
Managing Historical Semistructured Data*Sudarshan S. ChawatheDepartment of Computer Science, University of Maryland, College Park, Maryland 20742. chaw@cs.umd.eduSerge AbiteboulINRIA|Rocquencourt, 78153 Le Chesnay Cedex, France. Serge.Abiteboul@inria.frJennifer WidomComputer Science Department, Stanford University, Stanford, California 94305. widom@cs.stanford.eduSemistructured data may be irregular and incomplete anddoes not necessarily conform to a �xed schema. As withstructured data, it is often desirable to maintain a his-tory of changes to data, and to query over both the dataand the changes. Representing and querying changes insemistructured data is more di�cult than in structured datadue to the irregularity and lack of schema. We presenta model for representing changes in semistructured dataand a language for querying over these changes. An im-portant feature of our approach is that we represent andquery changes directly as annotations on the a�ected data,instead of indirectly as the di�erence between databasestates. We describe the implementation of our model andquery language. We present extensions that permit con-venient snapshot-based access in our change-based datamodel. We also describe our design and implementationof a query subscription service that permits users to sub-scribe to changes in semistructured information sources.c
 1999 John Wiley & Sons1. IntroductionSemistructured data is data that has some structure,but it may be irregular and incomplete and does notnecessarily conform to a �xed schema. Recently, therehas been increased interest in data models and querylanguages for semistructured data [1, 4, 10, 8, 19]. Wealso see increased interest in change management in re-lational and object data [12, 11], and in the relatedproblem of temporal databases [21, 22]. However, weare not aware of any work that addresses the problemof representing and querying changes in semistructureddata. As will be seen, this problem is more challenging*This work was supported by the Air Force RomeLaboratoriesunder DARPA Contract F30602-95-C-0119 and by an equipmentgrant from IBM Corporation. A preliminaryversion of this articleappeared in [6].c
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than the corresponding problem for structured data dueto the irregularity, incompleteness, and lack of schemathat often characterize semistructured data. Neverthe-less, our approach, based on graph annotations, is alsoapplicable to structured graph-based data.In this paper, we present a simple and general model,DOEM (pronounced \doom"), for representing changesin semistructured data. We also present a language,Chorel , for querying over data and changes representedin DOEM. We describe our implementation of DOEMand Chorel. We also introduce a facility that allowsusers to subscribe to changes in semistructured data,and we describe its design and implementation basedon DOEM and Chorel.1.1. Motivating ExamplesThe Palo Alto Weekly, a local newspaper, maintainsa Web site providing information about restaurants inthe Bay Area [18]. Most of the data in the restau-rant guide is relatively static. But as often happens indatabase applications, we are particularly interested inthe dynamic part of the data. For example, we are in-terested in �nding out which restaurants were recentlyadded, which restaurants were seen as improving, de-grading, etc. These changes can be captured by a toolthat we have implemented, called htmldi� [9]. Thehtmldi� program takes two versions of a Web page asinput, and produces as output a marked-up copy of theWeb page that highlights the di�erences between thetwo versions based on their semistructured contents.Our htmldi� system allows users to browse the marked-up Web page to view the changes, and to travel backand forth between the old and new versions of the docu-ment. A small portion of the output produced by htmld-i� on two versions of the restaurant guide is shown inTHEORY AND PRACTICE OF OBJECT SYSTEMS, Vol. 24(4), 1 20 1999 CCC1042-98329/94/020253-18



FIG. 1. Example output from htmldi�Figure 1. The icons (which are in color in the actualoutput) represent di�erent kinds of change operations:insertions, updates, deletions, etc. For details, see [9].For reasonably small documents, browsing themarked-up HTML �les produced by htmldi� to viewthe changes of interest is a feasible option. However, asdocuments get larger and changes become more preva-lent and varied, one soon feels the need to use queriesto directly �nd changes of interest instead of simplybrowsing. (For example, the restaurant guide page iscurrently more than 20,000 lines long, making brows-ing very inconvenient.) An example of a simple changequery over the restaurant data is \�nd all new restau-rant entries." Another example is \�nd all restaurantswhose average entree price changed." Just as browsingdatabases is often an ine�ective way to retrieve infor-mation, the same holds for browsing data represent-ing changes. Thus, for this example, what we need isa query language that allows queries over changes to(semistructured) HTML pages.As another motivating example, consider a typicallibrary system that contains book circulation informa-tion. Suppose we wish to be noti�ed whenever any\popular" book becomes available where, say, we de�nea book as popular if it has been checked out two or moretimes in the past month. We could partially achieve thisgoal by setting a trigger on the circulation databasethat noti�es us whenever a book is returned. How-ever, there are two problems with this approach. First,many library information systems are legacy mainframeapplications on which triggers are not available. Fur-thermore, even in cases where the library informationsystem is implemented using a database system that

supports triggers, a user often lacks the access rightsrequired to set triggers on the database. Second, thereis often no way to access historical circulation informa-tion, so that we cannot check whether the book beingreturned was checked out two or more times recently.In this application too, the data may be semistructured,especially if the library system merges information frommultiple sources [15]. Thus, we again need a method tocompute, represent, and query changes in the contextof semistructured data.1.2. OverviewWe are interested in the three components ofa change management system, in the context ofsemistructured data: (1) detecting changes; (2) repre-senting changes; and (3) querying changes. Detectingchanges in semistructured data is a challenging prob-lem in practice because many information sources thatwe are interested in do not provide facilities or autho-rization for explicit monitoring of changes (e.g., usingtriggers). Therefore, we are often forced to infer changesbased on a sequence of data snapshots. We have stud-ied this problem in [9, 7], which describe algorithmsfor inferring changes from snapshots of semistructureddata; we therefore do not discuss component (1) fur-ther in this paper. This paper addresses the problemsassociated with components (2) and (3).Since our goal is to represent changes in semistruc-tured data, we use as a starting point the Object Ex-change Model (OEM ), designed at Stanford as part ofthe Tsimmis project [8]. OEM is a simple graph-baseddata model, with objects as nodes and object-subobjectrelationships represented by labeled arcs. Due to its2 THEORY AND PRACTICE OF OBJECT SYSTEMS|1999



simplicity and 
exibility, OEM can encode numerouskinds of data, including relational data, electronic doc-uments in formats such as SGML and HTML, otherdata exchange formats (e.g., ASN.1), and programs(e.g., C++). The basic change operations in such agraph-based model are node insertion, update of nodevalues, and addition and removal of labeled arcs. (Nodedeletion is implicit by unreachability [2].) Our changerepresentation model, DOEM (for Delta-OEM ), usesannotations on the nodes and arcs of an OEM graph torepresent changes. Intuitively, the set of annotations ona node or arc represents the history of that node or arc.For querying over changes we use a language basedon the Lorel language for querying semistructured data[2]. In our language, called Chorel (for Change Lorel),we extend the concept of Lorel path expressions to al-low us to refer to the annotations in a DOEM database.The result is an intuitive and convenient language forexpressing change queries in semistructured data. Al-though the work in this paper is founded on the OEMdata model and the Lorel language, the principal con-cepts are applicable to any graph-based data model(semistructured or otherwise), e.g., [4, 5].Our implementation of DOEM and Chorel usesa method that encodes DOEM databases as OEMdatabases and translates Chorel queries into equiva-lent Lorel queries over the OEM encoding. This en-coding scheme has the bene�t that we did not needto build from scratch yet another database system; in-stead, we capitalized on an existing database system forsemistructured data. Finally, as an important �rst ap-plication of DOEM and Chorel, we describe our designand implementation of a query subscription service thatpermits users to subscribe to changes in semistructureddata.1.3. Related WorkIf we consider the general problem of representingand querying the history of a database in addition toits current state, there are two main approaches. The�rst approach, which we call the snapshot-collection ap-proach, views the history of a database as a collectionof database states (snapshots). According to this view,a change operation takes a database from one stateto the next. The states are ordered, usually linearly,based on time. In addition to querying the presentdatabase state, such systems allow any other state of thedatabase to be queried. This approach is used by tem-poral databases [21, 22]. The second approach, whichwe call the snapshot-delta approach, views the historyof the database as a combination of a single databasesnapshot and a collection of deltas. According to thisview, we obtain various states of the database by start-ing with a single snapshot and applying some sequence

