pruning aggressiveness
of 0.9 and a tick value of 0.1. We observe that the running time is roughly quadratic
in the size of the input. To verify this relationship, Figure 9.8 plots the running time
against the product of the tree sizes; we note that the relationship is close to linear.
Note that any algorithm used for computing a minimum-cost edit script between trees
Ty and Ty (even using much simpler edit operations) must make at least |T1] x |T3]
label-comparisons [Sel77].

Figure 9.9 depicts the break-up of the running time of among the five major steps
of the implementation. We observe that over 40% of the running time is spent in
the input and parsing. This step involves reading the two input files, in the format
depicted in Figure 8.17, and parsing them into internal tree structures. We believe
this time can be substantially reduced by using better parsing techniques, but do not
explore this issue further here since it is not the focus of this work. The next step,

constructing the induced graph, accounts for roughly 17% of the running time. Note

250 CHAPTER 9. EXPERIMENTAL EVALUATION

80

LI |
|
4] 60
2 | |
]
| |
£ . nt
2 401 u
2
g "
c
>
&

20- ﬂ;" .

o

T T T T T T T 1
0 4000 8000 12000 16000 20000 24000 28000 32000
Product of tree sizes: [T1| x [T2]

Figure 9.8: Running time for eGuide data

that this time includes not only the time required to build the bipartite induced graph
with O(|T1|.|Tz|) edges, but also the time required to evaluate the user-specified label-
comparison function. Recall that in our data labels are strings and the comparison
function is based on comparing the character frequency histograms of two strings.
Using a simpler and more efficient comparison function can reduce the time spent
in this step, but may result is a less accurate result. The pruning step accounts for
about 26% of the running time. Note that these numbers are for very aggressive
(aggressiveness 0.9) pruning, and we continue pruning until no more edges can be
pruned. We can reduce the time spent in this step by stopping the pruning process
before it terminates naturally. However, given that fewer edges in the induced graph
result in an exponential reduction in the size of the search space for edge covers, such
a strategy may result in much higher running times in the search step. Computing
a min-cost edge cover using the edge cost estimates accounts for roughly 16% of the
running time. Recall that we compute a min-cost edge cover by transforming the
problem into a weighted matching problem, and then using a library implementation
of Gabow’s O(n?) algorithm for weighted matching in arbitrary graphs [Rot]. By

using a more efficient implementation of weighted matching specialized for bipartite

9.2. EXPERIMENTS USING SYNTHETIC DATA 251

Input and Parsing

Induced Graph Construction

Pruning

Transformation Computation and Output
Min-cost Edge Cover Computation

16.98%

Figure 9.9: Components of total running time for eGuide data

graphs, it is possible to reduce the time spent in this stage. Figure 9.9 also shows
that the time spent on computing the transformation from the min-cost edge cover

is very small.

9.2 Experiments Using Synthetic Data

In this section, we present the results of our experiments using synthetically generated
data, focusing on the differences between these results and the corresponding results
for the real data presented above. The results for the running time of our algorithm for
synthetic data are essentially identical to those for real data presented in Section 9.1.3.
We therefore concentrate on results on the effectiveness of pruning, the quality of the
solution produced, and the relative merits of different edge cost estimates.
Generating sufficiently general, yet realistic, random trees to serve as inputs for our
experiments is a challenging problem in itself. After experimentation using several
input-generation techniques, we decided to use the following inductive method for
generating a tree with N nodes. We begin with a tree Ty containing only the root node.
To grow the tree T" at any stage we do the following: We randomly select a leaf m of
the current tree. We then select an integer ¢ from the uniform random distribution

over the interval [f, F'] where f and F' are parameters representing, respectively, the

252 CHAPTER 9. EXPERIMENTAL EVALUATION

minimum and maximum fanout of internal nodes. We then add min(c, N — |T)
children to m. We initially assign each node thus generated a unique integer greater
than one as label. After we have generated the entire tree, we randomly select N x D
nodes, where D is a parameter in the range [0, 1] denoting the fraction of identical
labels. The labels of all these N x D nodes are then changed to 1. Thus the parameters

used to generate a synthetic tree are the following:
e The number of nodes in the tree (N)
e The minimum and maximum fanout of interior nodes (f and F)
e The fraction of nodes that have identical labels (D)

After generating a tree T} as described above, we generate a random transforma-
tion of the desired size by adding operations one at a time as follows. (For the ex-
periments discussed below, we generated random transformations containing |7}|/10
edit operations.) We first select type of the edit operation, with each type being
equally likely. Next, the node in T} on which this operation is to act is selected uni-
formly randomly from the nodes of T}. Labels of inserted nodes are selected using the
method used to select node labels when generating 7. Labels of updated nodes are
generated by adding a uniformly randomly generated delta in the range (0, 1) to the
current label of the node being updated. Note that, as a result of such updates, node
labels in the second input tree are not integers in general; further, a node’s label may
closely match that of another. For example, a node with initial label 4 may be up-
dated to 4.99, thus closely matching another node with label 5. We also take special
precautions such as making sure the target node of a move operation does not belong
to the subtree being moved. Once we have generated a random transformation F, in
this manner, we apply F, to the tree T; go obtain the second input tree Ty = F,.(7}).
The trees T} and T, then serve as input to our algorithm.

Since all node labels in the experiments of this section are numbers, we used a
simple scaled arithmetic difference to compare node labels. Thus the cost of updating
1.3 to 21is 0.7 x t, where t is the scaling factor. Our experiments showed that the effect

of varying ¢ are similar to the effect of varying tick for the experiments in Section 9.1.

9.2. EXPERIMENTS USING SYNTHETIC DATA 253

The results reported below are for ¢ = 1. In the charts in this section, each data point
is the average result over at least 15 trials for each of the following values of input
tree sizes: 10, 20, 40, 80, and 160, giving at least 75 trials for each data point. We
did not find any significant sensitivity of our results, other than running time, to the

size of the input trees; therefore we discuss only the aggregated results.

9.2.1 Effectiveness of Pruning

Figure 9.10 illustrates how the effectiveness of pruning varies as we increase the num-
ber of nodes that have identical labels. It plots the excess edge ratio defined in
Section 9.1.1 against the parameter D described above for two values of the pruning
aggressiveness parameter A. We observe that as the fraction of nodes with identical
labels rises, the excess edge ratio rises rapidly. This result is expected, since the
greater the number of identical labels, the smaller the number of edges with non-zero
update costs, leading to smaller values of lower bound edge costs, and thus fewer
edges that can be pruned. We also observe that for a given value of D, aggressive
pruning (A = 0.9) yields a lower excess edge ratio. However, the benefit of aggressive
pruning diminishes as D rises. This behavior is explained by noting that as more
labels become identical, the lower bound costs of an increasing number of edges drop
rapidly to zero; edges with zero lower bound cost are not pruned for any A < 1.
Since aggressive pruning is not guaranteed to remove only edges not required by
a min-cost solution, one may expect aggressive pruning to result in a deterioration of
the quality of the solution. In Section 9.1.1 we observed that for the dataset in our
experiments, aggressive pruning actually results in a very significant improvement in
the quality of the solution produced. This result indicated that the problem cases
that can in general result to a deterioration in solution quality with aggressive pruning
rarely occur in our dataset. However, for randomly generated data, such as the data
used in our experiments in this section, such problem cases may be expected to occur
with a higher frequency. Figure 9.11 illustrates the relation between output quality
and the fraction of nodes with identical labels in the input, for both conservative

(A = 0) and aggressive (A = 0.9) pruning. We use the ratio of the cost of the

254 CHAPTER 9. EXPERIMENTAL EVALUATION

1,

&+ A=0
- A=0.9
o 0.8+
©
Q 06
3
gﬁ 0.4
(&)
X
W o2 /
0// .

