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Abstract

Semistructured data may be irregular and incomplete
and does not necessarily conform to a fixed schema. As
with structured data, it is often desirable to maintain a his-
tory of changes to data, and to query over both the data
and the changes. Representing and querying changes in
semistructured data is more difficult than in structured data
due to the irregularity and lack of schema. We present a
model for representing changes in semistructured data and
a language for querying over these changes. An impor-
tant feature of our approach is that we represent and query
changes directly as annotationson the affected data, instead
of indirectly as the difference between database states. We
describe the implementation of our model and query lan-
guage. We also describe the design and implementation of
a query subscription service that permits users to subscribe
to changes in semistructured information sources.

1 Introduction
Semistructured data is data that has some structure,

but it may be irregular and incomplete and does not nec-
essarily conform to a fixed schema (e.g, HTML docu-
ments). Recently, there has been increased interest in
data models and query languages for semistructured data
[Abi97, BDHS96, CACS94, CGMH+94, QWG+96]. We
also see increased interest in change management in rela-
tional and object data [GHJ96, DHR96], and in the related
problem of temporal databases [SA86, Soo91]. However,
we are not aware of any work that addresses the problem of
representing and querying changes in semistructured data.
As will be seen, this problem is more challenging than the
corresponding problem for structured data due to the irreg-
ularity, incompleteness, and lack of schema that often char-
acterize semistructured data. Nevertheless, our approach,
based on graph annotations, is also applicable to structured
graph-based data.

In this paper, we present a simple and general model,
DOEM (pronounced “doom”), for representing changes in
semistructured data. We also present a language, Chorel,
for querying over data and changes represented in DOEM.
We describe our implementation of DOEM and Chorel. We
also introduce a facility that allows users to subscribe to
changes in semistructured data, and we describe its design
and implementation based on DOEM and Chorel.

1.1 Motivating Examples
The Palo Alto Weekly, a local newspaper, maintains a

Web site providing information about restaurants in the Bay
Area [PAW]. Most of the data in the restaurant guide is�This work was supported by the Air Force Rome Laboratories under
DARPA Contract F30602-95-C-0119and by an equipmentgrant from IBM
Corporation.

relatively static. But as often happens in database appli-
cations, we are particularly interested in the dynamic part
of the data. For example, we are interested in finding out
which restaurants were recently added, which restaurants
were seen as improving, degrading, etc. These changes
can be captured by a tool that we have implemented, called
htmldiff [CRGMW96]. The htmldiff program takes two
versions of a web page as input, and produces as output a
marked-up copy of the web page that highlights the differ-
ences between the two versions based on their semistruc-
tured contents. Our htmldiff system allows users to browse
the marked-up web page to view the changes, and to travel
back and forth between the old and new versions of the doc-
ument [CRGMW96]. Please see [C3] for details, including
some sample output from htmldiff .

For reasonably small documents, browsing the marked-
up HTML files produced by htmldiff to view the changes
of interest is a feasible option. However, as documents get
larger and changes become more prevalent and varied, one
soon feels the need to use queries to directly find changes
of interest instead of simply browsing. (For example, the
restaurant guide page is currently more than 20,000 lines
long, making browsing very inconvenient.) An example
of a simple change query over the restaurant data is “find
all new restaurant entries.” Another example is “find all
restaurants whose average entree price changed.” Just as
browsing databases is often an ineffective way to retrieve
information, the same holds for browsing data representing
changes. Thus, for this example, what we need is a query
language that allows queries over changes to (semistruc-
tured) HTML pages.

As another motivating example, consider a typical in-
formation library system that contains book circulation in-
formation. Suppose we wish to be notified whenever any
“popular” book becomes available where, say, we define a
book as popular if it has been checked out two or more times
in the past month. We could partially achieve this goal by
setting a trigger on the circulation database that notifies us
whenever a book is returned. However, there are two prob-
lems with this approach. First, many library information
systems are legacy mainframe applications on which trig-
gers are not available. Furthermore, even in cases where the
library information system is implemented using a database
system that supports triggers, a user often lacks the access
rights required to set triggers on the database. Second, there
is often no way to access historical circulation information,
so that we cannot check whether the book being returned
was checked out two or more times recently. In this ap-
plication too, the data may be semistructured, especially if
the library system merges information from multiple sources
[PAGM96]. Thus, we again need a method to compute, rep-
resent, and query changes in the context of semistructured
data.



1.2 Overview
We are interested in the three components of a change

management system, in the context of semistructured data:
(1) detecting changes; (2) representing changes; and (3)
querying changes. Detecting changes in semistructured
data is a challenging problem in practice because many
information sources that we are interested in do not provide
facilities or authorization for explicit monitoring of changes
(e.g., using triggers). Therefore, we are often forced to infer
changes based on a sequence of data snapshots. We have
studied this problem in [CRGMW96, CGM97], which de-
scribe algorithms for inferring changes from snapshots of
semistructured data; we therefore do not discuss component
(1) further in this paper. This paper addresses the problems
associated with components (2) and (3).

Since our goal is to represent changes in semistructured
data, we use as a starting point the Object Exchange Model
(OEM) [PGMW95], designed at Stanford as part of the Tsim-
mis project [CGMH+94]. OEM is a simple graph-based
data model, with objects as nodes and object-subobject re-
lationships represented by labeled arcs. Due to its sim-
plicity and flexibility, OEM can encode numerous kinds
of data, including relational data, electronic documents in
formats such as SGML and HTML, other data exchange
formats (e.g., ASN.1), and programs (e.g., C++). The ba-
sic change operations in such a graph-based model are node
insertion, update of node values, and addition and removal
of labeled arcs. (Node deletion is implicit by unreachabil-
ity [AQM+96].) Our change representation model, DOEM
(for Delta-OEM), uses annotations on the nodes and arcs of
an OEM graph to represent changes. Intuitively, the set of
annotations on a node or arc represents the history of that
node or arc.

