Managing Historical Semistructured Data*

Sudarshan S. Chawathe

Department of Computer Science, University of Maryland, College Park, Maryland 20742. chaw@cs.umd . edu

Serge Abiteboul

INRIA—Rocquencourt, 78153 Le Chesnay Cedex, France. Serge.Abiteboul@inria.fr

Jennifer Widom

Computer Science Department, Stanford University, Stanford, California 94305. widom@cs.stanford.edu

Semistructured data may be irregular and incomplete and

does not necessarily conform to a fixed schema. As with
structured data, it is often desirable to maintain a his-
tory of changes to data, and to query over both the data
and the changes. Representing and querying changes in
semistructured data is more difficult than in structured data
due to the irregularity and lack of schema. We present
a model for representing changes in semistructured data
and a language for querying over these changes. An im-
portant feature of our approach is that we represent and
query changes directly as annotations on the affected data,
instead of indirectly as the difference between database
states. We describe the implementation of our model and
query language. We present extensions that permit con-
venient snapshot-based access in our change-based data
model. We also describe our design and implementation
of a query subscription service that permits users to sub-
scribe to changes in semistructured information sources.
© 1999 John Wiley & Sons

1. Introduction

Semustructured data 1s data that has some structure,
but it may be irregular and incomplete and does not
necessarily conform to a fixed schema. Recently, there
has been increased interest in data models and query
languages for semistructured data [1, 4, 10, 8, 19]. We
also see increased interest in change management in re-
lational and object data [12, 11], and in the related
problem of temporal databases [21, 22]. However, we
are not aware of any work that addresses the problem
of representing and querying changes in semistructured
data. As will be seen, this problem is more challenging

*This work was supported by the Air Force Rome Laboratories
under DARPA Contract F30602-95-C-0119 and by an equipment
grant from IBM Corporation. A preliminary version of this article
appeared in [6].

© 1999 John Wiley & Sons, Inc.

THEORY AND PRACTICE OF OBJECT SYSTEMS, Vol. 24(4), 1—20 1999

than the corresponding problem for structured data due
to the irregularity, incompleteness, and lack of schema
that often characterize semistructured data. Neverthe-
less, our approach, based on graph annotations, is also
applicable to structured graph-based data.

In this paper, we present a simple and general model,
DOFEM (pronounced “doom”), for representing changes
in semistructured data. We also present a language,
Chorel, for querying over data and changes represented
in DOEM. We describe our implementation of DOEM
and Chorel. We also introduce a facility that allows
users to subscribe to changes in semistructured data,
and we describe its design and implementation based

on DOEM and Chorel.

1.1. Motivating Examples

The Palo Alto Weekly, a local newspaper, maintains
a Web site providing information about restaurants in
the Bay Area [18]. Most of the data in the restau-
rant guide is relatively static. But as often happens in
database applications, we are particularly interested in
the dynamic part of the data. For example, we are in-
terested in finding out which restaurants were recently
added, which restaurants were seen as improving, de-
grading, etc. These changes can be captured by a tool
that we have implemented, called himldiff [9]. The
himldiff program takes two versions of a Web page as
input, and produces as output a marked-up copy of the
Web page that highlights the differences between the
two versions based on their semistructured contents.
Our htmldiff system allows users to browse the marked-
up Web page to view the changes, and to travel back
and forth between the old and new versions of the docu-
ment. A small portion of the output produced by himld-
ff on two versions of the restaurant guide is shown in

CCC1042-98329/94/020253-18

@_Ba.ngkuk Cuisine, 407 Lytton Ave., Palo Alto, 322-6533

@_B angkok Cuisine, off the beaten path on Lytton Avenue, iz intimate, friendly and inviting. Elm
smells are the first wake—up call to the senses, a fragrant fusion of barbecue, garlic, sugar, chilies and
peanuts, After a fesw minutes, the comfortable ambience, decorated in soft pinks and greens, seduces
vou inte thinking you are gazing at fresh flowrers while dining off linen. Such is the charm of theﬁaceﬁ

because the napking and place mats, at lunch at least, are mere paper; the flowers ersatz, IEI_

@_Haurs: Monday—Saturday lunch 11 am. to 3 pan, Sunday— Thursday dinner 5 to 2:30 pan,; Friday
and Saturday dinner from 5 to 10 p.m. (Revieswed Dec. 10, 1993

|§I_Cafe Borrone, 1010 El Camino Real, Menlo Park, 327-0830

@_EI & cross between an elegant sidewalk cafe and a busy Berkeley coffee house, Borrone offers
light entrees such as nutrneg—spiced chicken salad and spinach quiche, along with some of the best
coffee drinks around. You'll find state—of—the—art sandswiches and desserts, featuring Rose’s vanilla

custard. @ It's all delicions, but it’s not the cheapest meal in town.

Lecoris bookstore

chic, and Eepler’s Books & Magazines is just across the way, On warm evenings vou can dine

outside in the courtyard. IEI
Wo credit cards. (Reviewed May 23, 1990}

FIG. 1.

Figure 1. The icons (which are in color in the actual
output) represent different kinds of change operations:
insertions, updates, deletions, etc. For details, see [9].

For reasonably small documents, browsing the
marked-up HTML files produced by htmlidiff to view
the changes of interest is a feasible option. However, as
documents get larger and changes become more preva-
lent and varied, one soon feels the need to use queries
to directly find changes of interest instead of simply
browsing. (For example, the restaurant guide page is
currently more than 20,000 lines long, making brows-
ing very inconvenient.) An example of a simple change
query over the restaurant data is “find all new restau-
rant entries.” Another example is “find all restaurants
whose average entree price changed.” Just as browsing
databases is often an ineffective way to retrieve infor-
mation, the same holds for browsing data represent-
ing changes. Thus, for this example, what we need is
a query language that allows queries over changes to
(semistructured) HTML pages.

As another motivating example, consider a typical
library system that contains book circulation informa-
tion. Suppose we wish to be notified whenever any
“popular” book becomes available where, say, we define
a book as popular if it has been checked out two or more
times in the past month. We could partially achieve this
goal by setting a trigger on the circulation database
that notifies us whenever a book is returned. How-
ever, there are two problems with this approach. First,
many library information systems are legacy mainframe
applications on which triggers are not available. Fur-
thermore, even in cases where the library information
system 1s implemented using a database system that

2 THEORY AND PRACTICE OF OBJECT SYSTEMS—1999

Cpen Mon.—Frl. 7 am.—11 pm, Sat. ¥ am—-11 pm, Sun. ¥ am-5pm.

Example output from htmldiff

supports triggers, a user often lacks the access rights
required to set triggers on the database. Second, there
is often no way to access historical circulation informa-
tion, so that we cannot check whether the book being
returned was checked out two or more times recently.
In this application too, the data may be semistructured,
especially if the library system merges information from
multiple sources [15]. Thus, we again need a method to
compute, represent, and query changes in the context
of semistructured data.

1.2, Overview

We are interested in the three components of
a change management system, in the context of
semistructured data: (1) detecting changes; (2) repre-
senting changes; and (3) querying changes. Detecting
changes in semistructured data is a challenging prob-
lem in practice because many information sources that
we are interested in do not provide facilities or autho-
rization for explicit monitoring of changes (e.g., using
triggers). Therefore, we are often forced to infer changes
based on a sequence of data snapshots. We have stud-
ied this problem in [9, 7], which describe algorithms
for inferring changes from snapshots of semistructured
data; we therefore do not discuss component (1) fur-
ther in this paper. This paper addresses the problems
associated with components (2) and (3).

Since our goal is to represent changes in semistruc-
tured data, we use as a starting point the Object Ez-
change Model (OEM), designed at Stanford as part of
the Tsimmis project [8]. OEM is a simple graph-based
data model, with objects as nodes and object-subobject
relationships represented by labeled arcs. Due to its

simplicity and flexibility, OEM can encode numerous
kinds of data, including relational data, electronic doc-
uments in formats such as SGML and HTML, other
data exchange formats (e.g., ASN.1), and programs
(e.g., C++4). The basic change operations in such a
graph-based model are node insertion, update of node
values, and addition and removal of labeled arcs. (Node
deletion is implicit by unreachability [2].) Our change
representation model, DOEM (for Delta-OEM), uses
annotations on the nodes and arcs of an OEM graph to
represent changes. Intuitively, the set of annotations on
a node or arc represents the history of that node or arc.

For querying over changes we use a language based
on the Lorel language for querying semistructured data
[2]. In our language, called Chorel (for Change Lorel),
we extend the concept of Lorel path expressions to al-
low us to refer to the annotations in a DOEM database.
The result is an intuitive and convenient language for
expressing change queries in semistructured data. Al-
though the work in this paper is founded on the OEM
data model and the Lorel language, the principal con-
cepts are applicable to any graph-based data model
(semistructured or otherwise), e.g., [4, 5].

Our 1mplementation of DOEM and Chorel uses
a method that encodes DOEM databases as OEM
databases and translates Chorel queries into equiva-
lent Lorel queries over the OEM encoding. This en-
coding scheme has the benefit that we did not need
to build from scratch yet another database system; in-
stead, we capitalized on an existing database system for
semistructured data. Finally, as an important first ap-
plication of DOEM and Chorel, we describe our design
and 1implementation of a query subscription service that
permits users to subscribe to changes in semistructured
data.