0O 01 02 03 04 05 06 07 08 09 1
Fraction of nodes with identical labels

Figure 9.10: Effectiveness of conservative pruning for synthetic data

c(F_out) / ¢(F_in)

0O 01 02 03 04 05 06 07 08 09 1
Fraction of nodes with identical labels

Figure 9.11: Effect of pruning on quality for synthetic data

9.2. EXPERIMENTS USING SYNTHETIC DATA 255

generated transformation (F,,;) to the cost of the randomly generated transformation
(Fin) used to produce Ty from T; as a measure of the inverse of the quality of the
solution. We observe that the quality of the solution produced is very sensitive to the
fraction of identical labels. This result is not surprising, since as D is increased, our
ability to distinguish nodes based on their labels diminishes rapidly. In the extreme
case of D = 1, node labels are completely useless in determining matching nodes.
We also observe that in general aggressive pruning improves the quality. However,
this improvement is substantially less than the improvement for real data described
in Section 9.1.1. Again, this result is to be expected , since with randomly generated
inputs, aggressive pruning is more likely to remove useful edges, thus resulting in
worse solutions in some of instances of our synthetic data. Thus when we average over
many experiments, the benefits of aggressive pruning in some instances are partially
nullified by the penalties in other instances. Finally, note that while the quality of
the solution steadily deteriorates as the fraction of identical labels increases, when all
labels are identical (D = 1), the quality is marginally better than that at D = 0.8.
This result can be explained by noting that when all labels are identical, the number
of potential partners of a node for a low-cost solution increases. For example, if we
consider a node m € T at height 1, as D increases, the expected number of nodes

n € Ty such that the subtrees rooted at m and n are isomorphic increases.

9.2.2 Quality and Edge Cost Estimates

We conducted a study similar to the one described in Section 9.1.2 in order to study
the relative merits of different edge cost estimates. We computed a min-cost edge
cover using each of the estimates, and compared the costs of the corresponding trans-
formations to the cost of the randomly generated input transformation. As in Sec-
tion 9.1.2, we found that aggressive pruning with aggressiveness A close to 0.9 results
in the best results; therefore, we focus on A values in this neighborhood. The results
are summarized in Figures 9.12, 9.13, 9.14, 9.15, 9.16, and 9.17, which plot the rela-
tive cost of the computed transformation against the aggressiveness of pruning for the

five estimation functions, and for different values of D, the fraction of tree nodes with

256 CHAPTER 9. EXPERIMENTAL EVALUATION

& model 1
- model 2
% model 3
% model 4
<= model 5

c(F_out)/c(F_in)

1 f T

0.8 0.85 09 095 1
Aggressiveness

Figure 9.12: Quality and edge cost estimates; D = 0

identical labels. Note that increasing D for our synthetic data has an effect similar
to decreasing the label discrimination parameter tick for the real data described in
Section 9.1.

For the case in which all node labels are distinct (D = 0, Figure 9.12), we observe
that our first estimation function, LAB, which compares nodes using their labels only,
performs the best. This result is not surprising because when all labels are distinct,
the labels function almost as keys. The labels are not exactly keys because copy,
insert, and update operations may result in the tree T containing multiple nodes
with the same label even though T does not. In Figure 9.12, the data points for the
LB estimate are superimposed on those for LAB. This result is to be expected because,
when most of the node labels differ significantly in their labels, the lower bound cost
is dominated by the cost of label update. Edge cost estimates that consider factors
other than the label (such as node position and subtree size) perform poorly in this
case because they make it more likely for nodes to be mismatched because of these
factors.

As soon as there are a few duplicate labels in the input (D = 0.2, Figure 9.13),

9.2. EXPERIMENTS USING SYNTHETIC DATA 257

c(F_out)/c(F_in)

c(F_out)/c(F_in)

& model 1

- model 2

% model 3

® model 4

< model 5

1,

0 T T T T T T T]
0.8 0.85 0.9 0.95 1

Aggressiveness

Figure 9.13: Quality and edge cost estimates; D = (.2

5,
& model 1
~# model 2
% model 3
—_ ® model 4
T / “< model 5
4.\-\.::./.
A
3,
2 T T T 1
0.8 0.85 0.9 0.95 1
Aggressiveness

Figure 9.14: Quality and edge cost estimates; D = 0.4

258

c(F_out)/c(F_in)

c(F_out)/c(F_in)

CHAPTER 9. EXPERIMENTAL EVALUATION

6 =
& model 1
“* model 2
% model 3
51 T % model 4
T \ / © model 5
1’\4\.\‘\/
3 -
2 T T T 1
0.8 0.85 0.9 0.95 1

Aggressiveness

Figure 9.15: Quality and edge cost estimates; D = 0.6

& model 1

- model 2

% model 3

@ model 4

“% model 5

3 -

2 T T T 1
0.8 0.85 0.9 0.95 1

Aggressiveness

Figure 9.16: Quality and edge cost estimates; D = (.8

9.2. EXPERIMENTS USING SYNTHETIC DATA 259

7 —
& model 1
- model 2
— Tt * model 3
6 - @ model 4
<% model 5

c(F_out)/c(F_in)

T T T T T T T T T T T T T T T T T T T
0.8 0.85 0.9 0.95 1
Aggressiveness

Figure 9.17: Quality and edge cost estimates; D =1

we observe that the simple LAB estimate no longer performs well. The other esti-
mates, which take the structure of the tree into consideration in addition to using the
node labels, perform better. In particular, note that the LB estimate (estimate 5)
consistently outperforms all other estimates in this case. The only estimate that un-
derperforms LAB is the LAB+SS estimate. In fact, a glance at the other figures in
this series reveals that LAB4SS is almost always the worst performer. Intuitively, the
reason for the poor performance of LAB+5S is that it places too much importance
on structure. However, in cases when there are none or few differences between the
input trees, this estimate performs well.

The results get more interesting as we increase the fraction of nodes with identical
labels further. Consider Figure 9.14, which summarizes the result for D = 0.4. For
the reasons stated above, LAB and LAB+SS remain the worst performers. The lower
bound estimate LB continues to perform well. However, the two other estimates,
PARM and LAB+POS, are also competitive. In fact, with very aggressive pruning,
PARM outperforms LB. We believe this result is due to the fact that the PARM

estimate can make more effective use of the fewer edges resulting from more aggressive

260 CHAPTER 9. EXPERIMENTAL EVALUATION

pruning because of the following: The LB estimate can use missing edge information
only when such missing edges are guaranteed to cause an increase in the edgewise
cost (since it is a lower bound). In contrast, the PARM estimate can always use the
missing edge information since it adjusts the likelihoods of various edit operations to
account for the missing edges.

As the fraction of nodes with identical labels is increased further, we notice an-
other interesting change. The results for D = 0.6 and D = 0.8, as summarized in
Figures 9.15 and 9.16, are very similar to each other. In both cases, the estimation
function 4, LAB4POS, is consistently the best performer by a significant margin.
This result is explained by noting that at these high values of D, it is more prudent
to match nodes based on their positions in the trees rather than by their labels. Fur-
ther, recall from Figure 9.10 that when D is high, very few edges can be pruned even
when we prune very aggressively. Thus estimates, such as LB and PARM, that rely
on the absence of edges do not perform well. Finally, the simple estimates of LAB
and LAB4SS perform poorly because of the diminished distinguishing ability of node
labels.

Although Figures 9.15 and 9.16 are very similar, a careful observation reveals that
as D is increased from 0.6 to 0.8, LAB4+POS performs worse. Further, a glance at
Figure 9.17 reveals that this trend continues when we increase D to 1. When the
number of nodes with identical labels is relatively small, it is likely that these nodes
are distinguishable using the structural properties used by LAB+POS. However, as
this number increases, there is a higher likelihood of nodes with identical labels also
having similar structural properties, thus reducing the effectiveness of LAB4+POS in
matching them properly.