For querying over changes we use a language based
on the Lorel language for querying semistructured data
[AQM+96]. In our language, called Chorel (for Change
Lorel), we extend the concept of Lorel path expressions to
allow us to refer to the annotations in a DOEM database.
The result is an intuitive and convenient language for ex-
pressing change queries in semistructured data. Although
the work in this paper is founded on the OEM data model and
the Lorel language, the principal concepts are applicable to
any graph-based data model (semistructured or otherwise),
e.g., [BDHS96, Cat94].

Our implementation of DOEM and Chorel uses a method
that encodes DOEM databases as OEM databases and trans-
lates Chorel queries into equivalent Lorel queries over the
OEM encoding. This encoding scheme has the benefit that
we do not need to build from scratch yet another database
system; instead, we capitalize on an existing database sys-
tem for semistructured data. Finally, as an important first
application of DOEM and Chorel, we describe the design
and implementation of a query subscription service that per-
mits users to subscribe to changes in semistructured data.

1.3 Contributions
Our main contributions in this paper are as follows:

(1) We motivate and develop the problem of represent-
ing and querying changes in semistructured data. (2) We
present a simple and general change representation model
for semistructured data. An important feature of our model
is that it represents changes to a database directly as graph
annotations, instead of indirectly as the difference between
old and new database states. (3) We describe the syntax,

semantics, and implementation of a query language over
changes to semistructured data. Again, an important ad-
vantage of our query language is that it allows the user to
access changes directly. (4) We describe how our proto-
type implements this change query language on top of an
existing database system by encoding the change data and
by translating change queries to ordinary queries. (5) As
one application of our ideas, we describe the design and im-
plementation of a service that permits users to subscribe to
changes in heterogeneous database environments. A unique
feature of our service is that it enables the user to specify
very precisely (using our query language) the changes of
interest.
1.4 Related Work

If we consider the general problem of representing and
querying the history of a database in addition to its current
state, there are two main approaches. The first approach,
which we call the snapshot-collection approach, views the
history of a database as a collection of database states (snap-
shots). According to this view, a change operation takes a
database from one state to the next. The states are ordered,
usually linearly, based on time. In addition to querying the
present database state, such systems allow any other state
of the database to be queried. This is the approach taken by
temporal databases [SA86, Soo91]. The second approach,
which we call the snapshot-delta approach, views the his-
tory of the database as a combination of a single database
snapshot and a collection of deltas. According to this view,
we obtain various states of the database by starting with a
single snapshot and applying some sequence of deltas to it.
An early, simple example of this approach is the idea of
delta relations, used in active databases [ACT96, WC96]
and trigger languages [ISO94], which represent a set of
changes to a relation R using two relations R+ and R�,
where R+ = Rnew�Rold, and R� = Rold �Rnew. More
recently, this approach has been used by the Heraclitus/H2O
project to represent changes in relational and object data
[DHR96, GHJ92, GHJ96]. Our work differs from the Hera-
clitus/H20work in two respects. First, we represent changes
in semistructured data, not just relational and object data.
Second, we present a method for querying over changes as
first-class entities, as opposed to using changes to gener-
ate hypothetical states that are then queried as usual. We
believe that the two approaches are complementary.
1.5 Outline of Paper

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the Object Exchange Model (OEM), and
introduces OEM change operations and histories. In Sec-
tion 3, we present our OEM-based change representation
model for semistructured data, DOEM. Section 4 describes
our change query language, Chorel. In Section 5, we present
the encoding scheme that we use to implement DOEM and
Chorel using translation. Section 6 describes the query sub-
scription system we have implemented based on the material
in Sections 3–5. We conclude in Section 7. Due to space
constraints, we have omitted details from some sections
of this paper; we refer the reader to the extended version
[CAW97] for these details.

2 The Object Exchange Model
The Object Exchange Model (OEM) is a simple, flex-

ible model for representing heterogeneous, semistructured
data. (Recall that semistructured data is data that may be



"Lytton"

root

"Palo Alto"

guide

address

address

"Janta"

restaurant restaurant

street city

price

name parking

"Bangkok Cuisine"

name

"usually full""Lytton lot 2"
"moderate"

"Indian"

"120 Lytton"

price

address

cuisine

comment

nearby-eats

n1

n4

n6

n7

restaurant
comment

name "need info"

10

"Hakata"

n2 n5

n3

parking

20

r

Figure 1: The OEM database in Examples 2.1 and 2.2

irregular or incomplete, and that does not necessarily con-
form to a fixed schema, e.g., HTML documents describing
restaurants.) In this section, we begin by briefly describing
OEM. Next, we define the basic change operations used to
modify an OEM database. Finally, we introduce the con-
cept of an OEM history that describes a collection of basic
change operations. Histories form the basis of our change
representation model described in Section 3.