1.3. Related Work

If we consider the general problem of representing
and querying the history of a database in addition to
its current state, there are two main approaches. The
first approach, which we call the snapshot-collection ap-
proach, views the history of a database as a collection
of database states (snapshots). According to this view,
a change operation takes a database from one state
to the next. The states are ordered, usually linearly,
based on time. In addition to querying the present
database state, such systems allow any other state of the
database to be queried. This approach is used by tem-
poral databases [21, 22]. The second approach, which
we call the snapshot-delta approach, views the history
of the database as a combination of a single database
snapshot and a collection of deltas. According to this
view, we obtain various states of the database by start-
ing with a single snapshot and applying some sequence

of deltas to it. We use the snapshot-delta approach in
our work. An early, simple example of this approach
1s the idea of delta relations, used in active databases
[3, 23] and trigger languages [14], which represent a set
of changes to a relation R using two relations Rt and
R™, where RT = Ryew — Rotg, and R~ = Ry1q — Rpew-
More recently, this approach has been used by the Her-
aclitus/H20 project to represent changes in relational
and object data [12, 11]. Our work differs from the Her-
aclitus/H20 work in two respects. First, we represent
changes in semistructured data, not just relational and
object data. Second, we present a method for querying
over changes as first-class entities, as opposed to using
changes to generate hypothetical states that are then
queried as usual. We believe that the two approaches
are complementary.

A preliminary version of this paper appeared in [6].
That version omitted details on several topics, includ-
ing the properties of DOEM databases, the encoding
and translation schemes for Chorel, and implementa-
tion issues. Further, that version did not include the
description of virtual annotations and snapshot-based
access (covered in Section 6 of this paper.)

1.4. Outline of Paper

The remainder of the paper is organized as follows.
Section 2 reviews the Object Exchange Model (OEM),
and introduces OEM change operations and histories.
In Section 3, we present our OEM-based change repre-
sentation model for semistructured data, DOEM. Sec-
tion 4 describes our change query language, Chorel. In
Section 5, we present the encoding scheme that we use
to implement DOEM and Chorel by translation, and
we briefly describe our system implementation. In Sec-
tion 6, we introduce some extensions to our language
that make snapshot-based access in our data model
more convenient. We also describe how our translation-
based implementation of Chorel is extended for this
purpose. Section 7 describes the query subscription
system we have implemented based on the material in
Sections 3-5. We conclude in Section 8.

2. The Object Exchange Model

The Object Exchange Model (OEM) is a simple, flex-
ible model for representing heterogeneous, semistruc-
tured data. (Recall that semistructured data is data
that may be irregular or incomplete, and that does not
necessarily conform to a fixed schema, e.g., HI'ML doc-
uments describing restaurants.) In this section, we be-
gin by briefly describing OEM. Next, we define the basic
change operations used to modify an OEM database.
Finally, we introduce the concept of an OEM history
that describes a collection of basic change operations.

THEORY AND PRACTICE OF OBJECT SYSTEMS—1999 3

Histories form the basis of our change representation
model described in Section 3.

Intuitively, one can think of an OEM database as a
graph in which nodes correspond to objects and arcs
correspond to relationships. Each arc has a label that
describes the nature of the relationship. (Note that the
graph can have cycles, and that an object may be a
subobject of multiple objects via different relationships.
Example 1 below illustrates these points.) Nodes with-
out outgoing arcs are called atomic objects; the rest of
the nodes are called complexr objects. Atomic objects
have a wvalue of type integer, real, string, etc. An arc
(p, 1, ¢) in the graph signifies that the object with iden-
tifier ¢ is an [-labeled subobject (child) of the complex
object with identifier p. Each OEM database has a dis-
tinguished node called the root of the database. The
root is the implicit starting point of path expressions
in the Lorel query language (described in Section 4.1).
Formally, we define an OEM database as follows:

Definition. An OEM database is a 4-tuple O =
(N, A,v,7), where N is a set of object identifiers; A
is a set of labeled, directed arcs (p,!,¢) where p,c € N
and [is a string; v is a function that maps each node
n € N to a value that is an integer, string, etc., or the
reserved value C (for complex); and r is a distinguished
node in N called the root of the database. A node is
a complex object if its value i1s C and otherwise it is
an atomic object. Only complex objects have outgoing
arcs. We also require that every node be reachable from
the root using a directed path. ad

Ezample 1. We will use as our running example an
OEM database describing the restaurant guide section
of the Palo Alto Weekly, introduced in Section 1. Fig-
ure 2 shows a small portion of the data. Note that al-
though the restaurant entries are quite similar to each
other in structure, there are important differences that
require the use of a semistructured data model such as
OEM. In particular, we see that the price rating for a
restaurant may be either an integer (10) or a string
(“moderate”). The address may be either a simple
string (“120 Lytton”) or a complex object with sub-
objects listing the street, city, etc. Note also that al-
though the data has a natural hierarchical structure,
nodes may have multiple incoming arcs (e.g., node nr),
and there are cycles (e.g., the cycle formed by the arcs
“parking” and “nearby-eats”). In the sequel, we refer
to this database as Guide. a

2.1. Changes in OEM

We now describe how an OEM database 1s modified.
Let O = (N, A,v,7) be an OEM database. The four

basic change operations are the following:

4 THEORY AND PRACTICE OF OBJECT SYSTEMS—1999

Create Node: The operation creNode(n,v) creates a
new object. The identifier n must be new, i.e., n
must not occur in O. The initial value v must be
an atomic value (integer, real, string, etc.) or the
special symbol C (for complex).

Update Node: The operation updNode(n,v) changes
the value of object n, where v is an atomic value
or the special symbol C. Object n must be either
an atomic object or a complex object without sub-
objects. (The model requires us to remove all sub-
objects of a complex object n before transforming
it into an atomic object.) The value v becomes the
new value of n.

Add Arc: The operation addArc(p,l, c) adds an arc la-
beled ! from object p (the parent) to object ¢ (the
child). Objects p and ¢ must exist in O, p must
be complex, and the arc (p,l, ¢) must not already
exist in O.

Remove Arc: The operation remArc(p, 1, ¢) removes an
arc. Objects p and ¢ must exist in O, and O must
contain an arc (p, 1, ¢), which is removed.

If w 1s a basic change operation that can be applied to
0, we say u is valid for O, and we use u(0) to denote the
result of applying u to O. Note that there is no explicit
object deletion operation. In OEM, persistence is by
reachability from the distinguished root node [2]. Thus,
to delete an object it suffices to remove all arcs leading
to 1t. A subtlety is that sometimes we need to allow
objects to be “temporarily” unreachable. In particular,
when we create a new object, it remains unreachable
until we create an arc that links it to the rest of the
database. Thus, when we consider sequences of changes
in Section 2.2, we want to permit the result of atomic
changes to (temporarily) contain unreachable objects.
The issue is discussed further in Section 2.2 below. Note
that users will typically request “higher-level” changes
based on the Lorel update language [2]; the basic change
operations defined here reflect the actual changes at the
database level.

Ezample 2.

Let us consider some modifications to the OEM
database in Example 1. We will use these modifications
as a running example in the rest of the paper. First, on
January 1st, 1997, the price rating for “Bangkok Cui-
sine” is changed from 10 to 20. This modification cor-
responds to an updNode operation. On the same day,
a new restaurant with name “Hakata” is added (with
no other data). This modification corresponds to two
creNode operations for the restaurant node and its sub-
object, and two addArc operations to add arcs labeled
“restaurant” and “name.” Next, on January bth, a sub-
object with value “need info” is added to the “Hakata”
restaurant object via an arc labeled “comment.” This
modification corresponds to one cre Node operation and
one addArc operation. Finally, on January 8th the park-
ing at “Lytton lot 2”7 is no longer considered suitable
for the restaurant “Janta,” and the corresponding arc

“Lyton® "Palo Alto"

FIG. 2.

“Lytton” "Palo Alto"

FIG. 3.

is removed; this modification corresponds to a remArc
operation. The resulting modified OEM representation
of the Guide data is shown in Figure 3, with new data
highlighted in bold, and the deleted arc represented us-
ing a dashed arrow. ad

2.2. OEM Histories

We are typically interested in collections of basic
change operations, which describe successive modifica-
tions to the database. We say that a sequence L =
Uy, Us, . . ., Uy of basic change operations is valid for an
OEM database O if u; 1s valid for O;_q foralli =1...n,
where Og = O, and O; = w;(0;_1), for i = 1...n. We
use L(O) to denote the OEM database obtained by ap-
plying the entire sequence L to O. Also, we say that
a sel U = {uy,us,...,u,} of basic change operations
is valid for an OEM database O if (1) for some order-

"Lytton lot 2"

"Lytton lot 2"

restaurant

cuisine

"Indian"

"120 Lytton"

"usually full"

"moderate”

The OEM database in Example 1.

/=~ comment_s~>
-2k = nb)

—-A Nz
~Jhame "need info"

restaurant

"usually full"

The OEM database in Example 2

ing L of the changes in U, L is a valid sequence of
changes, (2) for any two such valid sequences L and
L', L(O) = L'(0), and (3) U does not contain both
addAre(p,l,¢) and remArc(p,l,¢) for any p, [, and c.
We use U(O) to denote the OEM database obtained by
applying the operations in the set U (in any valid order)
to O.

We are now ready to define an OEM history. As-
sume we are given some time domain time that is dis-
crete and totally ordered; elements of time are called
timestamps. Intuitively, consider an OEM database to
which, at some time 1, a set U; of basic change oper-
ations is applied, then at a later time ¢, another set
U, is applied, and so on. A history represents such a
sequence of sets of modifications.

Definition.

An OEM history is a sequence H = (t1,U1), ...,
(tn,Uy), where U; is a set of basic change operations
and ¢; 1s a timestamp, for ¢+ = 1...n, and ¢, < 4,41

THEORY AND PRACTICE OF OBJECT SYSTEMS—1999 5

for e = 1...n—1. We say H is valid for an OEM
database O if, for all ¢ = 1...n, U; 1s valid for O;_1,
where Og = O, and O; = U;(O;_y) fori=1...n. a

We now return to the requirement that all objects in
an OEM database must be reachable from the root. An
OEM history can be viewed as a sequence L1, ..., L, of
sequences of atomic changes. Within one sequence I;
of changes, we relax the requirement that all objects are
reachable from the root so that we can, e.g., create a
node and then create arcs leading to it, as discussed ear-
lier. However, immediately after each sequence L; has
been applied, nodes that are unreachable are considered
as deleted, and the remainder of the history should not
operate on these objects. To simplify presentation, we
also assume that object identifiers of deleted nodes are
not reused.