of deltas to it. We use the snapshot-delta approach inour work. An early, simple example of this approachis the idea of delta relations, used in active databases[3, 23] and trigger languages [14], which represent a setof changes to a relation R using two relations R+ andR�, where R+ = Rnew �Rold, and R� = Rold �Rnew.More recently, this approach has been used by the Her-aclitus/H2O project to represent changes in relationaland object data [12, 11]. Our work di�ers from the Her-aclitus/H20 work in two respects. First, we representchanges in semistructured data, not just relational andobject data. Second, we present a method for queryingover changes as �rst-class entities, as opposed to usingchanges to generate hypothetical states that are thenqueried as usual. We believe that the two approachesare complementary.A preliminary version of this paper appeared in [6].That version omitted details on several topics, includ-ing the properties of DOEM databases, the encodingand translation schemes for Chorel, and implementa-tion issues. Further, that version did not include thedescription of virtual annotations and snapshot-basedaccess (covered in Section 6 of this paper.)1.4. Outline of PaperThe remainder of the paper is organized as follows.Section 2 reviews the Object Exchange Model (OEM),and introduces OEM change operations and histories.In Section 3, we present our OEM-based change repre-sentation model for semistructured data, DOEM. Sec-tion 4 describes our change query language, Chorel. InSection 5, we present the encoding scheme that we useto implement DOEM and Chorel by translation, andwe brie
y describe our system implementation. In Sec-tion 6, we introduce some extensions to our languagethat make snapshot-based access in our data modelmore convenient. We also describe how our translation-based implementation of Chorel is extended for thispurpose. Section 7 describes the query subscriptionsystem we have implemented based on the material inSections 3{5. We conclude in Section 8.2. The Object Exchange ModelThe Object Exchange Model (OEM) is a simple, 
ex-ible model for representing heterogeneous, semistruc-tured data. (Recall that semistructured data is datathat may be irregular or incomplete, and that does notnecessarily conform to a �xed schema, e.g., HTML doc-uments describing restaurants.) In this section, we be-gin by brie
y describing OEM. Next, we de�ne the basicchange operations used to modify an OEM database.Finally, we introduce the concept of an OEM historythat describes a collection of basic change operations.THEORY AND PRACTICE OF OBJECT SYSTEMS|1999 3



Histories form the basis of our change representationmodel described in Section 3.Intuitively, one can think of an OEM database as agraph in which nodes correspond to objects and arcscorrespond to relationships. Each arc has a label thatdescribes the nature of the relationship. (Note that thegraph can have cycles, and that an object may be asubobject of multiple objects via di�erent relationships.Example 1 below illustrates these points.) Nodes with-out outgoing arcs are called atomic objects; the rest ofthe nodes are called complex objects. Atomic objectshave a value of type integer, real, string, etc. An arc(p; l; c) in the graph signi�es that the object with iden-ti�er c is an l-labeled subobject (child) of the complexobject with identi�er p. Each OEM database has a dis-tinguished node called the root of the database. Theroot is the implicit starting point of path expressionsin the Lorel query language (described in Section 4.1).Formally, we de�ne an OEM database as follows:De�nition. An OEM database is a 4-tuple O =(N;A; v; r), where N is a set of object identi�ers; Ais a set of labeled, directed arcs (p; l; c) where p; c 2 Nand l is a string; v is a function that maps each noden 2 N to a value that is an integer, string, etc., or thereserved value C (for complex); and r is a distinguishednode in N called the root of the database. A node isa complex object if its value is C and otherwise it isan atomic object. Only complex objects have outgoingarcs. We also require that every node be reachable fromthe root using a directed path. 2Example 1. We will use as our running example anOEM database describing the restaurant guide sectionof the Palo Alto Weekly , introduced in Section 1. Fig-ure 2 shows a small portion of the data. Note that al-though the restaurant entries are quite similar to eachother in structure, there are important di�erences thatrequire the use of a semistructured data model such asOEM. In particular, we see that the price rating for arestaurant may be either an integer (10) or a string(\moderate"). The address may be either a simplestring (\120 Lytton") or a complex object with sub-objects listing the street, city, etc. Note also that al-though the data has a natural hierarchical structure,nodes may have multiple incoming arcs (e.g., node n7),and there are cycles (e.g., the cycle formed by the arcs\parking" and \nearby-eats"). In the sequel, we referto this database as Guide. 22.1. Changes in OEMWe now describe how an OEM database is modi�ed.Let O = (N;A; v; r) be an OEM database. The fourbasic change operations are the following:

Create Node: The operation creNode(n; v) creates anew object. The identi�er n must be new, i.e., nmust not occur in O. The initial value v must bean atomic value (integer, real, string, etc.) or thespecial symbol C (for complex).Update Node: The operation updNode(n; v) changesthe value of object n, where v is an atomic valueor the special symbol C. Object n must be eitheran atomic object or a complex object without sub-objects. (The model requires us to remove all sub-objects of a complex object n before transformingit into an atomic object.) The value v becomes thenew value of n.Add Arc: The operation addArc(p; l; c) adds an arc la-beled l from object p (the parent) to object c (thechild). Objects p and c must exist in O, p mustbe complex, and the arc (p; l; c) must not alreadyexist in O.Remove Arc: The operation remArc(p; l; c) removes anarc. Objects p and c must exist in O, and O mustcontain an arc (p; l; c), which is removed.If u is a basic change operation that can be applied toO, we say u is valid forO, and we use u(O) to denote theresult of applying u to O. Note that there is no explicitobject deletion operation. In OEM, persistence is byreachability from the distinguished root node [2]. Thus,to delete an object it su�ces to remove all arcs leadingto it. A subtlety is that sometimes we need to allowobjects to be \temporarily" unreachable. In particular,when we create a new object, it remains unreachableuntil we create an arc that links it to the rest of thedatabase. Thus, when we consider sequences of changesin Section 2.2, we want to permit the result of atomicchanges to (temporarily) contain unreachable objects.The issue is discussed further in Section 2.2 below. Notethat users will typically request \higher-level" changesbased on the Lorel update language [2]; the basic changeoperations de�ned here re
ect the actual changes at thedatabase level.Example 2.Let us consider some modi�cations to the OEMdatabase in Example 1. We will use these modi�cationsas a running example in the rest of the paper. First, onJanuary 1st, 1997, the price rating for \Bangkok Cui-sine" is changed from 10 to 20. This modi�cation cor-responds to an updNode operation. On the same day,a new restaurant with name \Hakata" is added (withno other data). This modi�cation corresponds to twocreNode operations for the restaurant node and its sub-object, and two addArc operations to add arcs labeled\restaurant" and \name." Next, on January 5th, a sub-object with value \need info" is added to the \Hakata"restaurant object via an arc labeled \comment." Thismodi�cation corresponds to one creNode operation andone addArc operation. Finally, on January 8th the park-ing at \Lytton lot 2" is no longer considered suitablefor the restaurant \Janta," and the corresponding arc4 THEORY AND PRACTICE OF OBJECT SYSTEMS|1999
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FIG. 2. The OEM database in Example 1.
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FIG. 3. The OEM database in Example 2is removed; this modi�cation corresponds to a remArcoperation. The resulting modi�ed OEM representationof the Guide data is shown in Figure 3, with new datahighlighted in bold, and the deleted arc represented us-ing a dashed arrow. 22.2. OEM HistoriesWe are typically interested in collections of basicchange operations, which describe successive modi�ca-tions to the database. We say that a sequence L =u1; u2; : : : ; un of basic change operations is valid for anOEM database O if ui is valid for Oi�1 for all i = 1 : : :n,where O0 = O, and Oi = ui(Oi�1), for i = 1 : : :n. Weuse L(O) to denote the OEM database obtained by ap-plying the entire sequence L to O. Also, we say thata set U = fu1; u2; : : : ; ung of basic change operationsis valid for an OEM database O if (1) for some order-
ing L of the changes in U , L is a valid sequence ofchanges, (2) for any two such valid sequences L andL0, L(O) = L0(O), and (3) U does not contain bothaddArc(p; l; c) and remArc(p; l; c) for any p, l, and c.We use U (O) to denote the OEM database obtained byapplying the operations in the set U (in any valid order)to O.We are now ready to de�ne an OEM history. As-sume we are given some time domain time that is dis-crete and totally ordered; elements of time are calledtimestamps. Intuitively, consider an OEM database towhich, at some time t1, a set U1 of basic change oper-ations is applied, then at a later time t2, another setU2 is applied, and so on. A history represents such asequence of sets of modi�cations.De�nition.An OEM history is a sequence H = (t1; U1), : : :,(tn; Un), where Ui is a set of basic change operationsand ti is a timestamp, for i = 1 : : :n, and ti < ti+1THEORY AND PRACTICE OF OBJECT SYSTEMS|1999 5