9.3 Summary

In this chapter, we presented the results of our experimental evaluation of some tree
differencing algorithms described in earlier chapters. We found that the technique we
introduced in Chapter 5 for pruning edges from the induced graph is very successful.

Conservative pruning results in a substantial reduction in the size of the induced

9.3. SUMMARY 261

graph for both real and synthetic data. As expected earlier, we found that aggressive
pruning further reduces the size of the induced graph. Although aggressive pruning
may in general result in deterioration of the quality of the final solution, we found
that as we increase the value of the aggressiveness parameter A, the quality of the
solution improves until we reach very high A values. The best choice for A depends
on dataset, and it would be prudent to experiment with a few different values of
A to determine a good choice. Based on our experiments, we believe that suitable
values are likely to be in the range [0.75,0.95]. For the eGuide dataset obtained from
our implementation described in Chapter 8, we found that A = 0.9 produced good
results. In general, we found pruning with high values of A to be very useful in both
reducing the size of the induced graph and improving the quality of the solution.

Our study of edge cost estimation functions showed that, for our eGuide dataset,
the estimate LB, based on the lower bound introduced in Section 5.5.2 of Chapter 5,
almost always significantly outperforms the other estimates we studied. For our syn-
thetic dataset, LB performs well when we do not have too many duplicate labels in the
input data. When duplicate labels are very common, the estimate LAB+POS, which
emphasizes the relative positions of nodes in their trees, outperforms LB. Again, given
a new dataset, a good strategy would be to use some experimentation to determine
a good edge cost estimation function. However, based on our experience with the C*
system, we have found that the fraction of nodes with duplicate labels is typically
small, suggesting that LB is a good default choice.

We also analyzed the running time of our implementation, and found it to be
roughly proportional to the product of the sizes of the input trees. Our experiments
indicated that our implementation spends a significant fraction of the running time
on parsing the inputs, suggesting that we may be able to improve performance by
using a more efficient parsing technique. A substantial fraction of the running time
is also spent on evaluating the user-specified function used to compare labels. Our
experiments used a function that compared labels using the difference between their
character frequency histograms. In many applications, it may be possible to use a

simpler and more efficient comparison function, thus improving the running time.

Chapter 10
Conclusion

In this dissertation, we motivated, formulated, and addressed the problem of manag-
ing evolving data that resides in a heterogeneous collection of autonomous databases.
The principal contributions of this dissertation are summarized in Section 10.1 below.

In Section 10.2, we discuss promising directions for future work in related areas.

10.1 Summary of Dissertation Results

First, we motivated the need for managing change in a heterogeneous collection of
autonomous databases, and presented a framework for addressing this need. Next, we
studied the problem of computing differences between snapshots of a database in this
environment. We formulated a number of tree differencing problems, and presented
algorithms to solve them. We then described the design and implementation of a
database system for historical semistructured data. Finally, we described our imple-
mentation of a comprehensive change management system based on the techniques

of this dissertation. We discuss these contributions in more detail below.

10.1.1 Change Management Framework

In Chapter 1, we introduced heterogeneous, autonomous databases, and described

their growing importance. We motivated the need for database techniques that treat

262

10.1. SUMMARY OF DISSERTATION RESULTS 263

a collection of such databases as an integrated information system. In particular, we
stressed the importance of techniques to manage the evolution of data in such an
environment. We explained how the heterogeneity and autonomy of databases in this
environment invalidate the assumptions made by conventional database techniques,
and outlined the major research challenges in this area.

In Chapter 3, we presented our framework for managing change in heterogeneous,
autonomous databases, and described how it builds on a framework of wrappers and
mediators that is often used for data integration. An important design requirement,
necessitated by the autonomy of the component databases, is that our system make

very few assumptions about the component databases.

10.1.2 Differencing Algorithms

In Chapters 4, 5, and 6, we motivated the need for techniques for comparing two
database snapshots (or partial snapshots) in order to detect changes. In addition
to being the basis of an essential module in our change management system, such
techniques are also useful in several other applications such as version control, syn-
tactic program analysis, and automatic mark-up of changes in evolving documents
(for example, manuals and legal documents). Data obtained from wrappers over
heterogeneous databases has a hierarchical structure. We argued that differencing
algorithms that are cognizant of such hierarchical structure produce results that are
much more usable than those from algorithms that treat all data as strings or tables.
We presented differencing algorithms for labeled trees, both ordered and unordered.

Two key features of our tree differencing techniques are the following: First, in
addition to the node insertion and deletion and label update operations used by prior
work, our algorithms also use expressive subtree operations such as move, copy, and
uncopy. Using more expressive operations makes the problem of detecting changes
harder, but produces results that are more usable. For example, if a paragraph in
a manual is moved from one section to another, comparing the old and new manual
using our techniques produces a corresponding subtree move operation as output,

while earlier techniques that do not use such subtree operations produce a sequence

264 CHAPTER 10. CONCLUSION

of node insertion and deletion operations as output. Second, unlike prior work, we do
not impose restrictions on the function used to compare node labels. Although such
restrictions may seem reasonable at first glance, they have some serious ramifications
that render techniques based on them unusable for our purposes. For example, most
prior work requires that the function used to compare node labels be a distance metric.
This function is required to satisfy an extended triangle inequality that asserts that
the cost of updating one node label to another cannot be greater than the cost of
deleting the first node and inserting the second. As a result of this restriction, such
work does not allow us to specify, for example, that a node with label “movie” should
not be matched to a node with label “restaurant” when we are comparing snapshots
of the entertainment database described in Chapter 8. Our techniques, on the other
hand, allow such specifications because of their flexible cost model.

In Chapter 4, we presented a technique for comparing ordered trees that achieves
efficiency and optimality by using domain characteristics to simplify the problem. In
Chapter 5, we presented a more general solution for unordered trees, and in Chap-
ter 6, we described a model of tree transformations that is more declarative than the
traditional edit script model, and that leads to simpler algorithms for solving the
differencing problem. In Chapter 8, we described how we use our tree differencing
algorithms to detect changes in semistructured data in the OEM model by mapping

tree edit operations to edit operations in OEM.

10.1.3 Database System for Historical Semistructured Data

As described in Chapter 3, semistructured data is data that has structure that may
be irregular, incomplete, and dynamic. We motivated the need for data management
techniques for semistructured data, and explained why traditional database tech-
niques cannot be directly applied to such data. We focused on difficulties encountered
in modeling historical semistructured data; that is, semistructured data together with
its history of changes. In Chapter 7, we presented a data model, DOEM, and a query
language, Chorel, for historical semistructured data. A key feature of DOEM and

Chorel is the use of an explicit representation of changes as first-class entities instead

10.1. SUMMARY OF DISSERTATION RESULTS 265

of an implicit representation of changes as the difference between two database states.

We described the implementation of CORE, a database system for historical semi-
structured data. Our implementation strategy avoids reimplementation of several
database modules by using the existing implementation of Lore, a database system
for semistructured data, and Lorel, Lore’s query language. In addition to being
modular, this strategy also permits us to implement CORE by using other database
systems, such as the Oy object database system [BDK92]. We represent DOEM data,
which is logically an annotated graph, in OEM, which is an ordinary graph model, by
encoding annotations using special objects. Chorel queries over a DOEM database

are implemented by translating them into equivalent Lorel queries over the OEM

encoding of the DOEM database.