Ezample 3.

The history for the modifications described in Exam-
ple 2 consists of three sets of basic change operations.
It is given by H = ((t1,U1), (t2,U2), (t3,Us)), where
t1 = 1Jan97, ts = 5Jan97, t3 = 8Jan97, and where U;

are as follows:

Uy = {updNode(nyi,20), creNode(ns,C), creNode(ns,
“Hakata”), addArc(ng, “restaurant”, ns),
addAre(ng, “name” , n3)}

Uy = {creNode(ns, “need info” YaddArc(na,
“comment” ns)}

Us = {remArc(ng, “parking”,n7)}.

This history is valid for the OEM database of Figure 2.
O

3. Representation of Changes

In this section, we describe how changes to an OEM
database are represented by attaching annotations to
the OEM graph, thereby turning it into a DOEM (Delta
OEM) graph. We first introduce the annotations we use
and define a DOEM database as an OEM graph con-
taining these annotations. Next, we describe how an
OEM history (defined in Section 2.2) is represented us-
ing a DOEM database. Finally, we discuss some prop-
erties of DOEM databases that make them well-suited
for representing changes in semistructured data.

Intuitively, annotations are tags attached to the
nodes and arcs of an OEM graph that encode the his-
tory of basic change operations on those nodes and arcs.
There is a one-to-one correspondence between annota-
tions and the basic change operations. Thus, nodes and
arcs may have the following annotations:

¢ cre(t): the node was created at time ¢.

* upd(t,ov): the node was updated at time ¢; ov is
the old value.

¢ add(t): the arc was added at time ¢.

¢ rem(t): the arc was removed at time ¢.

6 THEORY AND PRACTICE OF OBJECT SYSTEMS—1999

The set of all possible node annotations is denoted by
node-annot, and the set of all possible arc annotations
is denoted by arc-annot.

Using the above definitions of node and arc annota-
tions, we now define a DOEM database. In the following
definition, the function fx(n) maps a node n to a set of
annotations on that node and the function f4(a) maps
an arc @ to a set of annotations on that arc.

Definition.

A DOEM database is a triple D = (O, fn, fa), where
O = (N,A,v,r) is an OEM database, fy maps each
node in N to a finite subset of node-annot, and fj4
maps each arc in A to a finite subset of arc-annot. O

3.1. DOEM Representation of an OEM
History

Given an OEM database O and a history H =
(t1,U1), ..., (tn, Upn) that is valid for O, we would like
to construct the DOEM database representing O and
H, denoted by D(O,H). D(O,H) is constructed in-
ductively as follows. We start with a DOEM database
Dyq that consists of the OEM database O with empty
sets of annotations for the nodes and the arcs of O.
Suppose D;_; is the DOEM database representing O
and (t1,U1), ..., (ti—1,U;—1), for some 1 < ¢ < n. The
DOEM database D; is constructed by considering the
basic change operations in U;. Since the history is valid,
we can assume some ordering L; of the operations in U;
(Definition 2.2). Starting with D;_1, we process the
operations in L; in order. Whenever the value of an
object is updated, in addition to performing the update
we attach an upd annotation to the node. This annota-
tion contains the timestamp #; and the old value of the
object. When a new object is created or an arc added,
in addition to performing the modification, we attach
a cre or add annotation with the timestamp ¢;. When
an existing arc 1s removed, we do not actually remove
the arc from the graph; instead, we simply attach a
rem annotation to the affected arc with the timestamp
t;. Observe that this representation directly stores the
changes themselves, not the before and after images of
the changes, and thus takes the snapshot-delta approach
discussed in Section 1.3.

Erample 4.

Consider the history described in Example 3, which
transforms the OEM database of Figure 2 to that of Fig-
ure 3. The corresponding DOEM database is shown in
Figure 4. We see that the DOEM database contains sev-
eral annotations, depicted as boxes in the figure. For ex-
ample, the annotations with timestamp “1Jan97” cor-
respond to the first set of updates. Note that the cre,
add, and rem annotations contain only the timestamp,
while the upd annotation also contains the old value of

@ guide

restaurant

name ‘
. price address

"Bangkok Cuisine" . address
207 Great city .
Upd Lytton lot 2"
t:1Jan97
ov:10 . .
"Lytton” "Palo Alto"

cre add] cre]
add t:1Jan97, t:5Jan97) t:5Jan97)

{:1Jan97 restaurant . comment

name "n%d info"
restaurant
. 1 97 cre

"Hakata"
cuisine
name addess
nearby-eats
price "Indlan

comment

"120 Lytton"

"usually full"

moderat

FIG. 4. The DOEM object in Example 4.

the updated node (10, in our example). Also note that
the removed “parking” arc from the “Janta” restaurant
object to the “Lytton lot 2” parking object is not actu-
ally removed from the DOEM database; instead it bears
a rem annotation. ad

3.2. Properties of DOEM Databases

We have seen above how a DOEM database is used
to represent an OEM database and its history. We
now discuss the advantages of this representation. We
say that a DOEM database D is feasible if there exists
some OEM database O and valid history H such that
D = D(O,H). Note that we do not require DOEM
databases to record all changes since creation, i.e., OEM
database O need not be empty. DOEM databases have
the following desirable properties:

¢ It is easy to obtain the original snapshot Og(D)
from a DOEM database D. Og(D) contains exactly
those nodes in 1) that do not have a cre annotation.
The arcs of Op (D) are the arcs in D that either have
no annotations, or have a rem annotation as the
annotation with the smallest (earliest) timestamp.

¢ It is easy to obtain the snapshot at time t, Oy(D),
from a DOEM database D). Starting from the root
object of), we traverse I} in preorder. For each
node n we encounter, we do the following:

1. We find the value v;(n) of n at time ¢ (atomic
value or C) as follows: If n has no upd an-
notations, then v;(n) = v(n). Otherwise, let
upd(t1,0v1), ..., upd(tr, ovi) be the upd anno-
tations in fy(n). If ¢x < ¢, vi(n) = v(n). Oth-
erwise, pick ¢ € [1, k] such that ¢; is the small-
est timestamp greater than tin ¢1, ..., ¢x; then
ve(n) = ov;.

2. If v¢(n) = C, continue the preorder traversal
by following the arcs emanating from n that
were present at time ¢. These are the arcs
emanating from n that either do not have any
annotation with timestamp less than or equal
to ¢, or have an add annotation as the anno-
tation with the greatest timestamp less than
or equal to t.

e It is easy to obtain the current snapshot from a
DOEM database. It is the snapshot at time c,
where ¢ is the current time.

e It is easy to obtain the encoded history H(D)
from a DOEM database D. The history H(D) =
(t1,U1), ..., (tn, Un) is constructed as follows. First,
t1,...,tn is the set of timestamps occurring in D,
ordered by time. For each ¢ = 1...
the following operations:

n, U; contains

1. addArc(p,l,¢) (remArc(p,l,c)), if the arc
(p,1,¢) has the annotation add(t;) (respec-
tively, rem(t;));

2. updNode(n,v), if n has an annotation
upd(t;, ov) and v is the next value of n. That
is, v = ov' if the next (by time) annotation
of n is upd(t;,0v'), and v = v(n) if n is not
updated after ¢;;

3. creNode(n,v), if n has the annotation cre(t;),
where v is defined as in Case 2.

¢ [t is relatively easy to determine if a given DOEM
database D is feasible. We construct the original
snapshot Og(D) and the encoded history H (D) for
D as above, and test if D(Oo(D), H(D)) = D.

¢ Most importantly, if I is feasible, we can show that
the OEM database Og(D) and the history H(D)
encoded by D are unique. Thus, a DOEM database
faithfully captures all the information about the
history of the corresponding OEM database.

THEORY AND PRACTICE OF OBJECT SYSTEMS—1999 7

e As we will see in the next section, it is easy and
intuitive to query the history encoded in a DOEM
database.

4. Querying Over Changes

In Section 3, we have seen how the history of an OEM
database is represented by the corresponding DOEM
In this section, we describe how DOEM
databases are queried. We introduce a query language
called Chorel for this purpose. Chorel is similar to the
Lorel language [2] used to query OEM databases. We
begin with a brief overview of Lorel, followed by a de-
scription of the syntax and semantics of Chorel.

database.

4.1. Lorel Overview

Lorel uses the familiar select-from-where syntax,
and can be thought of as an extension of OQL [5] in two
major ways. First, Lorel encourages the use of path
expressions. For instance, one can use the path ex-
pression guide.restaurant.address.street to spec-
ify the streets of all addresses of restaurant entries in
the Guide database. Second, in contrast to OQL, Lorel
has a very “forgiving” type system. When faced with
the task of comparing different types, Lorel first tries to
coerce them to a common type. When such coercions
fail, the comparison simply returns false instead of rais-
ing an error. This behavior, while it may be unsuitable
for traditional databases, is exactly what a user expects
when querying semistructured data. Lorel also provides
a number of syntactic conveniences such as the possi-
bility of omitting the from clause. We do not describe
Lorel in detail here (see [2]), but only present through
a simple example those features that are needed to un-

derstand Chorel.

Ezample 5.

