
Effective Whitelisting for Filesystem Forensics

Sudarshan S. Chawathe

Abstract— Forensic analysis of the large filesystems com-
monly found on current computers requires an effective method
for categorizing and prioritizing files in order to avoid over-
whelming the investigator. A key technique for this purpose is
whitelisting files, i.e., skipping the detailed analysis of files that
match files in a well known reference collection of files. Effective
use of this technique requires an efficient method to match
files, detecting not only exact matches, but also near matches
or approximate matches. This paper outlines the requirements
for such matching, formalizes them as the bounded best match
and approximate bounded near-match problems, and describes

methods to solve these problems. In particular, the approximate
bounded near-match problem is mapped to the problem of
finding near neighbors in a high-dimensional metric space and
solved using locality-sensitive hashing.

I. INTRODUCTION

I
T IS INCREASINGLY COMMON for criminal investigations

to include forensic analysis of computer equipment.

Given the widespread and growing use of computers in many

aspects of everyday life, information valuable to a criminal

case may be recovered by examining email messages, digital

photographs, software logs, and other artifacts of a com-

puter’s operation. An important source of such information

is data found in various files on a typically large hard disk

or similar nonvolatile storage medium, such as flash memory

or solid-state disks.

The large, and growing, capacities of current hard disks

(several terabytes) are both a boon and a curse for forensic

analysis. On the one hand, the large capacities have led to

the growth of applications (e.g., email, instant messaging,

chat rooms, digital photography, games, and video) and usage

patterns (large logs, almost perpetual retention of messages

and downloaded content) that are likely to assist investiga-

tors. On the other hand, analyzing such large amounts of

data effectively within the time constraints of an investigation

poses serious challenges. While human inspection of a few

megabytes of data may be feasible, such inspection of

terabytes of data is impractical. There is a critical need

for semi-automatic tools and techniques that can assist an

investigator in quickly locating those files that are worth

further analysis.

Whitelisting is an important technique that has emerged to

partly address this problem. This technique is based on the

observation that a significant number of files in a computer

Author’s address: Department of Computer Science; University of Maine;
Orono, ME 04469, USA. chaw@cs.umaine.edu. This work was
supported in part by the U.S. National Science Foundation with grant CNS-
0426683.

system are used by the operating system software (e.g,

GNU/Linux, Windows XP), various software components

(e.g., Java, .NET), server software (e.g., Web and database

servers), end-user applications (e.g., Office, Firefox), and so

on. The investigator’s workload can be substantially reduced

if these files can be automatically or semi-automatically

detected and flagged. Such detection is, at first glance, simple

because most of these files change very rarely, if at all. For

example, the executable files that are used to run Adobe

Acrobat and similar applications are likely to change only

when the software is upgraded, and not on a daily basis.

This observation has led to the creation of several whitelists,

i.e., lists of files belonging to known applications, operating

systems, and other code-bases. These whitelists, created by

one or more trusted entities, list the name, creator, and other

relevant attributes of each known file along with its signature.

A file’s signature is essentially a small amount of data (≈
100 bytes) that is easily computed from the file’s contents.

A notable feature of such signatures is that even a small

change in a file results in a significant change in the signature

and, further, it is practically infeasible to create a file with a

given signature, or to modify a file in a way that retains its

signature.

In what follows, we use the phrase reference collection

to refer to the files, signatures, and auxiliary information

associated with a whitelist of files. We use the phrase target

filesystem to refer to the filesystem that is being analyzed

for evidence. The tasks outlined in this paper occur during

two very different kinds of time periods. The first, which we

call preparation time or simply advance refers to the time

during which an investigator and colleagues prepare the tools

for later use. The second time period, which we call query

time or analysis time, refers to the time during which an

investigator is actively studying evidence related to one or

more investigations.