Intuitively, one can think of an OEM database as a graph
in which nodes correspond to objects and arcs correspond
to relationships. Each arc has a label that describes the
nature of the relationship. (Note that the graph can have
cycles, and that an object may be a subobject of multiple
objects via different relationships. Example 2.1 below illus-
trates these points.) Nodes without outgoing arcs are called
atomic objects; the rest of the nodes are called complex
objects. Atomic objects have a value of type integer, real,
string, etc. An arc (p; l; c) in the graph signifies that the
object with identifier c is an l-labeled subobject (child) of
the complex object with identifier p. Each OEM database
has a distinguished node called the root of the database. The
root is the implicit starting point of path expressions in the
Lorel query language (described in Section 4.1). Formally,
we define an OEM database as follows:

Definition 2.1 An OEM database is a 4-tuple O =(N;A; v; r), where N is a set of object identifiers; A is
a set of labeled, directed arcs (p; l; c) where p; c 2 N and l
is a string; v is a function that maps each node n 2 N to a
value that is an integer, string, etc., or the reserved value C
(for complex); and r is a distinguished node in N called the
root of the database. A node is a complex object if its value
is C and otherwise it is an atomic object. Only complex
objects have outgoing arcs. We also require that every node
be reachable from the root using a directed path. 2
Example 2.1 We will use as our running example an OEM
database describing the restaurant guide section of the Palo
Alto Weekly, introduced in Section 1. Figure 1 shows a
small portion of the data. (For this example, ignore items

depicted using dashed lines.) Note that although the restau-
rant entries are quite similar to each other in structure, there
are important differences that require the use of a semistruc-
tured data model such as OEM. In particular, we see that the
price rating for a restaurant may be either an integer (10) or
a string (“moderate”). The address may be either a simple
string (“120 Lytton”) or a complex object with subobjects
listing the street, city, etc. Note also that although the data
has a natural hierarchical structure, nodes may have multi-
ple incoming arcs (e.g., node n7), and there are cycles (e.g.,
the cycle formed by the arcs “parking” and “nearby-eats”).
In the sequel, we refer to this database as Guide. 2
2.1 Changes in OEM

We now describe how an OEM database is modified. LetO = (N;A; v; r) be an OEM database. The four basic
change operations are the following:
Create Node: The operation creNode(n; v) creates a new
object. The identifier n must be new, i.e., n must not occur
in O. The initial value v must be an atomic value (integer,
real, string, etc.) or the special symbol C (for complex).
Update Node: The operation updNode(n; v) changes the
value of object n, where v is an atomic value or the special
symbol C. Object n must be either an atomic object or a
complex object without subobjects. (The model requires
us to remove all subobjects of a complex object n before
transforming it into an atomic object.) The value v becomes
the new value of n.
Add Arc: The operation addArc(p; l; c) adds an arc labeledl from object p (the parent) to object c (the child). Objectsp and c must exist in O, p must be complex, and the arc(p; l; c) must not already exist in O.
Remove Arc: The operation remArc(p; l; c) removes an
arc. Objects p and c must exist in O, and O must contain
the arc (p; l; c), which is removed.

If u is a basic change operation that can be applied toO, we say u is valid for O, and we use u(O) to denote the
result of applying u to O. Note that there is no explicit
object deletion operation. In OEM, persistence is by reach-
ability from the distinguished root node [AQM+96]. Thus,



to delete an object it suffices to remove all arcs leading to
it. A subtlety is that sometimes we need to allow objects
to be “temporarily” unreachable. In particular, when we
create a new object, it remains unreachable until we create
an arc that links it to the rest of the database. Thus, when
we consider sequences of changes in Section 2.2, we want
to permit the result of atomic changes to (temporarily) con-
tain unreachable objects. The issue is discussed further in
Section 2.2 below. Note that users will typically request
“higher-level” changes based on the Lorel update language
[AQM+96]; the basic change operations defined here reflect
the actual changes at the database level.

Example 2.2 Let us consider some modifications to the
OEM database in Example 2.1. We will use these modifica-
tions as a running example in the rest of the paper. First, on
January 1st, 1997, the price rating for “Bangkok Cuisine”
is changed from 10 to 20. This modification corresponds to
an updNode operation. On the same day, a new restaurant
with name “Hakata” is added (with no other data). This
modification corresponds to two creNode operations for the
restaurant node and its subobject, and two addArc opera-
tions to add arcs labeled “restaurant” and “name.” Next,
on January 5th, a subobject with value “need info” is added
to the “Hakata” restaurant object via an arc labeled “com-
ment.” This corresponds to one creNode operation and
one addArc operation. Finally, on January 8th the parking
at “Lytton lot 2” is no longer considered suitable for the
restaurant “Janta,” and the corresponding arc is removed;
this modification corresponds to a remArc operation. These
changes are depicted in Figure 1 using dashed lines.

2.2 OEM Histories
We are typically interested in collections of basic change

operations, which describe successive modifications to the
database. We say that a sequence L = u1; u2; : : : ; un of
basic change operations is valid for an OEM database O ifui is valid for Oi�1 for all i = 1 : : :n, where O0 = O, andOi = ui(Oi�1), for i = 1 : : :n. We use L(O) to denote
the OEM database obtained by applying the entire sequenceL to O. Also, we say that a set U = fu1; u2; : : : ; ung of
basic change operations is valid for an OEM database O if
(1) for some ordering L of the changes in U , L is a valid
sequence of changes, (2) for any two such valid sequencesL and L0, L(O) = L0(O), and (3) U does not contain bothaddArc(p; l; c) and remArc(p; l; c) for any p, l, and c. We
useU (O) to denote the OEM database obtained by applying
the operations in the set U (in any valid order) to O.

We are now ready to define an OEM history. Assume we
are given some time domain time that is discrete and totally
ordered; elements of time are called timestamps. Intuitively,
consider an OEM database to which, at some time t1, a setU1 of basic change operations is applied, then at a later timet2, another set U2 is applied, and so on. A history represents
such a sequence of sets of modifications.

