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Abstract

Semistructured data may be irregular and incomplete
and does not necessarily conform to a fixed schema. As
with structured data, it is often desirable to maintain a his-
tory of changes to data, and to query over both the data
and the changes. Representing and querying changes in
semistructured data is more difficult than in structured data
due to the irregularity and lack of schema. We present a
model for representing changes in semistructured data and
a language for querying over these changes. An impor-
tant feature of our approach isthat we represent and query
changesdirectly asannotationson the affected data, instead
of indirectly as the difference between database states. e
describe the implementation of our model and query lan-
guage. We also describe the design and implementation of
a query subscription service that permits users to subscribe
to changesin semistructured information sources.

1 Introduction

Semistructured data is data that has some structure,
but it may be irregular and incomplete and does not nec-
essarily conform to a fixed schema (eg, HTML docu-
ments). Recently, there has been increased interest in
data models and query languages for semistructured data
[Abi97, BDHS96, CACS94, CGMH194, QWG'96]. We
also see increased interest in change management in rela
tional and object data [GHJ96, DHR96], and in the related
problem of temporal databases [SA86, So091]. However,
we are not aware of any work that addresses the problem of
representing and querying changes in semistructured data.
Aswill be seen, this problem is more challenging than the
corresponding problem for structured data dueto the irreg-
ularity, incompleteness, and lack of schema that often char-
acterize semistructured data. Nevertheless, our approach,
based on graph annotations, is also applicableto structured
graph-based data.

In this paper, we present a simple and general model,
DOEM (pronounced “doom”), for representing changes in
semistructured data. We also present a language, Chorel,
for querying over data and changes represented in DOEM.
We describe our implementation of DOEM and Chorel. We
also introduce a facility that allows users to subscribe to
changes in semistructured data, and we describe its design
and implementation based on DOEM and Chorel.

1.1 Motivating Examples

The Palo Alto Weekly, a local newspaper, maintains a
Web site providing information about restaurantsin the Bay
Area [PAW]. Most of the data in the restaurant guide is
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relatively static. But as often happens in database appli-
cations, we are particularly interested in the dynamic part
of the data. For example, we are interested in finding out
which restaurants were recently added, which restaurants
were seen as improving, degrading, etc. These changes
can be captured by atool that we have implemented, called
htmldiff [CRGMW96]. The htmidiff program takes two
versions of aweb page as input, and produces as output a
marked-up copy of the web page that highlightsthe differ-
ences between the two versions based on their semistruc-
tured contents. Our htmldiff system allows users to browse
the marked-up web page to view the changes, and to travel
back and forth between the old and new versions of the doc-
ument [CRGMW96]. Please see [C3] for details, including
some sample output from htmidiff.

For reasonably small documents, browsing the marked-
up HTML files produced by htmidiff to view the changes
of interest is afeasible option. However, as documents get
larger and changes become more prevaent and varied, one
soon feels the need to use queries to directly find changes
of interest instead of simply browsing. (For example, the
restaurant guide page is currently more than 20,000 lines
long, making browsing very inconvenient.) An example
of a simple change query over the restaurant data is “find
all new restaurant entries.” Another example is “find all
restaurants whose average entree price changed.” Just as
browsing databases is often an ineffective way to retrieve
information, the same holdsfor browsing data representing
changes. Thus, for this example, what we need is a query
language that alows queries over changes to (semistruc-
tured) HTML pages.

As another motivating example, consider a typical in-
formation library system that contains book circulation in-
formation. Suppose we wish to be notified whenever any
“popular” book becomes available where, say, we define a
book as popular if it has been checked out two or moretimes
in the past month. We could partialy achieve this goal by
setting a trigger on the circulation database that notifies us
whenever abook is returned. However, there are two prob-
lems with this approach. First, many library information
systems are legacy mainframe applications on which trig-
gersarenot available. Furthermore, even in cases wherethe
library information system isimplemented using a database
system that supports triggers, a user often lacks the access
rightsrequired to set triggerson the database. Second, there
is often no way to access historical circulation information,
so that we cannot check whether the book being returned
was checked out two or more times recently. In this ap-
plication too, the data may be semistructured, especialy if
thelibrary system mergesinformation from multiple sources
[PAGM96]. Thus, weagain need amethod to compute, rep-
resent, and query changes in the context of semistructured
data



1.2 Overview

We are interested in the three components of a change
management system, in the context of semistructured data:
(1) detecting changes; (2) representing changes;, and (3)
guerying changes. Detecting changes in semistructured
data is a challenging problem in practice because many
information sources that we are interested in do not provide
facilitiesor authorization for explicit monitoring of changes
(e.g., usingtriggers). Therefore, we are oftenforced toinfer
changes based on a sequence of data snapshots. We have
studied this problem in [CRGMW96, CGM97], which de-
scribe agorithms for inferring changes from snapshots of
semistructured data; we therefore do not discuss component
(2) further in this paper. This paper addresses the problems
associated with components (2) and (3).

Since our goal isto represent changes in semistructured
data, we use as a starting point the Object Exchange Model
(OEM) [PGMW95], designed at Stanford aspart of the Tsim-
mis project [CGMHT94]. OEM is a simple graph-based
data model, with objects as nodes and object-subobject re-
lationships represented by labeled arcs. Due to its sim-
plicity and flexibility, OEM can encode numerous kinds
of data, including relationa data, eectronic documents in
formats such as SGML and HTML, other data exchange
formats (e.g., ASN.1), and programs (e.g., C+-+). The ba
sic change operationsin such a graph-based model are node
insertion, update of node values, and addition and removal
of labeled arcs. (Node deletion isimplicit by unreachabil-
ity [AQMT96].) Our change representation model, DOEM
(for Delta-OEM), uses annotationson the nodes and arcs of
an OEM graph to represent changes. Intuitively, the set of
annotations on a node or arc represents the history of that
node or arc.