Section II describes how simple signatures may be used

to detect and filter out files in the target filesystem that

match files in the reference collection. Unfortunately, this

technique is easily defeated by an adversary who may make

small, inconsequential changes in the standard files, resulting

in no matches with the whitelist signatures. Addressing this

issue requires methods for matching files that are not overly

sensitive to small changes in files. We outline two simple

methods for this purpose: The first is based on the idea

of computing a signature for each suitably-sized block of a

file and forming a composite file signature by concatenating

the block signatures (Section III-A). The second method



improves on the first by replacing fixed-sized blocks with

block boundaries that are computed dynamically based on

file contents (Section III-B).

These enhancements to the basic technique make it harder

for an adversary to defeat the whitelisting of files by

making trivial changes. However, we also need methods

for efficiently matching signatures of files from the target

filesystem to signatures of “approximately equal” files in

the reference collection. Section III-C outlines a simple

method based on measuring the dissimilarity of files using

the string edit distance between their signatures. Section III-

D presents a faster method based on hashing composite

file signatures using a locality-sensitive hashing scheme.

Section IV describes related work and the conclusion appears

as Section V.

It is worth emphasizing that the methods of this paper

address only a very small, albeit important, part of the task

of forensic analysis of a computer system. Not only do the

methods not address important aspects such as live memory

analysis and network forensics, they are also not designed to

be used in exclusion. Rather, tools based on these methods

are applicable in the early stages of forensic investigation

of a computer, specifically the storage subsystem, in order

to determine which files are the best candidates for a more

thorough investigation using more sophisticated, but slower

and typically more labor intensive tools. Additional remarks

on the context of this problem appear in Section V.

II. WHITELIST MATCHING

Given the expected large sizes of the target filesystems

(several hundred gigabytes to terabytes) as well as the ref-

erence collections (tens to hundreds of gigabytes), matching

files by comparing their contents is a task that would require

hours to days and is therefore not practical in the early

stages of an investigation. It is not surprising, therefore, that

signature-based methods are popular in this context. These

methods use one of several popular signature functions, such

as MD5 and SHA-1 [1], [2]. (These signatures are also

known as digests or hashes.) Recall from Section I the

notion of preparation time, in advance of any investigation.

At this time, each file in the reference collection is mapped

to its signature using one or more such functions, yielding

a reference collection of signatures. At query time, each file

in the target filesystem is also mapped to its signature using

the same functions. If the resulting signature is found in the

reference collection, a match is reported. Since signatures are

very small in comparison to the original files, searching for

matching signatures is computationally much less demanding

than a search based on the original files, although the search

is still not trivial. For example, the uncompressed size of

the reference collection from the NIST National Software

Reference Library is 5.8 GiB [3].

Such direct signature-based methods have two key benefits

when applied to the whitelist matching problem, both derived

from the properties of the signature algorithms. First, since

signatures are small objects (64 bytes for MD5, 128 for

SHA-1), they incur low storage overheads and are efficiently

matched. Second, it is computationally impractical to modify

a file without modifying its signature, or to edit a file

that matches a desired signature. As a result, when an

unknown file’s signature matches a signature in the reference

collection, it is extremely unlikely that the contents of the

two files differ.

Unfortunately, it is very easy for a knowledgeable ad-

versary to practically defeat signature-based whitelisting

schemes by making small, inconsequential changes in all, or

many, files in a target filesystem. It is usually easy to make

a small change to a text string encoding an error message

in a program’s executable file without otherwise affecting

the operation of the program. For example changing a text

string “invalid input” to “Invalid data.” in an executable file

will result in a completely different signature. When a large

number of files in a target system have been modified in

this manner, direct signature-based whitelisting is rendered

useless because the result is a large collection of un-

whitelisted files that an investigator must examine.

In order to overcome the above difficulty, it is useful to

devise a system that finds not only exact matches in the

reference collection, but also approximate, or close, matches.

For instance, if a file in the reference collection matches an

unknown file in all but a few bytes, it should be reported

as a potential match. In deployment, such potential matches

should be associated with a measure of confidence and

distinguished clearly from the exact matches. If we quantify

the dissimilarity of files f1 and f2 using a function D(f1, f2)
then we may pose the problem as one of determining a file

fm in the reference collection that is most similar to an

unknown file fu, provided the dissimilarity is no greater than

some limit L.

