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Abstract— The residents of each street in a neighborhood
can improve their travel times by forming agreements with
the residents of other streets to permit mutual thoroughfare.
However, this benefit comes with the cost of additional neighbor-
hood traffic. The key problem addressed by this paper is that
of determining a policy that is fair to each street’s residents’
desires to minimize their travel time by using neighborhood
streets while also minimizing traffic on their street. We model
this problem using a street graph and apply game theoretic
methods in order to characterize solutions.

I. INTRODUCTION

Consider a network of streets in a suburban or urban
neighborhood. Such streets are often designed to discourage
their use for any purpose other than travel to and from points
in the network. Signs such as “local traffic only” suggest
policies aimed at reducing traffic on neighborhood streets.
At one extreme, we may consider a grid-like network of
streets (Fig.1) that strongly encourages using neighborhood
streets to bypass highways when the latter are congested.
At the other extreme, we may consider a tree-like network
(Fig.2) that makes thoroughfare impossible and restricts
the use of neighborhood streets to traffic with origin or
destination in the neighborhood. In general, the topology of
neighborhood streets is somewhere between these extremes.
Frequently, the restrictions on travel inherent in the topology
are supplemented by traffic laws and local regulations.

If the only goal is the minimization of traffic on neigh-
borhood streets, then the preferred policies are those that
emulate the tree-like topology as closely as possible. On
the other hand, if the only goal is minimization of travel
times, we are likely to need policies that permit at least
some use of neighborhood streets to get to locations that
are also reachable by avoiding those streets. In formulating
a neighborhood traffic policy, we may try to balance these
opposing objectives in a global manner based on their
relative importance. However, such a policy considers the
neighborhood only in aggregate and does not adequately
address the separate concerns of the residents of individual
streets. For example, such a policy may permit thoroughfare
on streets A and B, while disallowing thoroughfare on all
other streets in the neighborhood. It is very unlikely that this
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Fig. 1. A grid topology for neighborhood streets. (Line segments rep-
resent streets.) This topology makes it easy for traffic to wind through
neighborhood streets. In addition to traffic with source or destination in
the neighborhood (dotted lines) we also have thoroughfare (dashed line).

*

Fig. 2. A tree topology for neighborhood streets. (The circles mark dead-
ends: points that do not connect to any other street. The point marked
with a * is the only connection to streets outside the neighborhood.) Only
traffic with source or destination in the neighborhood can effectively use
the neighborhood streets.

policy will be considered fair by residents of streets A and
B, since they are essentially bearing the traffic costs for the
entire neighborhood while the benefits are shared by all.

We may think of this situation as a multi-player game
with one player representing the interests of each street.
Each player wishes minimize the traffic on its street while
improving its travel times by traveling along other streets
in the neighborhood. (We describe the model in detail in
Section II.) Note that this model does not imply or require
that real decisions about traffic policies are made by nego-
tiations between representatives of each street in a manner
reflecting the game. Rather, decisions are likely to be made
by a smaller group of people representing large sections of
the neighborhood, the entire neighborhood, or even larger
administrative units, such as city and county. We expect the
game theoretic model to be useful in justifying the fairness of
policies proposed by the decision-makers, whoever they may
be. The main idea is that if a policy provides a street with a



cost-benefit trade-off that is close to what could be achieved
in the game-theoretic setting by the player representing that
street then one could argue that the policy is fair to the
residents of that street.

Our exposition in this paper is based on small examples
consisting of only a few streets because computations for
larger examples, although qualitatively similar, are much
more tedious and lengthy. The methods we describe are
equally applicable to larger instances of the problem. Indeed,
they are more interesting when the problem is larger since a
manual analysis is impracticable in such situations. Similarly,
the methods we describe do not depend on any particular
topological features of the network of neighborhood streets.

Outline: We describe our model for streets, travel costs,
traffic costs, and other problem features in Section II. Sec-
tion III develops the key ideas underlying the solution.
We discuss related work in Section IV and conclude in
Section V.

II. MODEL

a) Street Graph: We model a network of neighborhood
streets using a connected, undirected multigraph (called the
street graph for that neighborhood) in which edges represent
streets and nodes represent intersections. We shall henceforth
use the term graph to mean multigraph (graph in which
multiple edges between the same end-points are permitted).
The nodes (street intersections) V are numbered sequentially:
1, 2, 3, . . . , |V |. Similarly, the edges (streets) E are numbered
1, 2, 3, . . . , |E|. The function e : [1..|E|] → {(a, b) ∈
[1..|V |] × [1..|V |] : a ≤ b} maps edges to their end
points in the graph. (The condition a ≤ b ensures a unique
representation for each undirected edge.)