Definition 2.2 An OEM history is a sequence H =(t1; U1); : : : ; (tn; Un), where Ui is a set of basic change op-
erations and ti is a timestamp, for i = 1 : : :n, and ti < ti+1
for i = 1 : : :n� 1. We say H is valid for an OEM databaseO if, for all i = 1 : : :n,Ui is valid forOi�1, whereO0 = O,
and Oi = Ui(Oi�1) for i = 1 : : :n. 2

We now return to the requirement that all objects in an
OEM database must be reachable from the root. An OEM

history can be viewed as a sequence L1; :::; Ln of sequences
of atomic changes. Within one sequence Li of changes, we
relax the requirement that all objects are reachable from the
root so that we can, e.g., create a node and then create arcs
leading to it, as discussed earlier. However, immediately
after each sequence Li has been applied, nodes that are un-
reachable are considered as deleted, and the remainder of
the history should not operate on these objects. To sim-
plify presentation, we also assume that object identifiers of
deleted nodes are not reused.

Example 2.3 The history for the modifications described
in Example 2.2 consists of three sets of basic change op-
erations. It is given by H = ((t1; U1); (t2; U2); (t3; U3)),
where t1 = 1Jan97, t2 = 5Jan97, t3 = 8Jan97, and:U1 = f updNode(n1; 20); creNode(n2; C);

creNode(n3; “Hakata”); addArc(n4; “restaurant”; n2);
addArc(n2; “name”; n3) gU2 = f creNode(n5; “need info”)
addArc(n2; “comment”; n5) gU3 = f remArc(n6; “parking”; n7) g:

This is a valid history for the original OEM database in
Figure 1. 2
3 Representation of Changes

In this section, we describe how changes to an OEM
database are represented by attaching annotations to the
OEM graph, thereby turning it into a DOEM (Delta OEM)
graph. Intuitively, annotations are tags attached to the nodes
and arcs of an OEM graph that encode the history of basic
change operations on those nodes and arcs. There is a one-
to-one correspondence between annotations and the basic
change operations. Thus, nodes and arcs may have the
following four types of annotations: (1) cre(t): the node
was created at time t. (2) upd (t; ov): the node was updated
at time t; ov is the old value. (3) add (t): the arc was added
at time t. (4) rem(t): the arc was removed at time t. The set
of all possible node annotations is denoted by node-annot,
and the set of all possible arc annotations is denoted by
arc-annot.

Using the above definitions of node and arc annotations,
we now define a DOEM database. In the following defini-
tion, the function fN (n) maps a node n to a set of annota-
tions on that node and the function fA(a) maps an arc a to
a set of annotations on that arc.

Definition 3.1 A DOEM database is a tripleD = (O; fN ; fA), where O = (N;A; v; r) is an OEM
database, fN maps each node in N to a finite subset of
node-annot, and fA maps each arc in A to a finite subset of
arc-annot. 2
3.1 DOEM Representation of an OEM History

Given an OEM database O and a history H =(t1; U1); :::; (tn; Un) that is valid for O, we would like to
construct the DOEM database representing O and H, de-
noted by D(O;H). D(O;H) is constructed inductively as
follows. We start with a DOEM database D0 that consists
of the OEM database O with empty sets of annotations for
the nodes and the arcs of O. Suppose Di�1 is the DOEM
database representing O and (t1; U1); :::; (ti�1; Ui�1), for



rem
t:8Jan97

t:1Jan97

"Lytton" "Palo Alto"

guide

address

address

"Janta"

restaurant

street city

price

name parkingparking

"Bangkok Cuisine"

name

"usually full""Lytton lot 2"
"moderate"

"Indian"

"120 Lytton"

price

address

cuisine

comment

nearby-eats

upd

"Hakata"

"need info"name

restaurant

restaurant add

add
add

cre cre

cre

20

comment

ov:10

t:1Jan97
t:1Jan97 t:5Jan97

t:1Jan97

t:5Jan97

t:1Jan97

Figure 2: The DOEM database in Example 3.1.

some 1 � i � n. The DOEM database Di is constructed
by considering the basic change operations in Ui. Since
the history is valid, we can assume some ordering Li of
the operations in Ui (Definition 2.2). Starting with Di�1,
we process the operations in Li in order. Whenever the
value of an object is updated, in addition to performing the
update we attach an upd annotation to the node. This an-
notation contains the timestamp ti and the old value of the
object. When a new object is created or an arc added, in
addition to performing the modification, we attach a cre or
add annotation with the timestamp ti. When an existing
arc is removed, we do not actually remove the arc from the
graph; instead, we simply attach a rem annotation to the
affected arc with the timestamp ti. Observe that this rep-
resentation directly stores the changes themselves, not the
before and after images of the changes, and thus takes the
snapshot-delta approach discussed in Section 1.4.

Example 3.1 Consider the history described in Exam-
ple 2.3, which transforms the OEM database of Figure 1
as depicted there using dashed lines. The corresponding
DOEM database is shown in Figure 2. We see that the
DOEM database contains several annotations, depicted as
boxes in the figure. For example, the annotations with
timestamp “1Jan97” correspond to the first set of updates.
Note that the cre, add, and rem annotations contain only the
timestamp, while the upd annotation also contains the old
value of the updated node (10, in our example). Also note
that the removed “parking” arc from the “Janta” restaurant
object to the “Lytton lot 2” parking object is not actually
removed from the DOEM database; instead it bears a rem
annotation. 2
3.2 Properties of DOEM Databases

We now summarize the desirable properties of the
DOEM representation of OEM database histories. (See
[CAW97] for details.) Given a DOEM database D, it is
easy to obtain the original snapshot, O0(D), the snapshot

at time t, Ot(D), and, the current snapshot, Oc(D). It is
also easy to obtain the encoded historyH(D) from a DOEM
database D. We say that a DOEM database D is feasible if
there exists some OEM databaseO and valid historyH such
that D = D(O;H). Note that we do not require DOEM
databases to record all changes since creation, i.e., OEM
database O need not be empty. It is relatively easy to de-
termine if a given DOEM database D is feasible. Given
a feasible DOEM database D, we can show that the OEM
database O0(D) and the history H(D) encoded by D are
unique. Thus, a DOEM database faithfully captures all the
information about the history of the corresponding OEM
database. Finally, as we will see in the next section, it is
easy and intuitive to query the history encoded in a DOEM
database.