Bounded Best Match: Given (1) in advance,

a domain S of elements, a finite set R ⊂ S
(reference “whitelist” elements), a distance metric

D : S×S → Z
+, and a positive integer L, and (2)

at query time, an element v ∈ S, find an element

r∗ ∈ R such that D(r∗, v) ≤ D(r′, v) ≤ L for all

r′ ∈ R, reporting failure if no such r∗ exists.

While this modification to the exact matching task is

conceptually simple, it poses two related difficulties: First, it

is clear that standard signature schemes such as MD5 cannot

be used directly because, by design, a single-byte change to a

file results in a markedly different signature. Second, without

some sort of signature scheme, determining matching files is

likely to be computationally impracticable.

III. DETECTING NEAR MATCHES BY HASHING

A. Fixed Blockwise Hashing

For efficient matching, it is useful to be able to use some

kind of signature or hashing scheme to match unknown files

to files in the reference collection. In order to find near



matches in addition to exact matches, it is desirable that

small changes to a file map to only small changes to the

signature or that there be a significant correlation between

the magnitudes of the difference in the file contents and the

difference in signatures.

Perhaps the simplest method to address this requirement

is to replace a file’s single signature with a collection of

signatures, one for each suitably sized portion of the file.

For example, we may generate an MD5 signature for each

consecutive 512-byte block of a file, and use the concate-

nation of all the block signatures as the file’s composite

signature. Concatenating entire MD5 signatures (or other

similarly large signatures) yields a composite signature that

is too large for our purposes, and we may include only a

small portion of the signature of each block.

As in simple hash-based matching, identical file contents

are mapped to identical composite signatures, and these

matches are easily detected. In addition, the composite

signatures of files that differ only in a few blocks will

differ only in the components corresponding to those blocks.

Consider the example, from Section II, of an executable file

that has been modified by changing a few bytes. If the file

size is 100 KiB (a fairly typical size for executable files), then

its composite signature has 200 components, of which only

one or two will change in response to the text modification of

that example. (A change of two components will result only

if the edited text spans a block boundary.) With a suitable

threshold for matching signatures (such as 95% or 99%

match) the modified file will be matched to the appropriate

unmodified file from the reference collection.

The trouble with this method is that it too, like the

scheme of Section II, may be defeated by a knowledgeable

adversary. It is true that a single change, or a few changes,

no longer defeat the scheme. Nevertheless, it is not very

difficult to make small changes in a large number of a

file’s blocks. It is prudent to assume that the details of the

whitelisting scheme, such as the block size and the thresholds

for matching signatures, are known to the adversary. The

adversary then only needs to change enough blocks to cross

the threshold. Further, for many file types, it is not necessary

to preserve the offsets of critical portions of the file (such as

function-call addresses in an executable file). In such cases,

the insertion of a single byte will result in a change in

all subsequent block boundaries and a resulting change in

the corresponding signature components. Even when some

offsets must be preserved, an automated script can easily

rewrite the necessary addresses to patch the file after an

insertion.

B. Dynamic Blockwise Hashing

In order to make the above composite-signature scheme

more robust to inconsequential changes made by a knowl-

edgeable adversary, it is possible to remove its dependence

on predetermined block boundaries that are easily manip-

ulated by an adversary. The key idea is to dynamically

determine whether a particular byte in the file marks a

block boundary for the purpose of signature-generation. This

determination is made by examining a few bytes in the

vicinity of the byte, and scrambling those bytes using a

suitable hash function, separate from the one used for the

component signatures. We may use a rolling hash scheme

similar to that used by the popular rsync and spamsum

programs [4], [5]. The rolling hash is a simple hash function

that is evaluated over a sliding window of a few bytes of the

file as the window moves from the beginning to the end of

the file. In order to enable efficient evaluation of this function

at each byte, a scheme similar to the Adler-32 hash function

is used, so that the function’s working output value is easily

modified by adding the effect of a new byte and removing

the effect of the old byte as the window slides down the file.