10.1.4 The C? System

The work described in this dissertation has been implemented as the C? system for
managing change in heterogeneous, autonomous databases. The C? system uses our
differencing algorithms to detect changes in heterogeneous, autonomous databases
(called source databases), and our implementation of CORE to store and query the
history of these changes along with the base data. We have also implemented a
subscription service that notifies subscribers of changes of interest to them. Such
subscriptions are specified using a special form of Chorel queries, and are extremely
powerful. The C? system builds on companion work in data integration and semi-
structured data. We use an architecture of wrappers and mediators, with wrapper
and mediator generation techniques from the Tsimmis project. As described above,
we also use the Lore database system for semistructured data. The combination of the
techniques in this dissertation with those from the Tsimmis and Lore projects results
in an extremely versatile system for managing change in heterogeneous, semistruc-
tured databases. In Chapter 8, we described our experiences with the C? system. We
described the functionality offered by the system to discover and study the evolution of
data in heterogeneous, semistructured databases. We also described how the system

modules, based on work described earlier, cooperate to support this functionality.

266 CHAPTER 10. CONCLUSION

10.2 Future Work

In this section, we describe some opportunities for future work in topics related to this
dissertation. We classify such opportunities into three categories: comparing data,

managing historical semistructured data, and extending the C? system.

10.2.1 Comparing Data

In Chapters 4-6, we noted the advantages of describing differences between trees
using not only node insertion, deletion, and label update operations, but also the
subtree operations of move, copy, and uncopy. In essence, using more expressive
operations results in edit scripts that are more meaningful than edit scripts that use
only simple node operations. It would be interesting to study whether we can push
this strategy further; that is, would using even more expressive operations lead to
still better results? For example, consider the comparison of structured documents,
modeled as ordered trees. We may wish to use a merge operation that combines two
or more sibling nodes into one node by concatenating their contents. Thus, a merge
operation could be used to combine the sentences from three paragraphs into one
paragraph or to combine the contents of two sections into one.

It seems reasonable to assume that such additional edit operations would result
in more usable descriptions of changes. For example, an edit script that indicates
that three paragraphs in a document were merged is more succinct and intuitively
more convenient than one that indicates that two paragraphs were deleted, with
their constituent sentences moved to the third. However, such a proliferation of edit
operations raises two important issues that need to be resolved: First, without any
additional restrictions, such new edit operations may interfere with one another in
unexpected ways, leading to unintuitive edit scripts similar to those described in
Chapter 5. Second, it is not clear how our general strategy of mapping edit scripts to
compact representations (matchings or signatures) would generalize to include such
complex edit operations.

We could carry the idea of more complex edit operations even further by allowing

user-defined edit operations. That is, the problem inputs consist of not only the two

10.2. FUTURE WORK 267

trees to be compared, but also a specification of the edit operations with which the
differences are to be described. A general solution to this problem is likely to be
intractable. However, the problem can be simplified by imposing domain-based or
domain-independent restrictions, and by relaxing the requirement that the solution
be optimal.

It is natural to consider the extension of our work on comparing trees to techniques
for comparing more general graph structures. In Chapter 8, we described how our
techniques are applied to graph structured data that has a preferred spanning tree.
However, when the data is truly graph structured, we need to devise more general
graph differencing techniques. As we have done for trees, the first step is deciding on
the set of edit operations on graphs. The simple edit operations of node insertion and
deletion, and arc addition and removal, are obvious candidates. However, just as we
obtain better results for trees by including subtree operations, we may obtain better
results for graphs by including more complex graph edit operations. For example, we
may define a merge operation that replaces two nodes in a graph with a new node
with a label that is a concatenation of the labels of the original nodes, with arcs
incident on the original node redirected to the new node. An efficient algorithm for
an optimal solution of a general formulation of this problem is unlikely. However,
by imposing suitable restrictions and carefully designing a mapping between edit
scripts and signatures, we could use a strategy analogous to our strategy for trees.
Further, we could relax the requirement that the solution be optimal, and use heuristic
descriptions of good solutions.

Another avenue for future work is devising algorithms for comparing data that is
too large to fit in primary storage and must therefore be accessed off secondary or
tertiary storage such as magnetic and optical disks, magnetic tapes, and juke-boxes.
For example, we may wish to compute differences between two versions of an engi-
neering design, a large manual, or the hierarchy of documents on a Web site. Accesses
to secondary storage are typically several orders of magnitude slower than accesses to
primary storage. Further, secondary storage accesses are typically faster if data is ac-
cessed sequentially or in a clustered manner. Since the algorithms described in earlier

chapters do not take these factors into account, a naive implementation of them for

268 CHAPTER 10. CONCLUSION

secondary storage is likely to be impractical. A simple method to compute differences
between datasets in secondary storage is to divide each dataset into fragments that
fit in main memory, compute the differences between pairs of these fragments using
main memory algorithms, and combine the differences thus detected. However, such
a strategy is likely to detect a large number of spurious differences due to the possi-
bility of mismatched fragments. It may be possible to partially amend this situation
by devising heuristics that reduce the likelihood of mismatched fragments, and by

postprocessing the detected differences to make local improvements.

10.2.2 Managing Historical Semistructured Data

Recall, from Chapter 7, that CORE uses an implementation strategy that is based on
encoding DOEM in OEM and translating Chorel queries to equivalent Lorel queries
over the OEM encoding. The disadvantage of this strategy is that query processing
is often very inefficient. The Lorel queries produced by our translation scheme often
involve several joins and nested quantifications. We may be able to ameliorate many
of these performance problems by modifying Lore to generate better query plans
for the kinds of queries produced by CORE. We can index strategic data, such as
annotation sets, using conventional indexing techniques, and modify the Lore query
optimizer to use these indexes. Such a solution should be easy to incorporate into
our current implementation.

As an enhancement to the above solution, we can design and implement indexes
that are specialized for historical data. For example, such indexes can be biased
to account for the fact that recent data and changes are more likely to be accessed
than those in the more distant past. Instead of treating all indexed data as equally
important, biased indexes prioritize access to recent data. For example, such an index
would allow the retrieval of annotations that were added this week to be much faster
than the retrieval of annotations that were added a year ago. The design of such
biased indexes, along with algorithms to build and incrementally maintain them as
data evolves, is a promising topic for future work.

In addition to the traditional value-based indexes, semistructured databases can

10.2. FUTURE WORK 269

also benefit from path inderes that index an object based on the values of its sub-
objects nested several levels deep. While such path indexes can speed up query
processing, they are often expensive to maintain in the face of frequent updates to
the database. Thus, in addition to designing efficient implementations of path in-
dexes, we need to devise techniques to determine which indexes are most beneficial
for a given query and update mix [CCY94].

Another approach to improving the performance of Chorel queries is to implement
CORE directly instead of using the encoding and translation scheme. In addition to
avoiding the complicated queries that arise as artifacts of our encoding and translation
scheme, this approach would permit the low-level design of the database system to
be optimized for DOEM and Chorel.

In DOEM, annotations describing the history of changes to a node or arc are con-
ceptually attached to that node or arc. We have seen that this model permits intuitive
browsing and querying of historical data. However, an implementation of DOEM 1is
not required to physically colocate annotations with the nodes or arcs they are con-
ceptually attached to. For example, it may be more efficient to store all annotations
separately, perhaps organized using a biased index as described above. An interesting
general problem in this area is the following: Given a large labeled, directed graph
(optionally with annotations on the nodes and arcs), and some description of likely
access patterns (for both retrieval and modification), what is the most efficient way
to represent the graph on disk?