for i = 1 : : :n � 1. We say H is valid for an OEMdatabase O if, for all i = 1 : : :n, Ui is valid for Oi�1,where O0 = O, and Oi = Ui(Oi�1) for i = 1 : : :n. 2We now return to the requirement that all objects inan OEM database must be reachable from the root. AnOEM history can be viewed as a sequence L1; :::; Ln ofsequences of atomic changes. Within one sequence Liof changes, we relax the requirement that all objects arereachable from the root so that we can, e.g., create anode and then create arcs leading to it, as discussed ear-lier. However, immediately after each sequence Li hasbeen applied, nodes that are unreachable are consideredas deleted, and the remainder of the history should notoperate on these objects. To simplify presentation, wealso assume that object identi�ers of deleted nodes arenot reused.Example 3.The history for the modi�cations described in Exam-ple 2 consists of three sets of basic change operations.It is given by H = ((t1; U1); (t2; U2); (t3; U3)), wheret1 = 1Jan97 , t2 = 5Jan97 , t3 = 8Jan97 , and where Uiare as follows:U1 = fupdNode(n1; 20); creNode(n2; C); creNode(n3;\Hakata"); addArc(n4; \restaurant"; n2);addArc(n2; \name"; n3)gU2 = fcreNode(n5; \need info")addArc(n2;\comment"; n5)gU3 = fremArc(n6; \parking"; n7)g:This history is valid for the OEM database of Figure 2.23. Representation of ChangesIn this section, we describe how changes to an OEMdatabase are represented by attaching annotations tothe OEM graph, thereby turning it into aDOEM (DeltaOEM ) graph. We �rst introduce the annotations we useand de�ne a DOEM database as an OEM graph con-taining these annotations. Next, we describe how anOEM history (de�ned in Section 2.2) is represented us-ing a DOEM database. Finally, we discuss some prop-erties of DOEM databases that make them well-suitedfor representing changes in semistructured data.Intuitively, annotations are tags attached to thenodes and arcs of an OEM graph that encode the his-tory of basic change operations on those nodes and arcs.There is a one-to-one correspondence between annota-tions and the basic change operations. Thus, nodes andarcs may have the following annotations:� cre(t): the node was created at time t.� upd(t; ov): the node was updated at time t; ov isthe old value.� add(t): the arc was added at time t.� rem(t): the arc was removed at time t.

The set of all possible node annotations is denoted bynode-annot, and the set of all possible arc annotationsis denoted by arc-annot.Using the above de�nitions of node and arc annota-tions, we now de�ne a DOEM database. In the followingde�nition, the function fN (n) maps a node n to a set ofannotations on that node and the function fA(a) mapsan arc a to a set of annotations on that arc.De�nition.A DOEM database is a tripleD = (O; fN ; fA), whereO = (N;A; v; r) is an OEM database, fN maps eachnode in N to a �nite subset of node-annot, and fAmaps each arc in A to a �nite subset of arc-annot. 23.1. DOEM Representation of an OEMHistoryGiven an OEM database O and a history H =(t1; U1); :::; (tn; Un) that is valid for O, we would liketo construct the DOEM database representing O andH, denoted by D(O;H). D(O;H) is constructed in-ductively as follows. We start with a DOEM databaseD0 that consists of the OEM database O with emptysets of annotations for the nodes and the arcs of O.Suppose Di�1 is the DOEM database representing Oand (t1; U1); :::; (ti�1; Ui�1), for some 1 � i � n. TheDOEM database Di is constructed by considering thebasic change operations in Ui. Since the history is valid,we can assume some ordering Li of the operations in Ui(De�nition 2.2). Starting with Di�1, we process theoperations in Li in order. Whenever the value of anobject is updated, in addition to performing the updatewe attach an upd annotation to the node. This annota-tion contains the timestamp ti and the old value of theobject. When a new object is created or an arc added,in addition to performing the modi�cation, we attacha cre or add annotation with the timestamp ti. Whenan existing arc is removed, we do not actually removethe arc from the graph; instead, we simply attach arem annotation to the a�ected arc with the timestampti. Observe that this representation directly stores thechanges themselves, not the before and after images ofthe changes, and thus takes the snapshot-delta approachdiscussed in Section 1.3.Example 4.Consider the history described in Example 3, whichtransforms the OEM database of Figure 2 to that of Fig-ure 3. The corresponding DOEM database is shown inFigure 4. We see that the DOEM database contains sev-eral annotations, depicted as boxes in the �gure. For ex-ample, the annotations with timestamp \1Jan97" cor-respond to the �rst set of updates. Note that the cre,add, and rem annotations contain only the timestamp,while the upd annotation also contains the old value of6 THEORY AND PRACTICE OF OBJECT SYSTEMS|1999
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FIG. 4. The DOEM object in Example 4.the updated node (10, in our example). Also note thatthe removed \parking" arc from the \Janta" restaurantobject to the \Lytton lot 2" parking object is not actu-ally removed from the DOEM database; instead it bearsa rem annotation. 23.2. Properties of DOEM DatabasesWe have seen above how a DOEM database is usedto represent an OEM database and its history. Wenow discuss the advantages of this representation. Wesay that a DOEM database D is feasible if there existssome OEM database O and valid history H such thatD = D(O;H). Note that we do not require DOEMdatabases to record all changes since creation, i.e., OEMdatabase O need not be empty. DOEM databases havethe following desirable properties:� It is easy to obtain the original snapshot O0(D)from a DOEM database D. O0(D) contains exactlythose nodes in D that do not have a cre annotation.The arcs ofO0(D) are the arcs inD that either haveno annotations, or have a rem annotation as theannotation with the smallest (earliest) timestamp.� It is easy to obtain the snapshot at time t , Ot(D),from a DOEM database D. Starting from the rootobject of D, we traverse D in preorder. For eachnode n we encounter, we do the following:1. We �nd the value vt(n) of n at time t (atomicvalue or C) as follows: If n has no upd an-notations, then vt(n) = v(n). Otherwise, letupd(t1; ov1); : : : ; upd(tk; ovk) be the upd anno-tations in fN(n). If tk � t, vt(n) = v(n). Oth-erwise, pick i 2 [1; k] such that ti is the small-est timestamp greater than t in t1; : : : ; tk; thenvt(n) = ovi.

2. If vt(n) = C, continue the preorder traversalby following the arcs emanating from n thatwere present at time t. These are the arcsemanating from n that either do not have anyannotation with timestamp less than or equalto t, or have an add annotation as the anno-tation with the greatest timestamp less thanor equal to t.� It is easy to obtain the current snapshot from aDOEM database. It is the snapshot at time c,where c is the current time.� It is easy to obtain the encoded history H(D)from a DOEM database D. The history H(D) =(t1; U1); :::; (tn; Un) is constructed as follows. First,t1; : : : ; tn is the set of timestamps occurring in D,ordered by time. For each i = 1 : : : n, Ui containsthe following operations:1. addArc(p; l; c) (remArc(p; l; c)), if the arc(p; l; c) has the annotation add(ti) (respec-tively, rem(ti));2. updNode(n; v), if n has an annotationupd(ti; ov) and v is the next value of n. Thatis, v = ov0 if the next (by time) annotationof n is upd(tj; ov0), and v = v(n) if n is notupdated after ti;3. creNode(n; v), if n has the annotation cre(ti),where v is de�ned as in Case 2.� It is relatively easy to determine if a given DOEMdatabase D is feasible. We construct the originalsnapshot O0(D) and the encoded history H(D) forD as above, and test if D(O0(D);H(D)) = D.� Most importantly, if D is feasible, we can show thatthe OEM database O0(D) and the history H(D)encoded by D are unique. Thus, a DOEM databasefaithfully captures all the information about thehistory of the corresponding OEM database.THEORY AND PRACTICE OF OBJECT SYSTEMS|1999 7



� As we will see in the next section, it is easy andintuitive to query the history encoded in a DOEMdatabase.4. Querying Over ChangesIn Section 3, we have seen how the history of an OEMdatabase is represented by the corresponding DOEMdatabase. In this section, we describe how DOEMdatabases are queried. We introduce a query languagecalled Chorel for this purpose. Chorel is similar to theLorel language [2] used to query OEM databases. Webegin with a brief overview of Lorel, followed by a de-scription of the syntax and semantics of Chorel.4.1. Lorel OverviewLorel uses the familiar select-from-where syntax,and can be thought of as an extension of OQL [5] in twomajor ways. First, Lorel encourages the use of pathexpressions. For instance, one can use the path ex-pression guide.restaurant.address.street to spec-ify the streets of all addresses of restaurant entries inthe Guide database. Second, in contrast to OQL, Lorelhas a very \forgiving" type system. When faced withthe task of comparing di�erent types, Lorel �rst tries tocoerce them to a common type. When such coercionsfail, the comparison simply returns false instead of rais-ing an error. This behavior, while it may be unsuitablefor traditional databases, is exactly what a user expectswhen querying semistructured data. Lorel also providesa number of syntactic conveniences such as the possi-bility of omitting the from clause. We do not describeLorel in detail here (see [2]), but only present througha simple example those features that are needed to un-derstand Chorel.Example 5.Consider again the OEM database depicted in Fig-ure 3. To �nd all restaurants that have a price ratingof less than 20.5, we can use the following Lorel query:select guide.restaurantwhere guide.restaurant.price < 20.5;Note that the query expresses the price rating as a realnumber whereas the restaurant entries for \BangkokCuisine" and \Janta" in the OEM database shown inFigure 3 use an integer and a string, respectively. Fur-thermore, the third restaurant entry does not have aprice subobject at all. Lorel successfully coerces theinteger price 10 to real, and the comparison succeeds.For the string encoding of the price (\moderate"), Loreltries to coerce, but fails, returning false as the result ofthe comparison. Finally, for the third restaurant, themissing price subobject simply causes the comparison