If some byte position in the file produces a rolling hash

function value that equals a predetermined constant (usually

a pattern of all 1s), then that byte position is deemed a

block boundary for signature-generation purposes. That is, a

standard signature function, such as MD5, is computed over

the portion of the file between the previous block boundary

(or the file’s beginning) and the current position, yielding

a component of the composite signature. As in the fixed

blockwise hashing scheme, in order to limit the composite

signature to a manageable size, we use only a small portion

of the standard signature of each dynamically determined

block. Following rsync and spamsum, we use the six least-

significant bits of the MD5 signature of each block.

C. Near Matches

The above scheme addresses the need for mapping files

that differ only slightly to signatures that also differ only

slightly, thus allowing for the detection of near matches for

whitelisted files. However, it does not, on its own, provide

a method for efficiently determining a suitable near match,

or approximate match, for a given file. Following spamsum,

we may measure the dissimilarity of signatures by their

string edit distance [6]. Briefly, the edit distance between

two strings is the weighted sum of the number of edit

operations necessary to transform one to the other. The edit

operations typically used include byte insertions, deletions,

updates (in-place replacements), transpositions, etc., each

with an associated weight. When the edit operations are not

too complex, as above, the edit distance may be determined

using a dynamic programming algorithm in time proportional

to the square of the lengths of the input strings (i.e., the

composite signatures) [6].

We note that, unlike typical applications of string-to-string

editing (spelling correction, file comparison), the edit model

used to determine the dissimilarity of composite signatures

is not strongly motivated by the underlying processes. It is

used here mainly because it is relatively easily computed

and is roughly correlated with the needs of our application:

that files differing in many blocks be farther apart than files

differing in fewer blocks.



D. Approximate Near-Matches by Hashing

In order to determine files in the reference collection that

potentially match an unknown file, the scheme of Section III-

C requires that we compute, at query time, the edit distance

between the signature of the unknown file and the signatures

of all the files in the reference collection. We now describe a

method that avoids this exhaustive search over the reference

collection for each unknown file at the cost of providing only

an approximate answer, in a sense made precise below.

In what follows, it is beneficial to view composite sig-

natures as points, or vectors, in a high-dimensional space,

and to model their dissimilarity using a suitable distance

metric. Since we are working with signatures only, we may

dispense with the files themselves and model the reference

collection as a set of d-dimensional vectors with each

dimension representing a component (block) signature of

a composite (file) signature. The whitelisting problem may

then be phrased as that of determining a reference vector that

most closely matches a given vector (that of the unknown

file), provided the dissimilarity is at most L. Further, we

will relax our problem definition to permit an approximate

solution in the following sense:

Approximate Bounded Near-Match: Given (1) in

advance, a finite set R ⊂ Z
d of d-dimensional

reference vectors, a distance metric D : R × R →
Z

+, a positive integer L, and a positive real number

ǫ, and (2) at query time, another d-dimensional

vector v ∈ Z
d, find a vector r∗ ∈ R such that

D(r∗, v) ≤ (1 + ǫ)L, reporting failure if r ≥
(1 + ǫ)L for all r ∈ R.

In order to avoid time-consuming query-time computation

of distances between signatures of unknown files and all

signatures in the reference collection, we appeal once again

to hashing: We use a scheme that hashes the composite

signatures in a manner that allows us to determine approxi-

mate near matches efficiently. In order to distinguish it from

the earlier hashing steps (such as the rolling hash and the

standard hash) we refer to this step as the embedding hash.

The key idea is to use locality sensitive hashing for the

embedding hash [7]. Intuitively, a hashing scheme is locality

sensitive if items that are close to each other are very likely

to be mapped to the same hash bucket while those that are

distant are very likely to be mapped to different buckets.