For querying over changes we use a language based
on the Lorel language for querying semistructured data
[AQMT96]. In our language, caled Chorel (for Change
Lord), we extend the concept of Lorel path expressions to
alow us to refer to the annotations in a DOEM database.
The result is an intuitive and convenient language for ex-
pressing change queries in semistructured data.  Although
thework inthis paper isfounded onthe OEM datamodel and
the Lorel language, the principal concepts are applicableto
any graph-based data model (semistructured or otherwise),
e.g., [BDHS96, Cat94].

Our implementation of DOEM and Chorel uses amethod
that encodes DOEM databases as OEM databases and trans-
lates Chorel queries into equivalent Lorel queries over the
OEM encoding. This encoding scheme has the benefit that
we do not need to build from scratch yet another database
system; instead, we capitalize on an existing database sys-
tem for semistructured data. Finaly, as an important first
application of DOEM and Chorel, we describe the design
and implementation of a query subscription service that per-
mits users to subscribe to changes in semistructured data.

1.3 Contributions

Our main contributions in this paper are as follows:
(1) We motivate and develop the problem of represent-
ing and querying changes in semistructured data. (2) We
present a simple and genera change representation model
for semistructured data. An important feature of our model
isthat it represents changes to a database directly as graph
annotations, instead of indirectly as the difference between
old and new database states. (3) We describe the syntax,

semantics, and implementation of a query language over
changes to semistructured data. Again, an important ad-
vantage of our query language is that it alows the user to
access changes directly. (4) We describe how our proto-
type implements this change query language on top of an
existing database system by encoding the change data and
by trandating change queries to ordinary queries. (5) As
one application of our ideas, we describe the design and im-
plementation of a service that permits users to subscribe to
changesin heterogeneous database environments. A unique
feature of our service is that it enables the user to specify
very precisaly (using our query language) the changes of
interest.

1.4 Related Work

If we consider the general problem of representing and
guerying the history of a database in addition to its current
dtate, there are two main approaches. The first approach,
which we call the snapshot-collection approach, views the
history of adatabase as acollection of database states (snap-
shots). According to this view, a change operation takes a
database from one state to the next. The states are ordered,
usualy linearly, based on time. In addition to querying the
present database state, such systems allow any other state
of the database to be queried. Thisisthe approach taken by
temporal databases [SA86, So091]. The second approach,
which we call the snapshot-delta approach, views the his-
tory of the database as a combination of a single database
snapshot and a collection of deltas. According to thisview,
we obtain various states of the database by starting with a
single snapshot and applying some sequence of deltasto it.
An early, simple example of this approach is the idea of
delta relations, used in active databases [ACT96, WC96]
and trigger languages [I1S094], which represent a set of
changes to a relation R using two relations RT and R,
where RT = Ry — Rotg, ad R™ = Ry1g — Ry . More
recently, thisapproach hasbeen used by the Heraclitus'H20
project to represent changes in relational and object data
[DHR96, GHJ92, GHJ96]. Our work differsfromthe Hera-
clitus’H20work intworespects. First, werepresent changes
in semistructured data, not just relationa and object data.
Second, we present a method for querying over changes as
first-class entities, as opposed to using changes to gener-
ate hypothetica states that are then queried as usual. We
believe that the two approaches are complementary.

1.5 Outline of Paper

The remainder of the paper is organized asfollows. Sec-
tion 2 reviews the Object Exchange Model (OEM), and
introduces OEM change operations and histories. In Sec-
tion 3, we present our OEM-based change representation
model for semistructured data, DOEM . Section 4 describes
our change query language, Chorel. In Section 5, we present
the encoding scheme that we use to implement DOEM and
Chorel using trandlation. Section 6 describesthe query sub-
scription system we haveimplemented based onthe material
in Sections 3-5. We conclude in Section 7. Due to space
constraints, we have omitted details from some sections
of this paper; we refer the reader to the extended version
[CAW9T] for these details.

2 TheObject Exchange Modél

The Object Exchange Moddl (OEM) is a simple, flex-
ible model for representing heterogeneous, semistructured
data. (Recall that semistructured data is data that may be
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Figure 1: The OEM database in Examples 2.1 and 2.2

irregular or incomplete, and that does not necessarily con-
form to a fixed schema, e.g., HTML documents describing
restaurants.) In this section, we begin by briefly describing
OEM. Next, we define the basic change operations used to
modify an OEM database. Finaly, we introduce the con-
cept of an OEM history that describes a collection of basic
change operations. Histories form the basis of our change
representation model described in Section 3.