to return false. Thus, the result of the above queryis a singleton set containing the restaurant object for\Bangkok Cuisine." Note that this result is an intu-itively reasonable response to the original query, despitethe typing di�culties and the missing data. 2Lorel also allows the use of path expressions thatinclude regular expressions and wildcards (e.g., \#"matches an arbitrary path of length 0 or more). Suchgeneral path expressions are powerful extensions of thesimple path expressions of OQL, and allow Lorel usersto specify complex path patterns in a database graph.Chorel is also based on extending the notion of pathexpressions, but in a di�erent direction: We extendpath expressions to allow the annotations in DOEMdatabases to be speci�ed and matched.4.2. ChorelIn Chorel, path expressions may contain annotationexpressions, which allow us to refer to the node and arcannotations in a DOEM database. Informally, Lorelpath expressions can be thought of as being matchedto paths in the OEM database during query execu-tion. Analogously, the annotation expressions in Chorelpath expressions can be thought of as being matched toannotations on the corresponding paths in the DOEMdatabase.Example 6.Consider the DOEM database depicted in Figure 4.To �nd all newly added restaurant entries only, we canuse the following Chorel query:select guide.<add>restaurant;The annotation expression \<add>" speci�es that onlythose objects connected to the \guide" object bya \restaurant"-labeled arc having an add annotationshould be retrieved. For the database depicted in Fig-ure 4, this Chorel query returns the restaurant objectwith name \Hakata." 2Not surprisingly, we use four kinds of annotation ex-pressions in Chorel path expressions: node annotationexpressions \cre" and \upd," and arc annotation ex-pressions \add" and \rem." Recall that a path expres-sion, e.g., guide.restaurant.price, consists of a se-quence of labels. Arc annotation expressions must occurimmediately before a label, whereas node annotationexpressions must occur immediately after one. (Notethat since node and arc annotations use di�erent key-words, no confusion can arise.) Path expressions con-taining node or arc annotation expressions are calledannotated path expressions. For instance,guide.<add>restaurant.price<upd>8 THEORY AND PRACTICE OF OBJECT SYSTEMS|1999



is a correct annotated path expression. It requiresan add annotation to be present on the arc labeled\restaurant," and an upd annotation on the \price"node (i.e., on the node at the destination of the arclabeled \price"). For simplicity, in this paper we donot consider path expressions that have annotation ex-pressions attached to wildcards or regular expressions,however generalizing to allow such annotation expres-sions is not di�cult.Annotation expressions may also introduce timevariables to refer to the timestamps stored in matchingannotations, and data variables to refer to the modi�edvalues in matching upd annotations. More precisely, thesyntax of annotation expressions is as follows:< Annot[attimeV ] > if Annot 2 f add, rem, cre g< upd[attimeV ][fromoldV ][tonewV ] > for updwhere timeV, oldV, and newV are variables. Note thata DOEM database does not explicitly store the newvalue of an updated object, however this informationis available implicitly, and can be determined easily asshown in Section 3.2.Let us consider a Chorel query that uses a time vari-able. Note that we allow users to enter timestampsusing a textual representation, e.g., 4Jan97. In keepingwith Lorel's extensive use of coercion, any recognizableformat is allowed and is converted automatically to aninternal timestamp datatype.Example 7.Consider the DOEM database in Figure 4. To �ndall restaurant entries that were added before January4th, 1997, we can use the following Chorel query:select guide.<add at T>restaurantwhere T < 4Jan97;The Chorel preprocessor will rewrite this query to ob-tain the following. (We will explain this rewritingshortly.)select Rfrom guide.<add at T>restaurant Rwhere T < 4Jan97;The introduced from clause will bind R to all \restau-rant" objects that are connected to the \guide" objectvia an arc with an add annotation, and will provide cor-responding bindings for T . More precisely, the evalua-tion of the from clause will yield the set of pairs hR; T isuch that there is a restaurant arc from the guide ob-ject to R that has an add annotation with timestampT . The where clause will �lter out the hR; T i pairs forwhich T does not satisfy the condition. For the DOEMdatabase in Figure 4, this query returns the restaurantobject for \Hakata." 2Once time and data variables have been bound usingannotations, they can be used just like other variables

in Lorel or OQL. This feature is illustrated by the fol-lowing query, which uses time and data variables in theselect clause.Example 8.Referring again to the DOEM database in Figure 4,suppose we want to �nd the names of all restaurantswhose price ratings were updated on or after January1st, 1997 to a value greater than 15, together with thetime of the update and the new price. We can use thefollowing query (on the left):select N, T, NVfrom guide.restaurant.price<upd at T to NV>,guide.restaurant.name Nwhere T >= 1Jan97 and NV > 15;answername "Bangkok Cuisine"update-time 1Jan97new-value 20The result of the above query is a single complex ob-ject with three components, as shown on the right. Thelabel name is chosen by Chorel using the method de-scribed in [2]. For time and data variables whose labelsare not speci�ed by the query, Chorel chooses the de-fault labels create-time, add-time, remove-time, update-time, new-value, and old-value. 24.3. Chorel SemanticsWe now make the semantics of Chorel queries moreprecise. As is done for Lorel, the semantics is describedby specifying the rewriting of Chorel queries into OQL-like queries. However, we need to introduce some addi-tional machinery to handle the annotation expressionsin Chorel queries.First, the annotation expressions in a Chorel queryare transformed into a canonical form that includes allvariables. For example, \<add>" is rewritten to \<addat T1>," and \<upd from X>" is rewritten to \<upd atT2 from X to NV2>," where T1, T2, and NV2 are freshvariables. Next, as in Lorel, we eliminate path expres-sions by introducing variables for the objects \inside"the path expressions. For example, the path expression\a.b.c" in a from clause is converted to \a.b X, X.cY," where X and Y are new range variables. The detailsof this rewriting are described in [2].At this stage, we have to give a semantics to rangevariable de�nitions that may include annotation expres-sions (e.g., \X.label Y," \X.<add at T>label Y") inthe context of a DOEM database. In the absence of anannotation expression, the semantics of an expression\X.label Y" is that for a binding oX of X, Y is boundto all objects oY such that there is an arc labeled labelfrom oX to oY in the current snapshot. Note that byTHEORY AND PRACTICE OF OBJECT SYSTEMS|1999 9



this semantics, a standard Lorel query (without annota-tions) over a DOEM database has exactly the semanticsof the same query asked over the current snapshot forthat DOEM database. In the presence of annotationexpressions, the semantics requires the existence of thespeci�ed annotation, and also provides bindings for thevariables in the annotation expression. The bindingsare also speci�ed by a special rewriting. As an exam-ple, the query in Example 8 is rewritten to:select N, T, NVfrom guide.restaurant R, R.price P,R.name N, (T, OV, NV) in updFun(P)where T >= 1Jan97 and NV > 15;Our rewriting uses the following functions, which ex-tract the information stored in annotations:creFun(node) ! ftimegupdFun(node) ! f(time; old-value; new-value)gaddFun(source; label) ! f(time; target)gremFun(source; label)! f(time; target)gThe function creFun(n) returns the set of timestampsfound in cre annotations on node n. (Note that by ourde�nition of change operations in Section 2.1, this set iseither empty or a singleton.) The function updFun(n)returns a set of triples corresponding to the timestamp,the old value, and the new value in upd annotations onn. The function addFun(n,l) returns a set of (t; c) pairssuch that c is an l-labeled subobject of n via an arcthat has an add (t) annotation. The remFun functionis analogous to addFun. Once this rewriting has beenperformed, the from, where, and select clauses of theresulting query are processed in a standard manner.Above, we have illustrated how variables introducedin the from clause are interpreted. Variables may be in-troduced in the where clause as well. They are treatedby introducing existential quanti�cation in the whereclause, extending the treatment of such variables inLorel [2]. Consider the following example:Example 9.Consider again the DOEM database of Figure 4.Suppose we want the names of restaurants to whicha \moderate" price subobject was added since January1st, 1997. We can write the following Chorel query:select Nfrom guide.restaurant R, R.name Nwhere R.<add at T>price = "moderate"and T >= 1Jan97;The variable T is introduced in the where clause. There-fore, the rewritten where clause is:where exists (T, P) in addFun(R,"price") :(P = "moderate" and T >= 1Jan97); 2