The hash function used for this embedding hash step may

be described as the composition of three simpler functions.

The first function, h1, maps a vector v (composite signature)

to the concatenation of the unary representations of its

components, with each component 0-padded on the right to

a fixed length. Let z denote the largest value of a vector

dimension (over all vectors). Then a component with value x
is mapped to the binary sequence composed of x 1s followed

by z−x 0s. Thus each d-dimensional vector is mapped to a

binary string of length zd. For example, if the largest value

of a dimension is 5, then the vector (3, 1, 4) is mapped to

11100 10000 11110, where the spaces are for legibility only.

The second function, h2, maps a binary string b1, b2, . . . , bzd,

such as that produced by h1, to a smaller binary string by

selecting the k bits bi1 , bi2 , . . . , bik
, where the indices ij are

selected uniformly randomly, and with replacement, from

{1, 2, . . . , zd}, and where k is a parameter. Both k and the

random choices are determined in advance (during reference

collection preparation), and remain fixed thereafter. Finally,

the third function, h3 maps a large number, such as the binary

interpretation of the result of h2, to the identifier of a hash

bucket in the range 0, 1, . . . , M using conventional methods

(such as a simple additive function, modulo M ). This entire

process is conceptually repeated l times (where, like k, l is

a parameter determined in advance), so that each signature

v in the reference collection is inserted into the appropriate

bucket h3(h2(h1(v))) in each of l hash tables. Note that,

each hash table uses a different h2 due to the separate random

selections.

When the whitelisted files in a reference collection are

processed in preparation for later work, each file is first

mapped to a dynamic blockwise composite signature using

the method of Section III-B. The composite signature is

in turn hashed using the above method and inserted into l
hash tables that are stored as indexes over the collection.

When processing a target filesystem, each unknown file

is processed in a similar manner, except that instead of

inserting the file’s signature into the hash tables, the reference

signatures in the matching hash buckets are collected as

potential near-matches. The best match among the signatures

collected in this manner is determined by computing their

distances from the signature of the unknown file. Thus the

expensive distance-computation operations are performed for

only the signatures collected from the hash buckets, which

are very few in number. Using standard techniques, each

hash-table lookup incurs exactly one bucket access with high

probability.

The above method for finding approximate near-matches

using locality-sensitive hashing depends on three key pa-

rameters: the threshold L that defines near matches (part

of the problem definition); the length k of the bit-string

produced by the second stage function h2; and the number

l of hash tables used for indexing the reference collection.

At first glance, it would appear that the value for L must

be chosen dynamically, depending on the characteristics of

the unknown files in the target filesystem. However, both

experimental and theoretical observations indicate that the

distribution of the distances of query vectors and reference

vectors are determined mainly by the characteristics of the

reference collection [8]. Thus, once a reference collection

has been built, the hash indexes need only be built for one

statically selected value of L. A suitable choice of parameters

k and l is guided by a result [7, Theorem 1], suggesting

k = log10(n/B) and l = (n/B)0.77, where n is the size

of the reference collection (number of composite signatures)

and B is the number of signatures in one hash bucket.



IV. RELATED WORK

Carrier and Spafford present a process model for the digi-

tal investigation process. [9]. They introduce the model of a

digital crime scene and outline the relationships between the

digital and physical crime-scene investigation processes. The

challenges posed by file system forensics have been widely

discussed, and the presentation by Shewmaker outlines some

key issues, focusing on the ext and ufs file systems [10].

The guide by Grundy [11] provides a good overview of

digital forensic tools and techniques, with an emphasis of

Linux and the Sleuth Kit [12]. Kiley, Shinbara, and Rogers

present methods for obtaining digital evidence from Apple’s

iPod devices [13]. Gupta, Hoeschele, and Rogers describe

the forensic challenges posed by hidden areas on disk, such

as the Host Protected Areas (HPA) and Device Configuration

Overlays (DCO) [14]. Purcell and Lang describe some

filesystem artifacts specific to Microsoft Windows Vista, such

as folders named using an account’s security identifier (SID)

in the recycle bin, and the thumbnail cache [15]. The book

by Carrier provides a comprehensive overview of forensic

analysis of filesystems [16].