Consider again the OEM database depicted in Fig-
ure 3. To find all restaurants that have a price rating
of less than 20.5, we can use the following Lorel query:

select guide.restaurant
where guide.restaurant.price < 20.5;

Note that the query expresses the price rating as a real
number whereas the restaurant entries for “Bangkok
Cuisine” and “Janta” in the OEM database shown in
Figure 3 use an integer and a string, respectively. Fur-
thermore, the third restaurant entry does not have a
price subobject at all. Lorel successfully coerces the
integer price 10 to real, and the comparison succeeds.
For the string encoding of the price (“moderate”), Lorel
tries to coerce, but fails, returning false as the result of
the comparison. Finally, for the third restaurant, the
missing price subobject simply causes the comparison

8 THEORY AND PRACTICE OF OBJECT SYSTEMS—1999

to return false. Thus, the result of the above query
is a singleton set containing the restaurant object for
“Bangkok Cuisine.”
itively reasonable response to the original query, despite

the typing difficulties and the missing data. ad

Note that this result is an intu-

Lorel also allows the use of path expressions that
include regular expressions and wildcards (e.g., “#”
matches an arbitrary path of length 0 or more). Such
general path expressions are powerful extensions of the
simple path expressions of OQL, and allow Lorel users
to specify complex path patterns in a database graph.
Chorel is also based on extending the notion of path
expressions, but in a different direction: We extend
path expressions to allow the annotations in DOEM
databases to be specified and matched.

4.2. Chorel

In Chorel, path expressions may contain annotation
expressions, which allow us to refer to the node and arc
annotations in a DOEM database. Informally, Lorel
path expressions can be thought of as being matched
to paths in the OEM database during query execu-
tion. Analogously, the annotation expressions in Chorel
path expressions can be thought of as being matched to
annotations on the corresponding paths in the DOEM
database.

Ezample 6.

Consider the DOEM database depicted in Figure 4.
To find all newly added restaurant entries only, we can
use the following Chorel query:

select guide.<add>restaurant;

The annotation expression “<add>” specifies that only
those objects connected to the “guide” object by
a ‘“restaurant”-labeled arc having an add annotation
should be retrieved. For the database depicted in Fig-
ure 4, this Chorel query returns the restaurant object
with name “Hakata.” ad

Not surprisingly, we use four kinds of annotation ex-
pressions in Chorel path expressions: node annotation
expressions “cre” and “upd,” and arc annotation ez-
pressions “add” and “rem.” Recall that a path expres-
sion, e.g., guide.restaurant.price, consists of a se-
quence of labels. Arc annotation expressions must occur
immediately before a label, whereas node annotation
expressions must occur immediately after one. (Note
that since node and arc annotations use different key-
words, no confusion can arise.) Path expressions con-
taining node or arc annotation expressions are called
annotated path expressions. For instance,

guide.<add>restaurant.price<upd>

is a correct annotated path expression. It requires
an add annotation to be present on the arc labeled
“restaurant,” and an wupd annotation on the “price”
node (i.e., on the node at the destination of the arc
labeled “price”). For simplicity, in this paper we do
not consider path expressions that have annotation ex-
pressions attached to wildcards or regular expressions,
however generalizing to allow such annotation expres-
sions 18 not difficult.

Annotation expressions may also introduce time
variables to refer to the timestamps stored in matching
annotations, and data variables to refer to the modified
values in matching upd annotations. More precisely, the
syntax of annotation expressions is as follows:

< AnnotlattimeV] > if Annot € { add, rem, cre }
< upd[attimeV][fromoldV][tonewV] > for upd

where timeV, 0ldV, and newV are variables. Note that
a DOEM database does not explicitly store the new
value of an updated object, however this information
1s available implicitly, and can be determined easily as
shown in Section 3.2.

Let us consider a Chorel query that uses a time vari-
able. Note that we allow users to enter timestamps
using a textual representation, e.g., 4Jan97. In keeping
with Lorel’s extensive use of coercion, any recognizable
format 1s allowed and is converted automatically to an
internal timestamp datatype.

Ezample 7.

Consider the DOEM database in Figure 4. To find
all restaurant entries that were added before January
4th, 1997, we can use the following Chorel query:

select guide.<add at T>restaurant
where T < 4Jan97;

The Chorel preprocessor will rewrite this query to ob-
tain the following. (We will explain this rewriting
shortly.)

select R
from guide.<add at T>restaurant R
where T < 4Jan97;

The introduced from clause will bind R to all “restau-
rant” objects that are connected to the “guide” object
via an arc with an add annotation, and will provide cor-
responding bindings for 7. More precisely, the evalua-
tion of the from clause will yield the set of pairs (R, T)
such that there is a restaurant arc from the guide ob-
ject to R that has an add annotation with timestamp
T. The where clause will filter out the (R, T) pairs for
which 7" does not satisfy the condition. For the DOEM
database in Figure 4, this query returns the restaurant
object for “Hakata.” a

Once time and data variables have been bound using
annotations, they can be used just like other variables

in Lorel or OQL. This feature is illustrated by the fol-
lowing query, which uses time and data variables in the
select clause.

Ezample 8.

Referring again to the DOEM database in Figure 4,
suppose we want to find the names of all restaurants
whose price ratings were updated on or after January
1st, 1997 to a value greater than 15, together with the
time of the update and the new price. We can use the
following query (on the left):

select N, T, NV

from guide.restaurant.price<upd at T to NV>,
guide.restaurant.name N

where T >= 1Jan97 and NV > 15;

answer
name "Bangkok Cuisine"
update-time 1Jan97
new-value 20

The result of the above query is a single complex ob-
ject with three components, as shown on the right. The
label name is chosen by Chorel using the method de-
scribed in [2]. For time and data variables whose labels
are not specified by the query, Chorel chooses the de-
fault labels create-time, add-time, remove-time, update-
time, new-value, and old-value. a

4.3. Chorel Semantics

We now make the semantics of Chorel queries more
precise. As is done for Lorel, the semantics 1s described
by specifying the rewriting of Chorel queries into OQL-
like queries. However, we need to introduce some addi-
tional machinery to handle the annotation expressions
in Chorel queries.

First, the annotation expressions in a Chorel query
are transformed into a canonical form that includes all
variables. For example, “<add>” is rewritten to “<add
at T1> and “<upd from X>” isrewritten to “<upd at
T2 from X to NV2>,” where T1, T2, and NV2 are fresh
variables. Next, as in Lorel, we eliminate path expres-
sions by introducing variables for the objects “inside”
the path expressions. For example, the path expression
“a.b.c” in a from clause is converted to “a.b X, X.c
Y,” where X and Y are new range variables. The details
of this rewriting are described in [2].

At this stage, we have to give a semantics to range
variable definitions that may include annotation expres-
sions (e.g., “X.label Y,” “X.<add at T>label Y”) in
the context of a DOEM database. In the absence of an
annotation expression, the semantics of an expression
“X.label Y” is that for a binding ox of X, Y is bound
to all objects oy such that there is an arc labeled label
from ox to oy in the current snapshot. Note that by

THEORY AND PRACTICE OF OBJECT SYSTEMS—1999 9

this semantics, a standard Lorel query (without annota-
tions) over a DOEM database has exactly the semantics
of the same query asked over the current snapshot for
that DOEM database. In the presence of annotation
expressions, the semantics requires the existence of the
specified annotation, and also provides bindings for the
variables in the annotation expression. The bindings
are also specified by a special rewriting. As an exam-
ple, the query in Example 8 is rewritten to:

select N, T, NV

from guide.restaurant R, R.price P,
R.name N, (T, OV, NV) in wupdFun(P)

where T >= 1Jan97 and NV > 15;

Our rewriting uses the following functions, which ex-
tract the information stored in annotations:

crePun(node) — {time}

updFun(node) — {(time, old-value, new-value)}
addFun(source, label) — {(time, target)}
remFun(source, label) — {(time, target)}

The function creFun(n) returns the set of timestamps
found in cre annotations on node n. (Note that by our
definition of change operations in Section 2.1, this set is
either empty or a singleton.) The function updFun(n)
returns a set of triples corresponding to the timestamp,
the old value, and the new value in upd annotations on
n. The function addFun(n,l) returns a set of (¢, ¢) pairs
such that ¢ 1s an [-labeled subobject of n via an arc
that has an add(¢) annotation. The remFun function
is analogous to addFun. Once this rewriting has been
performed, the from, where, and select clauses of the
resulting query are processed in a standard manner.

Above, we have illustrated how variables introduced
in the from clause are interpreted. Variables may be in-
troduced in the where clause as well. They are treated
by introducing existential quantification in the where
clause, extending the treatment of such variables in
Lorel [2]. Consider the following example:

Ezample 9.

Consider again the DOEM database of Figure 4.
Suppose we want the names of restaurants to which
a “moderate” price subobject was added since January
1st, 1997. We can write the following Chorel query:

select N
from guide.restaurant R, R.name N
where R.<add at T>price = '"moderate"

and T >= 1Jan97;

The variable T is introduced in the where clause. There-
fore, the rewritten where clause 1s:

where exists (T, P) in addFun(R,"price")
(P = "moderate" and T >= 1Jan97);

10 THEORY AND PRACTICE OF OBJECT SYSTEMS—1999

5. Implementing DOEM and Chorel

In this section, we describe how we have implemented
DOEM databases and Chorel queries. One approach
would be to extend the kernel of the Lore database
system [13] to allow annotations to be attached to the
nodes and arcs of an OEM database. Given these ex-
tensions, the Lorel query engine could be extended to a
Chorel query engine in a straightforward manner based
on the semantics specified in Section 4.3. We do not
discuss this approach further. Instead, our implemen-
tation uses an alternative approach of implementing
DOEM and Chorel “on top of” Lore. We encode DOEM
databases as OEM databases, and we implement Chorel
by translating Chorel queries to equivalent Lorel queries
over the OEM encoding of the DOEM database. In ad-
dition to being more modular than the direct implemen-
tation approach (and not affecting Lore object layout or
query processing), this approach can also be adapted
easily to other graph-based data models, e.g., those in
[4, 5]. Note that while there are several simple methods
of encoding a DOEM database as an OEM database,
the challenge here is to devise an encoding that permits
a simple and valid translation of Chorel queries over
the original DOEM database into Lorel queries over
the OEM encoding. For many of the obvious possi-
ble encodings, such query translation proves to be very
difficult or impossible.

We begin by explaining how we encode DOEM
databases in OEM, followed by a description of the
translation of Chorel queries to Lorel queries for this
encoding, and finally a description of our system imple-
mentation.