As described in Chapter 7, a central construct in Chorel is an annotated path ex-
pression. Annotated path expressions are simply path expressions whose components
may be modified by an optional annotation expression. For example, the annotated
path expression a.<add at T>b denotes a path consisting of an a-edge followed by
a b-edge that has an add(?) annotation, with ¢ bound to 7. In Chapter 7, we fo-
cused on simple annotated path expressions in which annotation expressions modify
only simple path expression components, that is, single labels. General path expres-
sions may contain components that use wildcards and regular expression operators,
and the ability to modify such components using annotation expressions is often use-

ful. For example, we may use the annotated path expression a.?<add>.c to denote

270 CHAPTER 10. CONCLUSION

a path consisting of an a-edge followed by an edge (with any label) that has an
add annotation, followed by a c-edge. As another example, consider the expression
a. (b<add>|c<rem>) .#<add>. Intuitively, this annotated path expression suggests a
path consisting of an a-edge followed by either a b-edge with an add annotation or
a c-edge with a rem annotation, followed by zero or more edges with add annota-
tions. This interpretation implicitly assumes that the <add> annotation expression
attached to the closure (#) operator denotes the presence of an add annotation on
every edge included in the closure. An alternate interpretation is to only require an
add annotation on the last edge included in the closure. Yet another interpretation
is to require an add annotation on some edge in the closure. The last two interpre-
tations need to handle the special case of the closure including no edges. In general,
it should be interesting to explore the options for attaching annotation expressions
to path expressions in a more flexible manner. For example, we may wish to use
a.(b(<add>|<rem>) | c(<add>&<rem>)) to denote a path consisting of an a-edge fol-
lowed by either a b-edge with an add or a rem annotation, or by a c-edge with both
an add and a rem annotation.

Recall from Chapter 7 that virtual annotations provide convenient access to in-
formation that is implicitly represented in a DOEM database. We have seen some
examples of such annotations: at, snap, during, and ov (old value). However, these
virtual annotations are hard-coded as part of the CORE implementation. We can-
not introduce new virtual annotations without modifying our implementation. Given
our translation-based implementation scheme, such modifications are not difficult to
make. However, it would be interesting to design and implement a facility that al-
lows new kinds of virtual annotations to be defined and used at the CORE user
interface, without any modifications to the CORE implementation. Such a facility
would provide functionality somewhat similar to that provided by views in a tradi-
tional database system.

In addition to extending querying facilities for historical semistructured databases
as described above, it should be interesting to implement a trigger facility for such
databases. Conventional database systems often include trigger facilities that permit

a database system to automatically respond to the occurrence of certain kinds of

10.2. FUTURE WORK 271

events [WC96a). Triggers are commonly expressed using an event-condition-action
(ECA) construct that specifies the action to be performed when events of a certain
class occur, and when the specified condition holds true. It should be interesting to
extend Lore to include such a trigger facility for semistructured data. The DOEM
update model is a good basis for the event language of such triggers. For example,
we may associate a trigger with an event that adds an edge with a specified label.
The condition and action action of such triggers can be specified using standard Lorel
query and update statements. It would be interesting to study the tradeoff between

generality and implementation efficiency in such a trigger facility.

10.2.3 Extending the C° System

Recall from Chapter 8 that the C?® system allows us to integrate heterogeneous, au-
tonomous databases, to detect changes in these databases, to store an integrated
historical database describing the data and changes of interest to us, to query this
historical database using a general-purpose query language, and to request notifica-
tion of interesting changes specified using a powerful subscription language. Together,
these facilities provide a comprehensive system to monitor and study the evolution
of data in the source databases. A logical next step in change management for het-
erogeneous, autonomous databases involves adding the ability to effect change at
the source databases. Given the autonomy of the source databases, a strategy that
requires permissions to directly modify the source databases is likely to be unsuc-
cessful in practice. In many cases, the source databases may offer external agents
(such as the wrappers used by C?) no facilities for modifying the information they
contain. In other cases, a source database may offer some rudimentary and restric-
tive mechanisms for modifying the data. For example, many databases on the Web,
such as the Internet Movie Database, offer a forms interface that external agents can
use to suggest changes to the database [IMD98]. Such interfaces need to be mod-
eled carefully in order to accurately capture their semantics, which are often more
complex than the simple atomic update semantics used in traditional database sys-

tems. For example, the Internet Movie Database offers forms for several purposes,

272 CHAPTER 10. CONCLUSION

such as voting on the quality of a movie, adding missing information, correcting ex-
isting information, and submitting a review. Successful submission of a form does
not guarantee that the suggested modification has occurred, or even that it will oc-
cur in the future. Further, different types of suggested modifications have different
chances of actually being made. For example, a simple vote rating a movie as good
is likely to be accepted automatically; however, a contentious claim regarding the
true origin of a script is likely to be rejected or revised by a human being reviewing
such claims. A successful strategy for implementing a facility for effecting changes in
source databases needs to reflect some of these intricacies of the update interfaces of-
fered by the source databases. In general, an update facility for C® requires modeling
of long-running activities consisting of several steps, some of which involve human
interaction. In this respect, such a facility is related to prior work on long-running
transactions and workflows and we may be able to use some techniques from those
fields [GMS87, WWW*97]. A fully general framework for effecting changes in au-
tonomous databases may be very ambitious because such a framework would require
solving, among other problems, a particularly troublesome variant of the view update
problem: The problem of mapping changes specified in the integrated OEM view of
the source data to the operations supported by the source’s modification interface is
likely to be intractable. Fortunately, we may be able to obtain significant benefits by
implementing a restricted modification framework based on simple ideas. For exam-
ple, it is not difficult to see how the forms-based modification interface supported by
the Internet Movie Database could be mapped to changes in the OEM view of the
database. A very simple extension to the C? system would allow users to make only
those changes to the OEM view that can be unambiguously and easily mapped to
the forms supported by the source database. This approach is similar to that used to
define updateable views in SQL [DD93].

A module to monitor and maintain inter-database integrity constraints would be
another useful extension to the C® system. For example, as described in Chapter 1, at
Stanford there are a several databases that store personnel information for people in

the Computer Science department. There are several integrity constraints spanning

10.2. FUTURE WORK 273

these databases, a simple one being that the primary phone number listed for a per-
son be the same in all databases. Suppose we have integrated these databases using
the C? system. Using QSS, it is easy to create a subscription that notifies a person
whenever that person’s phone number is listed inconsistently by these databases for
longer than, say, three days. On receiving such a notification, this person may then
take the actions necessary to correct the situation. In many cases, instead of only no-
tifying users of inconsistencies, it may be possible to suggest one or more mechanisms
to resolve the inconsistency. In our example above, the system could suggest that
the phone number from the most recently updated database be propagated to the
others. As discussed earlier, such actions may be represented using a workflow that
includes, in addition to actions updating the source databases, actions requiring user
approval. In order to implement such a strategy, we need methods for automatically
or semi-automatically generating consistency restoring workflows from a declarative
specification of inter-database integrity constraints. There is a substantial body of
work in the related area of integrity constraint management for conventional database
systems [WC96b]. In [CGMW94, CGMW96], we describe a simple rule-based frame-
work and toolkit for constraint management in autonomous databases. FExtending
such work to semistructured data in an autonomous environment is a fruitful topic
for future research.

Recall, from Chapter 7, that our implementation of a query subscription service
(QSS) maintains a DOEM database for each subscription. New changes periodically
detected by C? are added to this DOEM database. Over time, the DOEM database
of a subscription potentially grows without bound as changes accumulate. In prac-
tice, we need some method to bound the size of these databases. (In our current
implementation, we simply suspend servicing subscriptions whose DOEM databases
grow beyond a fixed limit.) For some subscriptions, it may be impossible to accu-
rately service the subscription without storing an unbounded amount of historical
information in its DOEM database. For example, consider a subscription that asks
for all the times at which an object was modified since a fixed date; servicing this
subscription requires that we store the entire history of modifications to the spec-

ified object. However, for many subscriptions, we do not need to store the entire

274 CHAPTER 10. CONCLUSION

history in this manner. As a simple example, consider a subscription that asks only
for newly added objects; for this subscription, we need to store only the most recent
polling query result in the DOEM database. In addition, it may often be possible to
service a subscription by storing only a fraction of its complete DOEM database as
defined in Chapter 7. These observations suggest a DOEM pruning problem: Given
a subscription, determine the least amount of information that must be stored in the
subscription’s DOEM database in order to correctly service the subscription. Note
that we need an online solution to the DOEM pruning problem. That is, every time
we receive new changes, we need to determine which changes need not be installed,
and which old changes and data may be discarded without affecting current and fu-
ture subscription results. A precise solution to this problem is likely to be complex;
however, several approximate or heuristic strategies may yield satisfactory results.
For example, it may be possible to use a collection of simple rules that indicate what
to prune. One such rule may indicate that if a subscription’s filter query mentions
only add annotations, then rem annotations need not be stored unless they are the
most recent annotations on their respective arcs. Studying such strategies for DOEM
pruning, and their effects on the performance and accuracy of QSS is an interesting
topic for future work.