Mead presents an overview [3] of the NIST National

Software Reference Library’s Reference Data Set (NSRL

RDS) and its use in helping investigators separate known

files from unknown files requiring further analysis. The need

for approximate matches in this context is highlighted in the

presentation by White [17], which describes the use of hash

values computed for 4096-byte blocks of files. The value

4096 was determined to be a good choice for the dataset,

tools, and statistical properties in this environment. White

reports that when using whole-file hashes, approximately

30% of the disk requires human examination. The use of

block hashes reduces this number to approximately 15%.

Locality-sensitive hashing, as used in Section III-D was

developed by Gionis, Indyk, and Motwani [7]. Tridgell’s the-

sis describes the design of the rsync algorithm that introduced

the methods for blockwise hashing used in Sections III-A and

III-B [18]. Further refinements are found in the implementa-

tion of the spamsum program [5]. Although the description

of blockwise hashing in this paper used MD5 signatures

for block hashes, simpler and faster hashes such as the

popular Fowler-Noll-Vo hash [19] may be effective replace-

ments. Kornblum [20] describes the use of context-triggered

piecewise hashes (essentially, the method of Section III-

B) and its implementation in the ssdeep program [21]. His

work shares many of the motivations and key ideas with

the work in this paper. However, one important difference

is that the method of Section III-D allows us to avoid the

exhaustive search over the reference collection of signatures

and efficiently locate the likely matches. Roussev et al. [22]

describe an interesting application of Bloom filters to storing

a compressed representation of the reference collection of

signatures. By allowing the possibility of a few false positive

matches, the reference collection is substantially compressed

using a standard Bloom-filter encoding.

There is a large body of work on computing the edit dis-

tance between strings, as used in Section III-C. In particular,

the widely available GNU diff program [23] is based on an

algorithm by Myers [24] that runs in time O(nd) where n
is the size of the input and d is the length of the edit script

(output). By using this, or a simlar, output sensitive algorithm

and limiting it to small values of d, it should be possible to

substantially increase the speed of signature matching during

exhaustive search (either in the method of Section III-C or

in the very last stage of the method of Section III-D).

Liu, Zhang, and Zeng present a method to detect money-

laundering activity by matching sequences of transactions

to a reference collection of sequences [25]. While the

application domain is quite different from the one in this

paper, it should be interesting to study the adaptation of

some of their methods for our purposes. Zeng and Li have

found tags to be effective in improving similarity calculations

in a user-based Web page recommendation framework [26].

Their work suggests that it may be fruitful to investigate

whether a similar distributed, user-based scheme may be

applicable to whitelisting files that are newly created or

that change frequently and therefore cannot be addressed by

infrequently updated lists [3]. In general, there are interesting

connections to be made between cybercrime and social

computing [27]: While social computing gives rise to new

kinds of cybercrime, it also provides new opportunities, such

as distributed detection, processing, and tagging, to address

cybercrime.

V. CONCLUSION

We motivated the need for methods that assist an investi-

gator in quickly locating the files in a target system that are

most likely to yield useful information. The use of whitelists,

lists of attributes of well known files published by a trusted

authority, is valuable in this regard, but its effectiveness is

often hampered by the lack of suitable matching techniques.

In particular, there is a need for tools that are robust to small

changes in files and that efficiently determine not only the

exact matches between target systems and whitelists but also

approximate matches; otherwise, an adversary may easily

overwhelm the system. We highlighted and formalized the

problem requirements and parameters as two key problems:

bounded best-match and approximate bounded near-match.

We described methods for solving these problems and dis-

cussed several variations. A key contribution is the method

for efficiently locating approximate matches to a target file

using locality-sensitive hashing.