5.1. Encoding DOEM in OEM

Let D be a DOEM database. We encode D as an
OEM database Op defined as follows. For each ob-
ject o in D, there is a corresponding object o' in Op.
Atomic objects are encoded as complex objects so that
we can record their histories using subobjects. Special
labels used by the encoding start with the character
“&” to distinguish them from standard labels occurring
in O. The encoding object o' for DOEM object o has
the following subobjects, listed by their labels. Refer to
Figures 5 and 6.

e &val: If 0 is atomic with current value v, there is
a “gval”-labeled arc from o' to an atomic object
with value ». If o is complex, there is a “&val”-
labeled arc from o’ to itself. (The use of this extra
edge will soon become clear.)

¢ gcre: If o has a create annotation cre(t), then o'
has a “&cre”-labeled complex subobject ol that has
a “&time”-labeled atomic subobject with value ¢.

¢ &upd: For each update annotation wupd(t,ov) at-
tached to o, o’ has an “gupd”-labeled complex sub-
object o},. The object o), has a “&time”-labeled

cre(tl)
upd(t2, 2) ——
upd(t3, 3) 5

DOEM

FIG. 5.

atomic subobject with value ¢, and a “&val”-
labeled atomic subobject with the value before the
update (ov).

e [: If the current snapshot for D contains an arc
(0,1,p), then Op contains an arc labeled [from o
to the object p’ that encodes p.

¢ &l-history: If D contains an arc (o,l, p), then Op
contains an arc (o', &l-history,o;) where o] is a
complex object that contains the history of the
arcs from o to p. The object o] has the following
structure:

— gtarget: There is an arc (o, &target,p’),
where p’ is the object encoding p.

— &add, &rem: For each annotation add(t)
(rem(t)) attached to (o,l,p), there is an
“gadd”-labeled (respectively, “&rem”-labeled)
complex subobject ol that has a “&time”-
labeled atomic subobject with value ¢.

¢ g&next: For each OEM object o} that encodes a
DOEM object 01 and its node annotations, the
“gcre”- and “fupd”-labeled subobjects of o} are
chained together in ascending order of the values
of their “&time” subobjects using arcs with label
“gnext.” (As we shall see shortly, this chaining is
useful for obtaining the “new value” corresponding
to an update annotation.) Similarly, for each OEM
object o/ ; that encodes a DOEM arc (os, L, 0;)
and the annotations on that arc, the “&add”- and
“grem”-labeled subobjects of o0;1; are chained to-
gether in ascending order of the values of their
“gtime” subobjects using arcs with label “&next.”
(As we shall see in Section 6, this chaining is useful
for implementing snapshot-based access.)

5.2. Translating Chorel to Lorel

Given the above encoding of a DOEM database as
an OEM database, we now describe how a Chorel query
over a (conceptual) DOEM database is translated into
an equivalent Lorel query over an OEM encoding of the

Encoding a DOEM object in OEM: node annotations

DOEM database. In Section 4.3 we described how a
Chorel query can be rewritten into an OQL-like query
using special functions ereFun, updFun, addFun, and
remFPun. Therefore, in the following we assume that we
are given such a rewritten query.

We simulate the special functions creFun, updFun,
addFun, and remFun using expressions that extract
the required values from the OEM encoding of the an-
notations. For example, the expression “(T, 0V, NV)
in updPun(P)” is replaced with “P.&upd U, U.&time
T, U.&val 0V, U.&next.&val NV.” From the encod-
ing scheme described in Section 5.1, we see that this
expression instantiates the triple (T, 0V, NV) to the
timestamp, old value, and new value of the update
annotations on objects bound to P. If an expression
of the form “(T, C) in addFun(P, 1)” occurs in a
Chorel query, we replace it with “P.&l-history H,
H.&add.&time T, H.&target C.” The case for remove
annotations, involving the remFun function, is anal-
ogous. Finally, we replace an expression “T in cre-
Fun(P),” with “P.&cre.&time T.”

Note that our encoding scheme ensures that only
arcs that exist in the current snapshot corresponding
to the encoded DOEM database are accessible directly
via their labels in the encoding. If an [-labeled arc
does not exist in the current snapshot, its information is
stored using an arc with label &/-history, which does
not match the label [.

One remaining issue is that in the OEM encoding
of a DOEM database, the value of an atomic object
is stored in a “&val”-labeled subobject of the encod-
ing object. So, for instance, when a query compares an
atomic object to a value, we want to use the value stored
in the “&val” subobject for this comparison. Therefore,
wherever in the query the value of a object variable is
accessed (i.e., in predicates and function arguments) we
replace the object variable “X” with “X.&val.” Observe
that since there is a “&val”-labeled arc from the encod-
ing of each complex object to itself, we can safely per-
form the above transformation for all value accesses of
object variables occuring in the original query, without

THEORY AND PRACTICE OF OBJECT SYSTEMS—1999 11

DOEM

FIG. 6.

knowing whether the objects they encode are atomic or
complex (which, in general, we will not know).

The transformation is illustrated by the following ex-
ample.

Ezample 10.

Consider the Chorel query in Example 9. In Sec-
tion 4.3, we considered the OQL-like rewriting of this
query. We now complete this rewriting as described
above, to yield the following Lorel query over the OEM
encoding of the DOEM database in Figure 4:

select N

from guide.restaurant R, R.name N

where exists H in R.&price-history :
exists P in H.&target :
exists T in H.&add.&time :
T >= 1Jan97 and P.&val = "moderate";

Note that we simulate the range specification addFun(R,
"price”) using the “&”-prefixed subobjects. Further, we
use P.&val to access the actual price value (and not the
complex object packaging it with its history). a

Note that the example query returns a set of DOEM
objects that represent restaurant names. That is, it
returns not only the names of the restaurants, but also
the history of these names, if they changed. Returning
the DOEM object enables the user to access both the
value and the history of an object.

In the above description, for simplicity we assumed
that every atomic object o is encoded using a complex
object o’ that has a &val-labeled subobject with value
v(0). However, in practice we do not encode unanno-
tated atomic objects in this manner; that is, if an atomic
object o has no annotations, we encode it using a sim-
ple atomic object of with value v(0). In our translation
scheme, we replace accesses to the value of an variable
X by X.[&vall, which i1s a Lorel path expression indi-
cating an optional path component &val.

12 THEORY AND PRACTICE OF OBJECT SYSTEMS—1999

Encoding a DOEM object in OEM: arc annotations

6. Virtual Annotations and Snapshot-
based Access

In Section 4.2 we have seen how the construct <upd
at T from oldV to newV> refers to a wvirtual annota-
tion upd(t, ov, nv), where t, ov, and nv are, respectively,
the timestamp, the old value, and the new value of an
update operation in the history. The real annotation,
upd(t, ov), does not contain the old value, however that
information is available elsewhere in the database. We
can extend this idea of virtual annotations to facili-
tate access to other implicit information in a DOEM
database. As a concrete example, in this section we
introduce virtual annotations that facilitate snapshot-
based access to a DOEM database. (Recall Section 1.3,
which describes different modes of accessing historical
information.) We define the semantics of Chorel queries
containing references to virtual annotations by using
range functions that are defined over the real annota-
tions and data in a DOEM database. We describe how
to implement this added functionality by extending the
translation-based method of Section 5.

6.1. Snapshot-based Access

Recall from Section 4.3 that an unannotated path
expression such as guide.restaurant.entree.price
is evaluated over the current snapshot of a DOEM
database. Sometimes, one may wish to evaluate path
expression components over other (non-current) snap-
shots. For example, we may wish to refer to the price
of an entree at some time 7T'; we introduce the syn-
tax guide.restaurant.entree.price<at T>. Simi-
larly, we may wish to refer to the existence of a parking
arc between two objects X and Y at time T'; we use
the syntax X.<at T>parking Y in the from clause of a

Chorel query.

Ezample 11. Consider the Guide database depicted
in Figure 4. Suppose we wish to list the parking areas
close to the restaurant “Janta” as of st January 1997.
We write the following query:

select P
from guide.restaurant R, R.<at T>parking P
where R.name = "Janta" and T = 1Jan97;

For the DOEM database depicted in Figure 4, this
query returns the parking object with address “Lytton
lot 2,7 since on 1st January 1997 there was a “park-
ing” arc from the Janta restaurant object to the Lytton
parking object. (This arc was removed on 8th January

1997.) 0

When the variable T occuring in an at annotation ex-
pression is bound to a constant elsewhere in the query
(as in the above example), the effect of the annota-
tion expression on query evaluation is intuitively simple:
We evaluate the query as if the path expression compo-
nent qualified by <at T> refers to the snapshot of the
database at time 7. As we have seen in Section 3.2,
the snapshot at time 7T is easily obtained using the in-
formation in a DOEM database. However, if T" is un-
bound, then unless we take special precautions we may
find ourselves faced with unsafe queries, as illustrated
by the following example.

Ezample 12. For the Guide database depicted in
Figure 4, suppose we are interested in finding the times
at which the restaurant “Bangkok Cuisine” had a price
rating less than 15. We write the query as follows:

select T
from guide.restaurant R, R.price<at T> P
where R.name = '"Bangkok Cuisine" and P < 15;

The basic problem with this query is that while the
database stores only a finite number of timestamps, the
above query would require 7" to range over the infinite
number of intermediate timestamp values as well. O

We overcome such difficulties by allowing timestamp
variables such as T above to bind only to those
timestamp values that exist explicitly in the DOEM
database. Intermediate timestamp values are repre-
sented using intervals [B, F), where B and F are the
begin and end timestamps, respectively. (We use a con-
vention of intervals that are closed on the left and open
on the right; our methods are not dependent on this
convention.)