Intuitively, one can think of an OEM database asa graph
in which nodes correspond to objects and arcs correspond
to relationships. Each arc has a label that describes the
nature of the relationship. (Note that the graph can have
cycles, and that an object may be a subobject of multiple
objectsviadifferent relationships. Example 2.1 below illus-
trates these points.) Nodes without outgoing arcs are called
atomic objects; the rest of the nodes are called complex
objects. Atomic objects have a value of type integer, real,
string, etc. An arc (p, !, c) in the graph signifies that the
object with identifier ¢ is an I-labeled subobject (child) of
the complex object with identifier p. Each OEM database
has a distinguished nodecalled theroot of thedatabase. The
root isthe implicit starting point of path expressionsin the
Lorel query language (described in Section 4.1). Formally,
we define an OEM database as follows:

Definition 2.1 An OEM database is a 4-tuple O =
(N, A,v,7), where N is a set of object identifiers;, A is
aset of labeled, directed arcs (p, I, ¢) wherep,c € N andl
isadtring; v isafunction that maps each noden € N toa
valuethat is an integer, string, etc., or the reserved value C
(for complex); and r isadistinguishednodein N called the
root of the database. A nodeisacomplex object if itsvalue
is C and otherwise it is an atomic object. Only complex
objects have outgoing arcs. We a so requirethat every node
be reachable from the root using a directed path. |

Example2.1 Wewill use as our running example an OEM
database describing the restaurant guide section of the Palo
Alto Weekly, introduced in Section 1. Figure 1 shows a
small portion of the data. (For this example, ignore items

depicted using dashed lines.) Notethat although the restau-
rant entries are quite similar to each other in structure, there
areimportant differencesthat require the use of asemistruc-
tured datamodel such as OEM. In particular, we seethat the
pricerating for arestaurant may be either an integer (10) or
astring (“moderate’). The address may be either a simple
string (“120 Lytton”) or a complex object with subobjects
listing the street, city, etc. Note aso that athough the data
has a natural hierarchical structure, nodes may have multi-
pleincoming arcs (e.g., noderny;), and there are cycles (e.g.,
the cycle formed by the arcs “ parking” and “nearby-eats’).
In the sequel, we refer to this database as Guide. O

2.1 Changesin OEM

We now describe how an OEM databaseismodified. Let
O = (N, A,v,7) be an OEM database. The four basic
change operations are the following:

Create Node: The operation creNode(n, v) creates a new
object. The identifier n must be new, i.e., n must not occur
in 0. Theinitia value v must be an atomic value (integer,
real, string, etc.) or the specia symbol C (for complex).
Update Node: The operation updNode(n, v) changes the
value of abject n, where v isan atomic value or the special
symbol €. Object n must be either an atomic object or a
complex object without subobjects. (The model requires
us to remove al subobjects of a complex object . before
transforming it into an atomic object.) Thevaluewv becomes
the new value of n.

Add Arc: Theoperation addArc(p, I, c) addsanarclabeled
I from object p (the parent) to object ¢ (the child). Objects
p and ¢ must exist in O, p must be complex, and the arc
(p, 1, ¢) must not already existinO.

Remove Arc: The operation remAre(p, I, c) removes an
arc. Objectsp and ¢ must exist in O, and O must contain
thearc (p, I, ¢), which isremoved.

If v Is abasic change operation that can be applied to
O, wesay u isvalid for O, and we use u(O) to denote the
result of applying « to O. Note that there is no explicit
object deletion operation. In OEM, persistence isby reach-
ability from the distinguished root node [AQM*96]. Thus,



to delete an object it suffices to remove all arcs leading to
it. A subtlety is that sometimes we need to alow objects
to be “temporarily” unreachable. In particular, when we
create a new object, it remains unreachable until we create
an arc that linksit to the rest of the database. Thus, when
we consider sequences of changes in Section 2.2, we want
to permit the result of atomic changes to (temporarily) con-
tain unreachable objects. The issue is discussed further in
Section 2.2 below. Note that users will typically request
“higher-level” changes based on the Lorel update language
[AQMT96]; the basi c change operationsdefined herereflect
the actual changes at the database level.

Example2.2 Let us consider some modifications to the
OEM database in Example 2.1. Wewill use these modifica-
tionsas arunning examplein therest of the paper. First, on
January 1st, 1997, the price rating for “Bangkok Cuising’
ischanged from 10 to 20. This modification correspondsto
an updNode operation. On the same day, a new restaurant
with name “Hakata’ is added (with no other data). This
modification correspondsto two creNode operationsfor the
restaurant node and its subobject, and two addArc opera-
tions to add arcs labeled “restaurant” and “name.” Next,
on January 5th, a subobject with value“need info” isadded
to the “Hakata’ restaurant object via an arc labeled “com-
ment.” This corresponds to one creNode operation and
one addArc operation. Finaly, on January 8th the parking
a “Lytton lot 2" is no longer considered suitable for the
restaurant “Janta,” and the corresponding arc is removed;
this modification correspondsto aremArc operation. These
changes are depicted in Figure 1 using dashed lines.

2.2 OEM Histories

Wearetypically interested in collectionsof basic change
operations, which describe successive modifications to the
database. We say that a sequence L = wug, up, .. ., Uy Of
basic change operationsisvalid for an OEM database O if
u; isvaidfor O;_foral:=1...n, where Oy = O, and
0; = 4;(0;_1), for: = 1...n. We use L(O) to denote
the OEM database obtai ned by applying the entire sequence
LtoO. Also, wesay that aset U = {ug, uz,...,u,} Of
basic change operationsisvalid for an OEM database O if
(1) for some ordering L of the changesin U, L isavalid
sequence of changes, (2) for any two such valid sequences
Land L', L(O) = L'(0), and (3) U does not contain both
addArc(p, 1, c) and remArc(p, 1, c) for any p, I, and c. We
useU (0) to denotethe OEM database obtained by applying
the operationsintheset U (in any valid order) to O.

We are now ready to define an OEM history. Assumewe
are given sometime domaintimethat isdiscrete and totally
ordered; elementsof timearecalled timestamps. Intuitively,
consider an OEM database to which, at sometimety, aset
U, of basic change operationsis applied, then at alater time
t,, another set U, isapplied, and soon. A history represents
such a sequence of sets of modifications.