5. Implementing DOEM and ChorelIn this section, we describe how we have implementedDOEM databases and Chorel queries. One approachwould be to extend the kernel of the Lore databasesystem [13] to allow annotations to be attached to thenodes and arcs of an OEM database. Given these ex-tensions, the Lorel query engine could be extended to aChorel query engine in a straightforward manner basedon the semantics speci�ed in Section 4.3. We do notdiscuss this approach further. Instead, our implemen-tation uses an alternative approach of implementingDOEM and Chorel \on top of" Lore. We encode DOEMdatabases as OEM databases, and we implement Chorelby translating Chorel queries to equivalent Lorel queriesover the OEM encoding of the DOEM database. In ad-dition to being more modular than the direct implemen-tation approach (and not a�ecting Lore object layout orquery processing), this approach can also be adaptedeasily to other graph-based data models, e.g., those in[4, 5]. Note that while there are several simple methodsof encoding a DOEM database as an OEM database,the challenge here is to devise an encoding that permitsa simple and valid translation of Chorel queries overthe original DOEM database into Lorel queries overthe OEM encoding. For many of the obvious possi-ble encodings, such query translation proves to be verydi�cult or impossible.We begin by explaining how we encode DOEMdatabases in OEM, followed by a description of thetranslation of Chorel queries to Lorel queries for thisencoding, and �nally a description of our system imple-mentation.5.1. Encoding DOEM in OEMLet D be a DOEM database. We encode D as anOEM database OD de�ned as follows. For each ob-ject o in D, there is a corresponding object o0 in OD.Atomic objects are encoded as complex objects so thatwe can record their histories using subobjects. Speciallabels used by the encoding start with the character\&" to distinguish them from standard labels occurringin O. The encoding object o0 for DOEM object o hasthe following subobjects, listed by their labels. Refer toFigures 5 and 6.� &val: If o is atomic with current value v, there isa \&val"-labeled arc from o0 to an atomic objectwith value v. If o is complex, there is a \&val"-labeled arc from o0 to itself. (The use of this extraedge will soon become clear.)� &cre: If o has a create annotation cre(t), then o0has a \&cre"-labeled complex subobject o0c that hasa \&time"-labeled atomic subobject with value t.� &upd: For each update annotation upd(t; ov) at-tached to o, o0 has an \&upd"-labeled complex sub-object o0u. The object o0u has a \&time"-labeled10 THEORY AND PRACTICE OF OBJECT SYSTEMS|1999



o1

5upd(t3, 3)

DOEM

OEM

o1’

&time &val
&time

&val

&next&next
&upd&upd&cre

&val

t2 2 t3 3

&time

t1

5

cre(t1)
upd(t2, 2)

FIG. 5. Encoding a DOEM object in OEM: node annotationsatomic subobject with value t, and a \&val"-labeled atomic subobject with the value before theupdate (ov).� l : If the current snapshot for D contains an arc(o; l; p), then OD contains an arc labeled l from o0to the object p0 that encodes p.� &l-history: If D contains an arc (o; l; p), then ODcontains an arc (o0;&l-history; o0l) where o0l is acomplex object that contains the history of the larcs from o to p. The object o0l has the followingstructure:{ &target: There is an arc (ol;&target; p0),where p0 is the object encoding p.{ &add, &rem: For each annotation add(t)(rem(t)) attached to (o; l; p), there is an\&add"-labeled (respectively, \&rem"-labeled)complex subobject o0c that has a \&time"-labeled atomic subobject with value t.� &next: For each OEM object o01 that encodes aDOEM object o1 and its node annotations, the\&cre"- and \&upd"-labeled subobjects of o01 arechained together in ascending order of the valuesof their \&time" subobjects using arcs with label\&next." (As we shall see shortly, this chaining isuseful for obtaining the \new value" correspondingto an update annotation.) Similarly, for each OEMobject o0iLj that encodes a DOEM arc (oi; L; oj)and the annotations on that arc, the \&add"- and\&rem"-labeled subobjects of oiLj are chained to-gether in ascending order of the values of their\&time" subobjects using arcs with label \&next."(As we shall see in Section 6, this chaining is usefulfor implementing snapshot-based access.)5.2. Translating Chorel to LorelGiven the above encoding of a DOEM database asan OEM database, we now describe how a Chorel queryover a (conceptual) DOEM database is translated intoan equivalent Lorel query over an OEM encoding of the

DOEM database. In Section 4.3 we described how aChorel query can be rewritten into an OQL-like queryusing special functions creFun, updFun, addFun, andremFun. Therefore, in the following we assume that weare given such a rewritten query.We simulate the special functions creFun, updFun,addFun, and remFun using expressions that extractthe required values from the OEM encoding of the an-notations. For example, the expression \(T, OV, NV)in updFun(P)" is replaced with \P.&upd U, U.&timeT, U.&val OV, U.&next.&val NV." From the encod-ing scheme described in Section 5.1, we see that thisexpression instantiates the triple (T, OV, NV) to thetimestamp, old value, and new value of the updateannotations on objects bound to P. If an expressionof the form \(T, C) in addFun(P, l)" occurs in aChorel query, we replace it with \P.&l-history H,H.&add.&time T, H.&target C." The case for removeannotations, involving the remFun function, is anal-ogous. Finally, we replace an expression \T in cre-Fun(P)," with \P.&cre.&time T."Note that our encoding scheme ensures that onlyarcs that exist in the current snapshot correspondingto the encoded DOEM database are accessible directlyvia their labels in the encoding. If an l-labeled arcdoes not exist in the current snapshot, its information isstored using an arc with label &l-history, which doesnot match the label l.One remaining issue is that in the OEM encodingof a DOEM database, the value of an atomic objectis stored in a \&val"-labeled subobject of the encod-ing object. So, for instance, when a query compares anatomic object to a value, we want to use the value storedin the \&val" subobject for this comparison. Therefore,wherever in the query the value of a object variable isaccessed (i.e., in predicates and function arguments) wereplace the object variable \X" with \X.&val." Observethat since there is a \&val"-labeled arc from the encod-ing of each complex object to itself, we can safely per-form the above transformation for all value accesses ofobject variables occuring in the original query, withoutTHEORY AND PRACTICE OF OBJECT SYSTEMS|1999 11
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h1 h2FIG. 6. Encoding a DOEM object in OEM: arc annotationsknowing whether the objects they encode are atomic orcomplex (which, in general, we will not know).The transformation is illustrated by the following ex-ample.Example 10.Consider the Chorel query in Example 9. In Sec-tion 4.3, we considered the OQL-like rewriting of thisquery. We now complete this rewriting as describedabove, to yield the following Lorel query over the OEMencoding of the DOEM database in Figure 4:select Nfrom guide.restaurant R, R.name Nwhere exists H in R.&price-history :exists P in H.&target :exists T in H.&add.&time :T >= 1Jan97 and P.&val = "moderate";Note that we simulate the range speci�cation addFun(R,"price") using the \&"-pre�xed subobjects. Further, weuse P.&val to access the actual price value (and not thecomplex object packaging it with its history). 2Note that the example query returns a set of DOEMobjects that represent restaurant names. That is, itreturns not only the names of the restaurants, but alsothe history of these names, if they changed. Returningthe DOEM object enables the user to access both thevalue and the history of an object.In the above description, for simplicity we assumedthat every atomic object o is encoded using a complexobject o0 that has a &val-labeled subobject with valuev(o). However, in practice we do not encode unanno-tated atomic objects in this manner; that is, if an atomicobject o has no annotations, we encode it using a sim-ple atomic object o0 with value v(o). In our translationscheme, we replace accesses to the value of an variableX by X.[&val], which is a Lorel path expression indi-cating an optional path component &val.