The method of Section III-D maps composite file sig-

natures to a high-dimensional metric space. This mapping

affords some flexibility in how bits of the signature are

mapped to dimensions. Instead of mapping the component

signature of each block (with block boundaries dynamically

determined as in Section III-B), we may map the concate-

nated component signatures of several adjacent blocks to a

single dimension. The reduction in the dimensionality of the



resulting nearest-neighbor problem is likely to improve effi-

ciency. However, that improvement must be weighed against

the potential loss of efficiency due to an increase in the

length of the unary representation conceptually produced by

h1. Although this unary representation need not (and should

not) be explicit in an implementation, a larger representation

results in slower hashing in general. These and other details

related to the mapping are part of our continuing work on

this problem.

For simplicity, this paper has described the analysis of

the storage system (typically hard disks) at the filesystem

level. However, much valuable information may be gleaned

by examining the storage system at lower levels of ab-

straction, such as logical and physical volumes, raw disk

devices accessed through the controller, and physical media

(platters) analyzed using specialized hardware. For example,

by accessing the raw disk device (through the controller) we

may uncover data that has been erased at the filesystem level.

Similarly, by reading physical media on special hardware we

may uncover data that has been erased at the controller level.

Although we do not address these complex tasks directly,

some aspects of our methods may be applicable in these

situations. For example, raw disk sectors recovered from an

analysis of physical media may be matched to a whitelist of

sector-sized portions of well-known files.

It is natural to consider the dual problem of blacklisting:

matching files in the target system to a list of known malev-

olent, or otherwise notable, files. Certainly this problem has

received much attention in the context of anti-virus software

and similar tools. However, there are some important differ-

ences in a forensic environment. Some, such as the ability

to study a frozen system, provide new opportunities, while

others, such as the need to preserve the original state, make

the problem harder. Also, while it is reasonable to assume

a whitelist that changes infrequently and in a controlled

manner, with changes initiated and monitored by trusted

entities, blacklists must change frequently and unpredictably,

in response to newly discovered malware.

In continuing work, we are developing a software toolkit

based on these methods. In addition to potentially assisting

other researchers and practitioners, an important goal of this

toolkit is to enable large-scale studies of diverse whitelists

and target systems. In particular, it should be interesting

to conduct a long-term study of how whitelists, and target

systems, both benign and adversarial, co-evolve. Although

not a primary objective, this toolkit is also likely to provide

some interesting datasets for the study of the approximate

nearest-neighbor problem in high-dimensional spaces.

REFERENCES

[1] Ronald L. Rivest, “The MD5 message-digest algorithm,” IETF Net-
work Working Group. Request for Comments 1321. http://www.ietf.
org/, Apr. 1992.

[2] “Secure hash standard,” FIPS PUB 180-1. National Institute of
Standards and Technology. U.S. Department of Commerce, Apr.
1995. [Online]. Available: http://csrc.nist.gov/publications/

[3] Steve Mead, “Unique file identification in the national software
reference library,” http://www.nsrl.nist.gov/Documents/analysis/, May
2005.

[4] Andrew Tridgell and Paul Mackerras, “The rsync algorithm,” Depart-
ment of Computer Science, Australian National University, Canberra,
ACT 0200, Australia, Tech. Rep., 1998.

[5] Andrew Tridgell, “spamsum source code and documentation,” http:
//www.samba.org/ftp/unpacked/junkcode/spamsum/, 2002.

[6] David Sankoff and Joseph B. Kruskal, Time Warps, String Edits, and

Macromolecules: The Theory and Practice of Sequence Comparison.
Addison-Wesley, 1983.

[7] Aristides Gionis, Piotr Indyk, and Rajeev Motwani, “Similarity search
in high dimensions via hashing,” in Proceedings of the 25th Inter-

national Conference on Very Large Data Bases (VLDB), Edinburgh,
Scotland, Sept. 1999.