A neighborhood’s street graph represents only the streets
in that neighborhood. Highways, streets belonging to other
neighborhoods, and other streets are not represented explic-
itly and are called external streets. We assume, without
loss of generality, that these external streets connect to
neighborhood streets at one or more intersections in V . We
use the term external intersection to refer to intersections that
connect to external streets. In figures, external intersections
are marked using asterisks (*).

Since we are interested in determining a fair policy for
sharing streets within a neighborhood, we model only traffic
that originates or terminates in the neighborhood. By sym-
metry, it suffices to consider only traffic that originates in the
neighborhood. The traffic originating at some location on a
street is called that street’s resident traffic.

Example 1: Fig.3 depicts a very simple street graph con-
sisting of five intersections (nodes) and four streets (edges
1..4) arranged in a star configuration. Each intersection other
than the central one is an external intersection, as indicated
by the asterisks. Fig.4 is another simple street graph. It
differs from the one in Fig.4 by having streets 5..9 interposed
between street 4 and the center.

b) Cost Model: In order to keep the presentation man-
ageable we use a simplified model of the costs of travel as
well as the cost of traffic on neighborhood streets.
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Fig. 3. A simple street-graph: Nodes represent intersections and are labeled
with letters. Edges represent streets and are labeled with integers. Nodes
marked with an asterisk represent external intersections.

• Street travel cost: l. In our model, each of the external
intersections is essential in the sense that the resident traffic
from each neighborhood street needs to travel to each of the
external intersections (to get to different highways or off-
neighborhood streets). Travel from a street to an external
intersection may require travel along one or more neighbor-
hood streets. Each street that is on the chosen (shortest) route
from a street to an external intersection contributes l units
to the cost of reaching that intersection. (To simplify the
presentation, we include l units for the originating street as
well, even though only part of it is traveled in such routes.)
Thus, if the chosen shortest route from a street to an external
intersection consists of p streets then the travel cost incurred
by the street for that external intersection is pl. The total
travel cost for a street is the sum of the travel cost from that
street to each of the external intersections.

• Baseline travel cost: d. Recall that we wish to quantify
the benefit of traveling to different off-neighborhood streets
via the external intersections, which in turn are reached
using the neighborhood streets, as permitted by an agreement
between the residents on different neighborhood streets. For
this purpose, it is necessary to quantify the cost of reaching
off-neighborhood streets in the absence of any such agree-
ment. We use d to denote this baseline cost of traveling from
a neighborhood street to an external intersection. In a street
graph with x external intersections, the default travel cost for
each street is xd. This model does not distinguish between
streets based on their distance to the external intersections.
Further, the default route (in absence of a neighborhood
agreement) may involve some travel along neighborhood
streets and some along off-neighborhood streets or highways.
We assume d reflects all these costs. Typically, d is much
larger than l (and than c, described next).

• Traffic cost: c. We use c to denote the traffic cost
incurred by a street s due to each other street whose resident
traffic travels on s. Thus, if traffic from k other streets
travels on street s, the cost to s is kc. This model does not
distinguish between the case in which a street s uses a street
s′ to travel to only one external intersection and the case
in which s uses s′ to reach several external intersections.
However, if s does not use s′ at all, even though the
agreement permits such use, then s′ does not incur the
corresponding charge.

Example 2: The baseline travel cost for street 1 in the
street graph of Fig.3 is the sum of baseline travel costs
to each of the four external intersections: 4d. (Recall that



baseline travel may occur along off-neighborhood streets,
which are not depicted in the figure. For example, traffic
from street 1 may travel to each of the three remote external
intersections, b, c, and d, via highways not depicted in the
figure.) By symmetry, the baseline travel costs of streets 2,
3, and 4 are also 4d each. Resident traffic from street 1 can
get to external intersection a by traveling along street 1 at
cost l. (Recall that l is expected to be much smaller than d.)
Now suppose streets 1 and 2 agree to permit resident traffic
from each other to travel on their streets. Traffic from street
1 can now get to external intersection b by traveling along
streets 1 and 2, at a cost of 2l. Travel to intersections c and
d does not benefit from this agreement. Thus the benefit of
the agreement for street 1 is (d − l) + (d − 2l) = 2d − 3l.
However, the agreement also imposes additional traffic on
street 1 (resident traffic from street 2) at a cost of c. Thus,
the net benefit, or utility, of the agreement for street 1 is
2d−3l−c. By symmetry, this expression also gives the utility
for street 2. The situation for streets 3 and 4 is unaffected
by this agreement. Similar calculations may be performed
for other coalitions of streets, such as {2, 3} (streets 2 and
3), {1, 2, 3}, and {1, 2, 3, 4}.