4 Querying Over Changes
In Section 3, we have seen how the history of an

OEM database is represented by the corresponding DOEM
database. In this section, we describe how DOEM databases
are queried. We introduce a query language called Chorel
for this purpose. Chorel is similar to the Lorel language
[AQM+96] used to query OEM databases. We begin with
a brief overview of Lorel, followed by a description of the
syntax and semantics of Chorel.
4.1 Lorel Overview

Lorel uses the familiar select-from-where syntax, and
can be thought of as an extension of OQL [Cat94] in two
major ways. First, Lorel encourages the use of path ex-
pressions. For instance, one can use the path expression
guide.restaurant.address.street to specify the streets of all
addresses of restaurant entries in the Guide database. Sec-
ond, in contrast to OQL, Lorel has a very “forgiving” type
system. When faced with the task of comparing different
types, Lorel first tries to coerce them to a common type.
When such coercions fail, the comparison simply returns
false instead of raising an error. This behavior, while it
may be unsuitable for traditional databases, is exactly what



a user expects when querying semistructured data. Lorel
also provides a number of syntactic conveniences such as
the possibility of omitting the from clause. Due to space
limitations, we do not describe Lorel in detail here (see
[AQM+96]), but only present through a simple example
those features that are needed to understand Chorel.

Example 4.1 Consider again the (modified) OEM database
depicted in Figure 1. To find all restaurants that have a price
rating of less than 20.5, we can use the following Lorel
query:

select guide.restaurant
where guide.restaurant.price < 20.5

Note that the query expresses the price rating as a real num-
ber whereas the restaurant entries for “Bangkok Cuisine”
and “Janta” in the modified OEM database shown in Fig-
ure 1 use an integer and a string, respectively. Furthermore,
the third restaurant entry does not have a price subobject at
all. Lorel successfully coerces the integer price 10 to real,
and the comparison succeeds. For the string encoding of the
price (“moderate”), Lorel tries to coerce, but fails, returning
false as the result of the comparison. Finally, for the third
restaurant, the missing price subobject simply causes the
comparison to return false. Thus, the result of the above
query is a singleton set containing the restaurant object for
“Bangkok Cuisine.” Note that this is an intuitively rea-
sonable response to the original query, despite the typing
difficulties and the missing data. 2
4.2 Chorel

In Chorel, path expressions may contain annotation ex-
pressions, which allow us to refer to the node and arc an-
notations in a DOEM database. Informally, Lorel path ex-
pressions can be thought of as being matched to paths in
the OEM database during query execution. Analogously,
the annotation expressions in Chorel path expressions can
be thought of as being matched to annotations on the corre-
sponding paths in the DOEM database.

Example 4.2 Consider the DOEM database depicted in
Figure 2. To find all newly added restaurant entries only,
we can use the following Chorel query:

select guide.<add>restaurant

The annotation expression “<add>” specifies that only those
objects connected to the “guide” object by a “restaurant”-
labeled arc having an add annotation should be retrieved.
For the database depicted in Figure 2, this Chorel query
returns the restaurant object with name “Hakata.” 2

Not surprisingly, we use four kinds of annotation ex-
pressions in Chorel path expressions: node annotation
expressions “cre” and “upd,” and arc annotation expres-
sions “add” and “rem.” Recall that a path expression,
e.g., guide.restaurant.price, consists of a sequence of la-
bels. Arc annotation expressions must occur immediately
before a label, whereas node annotation expressions must
occur immediately after one. (Note that since node and
arc annotations use different keywords, no confusion can
arise.) Path expressions containing node or arc annota-
tion expressions are called annotated path expressions. For

instance, guide.<add>restaurant.price<upd> is a correct an-
notated path expression. It requires an add annotation to be
present on the arc labeled “restaurant,” and an upd annota-
tion on the “price” node (i.e., on the node at the destination
of the arc labeled “price”). For simplicity, in this paper
we do not consider path expressions that have annotation
expressions attached to wildcards or regular expressions,
however generalizing to allow such annotation expressions
is not difficult.

Annotation expressions may also introduce time vari-
ables to refer to the timestamps stored in matching anno-
tations, and data variables to refer to the modified values
in matching upd annotations. More precisely, the syntax of
annotation expressions is as follows:

<Annot [at timeV]> if Annot is in f add, rem, cre g
<upd [at timeV] [from oldV] [to newV]> for upd

where timeV, oldV, and newV are variables. Note that a
DOEM database does not explicitly store the new value of
an updated object, however this information is available
implicitly, and can be determined easily [CAW97].