Definition 2.2 An OEM history is a sequence H =
(t1,U1), - .., (tn, Upn), whereU; isaset of basic change op-
erationsand ¢; isatimestamp, fori = 1...n,andt; < ;11
fori=1...n— 1. Wesay H isvalid for an OEM database
Oif,fordli=1...n,U;isvadidfor O;_1, whereOg = O,
andOi:U,-(Oi_l) fori=1...n. (]

We now return to the requirement that all objectsin an
OEM database must be reachable from the root. An OEM

history can beviewed asasequence Ly, ..., L,, of sequences
of atomic changes. Within one sequence L; of changes, we
relax the requirement that all objects are reachable fromthe
root so that we can, e.g., create a node and then create arcs
leading to it, as discussed earlier. However, immediately
after each sequence L; has been applied, nodes that are un-
reachable are considered as deleted, and the remainder of
the history should not operate on these objects. To sim-
plify presentation, we also assume that object identifiers of
deleted nodes are not reused.

Example 2.3 The history for the modifications described
in Example 2.2 consists of three sets of basic change op-
erations. Itisgiven by H = ((t1, U1), (t2, U2), (t3, U3)),
wheret; = 1Jan97, t, = 5Jan97, t3 = 8Jan97, and:

U1 = { updNode(n1, 20), creNode(ny, €),
creNode(ns, “Hakata’), addArc(na, “restaurant”, ny),
addArc(ng, “name’, ns) }

U, = { creNode(ns, “need info”)

addArc(ny, “comment”, ns) }

Us = { remArc(ne, “parking”, n7) }.

This is a valid history for the origina OEM database in
Figure1. |

3 Representation of Changes

In this section, we describe how changes to an OEM
database are represented by attaching annotations to the
OEM graph, thereby turning it into a DOEM (Delta OEM)
graph. Intuitively, annotationsare tagsattached to the nodes
and arcs of an OEM graph that encode the history of basic
change operations on those nodes and arcs. Thereis aone-
to-one correspondence between annotations and the basic
change operations. Thus, nodes and arcs may have the
following four types of annotations: (1) cre(t): the node
was created at timet. (2) upd(t, ov): the nodewas updated
at timet; ov istheold value. (3) edd(t): thearc was added
attimet. (4) rem(t): thearc wasremoved at timet. Theset
of all possible node annotationsis denoted by node-annot,
and the set of all possible arc annotations is denoted by
arc-annot.

Using the above definitions of node and arc annotations,
we now define a DOEM database. In the following defini-
tion, the function fx(n) maps anoden to a set of annota
tions on that node and the function f4 (a) maps an arc a to
aset of annotationson that arc.

Definition 3.1 A DOEM databaseisatriple

D = (O, fn, fa), where O = (N, A,v,r) is an OEM
database, fy maps each node in N to a finite subset of
node-annot, and f4 maps each arcin A to afinite subset of
arc-annot. O

3.1 DOEM Representation of an OEM History
Given an OEM database O and a history H =
(t1, U1), -.., (tn, Up) that is valid for O, we would like to
congtruct the DOEM database representing O and H, de-
noted by D(O, H). D(O, H) is constructed inductively as
follows. We start with a DOEM database Dy that consists
of the OEM database O with empty sets of annotations for
the nodes and the arcs of O. Suppose D;_1 isthe DOEM
database representing O and (t1, U1), ..., (ti—1, Ui—1), for
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Figure 2: The DOEM database in Example 3.1.

some 1 < 7 < n. The DOEM database D; is constructed
by considering the basic change operations in U;. Since
the history is valid, we can assume some ordering L; of
the operations in U; (Definition 2.2). Starting with D;_1,
we process the operations in L; in order. Whenever the
value of an object is updated, in addition to performing the
update we attach an upd annotation to the node. This an-
notation contains the timestamp ¢; and the old value of the
object. When a new object is created or an arc added, in
addition to performing the modification, we attach a cre or
add annotation with the timestamp ¢;. When an existing
arc isremoved, we do not actually remove the arc from the
graph; instead, we simply attach a rem annotation to the
affected arc with the timestamp ¢;. Observe that this rep-
resentation directly stores the changes themselves, not the
before and after images of the changes, and thus takes the
snapshot-delta approach discussed in Section 1.4.

Example3.1 Consider the history described in Exam-
ple 2.3, which transforms the OEM database of Figure 1
as depicted there using dashed lines. The corresponding
DOEM database is shown in Figure 2. We see that the
DOEM database contains severa annotations, depicted as
boxes in the figure. For example, the annotations with
timestamp “1Jan97” correspond to the first set of updates.
Notethat the cre, add, and rem annotationscontain only the
timestamp, while the upd annotation aso contains the old
value of the updated node (10, in our example). Also note
that the removed “parking” arc from the “Janta’ restaurant
object to the “Lytton lot 2" parking object is not actually
removed from the DOEM database; instead it bears arem
annotation. O

3.2 Properties of DOEM Databases

We now summarize the desirable properties of the
DOEM representation of OEM database histories. (See
[CAW97] for details.) Given a DOEM database D, it is
easy to obtain the original snapshot, Og(D), the snapshot

at timet, O¢(D), and, the current snapshot, O.(D). ltis
also easy to obtaintheencoded history H (D) fromaDOEM
database D. We say that a DOEM database D isfeasibleif
there existssome OEM database O and valid history H such
that D = D(O, H). Note that we do not require DOEM
databases to record al changes since credtion, i.e, OEM
database O need not be empty. It isreatively easy to de-
termine if a given DOEM database D is feasible. Given
afeasible DOEM database D, we can show that the OEM
database Og(D) and the history H(D) encoded by D are
unique. Thus, aDOEM database faithrully captures al the
information about the history of the corresponding OEM
database. Finaly, as we will see in the next section, it is
easy and intuitiveto query the history encoded ina DOEM
database.