III. FAIR SHARING

As suggested by Example 2, a street accrues savings in
travel costs as it partners with additional streets, but these
savings may be offset by the costs of additional reciprocal
traffic. Further, the savings will vary depending on the
topology of the graph. This feature is not evident in the
simple symmetric street graph of Fig.3 but may be observed
in asymmetric graphs such as the one in Fig.4. Even without
performing the detailed calculations, it seems intuitively
obvious that a coalition composed of streets 1..5 stands to
gain nothing by admitting any of the streets 6..9 into the
coalition because the latter permit no additional beneficial
routes.

The above discussion may suggest the coalition {1, 2, 3,
4, 5} as a simple solution to the problem of sharing neigh-
borhood streets for the street graph of Fig.4. Indeed, we may
verify that under reasonable assumptions about the values of
the parameters d, l, and c, each of the streets 1..5 has a
net benefit due to its participation in the coalition. However,
this fact is not sufficient for a satisfactory solution because
several questions remain unanswered: Why should street 5
be included in the coalition while streets 6..9, which are
indistinguishable from 5 in function, are excluded? In light
of the fact that each of the streets 1..4 is essential in the sense
that it controls access to one external intersection, isn’t it fair
that they receive greater benefit from the coalition compared
with street 5, which is easily replaceable? Since street 4 is
farther removed from the center of the neighborhood, perhaps
it is not fair to treat it on par with streets 1..3. Perhaps a
break-off coalition of streets 1..3 is more profitable to those
streets.

Suppose we have a candidate scheme for sharing streets in
a neighborhood. Each street must benefit from this scheme
(else it would not participate). If a coalition of streets can

achieve greater benefit for its members by cutting ties with
the rest of the neighborhood, then the candidate scheme
will not be perceived as fair. This idea corresponds to the
game-theoretic notion of the coalition blocking the candidate
solution. An important question in this regard is whether
there exist any solutions that are not subject to such blocking
by coalitions.

Before we address the above question, we introduce
some terminology: We shall use the term coalition in this
paper to refer to a set of neighborhood streets that permit
resident traffic from each other, but not from other streets.
By participating in such a coalition, each street derives
a utility, defined as the reduction in travel costs less the
traffic costs incurred. (See Section II.) We shall represent
the utilities of members of a coalition {i1, i2, . . . , ik} using
a utility vector v(i1, i2, . . . , ik) = (ui1 , ui2 , . . . uik

), with
the convention of listing coalition members in ascending
order (x < y implies ix < iy). For brevity, we shall
also adopt the notational convention that, in a utility vec-
tor, “· · ·” stands for the value immediately preceding it.
Thus, (x, · · ·) means (x, x); (x, · · · , · · ·) means (x, x, x);
(x, · · · , · · · , y, · · ·) means (x, x, x, y, y); and so on.

Example 3: Recall from Example 2 that, in the street-
graph of Fig.3, the two-street coalition {1, 2} results in a
utility 2d − 2l − c for each street. We express this fact by
writing v(1, 2) = (2d−3l−c, 2d−3l−c) = (2d−3l−c, · · ·).
Using reasoning similar to that in Example 2, is easy to verify
that v(1, 2, 3) = (3d − 5l − 2c, · · · , · · ·) and v(1, 2, 3, 4) =
(4d − 7l − 3c, · · · , · · · , · · ·).

Using sample values d = 10, l = 1, and c = 1 for the
problem parameters, we have v(1) = (d−l) = (9), v(1, 2) =
(16, · · ·), v(1, 2, 3) = (23, · · · , · · ·), and v(1, 2, 3, 4) =
(30, · · · , · · · , · · ·). We see that neither coalition {1, 2} nor
coalition {1, 2, 3} would not benefit by breaking off from
the grand coalition {1, 2, 3, 4}. By symmetry, this fact also
holds for the coalitions not listed above (such as {1, 3} or
{1, 3, 4}). Thus, the solution is stable.