Another method for saving space in the QSS implementation is the sharing of
DOEM databases among subscriptions. Qur current implementation maintains a
separate DOEM database for each subscription. However, given several similar sub-
scriptions, it may be advantageous to combine their DOEM databases in order to
save storage space and improve performance. As a very simple example, if two or
more subscriptions have identical polling queries and polling frequencies, we can use
a single DOEM database to service them both. Note that our menu-driven interface
to QSS makes it likely that several users chose the same polling query. Further, it
may often be possible to service a subscription approximately by using the DOEM
database of another subscription. Exploring such opportunities for DOEM sharing
among related subscriptions is an interesting topic for future work.

The C? system detects changes by polling the source databases, which are accessed

using wrappers that present a simple query interface. However, in some cases source

10.2. FUTURE WORK 275

databases may offer notification facilities. For example, an online retailer may offer to
notify us when certain books are available, or when the price of a computer monitor
drops below a specified threshold [AMA98, CDW98]. If such facilities exist, ignoring
them and using only polling and differencing to detect changes is wasteful. It would
be useful to extend C? to include active wrappers that map such notification services
to DOEM histories. For example, an active wrapper for the online retailer mentioned
above would map an email message indicating the availability of a book to a set of
change operations on the OEM representation of the source data. We can adapt many
of the template-based wrapper implementation techniques used for Tsimmis wrappers
to such active wrappers. However, unlike regular wrappers, active wrappers need
a per-subscription set-up. That is, in addition to translating notifications from the
source model to OEM, active wrappers need to first indicate to the source the kinds of
notifications they wish to receive by creating a source subscription. The subscription
services offered by source databases vary considerably; thus we need methods to
integrate not only the data models and query languages of source databases, but also
their subscription services. The design of methods for such integration of subscription
services is an interesting topic for future research. An implementation of such methods
in a toolkit for rapid construction of active wrappers would make a valuable addition
to the C? system.

There are several opportunities for future work on user interfaces to the C? system.
An interface to semistructured databases (both historical and non-historical) would
benefit from a facility that permits the objects in a query result to be not only
browsed, but also marked and selectively used in subsequent queries. For example,
suppose we issue a query to find authors who have published a paper whose title
contains the word historical. The user interface may display, say, fifty authors that
qualify. Next, we may browse the details for these authors and, based on our browsing,
mark some of the authors as interesting. We may now wish to find books written by
one of these interesting authors on a given topic. The design and implementation of
a user interface that supports such closely coupled querying and browsing presents
several interesting challenges. For example, given that the query-browse-mark-query

cycle may be repeated several times, we need a method to efficiently evaluate a

276 CHAPTER 10. CONCLUSION

composite query containing some combination of past queries and marked objects

from past query results.

Bibliography

[Abi97]

[ACHK93]

[ACM95)

[ADD*94]

[AKOT]

[AMAOS]

[AQM*96]

S. Abiteboul. Querying semistructured data. In Proceedings of the
International Conference on Database Theory, Delphi, Greece, January

1997.

Y. Arens, C. Chee, C. Hsu, and C. Knoblock. Retrieving and integrat-
ing data from multiple information sources. International Journal of
Intelligent and Cooperative Information Systems, 2(2):127-158, June
1993.

S. Abiteboul, S. Cluet, and T. Milo. A database interface for file up-
date. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, 1995.

R. Ahmed, P. DeSmedt, W. Du, W. Kent, M. Ketabchi, W. Litwin,
A. Rafii, and M.-C. Shan. The Pegasus heterogeneous multidatabase
system. [EEE Computer, 24:19-27, 1994.

N. Ashsish and C. Knoblock. Wrapper generation for semi-structured
internet sources. In Proceedings of the Workshop on Management of

Semistructured Data, Tucson, Arizona, 1997.
The amazon.com online bookstore. http://www.amazon.com/, 1998.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The
Lorel query language for semistructured data. Journal of Digital Li-

braries, 1(1):68-88, November 1996.

277

278

[Arm74]

[BDHS96]

[BDK92]

[BKKKS7]

[BLCG92]

[BLTS6]

[BNOS]

[BPSMOS]

[Buc96]

BIBLIOGRAPHY

W. Armstrong. Dependency structures of database relationships. In

Proceedings of the IFIP Conference, pages 580-583, 1974.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query lan-

guage and optimization techniques for unstructured data. In Proceed-
ings of the ACM SIGMOD International Conference on Management
of Data, pages 505516, Montréal, Québec, June 1996.

F. Bancilhon, C. Delobel, and P. Kanellakis:. Building an Object-
Oriented Database System: The Story of O2. Morgan Kaufmann, 1992.

J. Banerjee, W. Kim, H. Kim., and H. Korth. Semantics and imple-
mentation of schema evolution in object-oriented databases. In Proceed-
ings of the ACM SIGMOD International Conference on Management
of Data, pages 311-322, 1987.

T. Berners-Lee, R. Cailliau, and J. Groff. The world-wide web. Com-
puter Networks and ISDN Systems, 25:454-459, 1992.

J. Blakeley, P.-A. Larson, and F. Tompa. Efficiently updating ma-
terialized views. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 61-71, Washington, D.C.,
June 1986.

The Barnes and Noble online bookstore.

http://www.barnesandnoble.com, 1998.

T. Bray, J. Paoli, and C. Sperberg-McQueen. FExtensible markup
language (XML) 1.0. World Wide Web Consortium Recommenda-
tion. Available at http://www.w3.org/TR/1998/REC-xm1-19980210,
February 1998.

A. Buchmann. The active database management system manifesto:
A rulebase of ADBMS features. ACM SIGMOD Record, 25(3):20-49,
September 1996.

BIBLIOGRAPHY 279

[CACS94]

[Cat96]

[CAWOS]

[CAW9Y]

[CCY9]

[CDNOS]
[CDW9S]

[CGL*97]

[CGMYT]

V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From struc-
tured documents to novel query facilities. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, 1994.

R. Cattell. The Object Database Standard: ODMG-93 Release 1.2.

Morgan Kaufmann Publishers, San Francisco, California, 1996.

S. Chawathe, S. Abiteboul, and J. Widom. Representing and query-
ing changes in semistructured data. In Proceedings of the International

Conference on Data Engineering, pages 4-13, Orlando, Florida, Febru-
ary 1998.

S. Chawathe, S. Abiteboul, and J. Widom. Representing and
querying history and changes in semistructured data. Theory
and Practice of Object Systems, 1999. To appear. Available at
http://www-db.stanford.edu.

S. Chawathe, M-S. Chen, and P. Yu. On index selection schemes for
nested object hierarchies. In Proceedings of the International Confer-

ence on Very Large Data Bases, pages 331-341, 1994.
The cdnow.com online music store. http://www.cdnow.com, 1998.
The CDW online computer store. http://www.cdw.com/, 1998.

S. Chawathe, V. Gossain, X. Liu, J Widom, and S. Abiteboul.
Representing and querying changes in heterogeneous semistructured
databases (demonstration description). Technical report, Stanford
University Database Group, November 1997. Available at
http://www-db.stanford.edu.