4 Querying Over Changes

In Section 3, we have seen how the history of an
OEM database is represented by the corresponding DOEM
database. Inthissection, wedescribe how DOEM databases
are queried. We introduce a query language caled Chorel
for this purpose. Chord is similar to the Lorel language
[AQM*96] used to query OEM databases. We begin with
a brief overview of Lorel, followed by a description of the
syntax and semantics of Chorel.

4.1 Lore Overview

Lorel uses the familiar select-from-where syntax, and
can be thought of as an extension of OQL [Cat94] in two
major ways. First, Lorel encourages the use of path ex-
pressions. For instance, one can use the path expression
guide.restaurant.address.street to specify the streets of all
addresses of restaurant entries in the Guide database. Sec-
ond, in contrast to OQL, Lorel has avery “forgiving” type
system. When faced with the task of comparing different
types, Lorel first tries to coerce them to a common type.
When such coercions fail, the comparison simply returns
fase instead of raising an error. This behavior, while it
may be unsuitable for traditional databases, is exactly what



a user expects when querying semistructured data. Lorel
also provides a number of syntactic conveniences such as
the possibility of omitting the from clause. Due to space
limitations, we do not describe Lorel in detail here (see
[AQM+96]) but only present through a simple example
those features that are needed to understand Chordl.

Example4.1 Consider again the (modified) OEM database
depictedin Figure 1. Tofind all restaurantsthat have aprice
rating of less than 20.5, we can use the following Lorel

query:

select guide.restaurant
where guide.restaurant.price < 20.5

Note that the query expressesthe pricerating asarea num-
ber whereas the restaurant entries for “Bangkok Cuising”
and “Janta’ in the modified OEM database shown in Fig-
ure 1 use an integer and astring, respectively. Furthermore,
the third restaurant entry does not have a price subobject at
all. Lorel successfully coerces the integer price 10 to real,
and the comparison succeeds. For the string encoding of the
price (“moderate”’), Lorel triesto coerce, but fails, returning
false as the result of the comparison. Finaly, for the third
restaurant, the missing price subobject simply causes the
comparison to return false. Thus, the result of the above
guery isasingleton set containing the restaurant object for
“Bangkok Cuisine” Note that this is an intuitively rea-
sonable response to the original query, despite the typi ng
difficulties and the missing data.

4.2 Chord

In Chorel, path expressions may contain annotation ex-
pressions, which alow us to refer to the node and arc an-
notationsin a DOEM database. Informally, Lorel path ex-
pressions can be thought of as being matched to paths in
the OEM database during query execution. Analogoudly,
the annotation expressions in Chorel path expressions can
be thought of as being matched to annotations on the corre-
sponding paths in the DOEM database.

Example4.2 Consider the DOEM database depicted in
Figure 2. To find al newly added restaurant entries only,
we can use the following Chorel query:

sdlect guide.<add>restaurant

The annotation expression“ <add>" specifiesthat only those
objects connected to the “guide’ object by a “restaurant”-
labeled arc having an add annotation should be retrieved.
For the database depicted in Figure 2, this Chorel query
returns the restaurant object with name “Hakata.” |

Not surprisingly, we use four kinds of annotation ex-
pressions in Chorel path expressions: node annotation
expressions “cre’ and “upd,” and arc annotation expres-
sions “add’ and “rem.” Recall that a path expression,
eg., guiderestaurant.price, consists of a sequence of la-
bels. Arc annotation expressions must occur immediately
before a label, whereas node annotation expressions must
occur immediately after one. (Note that since node and
arc annotations use different keywords, no confusion can
arise) Path expressions containing node or arc annota-
tion expressions are called annotated path expressions. For

instance, guide.<add>restaurant.price<upd>isacorrect an-
notated path expression. It requires an add annotation to be
present on the arc labeled “restaurant,” and an upd annota-
tion on the “price” node (i.e., on the node at the destination
of the arc labeled “price”). For simplicity, in this paper
we do not consider path expressions that have annotation
expressions attached to wildcards or regular expressions,
however generalizing to allow such annotation expressions
isnot difficult.

Annotation expressions may also introduce time vari-
ables to refer to the timestamps stored in matching anno-
tations, and data variables to refer to the modified values
in matching upd annotations. More precisely, the syntax of
annotation expressionsis as follows:

<Annot [at timeV]> if Annotisin { add, rem, cre}
<upd [at timeV] [fromoldV] [to newV]> for upd

where timeV, oldV, and newV are variables. Note that a
DOEM database does not explicitly store the new value of
an updated object, however this information is available
implicitly, and can be determined easily [CAW97].

Example4.3 Consider the DOEM database in Figure 2.
Tofind al restaurant entries that were added before January
4th, 1997, we can use the following Chordl query:

select guide.<add at T>restaurant
where T < 4Jan97

The Chorel preprocessor will rewrite this query to obtain
the following. (Wewill explain thisrewriting shortly.)

sdect R
from guide.<add at T>restaurant R
where T < 4Jan97

The introduced from clause will bind R to all “restaurant”
objects that are connected to the “guide’ object via an arc
with an add annotation, and will provide corresponding
bindingsfor T. More precisely, the evaluation of the from
clause will yield the set of pairs (R, T') such that there is
a restaurant arc from the guide object to R that has an
add annotation with timestamp 7. The where clause will
filter out the (R, T') pairs for which T' does not satisfy the
condition. For the DOEM database in Figure 2, this query
returns the restaurant object for “ Hakata.”