6. Virtual Annotations and Snapshot-based AccessIn Section 4.2 we have seen how the construct <updat T from oldV to newV> refers to a virtual annota-tion upd (t; ov; nv), where t, ov, and nv are, respectively,the timestamp, the old value, and the new value of anupdate operation in the history. The real annotation,upd (t; ov), does not contain the old value, however thatinformation is available elsewhere in the database. Wecan extend this idea of virtual annotations to facili-tate access to other implicit information in a DOEMdatabase. As a concrete example, in this section weintroduce virtual annotations that facilitate snapshot-based access to a DOEM database. (Recall Section 1.3,which describes di�erent modes of accessing historicalinformation.) We de�ne the semantics of Chorel queriescontaining references to virtual annotations by usingrange functions that are de�ned over the real annota-tions and data in a DOEM database. We describe howto implement this added functionality by extending thetranslation-based method of Section 5.6.1. Snapshot-based AccessRecall from Section 4.3 that an unannotated pathexpression such as guide.restaurant.entree.priceis evaluated over the current snapshot of a DOEMdatabase. Sometimes, one may wish to evaluate pathexpression components over other (non-current) snap-shots. For example, we may wish to refer to the priceof an entree at some time T ; we introduce the syn-tax guide.restaurant.entree.price<at T>. Simi-larly, we may wish to refer to the existence of a parkingarc between two objects X and Y at time T ; we usethe syntax X.<at T>parking Y in the from clause of aChorel query.12 THEORY AND PRACTICE OF OBJECT SYSTEMS|1999



Example 11. Consider the Guide database depictedin Figure 4. Suppose we wish to list the parking areasclose to the restaurant \Janta" as of 1st January 1997.We write the following query:select Pfrom guide.restaurant R, R.<at T>parking Pwhere R.name = "Janta" and T = 1Jan97;For the DOEM database depicted in Figure 4, thisquery returns the parking object with address \Lyttonlot 2," since on 1st January 1997 there was a \park-ing" arc from the Janta restaurant object to the Lyttonparking object. (This arc was removed on 8th January1997.) 2When the variable T occuring in an at annotation ex-pression is bound to a constant elsewhere in the query(as in the above example), the e�ect of the annota-tion expression on query evaluation is intuitively simple:We evaluate the query as if the path expression compo-nent quali�ed by <at T> refers to the snapshot of thedatabase at time T . As we have seen in Section 3.2,the snapshot at time T is easily obtained using the in-formation in a DOEM database. However, if T is un-bound, then unless we take special precautions we may�nd ourselves faced with unsafe queries, as illustratedby the following example.Example 12. For the Guide database depicted inFigure 4, suppose we are interested in �nding the timesat which the restaurant \Bangkok Cuisine" had a pricerating less than 15. We write the query as follows:select Tfrom guide.restaurant R, R.price<at T> Pwhere R.name = "Bangkok Cuisine" and P < 15;The basic problem with this query is that while thedatabase stores only a �nite number of timestamps, theabove query would require T to range over the in�nitenumber of intermediate timestamp values as well. 2We overcome such di�culties by allowing timestampvariables such as T above to bind only to thosetimestamp values that exist explicitly in the DOEMdatabase. Intermediate timestamp values are repre-sented using intervals [B;E), where B and E are thebegin and end timestamps, respectively. (We use a con-vention of intervals that are closed on the left and openon the right; our methods are not dependent on thisconvention.)To introduce this concept of intervals, we addanother virtual annotation, called during, on nodesand arcs, and a corresponding annotation expression\<during B E>" in the syntax of annotated path ex-pressions. (As we will see in Section 6.3, virtual anno-tation during in fact subsumes virtual annotation at.)Intuitively, the construct X<during B E> V in a from

clause binds the triple (B;E; V ) to all values f(b; e; v)gsuch that the object X had value v continuously fromtime b to time e. Similarly, the construct X<during BE>l Y binds the triple (B;E; Y ) to all values f(b; e; Y )gsuch that the arc (X; l; Y ) existed continuously fromtime b to time e. We further require that the aboveintervals [b; e) be maximal.When using snapshot-based access, we often need torefer to the current time. We introduce a distinguishedtimestamp tN for this purpose. More precisely, tN is aspecial variable whose value during the evaluation of aquery is the time at which that evaluation begins. Simi-larly, we often need to refer to the initial timestamp cor-responding to a database; we introduce a distinguishedtimestamp tI for this purpose. More precisely, eachDOEM database has an initial timestamp tI associatedwith it. Note that tI is a constant, and may be negativein�nity.Using the during virtual annotation, the query inExample 12 may be rewritten as follows:select B,Efrom guide.restaurant R,R.price<during B E> Pwhere R.name = "Bangkok Cuisine" and P < 15;This query returns a set of pairs f(b; e)g such that atall times during the interval [b; e), Bangkok Cuisine hada price rating less than 15. For our example databasedepicted in Figure 4, this query returns the singletonset f(tI ; 1Jan97)g, where tI is the initial timestamp ofthe database.Note that it is possible to express such snapshot-based queries using only the basic Chorel constructsdescribed in Section 4. However, the resulting queriesare extremely cumbersome. For example, the simplesnapshot-based access X.<during B E>foo Y in a fromclause requires a construction such as the following:from X.<add at B>foo Y, X.<rem at E>foo Z...where Y = Z and not exists M :(X.<add at M>foo Y or X.<rem at M>foo Y);In reality, the expression is even more complex, sincewe need to handle the special cases involving missingannotations on both the \begin" and the \end" side.Thus, snapshot-based access is an excellent candidatefor simpli�cation using virtual annotations.6.2. Semantics of duringWe now formalize our intuitive description of thesemantics of during annotations. As in Section 4.3,we shall specify the semantics using a rewriting withspecial functions for binding range variables. To de-�ne the semantics of the arc annotation expressionX.<during B E>l Y in the from clause of a Chorelquery, we introduce a special function, arcDuring. ThisTHEORY AND PRACTICE OF OBJECT SYSTEMS|1999 13



function maps a DOEM object o1 and label l to a set oftriples f(b; e; o2)g such that in the history representedby the DOEM database, the arc (o1; l; o2) existed inthe time interval [b; e), and [b; e) is maximal (i.e., thiscondition fails to hold if we decrease b or increase e).We rewrite the from clause by replacing X.<during BE>l Y with (B,E,Y) in arcDuring(X,l). (Recall fromSection 3.2 that given a DOEM database D, it is easyto obtain the snapshot at time t, Ot(D). Thus theintervals [b; e) in the de�nition of arcDuring are wellde�ned.) The function arcDuring has some notableboundary cases: If the earliest annotation on an arc isrem(t1), then the arc exists in [tI; t1). (Recall from Sec-tion 6.1 that tI is the initial timestamp associated witha database and tN is the current timestamp.) Similarly,if the latest annotation on an arc is add (t2), then thearc exists in the interval [t2; tN ]. Finally, if an arc hasno annotations, it exists in [tI ; tN ].Now we de�ne the semantics of the node annotationexpression X<during B E> V in the from clause of aChorel query. To do so, we introduce a special function,nodeDuring. This function maps a DOEM object o toa set of triples f(b; e; v)g such that in the history repre-sented by the DOEM database, the object o had valuev during the time interval [b; e), and [b; e) is maximal.We rewrite the from clause replacing X<during B E>V with (B,E,V) in nodeDuring(X). (Using Section 3.2we see that the intervals [b; e), and the correspondingvalues v, are well-de�ned.) The function nodeDuringalso has some notable boundary cases: If the earliestannotation on a DOEM object o is upd(t1; v1) then ohas value v1 in the interval [tI ; t1). Similarly, if thelatest annotation on o is upd(tk; vk), then o has valuev(o) (the current value) in [tk; tN ]. Finally, if o has noannotations, then it has value v(o) in [tI ; tN ].Example 13. Consider the query proposed in Ex-ample 11. Using the during construct, we can writethe following query to return parking for the \Janta"restaurant as of 1st January 1997.select Pfrom guide.restaurant R,R.<during B E>parking Pwhere R.name = "Janta" and B <= 1Jan97and E > 1Jan97;Using the semantics for during described above, we seethat this query is conceptually rewritten to the follow-ing:select Pfrom guide.restaurant R,(B,E,P) in arcDuring(R,parking)where R.name = "Janta" and B <= 1Jan97and E > 1Jan97;

Consider the DOEM database in Figure 4. When Ris bound to the restaurant object \Janta," functionarcDuring results in the tuple variable (B;E; P ) rang-ing over the singleton set f(tI ; 8Jan97; p1)g, where p1 isthe parking object with address \Lytton lot 2." SinceR, B, and E satisfy the predicate in the where clause,the Lytton parking object will be returned as the queryresult. 26.3. The at ConstructExamples 11 and 13 suggest a simple de�nition forthe edge annotation X.<at T>l Y and the node an-notation X<at T> V. We de�ne them as abbreviationsfor X.<during B E>l Y and X<during B E> V, respec-tively, and add the condition B <= T < E to the whereclause. Note that our rewriting requires the variable Toccurring in the at annotation to be bound elsewhere inthe query independently of the path expression compo-nent containing at. For example, if we apply this def-inition of <at T> to rewrite the query in Example 11,we obtain the query in Example 13.In cases where the variable T occurring in the <atT> construct is not bound elsewhere in the query, thede�nition of at as an abbreviation for a during expres-sion fails. For example, if we apply the rewriting tothe problematic query of Example 12, which uses <atT> without binding T elsewhere, we get the followingquery in which T is still unbound:select Tfrom guide.restaurant R,R.price<during B E> Pwhere R.name = "Bangkok Cuisine" and P < 15and B <= T and T < E;In general, this problem can be mitigated by allowingtimestamp variables such as T to bind to intervals in-stead of single timestamps. However, we do not considersuch extensions further in this paper. We shall hence-forth assume that the <at T> construct is de�ned onlywhen T is bound elsewhere in the query independentlyof the path expression component containing at.6.4. The snap ConstructLet us now consider a special class of Chorel queriesthat are useful in studying past states of a histori-cal database. Intuitively, such queries take the snap-shot at some time t, and then evaluate an ordinary(non-historical) query over this snapshot. We call suchqueries pure snapshot queries. For example, using ourGuide database, suppose we wish to generate, as of 15thJune 1997, the names, price ratings, and parking ad-dresses for restaurants with a price rating less than 20.That is, we would like to evaluate the following Lorel14 THEORY AND PRACTICE OF OBJECT SYSTEMS|1999