Example 4.3 Consider the DOEM database in Figure 2.
To find all restaurant entries that were added before January
4th, 1997, we can use the following Chorel query:

select guide.<add at T>restaurant
where T < 4Jan97

The Chorel preprocessor will rewrite this query to obtain
the following. (We will explain this rewriting shortly.)

select R
from guide.<add at T>restaurant R
where T < 4Jan97

The introduced from clause will bind R to all “restaurant”
objects that are connected to the “guide” object via an arc
with an add annotation, and will provide corresponding
bindings for T . More precisely, the evaluation of the from
clause will yield the set of pairs hR; T i such that there is
a restaurant arc from the guide object to R that has an
add annotation with timestamp T . The where clause will
filter out the hR; T i pairs for which T does not satisfy the
condition. For the DOEM database in Figure 2, this query
returns the restaurant object for “Hakata.” 2

Once time and data variables have been bound using
annotations, they can be used just like other variables in
Lorel or OQL. This is illustrated by the following query,
which uses time and data variables in the select clause.

Example 4.4 Referring again to the DOEM database in
Figure 2, suppose we want to find the names of all restaurants
whose price ratings were updated on or after January 1st,
1997 to a value greater than 15, together with the time of the
update and the new price. We can use the following query:

select N, T, NV
from guide.restaurant.price<upd at T to NV>,

guide.restaurant.name N
where T >= 1Jan97 and NV > 15

answer
name "Bangkok Cuisine"
new-value 20
update-time 1Jan97



The result of the above query is a single complex object
with three components, as shown above. The label name is
chosen by Chorel using the method described in [AQM+96].
For time and data variables whose labels are not specified
by the query, Chorel chooses the default labels create-time,
add-time, remove-time, update-time, new-value, and old-
value. 2
4.3 Chorel Semantics

We now make the semantics of Chorel queries more
precise. As is done for Lorel, the semantics is described
by specifying the rewriting of Chorel queries into OQL-like
queries. However, we need to introduce some additional
machinery to handle the annotation expressions in Chorel
queries.

First, the annotation expressions in a Chorel query are
transformed intoa canonical form that includes all variables.
For example, “<add>” is rewritten to “<add at T1>,” and
“<upd from X>” is rewritten to “<upd at T2 from X to
NV2>,” where T1, T2, and NV2 are fresh variables. Next,
as in Lorel, we eliminate path expressions by introducing
variables for the objects “inside” the path expressions. For
example, the path expression “a.b.c” in a from clause is
converted to “a.b X, X.c Y,” where X and Y are new range
variables.

At this stage, we have to give a semantics to range vari-
able definitions that may include annotation expressions
(e.g., “X.lab Y,” “X.<add at T>lab Y”) in the context of a
DOEM database. In the absence of an annotation expres-
sion, the semantics of an expression “X.lab Y” is that for a
bindingoX ofX, Y is bound to all objects oY such that there
is an arc labeled lab from oX to oY in the current snapshot.
Note that by this semantics, a standard Lorel query (without
annotations) over a DOEM database has exactly the seman-
tics of the same query asked over the current snapshot for
that DOEM database. In the presence of annotation expres-
sions, the semantics requires the existence of the specified
annotation, and also provides bindings for the variables in
the annotation expression. The bindings are also specified
by a special rewriting. As an example, the query in Example
4.4 is rewritten to:

select N, T, NV
from guide.restaurant R, R.price P, R.name N,

(T, OV, NV) in updFun(P)
where T >= 1Jan97 and NV > 15

Our rewritinguses the following functions, which extract
the information stored in annotations:creFun(node) ! ftimegupdFun(node) ! f(time; old-value; new-value)gaddFun(source; label) ! f(time; target)gremFun(source; label)! f(time; target)g
The function creFun(n) returns the set of timestamps found
in cre annotations on node n. (Note that by our definition of
change operations in Section 2.1, this set is either empty or
a singleton.) The function updFun(n) returns a set of triples
corresponding to the timestamp, the old value, and the new
value in upd annotations on n. The function addFun(n,l) re-
turns a set of (t; c) pairs such that c is an l-labeled subobject
of n via an arc that has an add (t) annotation. The remFun
function is analogous to addFun. Once this rewriting has

been performed, the from, where, and select clauses of the
resulting query are processed in a standard manner.

Above, we have illustrated how variables introduced in
the from clause are interpreted. Variables may be introduced
in the where clause as well. They are treated by introducing
existential quantification in the where clause, extending the
treatment of such variables in Lorel [AQM+96]. Consider
the following example:

Example 4.5 Consider again the DOEM database of Fig-
ure 2. Suppose we want the names of restaurants to which
a “moderate” price subobject was added since January 1st,
1997. We can write the following Chorel query:

select N
from guide.restaurant R, R.name N
where R.<add at T>price = "moderate" and T >= 1Jan97

The variable T is introduced in the where clause. Therefore,
the rewritten where clause is:

where exists (T, P) in addFun(R,"price") :
(P = "moderate" and T >= 1Jan97) 2

5 Implementing DOEM and Chorel
In this section, we describe how we implement DOEM

databases and Chorel queries. We encode DOEM databases
as OEM databases, and we implement Chorel by translating
Chorel queries to equivalent Lorel queries over the OEM
encoding of the DOEM database. In addition to being more
modular than a direct implementation approach that builds a
Chorel database engine from scratch, this approach can also
be adapted easily to other graph-based data models, e.g.,
those in [BDHS96, Cat94].
5.1 Encoding DOEM in OEM

Let D be a DOEM database. We encode D as an OEM
database OD defined as follows. For each object o in D,
there is a corresponding object o0 in OD. An atomic object
is encoded as a complex object so that we can record its
history. Special labels used by the encoding start with the
special character “&” to distinguish them from standard la-
bels occuring inO. The encoding object o0 has the following
subobjects, listed by their labels.� &val: If o is atomic with current value v, there is a

“&val”-labeled arc from o0 to an atomic object with
value v. If o is complex, there is a “&val”-labeled arc
from o0 to itself. (This extra edge simplifies the transla-
tion of Chorel queries to equivalent Lorel queries over
the encoding [CAW97].)� &cre: If o has a create annotation cre(t), then o0 has a
“&cre”-labeled atomic subobject with value t.� &upd: For each update annotation upd (t; ov) attached
to o, o0 has an “&upd”-labeled complex subobject with
the following structure: a “&time”-labeled subobject
with value t, an “&ov”-labeled subobject with the value
before the update (ov), and a “&nv”-labeled subobject
with the value after the update.� l: If the current snapshot forD contains an arc (o; l; p),
then OD contains an arc labeled l from o0 to the objectp0 that encodes p.