We may generalize the arguments of the above example
by noting that the above stability result will hold for all
values of d, l, and c for which the individual utilities of
streets in smaller coalitions (including singletons) are never
larger than their utilities in the grand coalition. Thus the
street graph of Fig.3 has a stable solution if 4d− 7l − 3c is
at least as large as each of 3d − 5l − 2c, 2d − 3l − c, and
d− l−c. These three inequalities are equivalent to the single
inequality d ≥ 2l + c. This inequality provides a convenient
characterization of stability for this example. However, such
a characterization is not easy to obtain for more complex
street graphs. As the following example illustrates, even a
slight increase in the complexity of the graph may make it
difficult to achieve a simple characterization.

Example 4: Consider the street graph of Fig.4. If all
streets permit resident traffic from all others, we have the
grand coalition N = {1, 2, . . . , 9}. Resident traffic from
street 1 can get to external intersections a, b, c, and d by
following routes (respectively) [1], [1, 2], [1, 3], and [1, 5, 4],
incurring travel costs (respectively) l, 2l, 2l, and 3l. The
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Fig. 4. The street-graph of Fig. 3 modified by addition of streets 5–9: This
example highlights the fact that street graphs are multigraphs. Multiple edges
(such as 5..9) between the same pair of nodes (e and f ) are permitted.

total travel cost for street 1 is thus 8l, yielding a benefit
of 4d − 8l over the default. This benefit comes at the cost
of extra traffic from 8 streets: 8c. Thus the utility for street
1 (and, by symmetry, for streets 2 and 3 as well) in the
grand coalition is 4d − 8l − 8c. A similar reasoning for the
other streets in the grand coalition yields (1) below. Let us
now consider a coalition composed of streets 4 and 5 only.
Street 5 may now reach external intersection d using path
[5, 4] at a cost of 2l yielding a benefit of d − 2l over the
default. In addition, resident traffic from street 4 does not
travel on street 5, although such travel is permitted, because
travel cannot continue to any external intersection in this
manner. Thus street 5 does not incur any traffic costs in this
arrangement and its utility is d−2l, as indicated by (6) below.
On the other hand, street 4 incurs the cost of resident traffic
from street 5 but derives not benefit. Similar computations
for other coalitions yield the following:

v(1, 2, . . . , 9) = (4d − 8l − 8c, · · · , · · · ,

4d − 10l − 8c,

4d − 8l − 4c, · · · , · · · , · · ·) (1)

v(1, 2, 3) = (3d − 5l − 2c, · · · , · · ·) (2)

v(1, 2) = (2d − 3l − c, · · ·) (3)

v(1) = (d − l) (4)

v(1, 4, 5) = (2d − 4l − 2c, 2d − 4l − 2c,

2d − 4l − 2c) (5)

v({4, 5) = (d − l − c, d − 2l) (6)

Let us now consider the stability of the solution consisting
of the grand coalition N = {1, . . . , 9}. The solution is stable
if no break-away coalition can guarantee a higher utility to
its members compared to their utilities in the solution. By
comparing terms in the utility vector (1) of the grand coali-
tion with the utility vectors of smaller coalitions, we arrive
at a set of inequalities ((7)–(13) below) that characterizes the
requirements for a stable solution. The equation, in addition
to (1), that is used to derive each inequality is indicated to
the left of each inequality.

(2) ⇒ u1 ≥ 3d − 5l − 2c (7)

(3) ⇒ u1 ≥ 2d − 3l − c (8)

(4) ⇒ u1 ≥ d − l (9)

(5) ⇒ u1 ≥ 2d − 4l − 2c (10)

(5) ⇒ u1 ≥ 2d − 2l − 2c (11)

(6) ⇒ u1 ≥ d − 2l − 4c (12)

(6) ⇒ u1 ≥ d + l − c (13)

Recall that in Example 3 the inequalities corresponding to
different break-off coalitions collapsed to a single inequality.
In the current example, the situation is not as simple.
Examining the inequalities, we note that (8) implies (10),
and (9) implies (12). However, (7), (8), (9), (11), and (13)
are independent.

We may verify that the parameter values (d, l, c) =
(10, 1, 1) (as used earlier) satisfy all the above inequalities,
indicating a stable solution. However, other parameter values
result in an unstable solution. For example, if we use
(d, l, c) = (70, 20, 10), the left-hand side of (11) equals 40
while the right-hand side equals 80 and the inequality is
not satisfied. Indeed, we may verify that the corresponding
coalition, {1, 4, 5}, can improve its utility by withdrawing
from the grand coalition.