Once time and data variables have been bound using
annotations, they can be used just like other variables in
Lorel or OQL. Thisisillustrated by the following query,
which uses time and data variablesin the select clause.

Example4.4 Referring again to the DOEM database in
Figure?2, supposewewant to find thenamesof all restaurants
whose price ratings were updated on or after January 1<t,
1997 to avaue greater than 15, together with thetime of the
update and the new price. We can use the following query:

sdect N, T, NV

from guide.restaurant.price<upd a T to NV>,
guide.restaurant.name N

where T >= 1Jan97 and NV > 15

answer
name "Bangkok Cuisine"
new-value 20
update-time 1Jan97



The result of the above query is a single complex object
with three components, as shown above. The labdl nameis
chosen by Chorel using themethod describedin[AQM *96].
For time and data variables whose labels are not specified
by the query, Chorel chooses the default |abels create-time,
add-time, remove-time, update-time, new-value, and old-
value. O

4.3 Chorel Semantics

We now make the semantics of Chorel queries more
precise. Asisdone for Lorel, the semantics is described
by specifying the rewriting of Chorel queriesinto OQL-like
gueries. However, we need to introduce some additional
machinery to handle the annotation expressions in Chorel
gueries.

First, the annotation expressions in a Chorel query are
transformed intoacanonical formthat includesall variables.
For example, “<add>" is rewritten to “<add at T1>," and
“<upd from X>" is rewritten to “<upd a T2 from X to
NV2>" where T1, T2, and NV2 are fresh variables. Next,
asin Lord, we eliminate path expressions by introducing
variables for the objects “inside” the path expressions. For
example, the path expression “ab.c’ in a from clause is
convertedto“ab X, X.c Y,” where X and Y are new range
variables.

At this stage, we have to give a semantics to range vari-
able definitions that may include annotation expressions
(eg., “X.lab Y, “X.<add a T>lab Y”) in the context of a
DOEM database. In the absence of an annotation expres-
sion, the semantics of an expression “ X.lab Y” isthat for a
bindingox of X,Y isboundtoall objectsoy suchthat there
isan arc labeled lab from ox to oy inthe current snapshot.
Notethat by thissemantics, astandard Lorel query (without
annotations) over aDOEM database has exactly the seman-
tics of the same query asked over the current snapshot for
that DOEM database. 1n the presence of annotation expres-
sions, the semantics requires the existence of the specified
annotation, and also provides bindings for the variables in
the annotation expression. The bindings are also specified
by aspecia rewriting. Asan example, thequery in Example
4.4 isrewritten to:

sdect N, T, NV

from guiderestaurant R, R.price F R.name N,
(T, OV, NV) inupdFun(P)

where T >= 1Jan97 and NV > 15

Our rewriting usesthefollowingfunctions, which extract
the information stored in annotations:

creFun(node) — {time}

updFun(node) — {(time, old-value, new-value)}
addFun(source, label) — {(time, target)}
remFun(source, label) — {(time, target)}

The function creFun(n) returnsthe set of timestamps found
in cre annotationson node .. (Notethat by our definition of
change operationsin Section 2.1, this set is either empty or
asingleton.) The function updFun(n) returnsaset of triples
corresponding to the timestamp, the old value, and the new
valuein upd annotationson .. The function addFun(n,!) re-
turnsaset of (¢, ¢) pairssuch that ¢ isan I-label ed subobj ect
of n viaan arc that has an edd(t) annotation. The remFun
function is analogous to addFun. Once this rewriting has

been performed, the from, where, and sdlect clauses of the
resulting query are processed in a standard manner.

Above, we have illustrated how variables introduced in
the fromclause areinterpreted. Variablesmay beintroduced
inthe whereclause aswell. They are treated by introducing
existentia quantification in the where clause, extending the
treatment of such variablesin Lorel [AQM*96]. Consider
the following example:

Example4.5 Consider again the DOEM database of Fig-
ure 2. Suppose we want the names of restaurants to which
a“moderate”’ price subobject was added since January 1st,
1997. We can write the following Chorel query:

sdect N
from guiderestaurant R, R.name N
where R.<add at T>price = "moderate” and T >= 1Jan97

Thevariable Tisintroduced inthe whereclause. Therefore,
the rewritten whereclauseis:

where exists (T, P) in addFun(R,"price") :
(P="moderate" and T >= 1Jan97)

5 Implementing DOEM and Chorel

In this section, we describe how we implement DOEM
databases and Chorel queries. We encode DOEM databases
as OEM databases, and weimplement Chorel by trandating
Chorel queries to equivaent Lorel queries over the OEM
encoding of the DOEM database. 1n addition to being more
modul ar than adirect implementati on approach that buildsa
Chorel database engine from scratch, thisapproach can also
be adapted easily to other graph-based data models, e.g.,
thosein [BDHS96, Cat94].