� &l-history: IfD contains an arc (o; l; p), thenOD con-
tains an arc (o0;&l-history ; o0l) where o0l is a complex
object that contains the history of the l arcs from o
to p. The object o0l has the following structure: (1)
&target: There is an arc (o0l;&target; p0), where p0
is the object encoding p. (2) &add, &rem: For each
annotation add(t) (rem(t)) attached to (o; l; p), there
is an “&add”-labeled (respectively, “&rem”-labeled)
atomic subobject with value t.

It can be shown that all the information in a DOEM databaseD is fully represented inD’s OEM encoding using the above
scheme.
5.2 Translating Chorel to Lorel

Given the above encoding of a DOEM database as an
OEM database, we now describe how a Chorel query over
a (conceptual) DOEM database is translated into an equiv-
alent Lorel query over an OEM encoding of the DOEM
database. Due to space constraints, we do not present the
details here, referring the reader to [CAW97] instead. The
followingexample intuitivelypresents the basis of the trans-
lation scheme.

Example 5.1 Consider the Chorel query in Example 4.5.
In Section 4.3, we considered the OQL-like rewriting of
this query. We now complete this rewriting by using the
information encoded in the &-arcs to yield the following
Lorel query over the OEM encoding of the DOEM database
in Figure 2:

select N
from guide.restaurant R, R.name N
where exists H in R.&price-history :

exists P in H.&target :
exists T in H.&add : T >= 1Jan97 and

P.&val = "moderate"

Note that we simulate the range specification
addFun(R,"price") using the “&”-prefixed subobjects. Fur-
ther, we use P.&val to access the actual price value (and not
the complex object packaging it with its history). 2

Note that the previous query returns a set of DOEM
objects that represent restaurant names. That is, it returns
not only the names of the restaurants, but also the history
of these names, if they changed. Returning the DOEM
object enables a user interface to access both the value and
the history of an object. We have implemented a DOEM
database system, called CORE, based on the above ideas;
please see [C3] for a description.

6 A Query Subscription Service
In Section 1, we mentioned an important application of

change management: being able to notify “subscribers” of
changes in (semistructured) information sources of inter-
est to them. In this section, we describe the design and
implementation of such an application, called a Query Sub-
scription Service (QSS), using DOEM and Chorel.

An ordinary query is evaluated over the current state
of the database, the results passed to the client and then
discarded. An example of an ordinary query is “find all
restaurants with Lytton in their address.” In contrast, a sub-
scription query is a query that repeatedly scans the database
for new results based on some given criteria and returns the

changes of interest. An example of a subscription query
is “every week, notify me of all new restaurants with Lyt-
ton in their address.” Below, we describe how subscription
queries are specified and implemented in our system.

Supportingsubscription queries introduces the following
challenges. First, as discussed earlier, many information
sources that we are interested in (e.g., library information
systems, Web sites, etc.) are autonomous [SL90] and typ-
ical database approaches based on triggering mechanisms
are not usable. Second, these information sources typically
do not keep track of historical information in a format that
is accessible to the outside user. Thus, a subscription ser-
vice based on changes must monitor and keep track of the
changes on its own, and often must do so based only on
sequences of snapshots of the database states.

Briefly, our approach to constructing a query sub-
scription service over semistructured, possibly legacy in-
formation sources is as follows: We access the infor-
mation sources using Tsimmis wrappers or mediators
[PGGMU95, PGMU96], which present a uniform OEM
view of one or more data sources. We obtain snapshots
of relevant portions of the data, and use differencing tech-
niques based on [CRGMW96, CGM97] to infer changes
based on these snapshots. Finally, we use DOEM to rep-
resent the changes, and Chorel to specify the changes of
interest. We describe our approach in more detail next.

A subscription consists of three main components. The
first component is a frequency specification f that specifies
how often QSS should check the informationsource for data
and changes of interest. Examples of frequency specifica-
tions are “every Friday at 5:00pm” and “every 10 minutes.”
The frequency specification implies a sequence of time in-
stants (t1; t2; t3; : : :), which we call polling times. These
times are the times when we obtain a new snapshot of the
data. (In the actual system [C3], we also consider two other
modes: one in which the snapshots are obtained following
explicit user requests, and the other in which snapshots are
obtained as a result of a trigger on the source database fir-
ing, if the source provides such a triggering mechanism. To
simplify the presentation, we will not consider these modes
further here.