To introduce this concept of intervals, we add
another virtual annotation, called during, on nodes
and arcs, and a corresponding annotation expression
“<during B E>” in the syntax of annotated path ex-
pressions. (As we will see in Section 6.3, virtual anno-
tation during in fact subsumes virtual annotation at.)
Intuitively, the construct X<during B E> V in a from

clause binds the triple (B, E, V) to all values {(b, e, v)}
such that the object X had value v continuously from
time b to time e. Similarly, the construct X<during B
E>1 Y binds the triple (B, E,Y) to all values {(b,e,Y)}
such that the arc (X,,Y) existed continuously from
time b to time e. We further require that the above
intervals [b, ¢) be maximal.

When using snapshot-based access, we often need to
refer to the current time. We introduce a distinguished
timestamp tn for this purpose. More precisely, {5 is a
special variable whose value during the evaluation of a
query is the time at which that evaluation begins. Simi-
larly, we often need to refer to the initial timestamp cor-
responding to a database; we introduce a distinguished
timestamp f; for this purpose. More precisely, each
DOEM database has an initial timestamp ¢; associated
with it. Note that ¢; is a constant, and may be negative
infinity.

Using the during virtual annotation, the query in
Example 12 may be rewritten as follows:

select B,E
from guide.restaurant R,
R.price<during B E> P
where R.name = '"Bangkok Cuisine" and P < 15;

This query returns a set of pairs {(b,e)} such that at
all times during the interval [b, ¢), Bangkok Cuisine had
a price rating less than 15. For our example database
depicted in Figure 4, this query returns the singleton
set {(t1,1Jan97)}, where 5 is the initial timestamp of
the database.

Note that 1t is possible to express such snapshot-
based queries using only the basic Chorel constructs
described in Section 4. However, the resulting queries
are extremely cumbersome. For example, the simple
snapshot-based access X.<during B E>foo Yin a from
clause requires a construction such as the following:

from X.<add at B>foo Y, X.<rem at E>foo Z...
where Y = Z and not exists M :
(X.<add at M>foo Y or X.<rem at M>foo Y);

In reality, the expression is even more complex, since
we need to handle the special cases involving missing
annotations on both the “begin” and the “end” side.
Thus, snapshot-based access is an excellent candidate
for simplification using virtual annotations.

6.2. Semantics of during

We now formalize our intuitive description of the
semantics of during annotations. As in Section 4.3,
we shall specify the semantics using a rewriting with
special functions for binding range variables. To de-
fine the semantics of the arc annotation expression
X.<during B E>1 Y in the from clause of a Chorel
query, we introduce a special function, arcDuring. This

THEORY AND PRACTICE OF OBJECT SYSTEMS—1999 13

function maps a DOEM object 07 and label [to a set of
triples {(b,e,02)} such that in the history represented
by the DOEM database, the arc (o1,!,02) existed in
the time interval [b,e), and [b,e) is maximal (i.e., this
condition fails to hold if we decrease b or increase e).
We rewrite the from clause by replacing X.<during B
E>1 Y with (B,E,Y) in arcDuring(X,1). (Recall from
Section 3.2 that given a DOEM database D, it is easy
to obtain the snapshot at time ¢, O;(D). Thus the
intervals [b, e) in the definition of arcDuring are well
defined.) The function arcDuring has some notable
boundary cases: If the earliest annotation on an arc is
rem(t1), then the arc exists in [¢7,%1). (Recall from Sec-
tion 6.1 that ¢; is the initial timestamp associated with
a database and ¢y is the current timestamp.) Similarly,
if the latest annotation on an arc is add(t2), then the
arc exists in the interval [{s,{x]. Finally, if an arc has
no annotations, it exists in [{r,{n].

Now we define the semantics of the node annotation
expression X<during B E> V in the from clause of a
Chorel query. To do so, we introduce a special function,
node During. This function maps a DOEM object o to
a set of triples {(b, e, v)} such that in the history repre-
sented by the DOEM database, the object o had value
v during the time interval [b,¢), and [b,€) is maximal.
We rewrite the from clause replacing X<during B E>
V with (B,E,V) in nodeDuring (X). (Using Section 3.2
we see that the intervals [, e), and the corresponding
values v, are well-defined.) The function nodeDuring
also has some notable boundary cases: If the earliest
annotation on a DOEM object o is upd(?1,v1) then o
has value v; in the interval [t7,¢1). Similarly, if the
latest annotation on o is upd(ty, vi), then o has value
v(o) (the current value) in [ty,tn]. Finally, if o has no
annotations, then it has value v(o) in [t1,tn].

Ezample 13. Consider the query proposed in Ex-
ample 11. Using the during construct, we can write
the following query to return parking for the “Janta”
restaurant as of 1st January 1997.

select P

from guide.restaurant R,
R.<during B E>parking P

where R.name = "Janta" and B <= 1Jan97
and E > 1Jan97;

Using the semantics for during described above, we see
that this query is conceptually rewritten to the follow-
ing:

select P
from guide.restaurant R,
(B,E,P) in arcDuring(R,parking)
where R.name = "Janta" and B <= 1Jan97
and E > 1Jan97;

14 THEORY AND PRACTICE OF OBJECT SYSTEMS—1999

Consider the DOEM database in Figure 4. When R
is bound to the restaurant object “Janta,” function
areDuring results in the tuple variable (B, £, P) rang-
ing over the singleton set {(t7,8Jan97,p1)}, where p is
the parking object with address “Lytton lot 2.7 Since
R, B, and F satisfy the predicate in the where clause,
the Lytton parking object will be returned as the query
result. ad

6.3. The at Construct

Examples 11 and 13 suggest a simple definition for
the edge annotation X.<at T>1 Y and the node an-
notation X<at T> V. We define them as abbreviations
for X.<during B E>1 Y and X<during B E> V, respec-
tively, and add the condition B <= T < E to the where
clause. Note that our rewriting requires the variable T
occurring in the at annotation to be bound elsewhere in
the query independently of the path expression compo-
nent containing at. For example, if we apply this def-
inition of <at T> to rewrite the query in Example 11,
we obtain the query in Example 13.

In cases where the variable T occurring in the <at
T> construct 1s not bound elsewhere in the query, the
definition of at as an abbreviation for a during expres-
sion fails. For example, if we apply the rewriting to
the problematic query of Example 12, which uses <at
T> without binding T elsewhere, we get the following
query in which T is still unbound:

select T

from guide.restaurant R,
R.price<during B E> P

where R.name = "Bangkok Cuisine" and P < 15
and B <= T and T < E;

In general, this problem can be mitigated by allowing
timestamp variables such as T to bind to intervals in-
stead of single timestamps. However, we do not consider
such extensions further in this paper. We shall hence-
forth assume that the <at T> construct is defined only
when T is bound elsewhere in the query independently
of the path expression component containing at.

6.4. The snap Construct

Let us now consider a special class of Chorel queries
that are useful in studying past states of a histori-
cal database. Intuitively, such queries take the snap-
shot at some time ¢, and then evaluate an ordinary
(non-historical) query over this snapshot. We call such
queries pure snapshot queries. For example, using our
Guide database, suppose we wish to generate, as of 15th
June 1997, the names, price ratings, and parking ad-
dresses for restaurants with a price rating less than 20.
That is, we would like to evaluate the following Lorel

(non-historical) query over the OEM database that is
the DOEM snapshot of 15th June 1997:

select R, P, A

from guide.restaurant R, R.price P,
R.parking.address A

where R.price < 20;

In reality we are evaluating Chorel queries over our
DOEM database. Thus, to express that the above query
should be evaluated over the snapshot of 15th June
1997, we could qualify each component of each path
expression in the query as follows:

select R, P, A
from guide.<at T>restaurant R,

R.<at T>price<at T> P,

R.<at T>parking.<at T>address<at T> A
where R.<at T>price<at T> < 20

and T = 15Jun97;

In order to make writing such snapshot queries more
convenient, we introduce as a syntactic convenience the
construct <smap T>, with the requirement that T be
bound elsewhere in the query independently of the path
expression component containing snap. The construct
X.<snap T>foo Yin a from clause is rewritten to X.<at
T>foo Y; furthermore, any other use of Y in the query
is (recursively) rewritten as though it were qualified
by a <snap T>. In particular, Y.bar Z is interpreted
as Y.<snap T>bar Z and recursively rewritten, and ac-
cesses to Y’s value are rewritten as Y<at T>. The where
clause 1s handled analogously. Using this construct, the
above query may now be written more simply as follows:

select R, P, A

from guide.<snap T>restaurant R, R.price P,
R.parking.address A

where R.price < 20 and T = 15Jun97;

6.5. Implementing during by translation

We now describe how the translation-based imple-
mentation of Chorel described in Section 5 is extended
to accommodate the during construct. Refer to Fig-
ures 7 and 8, which depict the OEM encoding of
DOEM objects; we have indicated the new features us-
ing dashed lines. (The other features were described in
Section 5.1.)

Each OEM database used to encode a DOEM
database has a special complex object of; that has one
“gtime”-labeled atomic subobject oy with value tx.
(Recall, from Section 6.1, that ¢y refers to the cur-
rent time; in the implementation, the value of o is
the query execution time.) Similarly, there is a spe-
cial complex object o} that has one “&time”-labeled
atomic subobject of with value ¢;. (Recall, from Sec-

tion 6.1, that ¢ is the initial timestamp associated with
a DOEM database, and may be negative infinity.) Note
that there is exactly one instance of each of the objects
oy, o, of, and of per database. (To highlight this
fact, these objects are depicted using shaded circles in
Figures 5 and 6.)

In Section 5.1, we described the use of “&next”-
labeled arcs to chain annotation-encoding objects in as-
cending order of the annotation timestamps. We now
extend this chain to include the timestamps t; and tn
as follows. Consider first the encoding of node anno-
tations, as depicted in Figure 5. If a DOEM node
o has one or more node annotations (create or up-
date), then in its OEM encoding, we add a “&next”-
labeled arc from the object encoding the annotation
with the largest timestamp to the special object ofy.
The “&next”-labeled arc from of, to o) in Figure 5
is an example of this case. If the DOEM node o has
no annotations, then in the OEM encoding, we add a
“&dcre”-labeled arc from the corresponding node o’ to
the special node of. In Figure 5, if 01 were to not have a
create annotation, a “&dcre”-labeled arc from o} to o}
would exist. (Since in reality o1 does have a create an-
notation, this “&dcre”-labeled arc does not exist, and
is depicted using a dotted line.)