5.1 Encoding DOEM in OEM

Let D be aDOEM database. We encode D as an OEM
database Op defined as follows. For each abject o in D,
thereisa corresponding object o’ in Op. An aomic object
is encoded as a complex object so that we can record its
history. Specid labels used by the encoding start with the
special character “&” to distinguish them from standard la
belsoccuringinO. The encoding object o’ hasthefollowing
subobjects, listed by their labels.

e &va: If o isaomic with current value v, thereis a
“&val"-labeled arc from o' to an atomic object with
vauew. If oiscomplex, thereisa“&val”-labeled arc
fromo' toitsdlf. (Thisextraedgesimplifiesthetransa
tion of Chorel queriesto equivalent Lorel queries over
the encoding [CAW97].)

e &cre If o hasacreate annotation cre(t), then o’ hasa
“&cre’-1abeled atomic subobject with valuet.

e &upd: For each update annotation upd (i, ov) attached
too, o' hasan“ & upd’-labeled complex subobject with
the following structure: a “&time’-labeled subobject
withvaluet, an* & ov’-1abel ed subobject withthevalue
before the update (ov), and a“ & nv’-labeled subobject
with the value after the update.

e |: If thecurrent snapshot for D containsan arc (o, I, p),
then Op containsan arc labeled | from o’ to the object
p' that encodes p.



e &|-history: If D containsan arc (o, I, p), then Op con-
tainsan arc (o', &|-history, o}) where o is acomplex
object that contains the history of the ! arcs from o
to p. The object o] has the following structure: (1)
&target: There is an arc (o], & target, p’), where p’
is the abject encoding p. (2) &add, &rem: For each
annotation edd(¢) (rem(t)) attached to (o, I, p), there
isan “&add’-labeled (respectively, “ & rem’-labeled)
atomic subobject with valuet.

It can be shown that all theinformationinaDOEM database
Disfully representedin D'sOEM encoding using theabove
scheme.

5.2 Trandating Chorel toLore

Given the above encoding of a DOEM database as an
OEM database, we now describe how a Chorel query over
a (conceptual) DOEM database is trandated into an equiv-
alent Lorel query over an OEM encoding of the DOEM
database. Due to space constraints, we do not present the
details here, referring the reader to [CAW97] instead. The
following exampleintuitively presentsthebasis of thetrans-
lation scheme,

Example5.1 Consider the Chorel query in Example 4.5.
In Section 4.3, we considered the OQL-like rewriting of
this query. We now complete this rewriting by using the
information encoded in the &-arcs to yield the following
Lorel query over the OEM encoding of the DOEM database
in Figure2:

sdect N
from guiderestaurant R, R.name N
where exists H in R.&price-history :
existsPin H.&target :
exists TinH.&add : T >= 1Jan97 and
R&val = "moderate”

Note that we simulate the range specification

addFun(R,"price") using the “ & " -prefixed subobjects. Fur-
ther, we use P& val to access the actual price value (and not
the complex object packaging it with its history). |

Note that the previous query returns a set of DOEM
objects that represent restaurant names. That is, it returns
not only the names of the restaurants, but also the history
of these names, if they changed. Returning the DOEM
object enables a user interface to access both the value and
the history of an object. We have implemented a DOEM
database system, called CORE, based on the above idess;
please see [C3] for a description.

6 A Query Subscription Service

In Section 1, we mentioned an important application of
change management: being able to notify “subscribers’ of
changes in (semistructured) information sources of inter-
est to them. In this section, we describe the design and
implementation of such an application, called a Query Sub-
scription Service (QSS), using DOEM and Chorel.

An ordinary query is evaluated over the current state
of the database, the results passed to the client and then
discarded. An example of an ordinary query is “find all
restaurants with Lyttonin their address.” In contrast, a sub-
scription query isaquery that repeatedly scans the database
for new results based on some given criteriaand returnsthe

changes of interest. An example of a subscription query
is “every week, notify me of all new restaurants with Lyt-
tonintheir address.” Below, we describe how subscription
queries are specified and implemented in our system.

Supporting subscription queriesintroducesthefollowing
challenges. First, as discussed earlier, many information
sources that we are interested in (e.g., library information
systems, Web sites, etc.) are autonomous[SL90] and typ-
ical database approaches based on triggering mechanisms
are not usable. Second, these information sources typically
do not keep track of historical information in aformat that
is accessible to the outside user. Thus, a subscription ser-
vice based on changes must monitor and keep track of the
changes on its own, and often must do so based only on
sequences of snapshots of the database states.

Briefly, our approach to constructing a query sub-
scription service over semistructured, possibly legacy in-
formation sources is as follows: We access the infor-
mation sources using Tsimmis wrappers or mediators
[PGGMU95, PGMU96], which present a uniform OEM
view of one or more data sources. We obtain snapshots
of relevant portions of the data, and use differencing tech-
niques based on [CRGMW96, CGM97] to infer changes
based on these snapshots. Finaly, we use DOEM to rep-
resent the changes, and Chorel to specify the changes of
interest. We describe our approach in more detail next.

A subscription consists of three main components. The
first component is a frequency specification f that specifies
how often QSS should check theinformation sourcefor data
and changes of interest. Examples of frequency specifica
tionsare“every Friday at 5:00pm” and “every 10 minutes.”
The frequency specification implies a sequence of timein-
stants (t1, 2, 3, . . .), which we cal polling times. These
times are the times when we obtain a new snapshot of the
data. (Intheactua system [C3], we also consider two other
modes: one in which the snapshots are obtained following
explicit user requests, and the other in which snapshots are
obtained as a result of atrigger on the source database fir-
ing, if the source provides such atriggering mechanism. To
simplify the presentation, we will not consider these modes
further here,

The second component of asubscriptionisalorel query
@1, whichwe call the polling query. QSS sends the polling
(Lorel) query to thewrapper or mediator at the pollingtimes
(t1,t2,t3,...) toobtainresults(R1, Ry, R3, . ..). Anexam-
plepolling query isthefollowing. (InLord, “#" isaspecia
character that matches any sequence of zero or more labels
in a path, and the operator like performs string matching.)

define polling query LyttonRestaurants as
select guide.restaurant
where guide.restaurant.address.# like "%Lytton%"