The second component of a subscription is a Lorel queryQl, which we call the polling query. QSS sends the polling
(Lorel) query to the wrapper or mediator at the polling times(t1; t2; t3; : : :) to obtain results (R1; R2; R3; : : :). An exam-
ple polling query is the following. (In Lorel, “#” is a special
character that matches any sequence of zero or more labels
in a path, and the operator like performs string matching.)

define polling query LyttonRestaurants as
select guide.restaurant
where guide.restaurant.address.# like "%Lytton%"

Let R0 be the empty OEM database, and let Ri be the
result of the polling query on the source at time ti fori = 1; 2; : : :. Each Ri (a Tsimmis query result) is a tree-
structured OEM database. Using differencing techniques
described in [CRGMW96, CGM97], QSS obtains a historyH = (t1; U1); (t2; U2); : : : corresponding to the sequence of
OEM databases (R0; R1; R2; : : :). That is, Ui(Ri�1) = Ri
for all i > 0. Then, QSS constructs a DOEM databaseD(R0;H) corresponding to this history H and the initial
snapshot R0, as described in Section 3. Thus, intuitively,
in the first timestep the results of the polling query are all



“created.” Thereafter, each subsequent timestep annotates
the DOEM database with the changes to the result of the
polling query since the previous timestep. We identify the
DOEM database corresponding to a polling query using the
name of the polling query. Thus the name of the DOEM
database corresponding to the above polling query is “Lyt-
tonRestaurants.”

The third component of a subscription is a Chorel queryQc, called the filter query, over the above DOEM database.
In Qc, we can use a special time variable “t[0]” to refer to
the current polling time tk. Similarly, we can use “t[-1],”
“t[-2],” etc., to refer to the past polling times tk�1, tk�2, etc.,
respectively. (If the current polling time is tk, we define t[-i]
to be tk�i if i < k, and negative infinity otherwise.) The
filter query describes the data and changes of interest to the
user. An example of an filter query is the following:

define filter query NewOnLytton as
select LyttonRestaurants.restaurant<cre at T>
where T > t[–1]

Given our definition of the DOEM database “LyttonRestau-
rants,” this query indicates that the user should be no-
tifed of new restaurants that have Lytton in their ad-
dress since the last polling time. At each time instanttk (k > 0) specified by the frequency specification, QSS
evaluates Qc over the DOEM database D(R0;Hk), whereHk = (t1; U1); : : : ; (tk; Uk), and returns the results to the
user.

Example 6.1 Consider again the changes to the Guide data
described in Example 2.2. Suppose we are interested in
being notified every night of new restaurants created in
the Guide database since the previous night. We issue the
subscription S = hf;Ql; Qci, where the frequency specifi-
cation f is “every night at 11:30pm,” and the polling queryQl and filter query Qc are Restaurants and NewRestaurants
(respectively) as defined below:

define polling query Restaurants as
select guide.restaurant

define filter query NewRestaurants as
select Restaurants.restaurant<cre at T>
where T > t[–1]

Suppose we create this subscriptionS on December 30th,
1996, at 10:00am. The polling times given by our fre-
quency specification are t1 = 30Dec96, t2 = 31Dec96,t3 = 1Jan97, and so on (all at 11:30pm). At polling timet1, QSS sends the polling query Ql to the Guide OEM
database, to obtain the result R1 consisting of the two orig-
inal restaurant objects in Figure 1. Since R0 is the empty
OEM database by definition, both restaurant objects will
have a cre annotation in the DOEM database built by QSS.
These annotations all have a timestamp t1, while the variable
t[-1] in the queryQc has value negative infinity at t1. There-
fore, evaluating the filter query Qc on this DOEM database
returns the two restaurant objects as the initial results to the
user.

At polling time t2, the Guide database is unchanged,
so the result R2 of the polling query is identical to R1.
Consequently, no changes are made to the DOEM database
maintained by QSS. Note also that at time t2, t [�1] = t1, so
that the create annotations on the restaurant objects in the
DOEM database no longer satisfy the predicate T > t[-1]

in the where clause of Qc. Therefore, the result of Qc is
empty, and the user does not receive any notification.

Before polling time t3, the Guide database is modified by
the addition of a new restaurant object, with name “Hakata,”
as described in Example 2.2. Therefore, at t3, the resultR3 of the polling query contains the new restaurant object
in addition to the two old restaurant objects. The new
restaurant object is detected by the differencing algorithm.
Accordingly, the DOEM database maintained by QSS now
includes the new restaurant object, with a create annotation
cre(t3) on it. Note also that at this time, t [�1] = t2, so that
this create annotation satisfies the predicate in the where
clause of Qc. Therefore the result of the query Qc over
the modified DOEM database contains the new restaurant
object “Hakata,” and the user is notified of this result. 2

We have implemented our QSS prototype based on the
above ideas, and interfaced it with Tsimmis wrappers over
various information sources [C3].

7 Conclusion and Future Work
We have motivated the need for a uniform representation

scheme for changes in semistructured data, and for a query
language that allows direct access to changes. We have
presented a simple data model, DOEM, that allows a wide
variety of semistructured data to be represented together
with its changes in an intuitive and compact manner. We
have also presented the query language Chorel, which en-
ables querying both the data and the changes, and described
its implementation. Finally, we have described the design
and implementation of a Query Subscription Service based
on DOEM and Chorel.

We plan to investigate the following topics in the near
future: (1) Extending Chorel to allow annotation expres-
sions to be attached to wildcards and regular expressions
in path expressions. (2) Designing indexes on annota-
tions (based on their types and timestamps) and studying
the use of such indexes to achieve a more efficient trans-
lation of Chorel queries to Lorel queries. (3) Exploring
the use of virtual annotations to allow expressions such as
guide.restaurant.price<at t> to refer to the value of the price
object at time t, and studying their implementation. (4)
Designing an event-condition-action trigger language for
OEM based on ideas from DOEM and Chorel. (5) Explor-
ing techniques to conserve space in QSS, by sharing data
across subscriptions.
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