(non-historical) query over the OEM database that isthe DOEM snapshot of 15th June 1997:select R, P, Afrom guide.restaurant R, R.price P,R.parking.address Awhere R.price < 20;In reality we are evaluating Chorel queries over ourDOEM database. Thus, to express that the above queryshould be evaluated over the snapshot of 15th June1997, we could qualify each component of each pathexpression in the query as follows:select R, P, Afrom guide.<at T>restaurant R,R.<at T>price<at T> P,R.<at T>parking.<at T>address<at T> Awhere R.<at T>price<at T> < 20and T = 15Jun97;In order to make writing such snapshot queries moreconvenient, we introduce as a syntactic convenience theconstruct <snap T>, with the requirement that T bebound elsewhere in the query independently of the pathexpression component containing snap. The constructX.<snap T>foo Y in a from clause is rewritten to X.<atT>foo Y; furthermore, any other use of Y in the queryis (recursively) rewritten as though it were quali�edby a <snap T>. In particular, Y.bar Z is interpretedas Y.<snap T>bar Z and recursively rewritten, and ac-cesses to Y's value are rewritten as Y<at T>. The whereclause is handled analogously. Using this construct, theabove query may now be written more simply as follows:select R, P, Afrom guide.<snap T>restaurant R, R.price P,R.parking.address Awhere R.price < 20 and T = 15Jun97;6.5. Implementing during by translationWe now describe how the translation-based imple-mentation of Chorel described in Section 5 is extendedto accommodate the during construct. Refer to Fig-ures 7 and 8, which depict the OEM encoding ofDOEM objects; we have indicated the new features us-ing dashed lines. (The other features were described inSection 5.1.)Each OEM database used to encode a DOEMdatabase has a special complex object o0N that has one\&time"-labeled atomic subobject o00N with value tN .(Recall, from Section 6.1, that tN refers to the cur-rent time; in the implementation, the value of o00N isthe query execution time.) Similarly, there is a spe-cial complex object o0I that has one \&time"-labeledatomic subobject o00I with value tI . (Recall, from Sec-

tion 6.1, that tI is the initial timestamp associated witha DOEM database, and may be negative in�nity.) Notethat there is exactly one instance of each of the objectso0N , o00N , o0I , and o00I per database. (To highlight thisfact, these objects are depicted using shaded circles inFigures 5 and 6.)In Section 5.1, we described the use of \&next"-labeled arcs to chain annotation-encoding objects in as-cending order of the annotation timestamps. We nowextend this chain to include the timestamps tI and tNas follows. Consider �rst the encoding of node anno-tations, as depicted in Figure 5. If a DOEM nodeo has one or more node annotations (create or up-date), then in its OEM encoding, we add a \&next"-labeled arc from the object encoding the annotationwith the largest timestamp to the special object o0N .The \&next"-labeled arc from o0u to o0N in Figure 5is an example of this case. If the DOEM node o hasno annotations, then in the OEM encoding, we add a\&dcre"-labeled arc from the corresponding node o0 tothe special node o0I . In Figure 5, if o1 were to not have acreate annotation, a \&dcre"-labeled arc from o01 to o0Iwould exist. (Since in reality o1 does have a create an-notation, this \&dcre"-labeled arc does not exist, andis depicted using a dotted line.)Now consider the encoding of arc annotations, as de-picted in Figure 6. If an arc (o1; l; o2) in the DOEMdatabase has no annotations, then in the OEM en-coding of the database, we add a \&dadd"-labeled arcfrom o01l2 to the special object o0I , where o01l2 is the\&l-history"-labeled subobject of o01 that encodes thehistory of (o1; l; o2). In Figure 6, o1l2 is shown as theobject h1. If the arc (o1; l; o2) has one or more an-notations, and the annotation with the largest times-tamp is an add annotation, then the OEM encoding hasa \&next"-labeled arc from the corresponding \&add"-labeled subobject o0a of o01l2 to the special object o0N . InFigure 6, we see an example of such an arc from o0a too0N .Given the above enhancements to our schemefor encoding DOEM in OEM, we can rewriteChorel queries containing the during construct asLorel queries over the encoding objects. Given aChorel query with the construct X<during B E> inthe from clause, we replace this construct by thefollowing: X(.&cre|.&upd|.&dcre) A, A.&time B,A.&next.&time E, A.&next.&val V. Similarly, if aChorel query has the construct X.<during B E>fooY in the from clause, we replace this constructby the following: X.&foo-history H, H.&target Y,H(.&add|.&dadd) A, A.&time B, A.&next.&time E.As in Section 5, variables introduced in the where clauseof a Chorel query are treated by introducing existentialquanti�cation in the where clause.Example 14. Consider the during-based query inExample 13. Using the above rewriting, we obtain theTHEORY AND PRACTICE OF OBJECT SYSTEMS|1999 15
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o’’NFIG. 8. Encoding a DOEM object in OEM: arc annotationsfollowing Lorel query over the OEM database encodingthe Guide DOEM database:select Pfrom guide.restaurant R,R.&parking-history H, H.&target P,H.&add A, A.&time B, A.&next.&time Ewhere R.name = "Janta" and B <= 1Jan97and E > 1Jan97; 26.6. Object Deletion and Garbage CollectionRecall that in the OEM data model underlyingDOEM and Chorel, there is no explicit object deletionoperation. Instead, persistence is by reachability fromthe distinguished root of the database, and any unreach-able objects are implicitly deleted. An OEM databasesystem must therefore periodically perform garbage col-lection in order to detect and remove such deleted ob-jects. Between the time an object becomes unreach-
able and the time garbage collection is performed, thesemantically deleted object continues to exist in thedatabase. This situation does not pose any di�cul-ties for Lorel queries, since Lorel path expressions can-not access any object that is unreachable from the rootof the current database snapshot. However, in Chorel,such deleted objects are reachable using annotated pathexpressions that contain a \forward jump in time" (i.e.,path expressions that refer to a more recent snapshotfrom an older one). The following example illustratesthe point:Example 15. Referring back to our Guide databasedepicted in Figure 4, suppose the arc from the Guideobject to the restaurant object for \Bangkok Cuisine"is removed on 1st July 1997. This arc removal resultsin the restaurant object for Bangkok Cuisine, as wellas its price, address, street, and city subobjects be-coming unreachable from the root of the database, im-plying their deletion. In our DOEM database, how-ever, these objects continue to exist; the only changeis that there is now a remove annotation rem(1Jul97)16 THEORY AND PRACTICE OF OBJECT SYSTEMS|1999



on the restaurant arc that was removed. Now supposeon 15th July 1997 we issue the following query to ourDOEM database, asking for the current price rating ofall restaurants that existed as of 1st June 1997:select Pfrom guide.<at 1Jun97>restaurant R,R.price P;Now since the price object for Bangkok Cuisine doesnot currently exist, the result of the above query shouldnot contain it. However, there is no way for the Chorelquery engine to detect this situation, since there is noinformation on either the restaurant or the price ob-jects that suggests their deletion. (The relevant pieceof information is the rem annotation on the restaurantarc.) Thus the query result will contain the price ratingfor Bangkok Cuisine. 2We mitigate the above problem by introducing a deleteannotation, which records the deletion of an object(usually as a result of garbage collection). Suppose thatat time tG, some objects are determined to be newlyunreachable from the root of the database. In the cor-responding DOEM database, we mark such newly un-reachable objects (which continue to exist physically)using a del(tG) annotation. We further ensure that wedo not access the value of an object at time t0 if that ob-ject has a del(t) annotation with t0 > t. More precisely,we modify the de�nition of the nodeDuring functionin Section 6.2 to state that if a node has a del(td) an-notation then its value after td is unde�ned. (That is,the most recent time interval is modi�ed from [tk; tN ] to[tk; td).) The corresponding changes to the translation-based implementation are straightforward.7. A Query Subscription ServiceIn Section 1, we mentioned as an important ap-plication of change management being able to notify\subscribers" of changes in (semistructured) informa-tion sources of interest to them. In this section, wedescribe our design and implementation of such an ap-plication, called a Query Subscription Service (QSS ),using DOEM and Chorel.An ordinary query is evaluated over the current stateof the database, the results are passed to the client andthen discarded. An example of an ordinary query is\�nd all restaurants with Lytton in their address." Incontrast, a subscription query is a query that repeatedlyscans the database for new results based on some givencriteria and returns the changes of interest. An exampleof a subscription query is \every week, notify me of allnew restaurants with Lytton in their address." Below,we describe how subscription queries are speci�ed andimplemented in our system.