Now consider the encoding of arc annotations, as de-
picted in Figure 6. If an arc (o1,{,02) in the DOEM
database has no annotations, then in the OEM en-
coding of the database, we add a “&dadd”-labeled arc
from o};, to the special object o, where of,, is the
“gl-history”-labeled subobject of o} that encodes the
history of (01,{,02). In Figure 6, 012 is shown as the
object hy. Tf the arc (o1,{,02) has one or more an-
notations, and the annotation with the largest times-
tamp 1s an add annotation, then the OEM encoding has
a “gnext”-labeled arc from the corresponding “&add”-
labeled subobject of, of 0}, to the special object ofy. In
Figure 6, we see an example of such an arc from o/, to
oy

Given the above enhancements to our scheme
for encoding DOEM in OEM, we can
Chorel queries containing the during construct as
Lorel queries over the encoding objects. Given a
Chorel query with the construct X<during B E> in
the from clause, we replace this construct by the
following: X(.&crel.&upd|.&dcre) A, A.&time B,
A.&next.&time E, A.&next.&val V. Similarly, if a
Chorel query has the construct X.<during B E>foo
Y in the from clause, we replace this construct
by the following: X.&foo-history H, H.&target Y,
H(.&add|.&dadd) A, A.&time B, A.&next.&time E.
Asin Section 5, variables introduced in the where clause
of a Chorel query are treated by introducing existential
quantification in the where clause.

rewrite

Erample 14.
Example 13. Using the above rewriting, we obtain the

Consider the during-based query in

THEORY AND PRACTICE OF OBJECT SYSTEMS—1999 15

cre(tl)
upd(t2, 2) —_—
upd(t3, 3) 5

DOEM

FIG. 7.

—

add(t4)

A/ B\ rem(i5)

DOEM

101y --=0 \
/>—/ />—/ :
y&time _p&time !
/”I\ ‘/"N \
QL 0 DNtN .~
FIG. 8.

following Lorel query over the OEM database encoding
the Guide DOEM database:

select P

from guide.restaurant R,
R.&parking-history H, H.&target P,
H.&add A, A.&time B, A.&next.&time E

where R.name = "Janta" and B <= 1Jan97
and E > 1Jan97;

6.6. Object Deletion and Garbage Collection

Recall that in the OEM data model underlying
DOEM and Chorel, there is no explicit object deletion
operation. Instead, persistence is by reachability from
the distinguished root of the database, and any unreach-
able objects are implicitly deleted. An OEM database
system must therefore periodically perform garbage col-
lection in order to detect and remove such deleted ob-
jects. Between the time an object becomes unreach-

16 THEORY AND PRACTICE OF OBJECT SYSTEMS—1999

& dcre',"'

AT NV
’ uo’l)&ﬁxiu’o’; N
Yo~ Y-~
/.
 F&time
tl‘\o”l)

]\/&ti me

Vi

Ve

t2 2 t3 3

Encoding a DOEM object in OEM: node annotations

Encoding a DOEM object in OEM: arc annotations

able and the time garbage collection is performed, the
semantically deleted object continues to exist in the
database. This situation does not pose any difficul-
ties for Lorel queries, since Lorel path expressions can-
not access any object that is unreachable from the root
of the current database snapshot. However, in Chorel,
such deleted objects are reachable using annotated path
expressions that contain a “forward jump in time” (i.e.,
path expressions that refer to a more recent snapshot
from an older one). The following example illustrates

the point:

Frample 15. Referring back to our Guide database
depicted in Figure 4, suppose the arc from the Guide
object to the restaurant object for “Bangkok Cuisine”
is removed on 1st July 1997. This arc removal results
in the restaurant object for Bangkok Cuisine, as well
as 1ts price, address, street, and city subobjects be-
coming unreachable from the root of the database, im-
plying their deletion. In our DOEM database, how-
ever, these objects continue to exist; the only change
is that there is now a remove annotation rem(1.Jul97)

on the restaurant arc that was removed. Now suppose
on 15th July 1997 we issue the following query to our
DOEM database, asking for the current price rating of
all restaurants that existed as of 1st June 1997:

select P
from guide.<at 1Jun97>restaurant R,
R.price P;

Now since the price object for Bangkok Cuisine does
not currently exist, the result of the above query should
not contain it. However, there is no way for the Chorel
query engine to detect this situation, since there is no
information on either the restaurant or the price ob-
jects that suggests their deletion. (The relevant piece
of information is the rem annotation on the restaurant
arc.) Thus the query result will contain the price rating
for Bangkok Cuisine. i

We mitigate the above problem by introducing a delete
annotation, which records the deletion of an object
(usually as a result of garbage collection). Suppose that
at time tg, some objects are determined to be newly
unreachable from the root of the database. In the cor-
responding DOEM database, we mark such newly un-
reachable objects (which continue to exist physically)
using a del(tg) annotation. We further ensure that we
do not access the value of an object at time #’ if that ob-
ject has a del(t) annotation with ¢’ > t. More precisely,
we modify the definition of the nodeDuring function
in Section 6.2 to state that if a node has a del(tq4) an-
notation then its value after ¢4 is undefined. (That is,
the most recent time interval is modified from [tg, {1 5] to
[ts,t4).) The corresponding changes to the translation-
based implementation are straightforward.

7. A Query Subscription Service

In Section 1, we mentioned as an important ap-
plication of change management being able to notify
“subscribers” of changes in (semistructured) informa-
tion sources of interest to them. In this section, we
describe our design and implementation of such an ap-
plication, called a Query Subscription Service (QSS),
using DOEM and Chorel.

An ordinary query is evaluated over the current state
of the database, the results are passed to the client and
then discarded. An example of an ordinary query is
“find all restaurants with Lytton in their address.” In
contrast, a subscription query is a query that repeatedly
scans the database for new results based on some given
criteria and returns the changes of interest. An example
of a subscription query is “every week, notify me of all
new restaurants with Lytton in their address.” Below,
we describe how subscription queries are specified and
implemented in our system.

Supporting subscription queries introduces the fol-
lowing challenges. First, as discussed earlier, many in-
formation sources that we are interested in (e.g., library
information systems, Web sites, etc.) are autonomous
[20] and typical database approaches based on trigger-
ing mechanisms are not usable. Second, these infor-
mation sources typically do not keep track of historical
information in a format that is accessible to the outside
Thus, a subscription service based on changes
must monitor and keep track of the changes on its own,
and often must do so based only on sequences of snap-
shots of the database states.

Briefly, our approach to constructing a query sub-
scription service over semistructured, possibly legacy,
information sources, 1s as follows: We access the infor-
mation sources using 7Tsimmis wrappers or mediators
[17, 16], which present a uniform OEM view of one or
more data sources. We obtain snapshots of relevant por-
tions of the data and use differencing techniques based
on [9, 7] to infer changes based on these snapshots.
Finally, we use DOEM to represent the changes, and
Chorel to specify the changes of interest. We describe
our approach in more detail next.

user.

A subscription consists of three main components;
refer to Figure 9. The first component is a pair of
frequency specifications (fy, fr). The polling frequency
fp indicates the times at which data source is to be
polled in order to detect changes. The filter frequency
f; indicates the times at which new changes should be
evaluated and reported to the user. Examples of fre-
quency specifications are “every Friday at 5:00pm” and
“every 10 minutes.” The polling frequency implies a
sequence of time instants (¢1,%2,%s,...), which we call
polling times. Filter times are defined analogously. (In
the actual system, we also consider two other modes:
one in which the polling and /or filter times are obtained
following explicit user requests, and the other in which
they are obtained as a result of a trigger on the source
database firing, if the source provides such a triggering
mechanism. To simplify the presentation, we will not
describe these modes further here.)

The second component of a subscription is a Lorel
query @i, which we call the polling query. QSS sends
the polling (Lorel) query to the wrapper or media-
tor at the polling times (¢1,%2,t3,...) to obtain results
(R1, Ra, R3,...). An example polling query is the fol-
lowing. (Recall from Section 4.1 that “#” is a special
character that matches any sequence of zero or more
labels in a path. We also use the Lorel operator like
for string matching.)

define polling query LyttonRests as

select guide.restaurant

where guide.restaurant.address.# like
"YLytton%";

THEORY AND PRACTICE OF OBJECT SYSTEMS—1999 17

time

S;écel?rsgfgn t3 o » o Polling Times
<@ <@ @ o s o SourceStates
Polling Query
|R0 {}| R1 R2 | R3 | e+ o Redlts
(tl, u1) (t2, U2) (3, U;S)/ S History

p
Filter Query |

Change results =

DOEM

FIG. 9.

Let Ry be the empty OEM database, and let R; be
the result of the polling query on the source at time
t; for i = 1,2,.... Each R; (a Tsimmis query result)
is a tree-structured OEM database. Using differenc-
ing techniques described in [9, 7], QSS obtains a his-
tory H = (t1,U1), (t2,Uz), ... corresponding to the se-
quence of OEM databases (Rg, Ry, Ra,...). That is,
Ui(Ri—1) = R; for all ¢ > 0. Then, QSS constructs a
DOEM database D(Rg, H) corresponding to this his-
tory H and the initial snapshot Ry, as described in
Section 3. Thus, intuitively, in the first time-step the
results of the polling query are all There-
after, each subsequent time-step annotates the DOEM
database with the changes to the result of the polling
query since the previous time-step. We identify the

“created.”

DOEM database corresponding to a polling query us-
ing the name of the polling query. Thus the name of
the DOEM database corresponding to the above polling
query is “LyttonRests.”