S. Chawathe and H. Garcia-Molina. Meaningful change detection in
structured data. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 26-37, Tuscon, Arizona,

May 1997.

280

[CGMH*94]

[CGMWO4]

[CGMWO6]

[CHS*95]

[Clu9s]

[CRGMWO6]

[DD93]

[DHRO6]

BIBLIOGRAPHY

S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakon-
stantinou, J. Ullman, and J. Widom. The Tsimmis project: Integration
of heterogeneous information sources. In Proceedings of 100th Anniver-

sary Meeting of the Information Processing Society of Japan, pages
7-18, Tokyo, Japan, October 1994.

S. Chawathe, H. Garcia-Molina, and J. Widom. Constraint manage-
ment for autonomous distributed databases. Data Engineering Bulletin,

17(2):23-27, 1994.

S. Chawathe, H. Garcia-Molina, and J. Widom. A toolkit for constraint
management in heterogeneous information systems. In Proceedings of

the International Conference on Data Engineering, pages 56-65, 1996.

M. Carey, L. Haas, P. Schwarz, M. Arya, W. Cody, and R. Fagin. To-
wards heterogeneous multimedia information systems: The Garlic ap-
proach. In Proceedings of the Fifth International Workshop on Research
Issues in Data Engineering (RIDE): Distributed Object Management,
pages 123-130, Los Angeles, California, 1995.

S. Cluet. Designing OQL: allowing objects to be queried. Information
Systems, 23(5):279-305, July 1998.

S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change
detection in hierarchically structured information. In Proceedings of
the ACM SIGMOD International Conference on Management of Data,
pages 493-504, Montréal, Québec, June 1996.

C. Date and H. Darwen. A Guide to the SQL Standard. Addison-
Wesley, Reading, Massachusetts, 1993.

M. Doherty, R. Hull, and M. Rupawalla. Structures for manipulat-
ing proposed updates in object-oriented databases. In Proceedings of
the ACM SIGMOD International Conference on Management of Data,
Montréal, Québec, 1996.

BIBLIOGRAPHY 281

[EG9S]

[FGM*+97]

[GCCMO6]

[GHYT]

[GILJ*93]

[GILJ96]

[GMSS7]

[Gol90]

[GW97]

The Gate eGuide. http://wuw.sfgate.com/eguide/, 1998.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hy-
pertext transfer protocol—HTTP/1.1. Available at
http://www.w3.org/Protocols/rfc2068/rfc2068, January 1997.
Network Working Group Request for Comments 2038.

R. Goldman, S. Chawathe, A. Crespo, and J. McHugh. A standard
textual interchange format for the Object Exchange Model (OEM).
Technical report, Stanford University Database Group, 1996. Available
at http://www-db.stanford.edu/.

T. Griffin and R. Hull. A framework for implementing hypothetical
queries. In Proceedings of the ACM SIGMOD Conference on Manage-
ment of Data, pages 231-242, Tucson, Arizona, May 1997.

S. Ghandeharizadeh, N. Hull, T.D. Jacobs, J. Castillo, M. Escobar-
Molano, , S.-H. Lu, J. Luo, C. Tsang, and G. Zhou. On implementing
a language for specifying active database execution models. In Proceed-

ings of the Nineteenth International Conference on Very Large Data
Bases, Dublin, Ireland, August 1993.

S. Ghandeharizadeh, R. Hull, and D. Jacobs. Heraclitus: Elevating
deltas to be first-class citizens in a database programming language.
ACM Transactions on Database Systems, 21(3):370-426, September
1996.

H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pages 249—
259, San Francisco, California, December 1987.

C. Goldfarb. The SGML handbook. Oxford University Press, 1990.

R. Goldman and J. Widom. DataGuides: Enabling query formula-

tion and optimization in semistructured databases. In Proceedings of

282

[HBGM*97]

[HGMC*97]

[HGMW+95]

[HHST98]

[HSF85]

[HZ96]

[IMD9S]

[Inm92]

BIBLIOGRAPHY

the Twenty-third International Conference on Very Large Data Bases,
Athens, Greece, 1997.

J. Hammer, B. Breunig, H. Garcia-Molina, S. Nestorov, V. Vassalos,
and R. Yerneni. Template-based wrappers in the Tsimmis system. In

Proceedings of the Twenty-Third ACM SIGMOD International Confer-

ence on Management of Data, Tucson, Arizona, 1997.

J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Ex-
tracting semistructured information from the web. In Proceedings of the
Workshop on Management of Semistructured Data, pages 18-25, Tus-
con, Arizona, May 1997. Available at http://www-db.stanford.edu.

J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, and Y. Zhuge. The
Stanford Data Warehousing Project. IEEF Data Engineering Bulletin,
Special Issue on Materialized Views and Data Warehousing, 18(2):41—
48, June 1995.

M. Haertel, D. Hayes, R. Stallman, .. Tower, P. Eggert., and W. Davi-
son. The GNU diff program. Texinfo system documentation, 1998.
Available through anonymous FTP at prep.ai.mit.edu.

K. Harrenstien, M. Stahl, and E. Feinler. Nicname/Whois. Technical
report, SRI International, October 1985. Internet Engineering Task
Force Network Working Group RFC 954.

R. Hull and G. Zhou. A framework for supporting data integration us-
ing the materialized and virtual approaches. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages
481-492, Montreal, Canada, June 1996.

The Internet Movie Database. http://www.imdb.com/, 1998.

W. Inmon. EIS and the data warehouse: A simple approach to building
an effective foundation for eis. Database Programming and Design,

5(11):70-73, November 1992.

BIBLIOGRAPHY 283

[JUNOS]

[Kif95]

[KLS6]

[KLSS95]

[Knu86]

[KROYS]

[Lam94]

[Law76]

[LNDOS]

[LYV+98]

[MAG*97]

The Junglee online shopping guide. Available at

http://www.junglee.com/wcomm/wcoverview.html, 1998.

M. Kifer. EDIFF—A comprehensive interface to diff for Emacs 19.
Available through anonymous FTP at ftp.cs.sunysb.eduin
/pub/TechReports/kifer/ediff.tar.Z, 1995.

B. Kantor and P. Lapsley. Network news transfer protocol. Technical
report, University of California, San Diego, February 1986. Internet
Engineering Task Force Network Working Group RFC 977.

T. Kirk, A. Levy, J. Sagiv, and D. Srivastava. The information mani-
fold. Technical report, AT&T Bell Laboratories, 1995.

D. Knuth. Computers and Typesetting. Addison-Wesley, Reading, Mas-
sachusetts, 1986.

Online traffic updates from KRON Newscenter 4.
http://www.sfgate.com/traffic/, 1998.

L. Lamport. Latex: A Documentation Preparation System User’s Guide
and Reference Manual. Addison Wesley Longman, Inc., July 1994.

E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,
Rinehart and Winston, 1976.

The Lands” End online retail store. http://www.landsend.com, 1998.

C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y. Papakonstantinou,
J. Ullman, and M. Valiveti. Capability based mediation in Tsimmis. In
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, page 564, Seattle, Washington, June 1998.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore:
A database management system for semistructured data. SIGMOD
Record, 26(3):54-66, September 1997.

284

[MBLOS]

[Mel96]

[MWOS]

[Mye86]

INUW(C97]

[NYTOS]

[PAGMOY6]

[PAWOS]

[PGGMU95]

[PGMU96]

BIBLIOGRAPHY

The musichlvd.com online music store. http://www.musicblvd.com,

1998.

J. Melton. An SQL3 snapshot. In Proceedings of the Twelfth Interna-
tional Conference on Data Engineering, pages 666—672, New Orleans,
Louisiana, February 1996.

J. McHugh and J. Widom. Query optimization for semistructured data.
Technical report, Stanford University Database Group, 1998. Available
at http://www-db.stanford.edu/.