Supporting subscription queries introduces the fol-lowing challenges. First, as discussed earlier, many in-formation sources that we are interested in (e.g., libraryinformation systems, Web sites, etc.) are autonomous[20] and typical database approaches based on trigger-ing mechanisms are not usable. Second, these infor-mation sources typically do not keep track of historicalinformation in a format that is accessible to the outsideuser. Thus, a subscription service based on changesmust monitor and keep track of the changes on its own,and often must do so based only on sequences of snap-shots of the database states.Brie
y, our approach to constructing a query sub-scription service over semistructured, possibly legacy,information sources, is as follows: We access the infor-mation sources using Tsimmis wrappers or mediators[17, 16], which present a uniform OEM view of one ormore data sources. We obtain snapshots of relevant por-tions of the data and use di�erencing techniques basedon [9, 7] to infer changes based on these snapshots.Finally, we use DOEM to represent the changes, andChorel to specify the changes of interest. We describeour approach in more detail next.A subscription consists of three main components;refer to Figure 9. The �rst component is a pair offrequency speci�cations (fp; ff ). The polling frequencyfp indicates the times at which data source is to bepolled in order to detect changes. The �lter frequencyff indicates the times at which new changes should beevaluated and reported to the user. Examples of fre-quency speci�cations are \every Friday at 5:00pm" and\every 10 minutes." The polling frequency implies asequence of time instants (t1; t2; t3; : : :), which we callpolling times. Filter times are de�ned analogously. (Inthe actual system, we also consider two other modes:one in which the polling and/or �lter times are obtainedfollowing explicit user requests, and the other in whichthey are obtained as a result of a trigger on the sourcedatabase �ring, if the source provides such a triggeringmechanism. To simplify the presentation, we will notdescribe these modes further here.)The second component of a subscription is a Lorelquery Ql, which we call the polling query . QSS sendsthe polling (Lorel) query to the wrapper or media-tor at the polling times (t1; t2; t3; : : :) to obtain results(R1; R2; R3; : : :). An example polling query is the fol-lowing. (Recall from Section 4.1 that \#" is a specialcharacter that matches any sequence of zero or morelabels in a path. We also use the Lorel operator likefor string matching.)define polling query LyttonRests asselect guide.restaurantwhere guide.restaurant.address.# like"%Lytton%";THEORY AND PRACTICE OF OBJECT SYSTEMS|1999 17
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Filter QueryFIG. 9. A Query Subscription Service based on DOEM and ChorelLet R0 be the empty OEM database, and let Ri bethe result of the polling query on the source at timeti for i = 1; 2; : : :. Each Ri (a Tsimmis query result)is a tree-structured OEM database. Using di�erenc-ing techniques described in [9, 7], QSS obtains a his-tory H = (t1; U1); (t2; U2); : : : corresponding to the se-quence of OEM databases (R0; R1; R2; : : :). That is,Ui(Ri�1) = Ri for all i > 0. Then, QSS constructs aDOEM database D(R0;H) corresponding to this his-tory H and the initial snapshot R0, as described inSection 3. Thus, intuitively, in the �rst time-step theresults of the polling query are all \created." There-after, each subsequent time-step annotates the DOEMdatabase with the changes to the result of the pollingquery since the previous time-step. We identify theDOEM database corresponding to a polling query us-ing the name of the polling query. Thus the name ofthe DOEM database corresponding to the above pollingquery is \LyttonRests."The third component of a subscription is a Chorelquery Qc, called the �lter query , over the generatedDOEM database. In addition to standard Chorel, inQc we can use a special time variable \t[0]" to referto the current �lter time tk, and we can use \t[-1],"\t[-2]," etc., to refer to the past �lter times tk�1, tk�2,etc. (If the current �lter time is tk, we de�ne t[-i] tobe tk�i if i < k, and tI otherwise, where tI is the initialtimestamp associated with the DOEM database of thesubscription.) The �lter query describes the data andchanges of interest to the user. An example �lter queryis the following:define filter query NewOnLytton asselect R.name, C.namefrom LyttonRests.restaurant<cre at T1> R,LyttonRests.cafe<cre at T2> C

where R.parking = C.parking and T1 > t[-1]and T2 >= 1Jan97;Given our de�nition of the DOEM database \Lytton-Restaurants," this query indicates that the user shouldbe noti�ed of the names of restaurant-cafe pairs on Lyt-ton street that share a parking area, where the restau-rant was newly created since the last �lter time and thecafe was created some time after January 1, 1997. Ateach �lter time tk (k > 0) given by the �lter frequency,QSS evaluates Qc over the DOEM database D(R0;Hk),where Hk = (t1; U1); : : : ; (tj; Uj), and tj is the greatestpolling time less than tk, and returns the results to theuser.Example 16.Consider again the changes to the Guide data de-scribed in Example 2, as depicted in Figure 3. Supposewe are interested in being noti�ed every night of newrestaurants created in the Guide database since the pre-vious night. We issue the subscription S = hf;Ql; Qci,where the frequency speci�cation f is \every night at11:30pm," and the polling query Ql and �lter query Qcare Restaurants and NewRestaurants (respectively) asde�ned below:define polling query Restaurants asselect guide.restaurant;define filter query NewRestaurants asselect Restaurants.restaurant<cre at T>where T > t[-1];Suppose we create this subscription S on Decem-ber 30th, 1996, at 10:00am. The polling times givenby our frequency speci�cation are t1 = 30Dec96 , t2 =31Dec96 , t3 = 1Jan97 , and so on (all at 11:30pm). Atpolling time t1, QSS sends the polling query Ql to theGuide OEM database, to obtain the result R1 consist-18 THEORY AND PRACTICE OF OBJECT SYSTEMS|1999



ing of the two restaurant objects in Figure 2. Since R0is the empty OEM database by de�nition, both restau-rant objects will have a cre annotation in the DOEMdatabase built by QSS. These annotations all have atimestamp t1, while the variable t[-1] in the query Qchas value negative in�nity at t1. Therefore, evaluatingthe �lter query Qc on this DOEM database returns thetwo restaurant objects as the initial results to the user.At polling time t2, the Guide database is unchanged,so the result R2 of the polling query is identical toR1. Consequently, no changes are made to the DOEMdatabase maintained by QSS. Note also that at timet2, t[�1] = t1, so that the create annotations on therestaurant objects in the DOEM database no longer sat-isfy the predicate T > t[-1] in the where clause of Qc.Therefore, the result of Qc is empty, and the user doesnot receive any noti�cation.Before polling time t3, the Guide database is mod-i�ed by the addition of a new restaurant object, withname \Hakata," as described in Example 2. There-fore, at t3, the result R3 of the polling query containsthe new restaurant object in addition to the two oldrestaurant objects. The new restaurant object is de-tected by the di�erencing algorithm. Accordingly, theDOEM database maintained by QSS now includes thenew restaurant object, with a create annotation cre(t3)on it. Note also that at this time, t[�1] = t2, sothat this create annotation satis�es the predicate in thewhere clause of Qc. Therefore the result of the queryQc over the modi�ed DOEM database contains the newrestaurant object \Hakata," and the user is noti�ed ofthis result. 2For certain polling queries, QSS may need to storea large portion of the underlying database in order todetect changes accurately. We are exploring the follow-ing ways of limiting the space used for storing DOEMdatabases: (1) merging the DOEM databases for sev-eral subscriptions that have similar polling queries; (2)making the client responsible for storing the DOEMdatabases for its subscriptions; and (3) trading accuracyfor space by storing a smaller state at the expense of notbeing able to detect all changes accurately. We are alsoworking on methods for determining a polling queryand �lter query automatically from a simpler form ofsubscription query.8. Conclusion and Future WorkWe have motivated the need for a uniform repre-sentation scheme for changes in semistructured data,and for a query language that allows direct access tochanges. We have presented a simple data model,DOEM, that allows a wide variety of semistructureddata to be represented together with its changes in anintuitive and compact manner. We have also presented
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