The third component of a subscription is a Chorel
query ., called the filter query, over the generated
DOEM database. In addition to standard Chorel, in
(). we can use a special time variable “t[0]” to refer
to the current filter time #3, and we can use “t[-1],”
“t[-2],” etc., to refer to the past filter timestz_1, tx_2,
ete. (If the current filter time is 5, we define t[-i] to
be tr_; 1if i < k, and ¢ otherwise, where ¢ is the initial
timestamp associated with the DOEM database of the
subscription.) The filter query describes the data and
changes of interest to the user. An example filter query
is the following:

define filter query NewOnLytton as
select R.name, C.name
from LyttonRests.restaurant<cre at T1> R,

LyttonRests.cafe<cre at T2> C

18 THEORY AND PRACTICE OF OBJECT SYSTEMS—1999

A Query Subscription Service based on DOEM and Chorel

where R.parking = C.parking and T1 > t[-1]
and T2 >= 1Jan97;

Given our definition of the DOEM database “Lytton-
Restaurants,” this query indicates that the user should
be notified of the names of restaurant-cafe pairs on Lyt-
ton street that share a parking area, where the restau-
rant was newly created since the last filter time and the
cafe was created some time after January 1, 1997. At
each filter time 5 (k > 0) given by the filter frequency,
QSS evaluates Q). over the DOEM database D(Rqy, Hy,),
where Hy = (t1,U1),...,(t;,U;), and ¢; is the greatest
polling time less than ¢;, and returns the results to the
user.

FEzample 16.

Consider again the changes to the Guide data de-
scribed in Example 2, as depicted in Figure 3. Suppose
we are interested in being notified every night of new
restaurants created in the Guide database since the pre-
vious night. We issue the subscription S = (f, @1, Q.),
where the frequency specification f is “every night at
11:30pm,” and the polling query); and filter query Q.
are Restaurants and NewRestaurants (respectively) as

defined below:

define polling query Restaurants as
select guide.restaurant;

define filter query NewRestaurants as
select Restaurants.restaurant<cre at T>
where T > t[-1]1;

Suppose we create this subscription S on Decem-
ber 30th, 1996, at 10:00am. The polling times given
by our frequency specification are t; = 30Dec96, t; =
31Dec96,t3 = 1Jan97, and so on (all at 11:30pm). At
polling time ¢1, QSS sends the polling query @Q; to the
Guide OEM database, to obtain the result R; consist-

ing of the two restaurant objects in Figure 2. Since Rg
is the empty OEM database by definition, both restau-
rant objects will have a c¢re annotation in the DOEM
database built by QSS. These annotations all have a
timestamp 1, while the variable t [-1] in the query Q.
has value negative infinity at {;. Therefore, evaluating
the filter query). on this DOEM database returns the
two restaurant objects as the initial results to the user.

At polling time ¢5, the Guide database is unchanged,
so the result Rs of the polling query is identical to
Ry. Consequently, no changes are made to the DOEM
database maintained by QSS. Note also that at time
ty, t[—1] = 14, so that the create annotations on the
restaurant objects in the DOEM database no longer sat-
1sfy the predicate T > t[-1] in the where clause of Q..
Therefore, the result of (). is empty, and the user does
not receive any notification.

Before polling time t3, the Guide database is mod-
ified by the addition of a new restaurant object, with
name “Hakata,” as described in Example 2. There-
fore, at t3, the result Rs of the polling query contains
the new restaurant object in addition to the two old
restaurant objects. The new restaurant object is de-
tected by the differencing algorithm. Accordingly, the
DOEM database maintained by QSS now includes the
new restaurant object, with a create annotation cre(t3)
Note also that at this time, t[—1] = {a, so
that this create annotation satisfies the predicate in the
where clause of ().. Therefore the result of the query
Q. over the modified DOEM database contains the new
restaurant object “Hakata,” and the user is notified of
this result. ad

on it.

For certain polling queries, QSS may need to store
a large portion of the underlying database in order to
detect changes accurately. We are exploring the follow-
ing ways of limiting the space used for storing DOEM
databases: (1) merging the DOEM databases for sev-
eral subscriptions that have similar polling queries; (2)
making the client responsible for storing the DOEM
databases for its subscriptions; and (3) trading accuracy
for space by storing a smaller state at the expense of not
being able to detect all changes accurately. We are also
working on methods for determining a polling query
and filter query automatically from a simpler form of
subscription query.

8. Conclusion and Future Work

We have motivated the need for a uniform repre-
sentation scheme for changes in semistructured data,
and for a query language that allows direct access to
changes. We have presented a simple data model,
DOEM, that allows a wide variety of semistructured
data to be represented together with its changes in an
intuitive and compact manner. We have also presented

the query language Chorel, which enables querying both
the data and the changes. We have described our imple-
mentation of CORE, a change object repository based
on DOEM and Chorel. We have demonstrated how we
can use virtual annotations to facilitate snapshot-based
Finally, we have de-
scribed the design and implementation of a Query Sub-
scription Service based on DOEM and Chorel.

We plan to investigate the following topics in the
near future: (1) Extending Chorel to allow annotation
expressions to be attached to Lorel’s wildcards and reg-
ular expressions in path expressions [2]. (2) Designing
indexes on annotations (based on their types and times-
tamps) and studying the use of such indexes to achieve
a more efficient translation of Chorel queries to Lorel
queries. (3) Exploring further uses of wvirtual annota-
tions, and alternatives to their implementation. (4) De-
signing an event-condition-action trigger language for
OEM based on ideas from DOEM and Chorel. (5) Ex-
ploring techniques to conserve space in QSS, by sharing
data across subscriptions.

access to a historical database.

Acknowledgments

We are grateful to Vineet Gossain and Dan Liu for
their substantial efforts in implementing CORE and
QSS, and to many members of the Stanford Database
Group and the Lore and C® projects for fruitful discus-
sions about change management.

References

[1] S. Abiteboul. Querying semistructured data. In Proceedings
of the International Conference on Database Theory, Delphi,
Greece, January 1997.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The Lorel query language for semistructured data.
Journal of Digital Libraries, 1(1):68-88, November 1996.

[3] A. Buchmann. The active database management system
manifesto: A rulebase of ADBMS features. ACM SIGMOD
Record, 25(3):20—49, September 1996.

[4] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu.
A query language and optimization techniques for unstruc-
tured data. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 505-516,
Montréal, Québec, June 1996.

[5] R. Cattell. The Object Database Standard: ODMG-93 Re-
lease 1.2. Morgan Kaufmann Publishers, San Francisco, Cal-
ifornia, 1996.

[6] S. Chawathe, S. Abiteboul, and J. Widom. Representing and
querying changes in semistructured data. In Proceedings of
the International Conference on Data Engineering, pages 4—
13, Orlando, Florida, February 1998.

[7] S. Chawathe and H. Garcia-Molina. An expressive model
for comparing tree-structured data. Technical report,
Stanford University Database Group, 1997. Available at
http://wwu-db.stanford.edu/.

[8] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,
Y. Papakonstantinou, J. Ullman, and J. Widom. The
Tsimmis project: Integration of heterogeneous information
sources. In Proceedings of 100th Anniversary Meeting of the

THEORY AND PRACTICE OF OBJECT SYSTEMS—1999 19

Information Processing Society of Japan, pages 7-18, Tokyo,
Japan, October 1994.

[9] S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically structured in-
formation. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 493-504,
Montréal, Québec, June 1996.

[10] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl.
From structured documents to novel query facilities. In Pro-
ceedings of the ACM SIGMOD International Conference on
Management of Data, 1994.

[11] M. Doherty, R. Hull, and M. Rupawalla. Structures for ma-
nipulating proposed updates in object-oriented databases. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, Montréal, Québec, 1996.

[12] S. Ghandeharizadeh, R. Hull, and D. Jacobs. Heraclitus: Ele-
vating deltas to be first-class citizens in a database program-
ming language. ACM Transactions on Database Systems,
21(3):370-426, September 1996.

[13] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A database management system for
semistructured data. SIGMOD Record, 26(3):54-66, Septem-
ber 1997.

[14] J. Melton. An SQL3 snapshot. In Proceedings of the Twelfth
International Conference on Data Engineering, pages 666—
672, New Orleans, Louisiana, February 1996.

[15] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina.
Object fusion in mediator systems. In Proceedings of the

International Conference on Very Large Data Bases, pages
413-424, Bombay, India, September 1996.

20 THEORY AND PRACTICE OF OBJECT SYSTEMS—1999

[16] Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman.
MedMaker: A mediation system based on declarative speci-
fications. In Proceedings of the International Conference on
Data FEngineering, pages 132—141, New Orleans, February
1996.

[17] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and
J. Ullman. A query translation scheme for rapid implemen-
tation of wrappers. In Proceedings of the International Con-
ference on Deductive and Object-Oriented Databases, pages
161-186, Singapore, December 1995.

[18] The Palo Alto Weekly online, 1998. http://www.service.com/PAW/.

[19] D. Quass, J. Widom, R. Goldman, K. Haas, Q. Luo,
J. McHugh, S. Nestorov, A. Rajaraman, H. Rivero, S. Abite-
boul, J. Ullman, and J. Wiener. LORE: A Lightweight Ob-
ject REpository for semistructured data. In Proceedings of
ACM SIGMOD International Conference on Management of
Data, Montreal, Canada, June 1996.

[20] A. Sheth and J.A. Larson. Federated database systems
for managing distributed, heterogeneous, and autonomous
databases. ACM Computing Surveys, 22(3):183-236, 1990.

[21] R. Snodgrass and I. Ahn. Temporal databases. IEEE Com-
puter, 19(9):35—42, September 1986.

[22] M. Soo. Bibliography on temporal databases. SIGMOD

Record, 20(1):14-24, March 1991.

[23] J. Widom and S. Ceri. Active database systems: Triggers and
rules for advanced database processing. Morgan Kaufmann
Publishers, San Francisco, California, 1996.