Example 4 suggests two interesting questions: First, how
do we determine a fair scheme for sharing streets in situations
that result in unstable grand coalitions? Second, is there a
simpler characterization of the problem instances that permit
stable solutions?

We address the first question below by allowing members
of a coalition (including the grand coalition) to be reimbursed
monetarily in an attempt to compensate for an inequitable
treatment in a proposed solution. (The second question will
be addressed by an extended version of this paper.) This
version of the problem is similar to side-payment games
or transferable-utility games studied in the game theory
literature. Intuitively, permitting side payments weakens the
requirements for stability by allowing a greater portion of
the grand coalition’s utility to be allocated to the streets
that would otherwise benefit from withdrawing from the
coalition. Instead of requirements on each street’s natural
utility (based on the model of Section II) we are permitted
to use an adjusted utility that includes a side payment at the
expense of some other streets. The requirement then is that
the total utility of every coalition be no greater than the sum
of its members’ utilities in the the grand coalition. Using N

to denote the grand coalition, C to denote the collection of
all coalitions, and vi(C) to denote the utility of a street i in
coalition C, we may express this condition as follows:

∀C ∈ C : v(C) ≤
∑

i∈C

vi(C) (14)

By slight abuse of notation, we shall henceforth use the
notation v(C) to mean both the vector (v1(C), v2(C), . . .,
vk(C)) of utilities for the coalition members i ∈ C and also
the sum of these utilities,

∑

i∈C vi(C). In the side-payment
version of the problem, the latter interpretation, called the
worth of the coalition, is more interesting since utility may
be redistributed within a coalition.

Example 5: Recall, from the end of Example 4, that with
parameters (d, l, c) = (70, 20, 10), the grand coalition of all
streets in the graph of Fig.4 is not stable because (11) is not
satisfied. We may compute the worth of the corresponding



blocking coalition {1, 4, 5} using (5): v({1, 4, 5}) = 6d −
12l−6c = 210. The right-hand side of (14) for this coalition
is given by

∑

i∈{1,4,5} vi(N) = 12d−26l−20c = 210. Thus
(14) is satisfied and the coalition {1, 4, 5} does not block the
solution when side payments are allowed.

When side payments are permitted, as in the above
example, a natural question is how the total utility of a
coalition is distributed among its members. Intuitively, it
seems reasonable that streets that bring more value to the
coalition should receive a greater portion than those that
contribute little. In the street graph of Fig.3, we may expect
streets 1–3 to receive a portion larger than that of streets 5–9,
since each of streets 1, 2, and 3 adds a new path to an external
intersection while all but one of streets 5–9 is redundant. This
intuition may be captured by using the Shapley value [1] of
a game, which assigns the following utility φi to street i:

φi =
∑

C⊆N\{i}

|C|! (|N | − |C| − 1)!

|N |!
·
(

v(C ∪ {i}) − v(C)
)

Consider the sequential addition of streets to a coalition,
starting with the empty coalition. There are |N |! ways streets
may be added in this manner. The fractional term above is
the probability that the streets in coalition C precede street i

in this order and the difference term is the value i adds to the
coalition. Summing over all possible values of C yields the
expected value added by street i. In addition to this intuitively
reasonable motivation, the above utility assignment is also
known to be the unique one that satisfies the properties of
efficiency (no utility is unused), symmetry (labeling of streets
is immaterial), linearity, and independence from effects of
dummy players [1].

IV. RELATED WORK

Several studies address traffic control and management
[2]. SITRAFFIC is a traffic management system for urban
traffic control that uses a decentralized, hierarchical method
to optimize control of traffic lights in the network [3]. Work
on dynamic vehicle routing and traffic assignment [4], [5],
[6] is complementary to the work in this paper. In the
context of neighborhood streets, once policies for use have
been determined using the methods described above, the
dynamic methods can be used to optimize the use of streets
in response to changing traffic scenarios.

Work on access control for freeways [7] and freeway
queue formation [8] may be used to better quantify the
costs and benefits of various restrictions and may serve as
an alternative to the simple cost model used in this paper.
Similarly, work on route computation [9] may be used to
better quantify the benefits of shared neighborhood streets,
replacing the simple travel cost model used in this paper.
Our travel model may also benefit from work on traffic flow
theory [10], [11]. Methods for forecasting traffic, such as
those using simulations in large networks [12], may also be
used to improve the accuracy of the cost model used in this
paper. An interesting approach to determining traffic speeds
using transit vehicles as probes is described by Cathey and
Dailey [13]. It may also be possible to adapt work on arterial

speed estimation [14] for this purpose. It may also be useful
to incorporate practical methods, such as those used by the
MOBINET project for traffic estimation in Munich [15].