E. Myers. An O(ND) difference algorithm and its variations. Algorith-
mica, 1(2):251-266, 1986.

S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe. Representative
objects: Concise representations of semistructured, hierarchial data.
In Proceedings of the International Conference on Data Engineering,

pages 79-90, 1997.
The New York Times online. http://www.nyt.com, 1998.

Y. Papakonstantinou, 5. Abiteboul, and H. Garcia-Molina. Object
fusion in mediator systems. In Proceedings of the International Confer-

ence on Very Large Data Bases, pages 413-424, Bombay, India, Septem-
ber 1996.

The Palo Alto Weekly online, 1998. http://www.service.com/PAW/.

Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman. A
query translation scheme for rapid implementation of wrappers. In
Proceedings of the International Conference on Deductive and Object-
Oriented Databases, pages 161-186, Singapore, December 1995.

Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. MedMaker:

A mediation system based on declarative specifications. In Proceedings

BIBLIOGRAPHY 285

[PGMWO5]

[Pos82]

[PRS5]

[PS82]

[QWGH96]

[RHe9s]

[Rot]

of the International Conference on Data Engineering, pages 132-141,
New Orleans, February 1996.

Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object ex-
change across heterogeneous information sources. In Proceedings of the

International Conference on Data Engineering, pages 251-260, Taipei,
Taiwan, March 1995.

J. Postel. Simple mail transfer protocol. Technical report, Informa-
tion Sciences Institute, University of Southern California, Marina del
Rey, California, August 1982. Internet Engineering Task Force Network
Working Group RFC 821.

J. Postel and J. Reynolds. File transfer protocol (FTP). Technical re-
port, Information Sciences Institute, University of Southern California,
Marina del Rey, California, October 1985. Internet Engineering Task
Force Network Working Group RFC 959.

C. Papadimitriou and K. Steiglitz. Combinatorial Optimization.
Prentice-Hall, 1982.

D. Quass, J. Widom, R. Goldman, K. Haas, Q. Luo, J. McHugh,
S. Nestorov, A. Rajaraman, H. Rivero, S. Abiteboul, J. Ullman, and
J. Wiener. LORE: A Lightweight Object REpository for semistruc-
tured data. In Proceedings of ACM SIGMOD International Conference
on Management of Data, Montreal, Canada, June 1996.

D. Raggett, A. Le Hors, and L. Jacobs (eds.). HTML 4.0 specification.
Available at http://www.w3.org/TR/REC-htm140/, April 1998.

E. Rothberg. The wmatch program for finding a maximum-weight
matching for undirected graphs. Live OR collection. Available at
http://www.orsoc.org.uk/home.html.

286

[SAS6]

[Sel77]

[SL90]

[SLS+93]

[S0091]

[SWZS94]

[S790]

[UkkS5]

[U1188]

[Uni93]

BIBLIOGRAPHY

R. Snodgrass and 1. Ahn.
19(9):35-42, September 1986.

IEEE Computer,

Temporal databases.

S. Selkow. The tree-to-tree editing problem. [nformation Processing

Letters, 6(6):184-186, December 1977.

A. Sheth and J.A. Larson. Federated database systems for managing
distributed, heterogeneous, and autonomous databases. ACM Comput-

ing Surveys, 22(3):183-236, 1990.

K. Shoens, A Luniewski, P. Schwarz, J. Stamos, and J. Thomas. The
rufus system: Information organization for semistructured data. In
Proceedings of the International Conference on Very Large Data Bases,
pages 97-107, Dublin, Ireland, August 1993.

M. Soo.
20(1):14-24, March 1991.

Bibliography on temporal databases. SIGMOD Record,

D. Shasha, J. Wang, K. Zhang, and F. Shih. Exact and approximate al-
gorithms for unordered tree matching. IEEE Transactions on Systems,

Man, and Cybernetics, 24(4):668-678, April 1994.

D. Shasha and K. Zhang. Fast algorithms for the unit cost editing
distance between trees. Journal of Algorithms, 11:581-621, 1990.

E. Ukkonen. Algorithms for approximate string matching. Information

and Control, 64:100-118, 1985.

J. Ullman. Principles of Database and Knowledge-Base Systems, vol-

ume 1. Computer Science Press, 1988.

International Telecommunication Union. Specification of Abstract Syn-
tax Notation One (ASN.1). Technical report, Telecommunication Stan-
dardization Sector of ITU, 1993. ITU-T Recommendation X.208. Avail-
able at http://www.itu.int/.

BIBLIOGRAPHY 287

[UW97]

[Vix98]

[W3C98]

[WagT75]

[WC96al

[WC96b]

[WCS96]

[WF74]

[Wid96]

[Wie92]

[WMG90]

[WP9S]

J. D. Ullman and J. Widom. A first course in database systems.
Prentice-Hall, Upper Saddle River, New Jersey, 1997.

P. Vixie. Red Hat Linux system manual for cron. Available at

http://www.redhat.com, 1998.
The World-Wide Web Consortium online. http://www.w3.org/, 1998.

R. Wagner. On the complexity of the extended string-to-string correc-
tion problem. In Seventh ACM Symposium on the Theory of Compu-
tation, 1975.

J. Widom and S. Ceri. Active database systems: Triggers and rules
for advanced database processing. Morgan Kaufmann Publishers, San

Francisco, California, 1996.

J. Widom and S. Ceri. Active Database Systems: Triggers and Rules
for Advanced Database Processing. Morgan Kaufmann, San Francisco,

California, 1996.

L. Wall, T. Christiansen, and R. Schwartz. Programming Perl. O’Reilly,
second edition, 1996.

R. Wagner and M. Fischer. The string-to-string correction problem.
Journal of the Association of Computing Machinery, 21(1):168-173,
January 1974.

J. Widom. Integrating heterogeneous databases: Lazy or eager? ACM
Computing Surveys, 28A(4), December 1996.

(. Wiederhold. Mediators in the architecture of future information

systems. [EEFE Computer, 25(3):38-49, March 1992.

S. Wu, U. Manber, and G.Myers. An O(NP) sequence comparison al-
gorithm. Information Processing Letters, 35:317-323, September 1990.

The Washington Post online. http://www.washingtonpost.com, 1998.

288

[WWW+97]

[WZC95]

[WZS95]

[Yan91]

[ZGMHW95]

[Zha95]

[Zim90]

[7.589]

[ZWS95]

BIBLIOGRAPHY

D. Wodtke, J. Weissenfels, G. Weikum, A. Dittrich, and P. Muth. he
mentor workbench for enterprise-wide workflow management. In Pro-
ceedings of the ACM SIGMOD International Conference on Manage-

ment of Data, Tucson, Arizona, June 1997.

J. Wang, K. Zhang, and G. Chirn. Algorithms for approximate graph
matching. Information Sciences, 82:45-74, 1995.

T-L. Wang, K. Zhang, and D. Shasha. Pattern matching and pattern
discovery in scientific, program, and document databases. In Proceed-
ings of ACM SIGMOD International Conference on Management of
Data, 1995.

W. Yang. Identifying syntactic differences between two programs.

Software—Practice and Experience, 21(7):739-755, July 1991.

Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View main-
tenance in a warehousing environment. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, San Jose,
California, May 1995.

K. Zhang. Personal communication, May 1995.

D. Zimmerman. The finger user information protocol. Technical report,
Center for Discrete Mathematics and Theoretical Computer Science,
December 1990. Internet Engineering Task Force Network Working
Group RFC 1196.

K. Zhang and D. Shasha. Simple fast algorithms for the editing dis-
tance between trees and related problems. SIAM Journal of Computing,
18(6):1245-1262, 1989.

K. Zhang, J. Wang, and D. Shasha. On the editing distance between
undirected acyclic graphs. [International Journal of Foundations of

Computer Science, 1995.