[8] Paolo Ciaccia, Marco Patella, and Pavel Zezula, “A cost model for
similarity queries in metric spaces,” in Proceedings of the 17th ACM

SIGACT-SIGMOD-SIGART symposium on Principles of database sys-

tems (PODS), Seattle, Washington, June 1998, pp. 59–68.
[9] Brian Carrier and Eugene H. Spafford, “Getting physical with the dig-

ital investigation process,” International Journal of Digital Evidence,
vol. 2, no. 2, pp. 1–20, Fall 2003, 2003.

[10] James Shewmaker, “File system forensics,” Presentation notes. http:
//www.bluenotch.com/resources/, May 2008.

[11] Barry J. Grundy, “The law enforcement and forensic examiner’s
introduction to Linux,” http://www.linuxleo.com/, Dec. 2008, version
3.78.

[12] Brian Carrier et al., “The Sleuth Kit tool overview,” http://wiki.
sleuthkit.org/, Dec. 2008.

[13] Matthew Kiley, Tim Shinbara, and Marcus Rogers, “iPod forensics
update,” International Journal of Digital Evidence, vol. 6, no. 1, pp.
1–9, Spring 2007.

[14] Mayank R. Gupta, Michael D. Hoeschele, and Marcus K. Rogers,
“Hidden disk areas: HPA and DCO,” International Journal of Digital

Evidence, vol. 5, no. 1, pp. 1–8, Fall 2006.
[15] Daniel M. Purcell and Sheau-Dong Lang, “Forensic artifacts of

Microsoft Windows Vista system,” in Pacific Asia Workshop on
Cybercrime and Computer Forensics (PACCF), Taipei, Taiwan, June
2008, pp. 304–319.

[16] Brian Carrier, File System Forensic Analysis. Addison-Wesley, 2005.
[17] Douglas White, “Hashing of file blocks: When exact matches are not

useful,” Presentation notes, American Academy of Forensic Sciences
60th Anniversary Meeting. http://www.nsrl.nist.gov/Presentations.htm,
Feb. 2008.

[18] Andrew Tridgell, “Efficient algorithms for sorting and synchoniza-
tion,” Ph.D. dissertation, The Australian National University, Feb.
1999.

[19] Landon Curt Noll, “Fowler/Noll/Vo hash,” http://isthe.com/chongo/,
2003.

[20] Jesse Kornblum, “Identifying almost identical files using context
triggered piecewise hashing,” Digital Investigation, vol. 3S, pp. S91–
S97, 2006.

[21] ——, “ssdeep source code and documentation,” http://ssdeep.
sourceforge.net/, Jan. 2009, version 2.1.

[22] Vassil Roussev, Yixin Chen, Timothy Bourg, and Golden G. Richard
III, “md5bloom: Forensic filesystem hashing revisited,” Digital In-

vestigation, vol. 3S, pp. S82–S90, 2006.
[23] Mike Haertel, David Hayes, Richard Stallman, Len Tower, Paul

Eggert., and Wayne Davison, “The GNU diff program,” Texinfo
system documentation, 1998, available through anonymous FTP at
prep.ai.mit.edu.

[24] E. Myers, “An O(ND) difference algorithm and its variations,” Algo-
rithmica, vol. 1, no. 2, pp. 251–266, 1986.

[25] Xuan Liu, Pengzhu Zhang, and Dajun Zeng, “Sequence matching for
suspicious activity detection in anti-money laundering,” in Proceedings
of the Pacific Asia Workshop on Intelligence and Security Informatics

(PAISI), Taipei, Taiwan, June 2008, pp. 50–61.
[26] Daniel Zeng and Huiqian Li, “How useful are tags?—an empirical

analysis of collaborative tagging for Web page recommendation,” in
Proceedings of the Workshop on Social Computing (SOCO), June
2008, pp. 320–330.

[27] Danel Zeng, Sheau-Dong Lang, Raymond Hsieh, Michael Chau, and
Christopher C. Yang, “Cybercrime and social computing,” in Panel

at the IEEE International Conference on Intelligence and Security

Informatics (ISI), Taipei, Taiwan, June 2008.