The work by Ishihara and Fukuda [16] on traffic-signal
control algorithms that include emotional factors shares with
our work the concern for social issues. Their method uses
a model of drivers’ mental states to control traffic signals
with the goal of minimizing psychological stress. Another
social issue related to ITS is explored by Naniopoulos [17],
who describes a project that provides design guidelines
and evaluation methods for ITS systems with elderly and
disabled persons in mind. Work on congestion toll pricing
[18] has addressed objectives such as minimizing the number
of toll booths and minimizing the toll costs. The idea of
collaboration to improve both individual and global traffic
outcomes has been studied in the context of coordinated
braking [19] and cooperative driving systems [20].

The problem of bargaining, in a general setting, has
received considerable attention in the Economics literature.
Perhaps the most famous result appears in John Nash’s clas-
sic work on the two-person bargaining problem [21]: If the
set of utility allocations is compact and convex then there is
a unique optimal solution to the two-person bargaining game
that is Pareto optimal, independent of linear transformations,
and independent of irrelevant alternatives. This solution is the
one that maximizes the value of (u1 − d1)(u2 − d2), where
ui denotes the utility allocation for player i and di is the
utility of the status quo solution. Although most assumptions
leading to Nash’s solution is quite natural, the requirement
that solutions be independent of irrelevant alternatives is less
so and has been the subject of much debate and follow-on
work. Intuitively, this assumption states that if an alternative
(potential solution) is discarded (as non-optimal or non-
feasible) by some solution rule then the solution rule must
yield the same final result if that alternative were absent
from the original problem formulation. Although it seems
innocuous, this assumption leads to unintuitive and indefen-
sible conclusions in several practical problems, such as the
problem of dividing a bankrupt company’s assets among its
creditors. Kalai and Smorodinsky addressed this shortcoming
by replacing this assumption with a monotonicity assump-
tion, yielding the so-called K-S line solution to two-person
bargaining [22]. This solution is the farthest (from the origin,
in the solution space) point along a line connecting the origin
to the point (u1m, u2m), where uim denotes the maximum
(feasible) utility allocation for player i.

Multi-player games are qualitatively more complex than
two-player games described above because of the possibility
of coalitions blocking solutions. The key idea of a core of
a multi-person game, which corresponds to our discussion
of stability, is attributed to Edgeworth [23]. Balancedness
of multi-person games was first studied by Bondareva [24].
Scarf showed that if the characteristic-function values of a
game form a closed, comprehensive, bounded set such that a
vector’s membership in v(C) depends only on the the com-
ponents related to the elements of C, then balancedness of a
game implies the existence of a core (stable solution) [25].



Shapley introduced the rule for side-payments in transferable
utility games described in Section III.

V. CONCLUSION

We addressed the problem of determining fair policies
for restricting traffic on shared neighborhood streets. Such
streets are subject to two conflicting demands: On one hand,
residents on each street would like to limit traffic in order
to cut down on noise, pollution, and related ills. On the
other hand, by strategically permitting use by some of their
neighbors, the residents of each street may be able to improve
their travel times, as well as the global travel times. The
central problem is then that of determining rules for sharing
neighborhood streets that all parties will see as fair. This
problem is important not only because a solution enables
effective and fair use of streets, but also because it permits
better planning by enabling analysis of alternate traffic de-
signs on new or existing streets. In addition, the analysis
described in this paper may be applied in a semi-automated
manner to quickly determine new policies when existing
streets are disabled due to accidents or other problems.

We formalized the street-sharing problem as a multi-
person bargaining problem based on a simple graph model
for neighborhood streets. We first discussed a variant of this
problem in which the utility of neighborhood streets is not
transferable. We described an example that illustrates some
of the challenges. In particular, it is not easy to characterize
solutions or even to determine when solutions exist. We also
discussed a variant in which the utility of neighborhood
streets is transferable. In this version, side payments can
be made to compensate for inequities in a proposed solu-
tion’s utilities to different participants. We described how
this feature makes it easier to characterize and determine
solutions. In order to keep the presentation manageable, the
examples in this paper are extremely simple. However, they
illustrate the basic concepts and the methods of this paper
are equally applicable to larger examples. Similarly, several
assumptions made in our presentation, such as those related
to the ownership model for streets and the metrics for traffic
cost and benefit, exist only for ease of presentation and are
easily removed.
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