Let Ry be the empty OEM database, and let R; be the
result of the polling query on the source at time ¢; for
1 =1,2,.... Each R; (a Tsmmis query result) is a tree-
structured OEM database. Us ng differencing techniques
described in [CRGMW96, CGM97], QSS obtains a history
H = (t1,Uy), (t2, U2), . . . corresponding to the sequence of
OEM databas&( 0 Rl, Ry,...). Thatis, U;(Ri-1) = R;
for dl « > 0. Then, QSS constructs a DOEM database
D(Ro, H) correspondmg to this history H and the initial
snapshot Ry, as described in Section 3. Thus, intuitively,
in the first timestep the results of the polling query are al



“created.” Theresfter, each subsequent timestep annotates
the DOEM database with the changes to the result of the
polling query since the previous timestep. We identify the
DOEM database corresponding to apolling query using the
name of the polling query. Thus the name of the DOEM
database corresponding to the above polling query is*“ Lyt-
tonRestaurants.”

The third component of a subscriptionisa Chorel query
Q., caled thefilter query, over the above DOEM database.
In Q., we can use a specia time variable “t[0]” to refer to
the current polling time ¢;. Similarly, we can use “t[-1],”
“t[-2],” etc., torefer tothepast pollingtimesty 1, 5 _ 2, €tC.,
respectively. (If thecurrent pollingtimeist, wedefinet[-i]
to bets_; If ©+ < k, and negative infinity otherwise.) The
filter query describes the data and changes of interest to the
user. An example of an filter query isthe following:

define filter query NewOnLytton as
select LyttonRestaurants.restaurant<creat T>
where T > t[-1]

Given our definition of the DOEM database “ LyttonRestau-
rants” this query indicates that the user should be no-
tifed of new restaurants that have Lytton in their ad-
dress since the last polling time. At each time instant
tr (k > 0) specified by the frequency specification, QSS
evaluates Q. over the DOEM database D(Rg, Hy), where
Hy = (t1,U1), ..., (tx, Ux), and returns the results to the
user.

Example 6.1 Consider again the changesto the Guidedata
described in Example 2.2. Suppose we are interested in
being notified every night of new restaurants created in
the Guide database since the previous night. We issue the
subscription S = (f, @i, Q.), where the frequency specifi-
cation f is“every night at 11:30pm,” and the polling query
Q@ and filter query Q. are Restaurantsand NewRestaurants
(respectively) as defined below:

define polling query Restaurants as
select guide.restaurant

define filter query NewRestaurants as
sdlect Restaurants.restaurant<cre at T>
where T > t[-1]

Supposewe create thissubscription.S on December 30th,
1996, at 10:00am. The polling times given by our fre-
guency specification are t; = 30Dec96, t, = 31Dec96,
t3 = 1Jan97, and so on (al at 11:30pm). At polling time
t1, QSS sends the polling query @; to the Guide OEM
database, to obtain theresult R; consisting of the two orig-
inal restaurant objectsin Figure 1. Since Ry is the empty
OEM database by definition, both restaurant objects will
have a cre annotation in the DOEM database built by QSS.
Theseannotationsall haveatimestamp 1, whilethevariable
t[-1]inthequery Q. hasvaluenegativeinfinity at 1. There-
fore, evaluating the filter query Q. on thisDOEM database
returns the two restaurant objects astheinitia resultsto the
user.

At polling time t,, the Guide database is unchanged,
so the result R, of the polling query is identical to R;.
Consequently, no changes are made to the DOEM database
maintained by QSS. Note also that at timet,, t[— 1] = ¢4, SO
that the create annotations on the restaurant objects in the
DOEM database no longer satisfy the predicate T > t[-1]

in the where clause of Q.. Therefore, the result of Q. is
empty, and the user does not receive any notification.
Before pollingtimets, the Guide database ismodified by
the addition of anew restaurant object, with name “Hakata,”
as described in Example 2.2. Therefore, a ¢3, the result
R; of the polling query contains the new restaurant object
in addition to the two old restaurant objects. The new
restaurant object is detected by the differencing algorithm.
Accordingly, the DOEM database maintained by QSS now
includes the new restaurant object, with a create annotation
cre(ts) onit. Notealso that at thistime, t[—1] = ¢,, so that
this create annotation satisfies the predicate in the where
clause of Q.. Therefore the result of the query Q. over
the modified DOEM database contains the new restaurant
object “Hakata,” and the user isnotified of thisresult. O

We have implemented our QSS prototype based on the
above ideas, and interfaced it with TSimmis wrappers over
variousinformation sources [C3].

7 Conclusion and Future Work

We have motivated the need for a uniform representation
scheme for changes in semistructured data, and for a query
language that alows direct access to changes. We have
presented a simple data model, DOEM, that allows a wide
variety of semistructured data to be represented together
with its changes in an intuitive and compact manner. We
have also presented the query language Chorel, which en-
ables querying both the data and the changes, and described
its implementation. Finally, we have described the design
and implementation of a Query Subscription Service based
on DOEM and Chordl.

We plan to investigate the following topics in the near
future: (1) Extending Chorel to allow annotation expres-
sions to be attached to wildcards and regular expressions
in path expressons. (2) Designing indexes on annota
tions (based on their types and timestamps) and studying
the use of such indexes to achieve a more efficient trans-
lation of Chorel queries to Lorel queries. (3) Exploring
the use of virtual annotationsto alow expressions such as
guide.restaurant.price<at t>to refer to the value of the price
object at time t, and studying their implementation. (4)
Designing an event-condition-action trigger language for
OEM based on ideas from DOEM and Chorel. (5) Explor-
ing techniques to conserve space in QSS, by sharing data
across subscriptions.
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