
Info. Sys. and e-Bus. Mgmt. manuscript No.
(will be inserted by the editor)

Interimistic Data Dissemination?

Sudarshan S. Chawathe,1 Abheek Anand2

1 Department of Computer Science
5752 Neville Hall, Room 224
University of Maine
Orono, Maine 04469-5752, USA
e-mail: chaw@cs.umaine.edu

2 VMWare, Inc.
3145 Porter Drive
Palo Alto, California 94304, USA
e-mail: spinlock@gmail.com

Abstract We present low-overhead protocols for disseminating stream-
ing data in an interimistic environment in which the availability of
computers, networks, and other resources is very unpredictable. An
important example of such an environment is the state of computing
and communication resources immediately following a natural disas-
ter or a similar disruptive event. A key characteristic of such envi-
ronments is the continual change in network membership and topol-
ogy. Our protocols are based on using the intentional and extensional
overlap among the data requirements of network nodes. We describe
our testbed, CoDD, that implements these protocols and provide an
experimental evaluation of the techniques.
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1 Introduction

We address the problem of interimistic data dissemination in the chaotic
environment in the minutes and hours following some catastrophic event,
such as a natural disaster. A distinguishing feature of this work is that it
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focuses on a very small window of time by data-management standards,
ranging from hours to days, but not weeks, months, or years. We may think
of the problem as that of temporary data management, emphasizing the
premium on operating during the short time following a disaster and the
relative irrelevance of long-term properties. This approach is in sharp con-
trast to the conventional bias of data-management systems, which favor
long-term guarantees, such as consistency and durability, over short-term
ones. We envision situations in which our methods are very useful for a few
hours but are not necessary when the environment is back to normal.

As a motivating scenario that we use throughout this paper, consider
the situation just after a devastating hurricane hitting a typical suburban
county. Such an event is likely to cause widespread power failures, road
blockages, floods, and communication failures, among other problems. Al-
though much of the information infrastructure may be damaged or disabled,
there likely are parts of it that function in a reasonable manner. For example,
cellular and land-line phones may function in some locations and not others.
Power and other utilities may have similar spotty availability. Now consider
an ambulance responding to medical emergencies in this environment. It is
likely that the crew is able to communicate with the central dispatch office
using their reserved wireless frequencies. However, the office may not be
able to provide the crew with the information it needs because of problems
with its computers or those of other agencies on which it depends. For ex-
ample, due to problems with traffic management systems, dispatch may not
be able to route the ambulance around road closures and other hazards.
Further, we must also consider the case in which the dispatch office suffers
a catastrophic failure. Point-to-point communications between ambulance
and other crews may still be possible over the air waves, but keeping track of
a variety of information in an ad hoc manner over the radio quickly becomes
unmanageable. As a simple example of a better solution, consider methods
that maintain distributed soft state about recent positions of ambulances
using on-board Global Positioning System units and wireless communica-
tions. Even a rudimentary ability to visualize trails of other vehicles is likely
to provide useful information about road conditions.

In the above scenario, it is quite likely that public buildings such as
schoolhouses will be converted into emergency shelters and medical cen-
ters. Such a center has a wealth of important information of interest to
others, such as statistics on injuries, symptoms, and diagnoses that may
help planners better judge the situation and quench any burgeoning out-
breaks of disease. Conversely, such a center also has pressing information
needs, such as the status of medical professionals and supplies in neighbor-
ing areas that could be called into service. Some of these needs may be met
using telephones and other ad hoc communications. However, the quality
of information would be greatly improved by the use of any computer and
communication systems that are available at the schoolhouse, even though
they are not provisioned for such service and may have variable availability.
Although one may expect emergency workers to carry dedicated and well
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designed information systems, there is a need for information beyond these
systems. For example, although not life-saving, the ability to inform people
of the status of their homes and friends is valuable.

Methods for disseminating data in this environment face three major
challenges: First, it is unlikely that centralized computing infrastructure
is functional. Therefore, the data-dissemination methods cannot rely on
the functioning of a single, or a few, critical hosts in the network. Rather,
they must be capable of effectively disseminating data when few or none of
the centralized facilities are functional. Second, the communication network
is likely to be unreliable and functioning at only a small fraction of its
capacity. Therefore, network bandwidth is a precious resource that data-
dissemination methods must use judiciously. Third, the environment is very
dynamic, with the availability of data sources, computing facilities, and
communication network links changing by the minute. Similarly, the data
needed at various sites also changes rapidly. Therefore, methods for data-
dissemination in this environment must be capable of rapid adaptation to
such changes in the available resources and required data.

With a few exceptions, work that addresses the problem of selective
data dissemination is typically designed for a controlled, centralized envi-
ronment. Siena [4] is an event-based publish-subscribe system that uses a
set of special broker nodes in the network to maintain state and forward
data to clients. It uses techniques such as query aggregation for efficient fil-
tering, and is designed to work with multiple brokers to scale to a large set
of subscribers. Continuous-query systems like NiagaraCQ [9] use grouped
subscription queries, coupled with change-based and timer-based events, to
notify interested clients of changes in an available data source. Work on fil-
tering systems, such as XFilter [1] and YFilter [15], and querying systems,
such as XSQ [22], focuses on fast algorithms for matching a data stream with
filters and queries. Our work is designed to distribute data in a completely
decentralized, autonomous environment.

The remainder of the paper is organized as follows. In Section 3, we
develop the details of the problem of interimistic data dissemination noted
above. We describe our solution, implemented in the CoDD system, in Sec-
tion 3. Section 4 describes an experimental evaluation of our methods. We
describe related work in Section 5 and conclude in Section 6.

2 Interimistic Data Dissemination

We now elaborate on the task of selective dissemination of data in the in-
terimistic environment introduced in Section 1. Briefly, we may describe
this problem as the interimistic version of the well-studied problem of se-
lective dissemination of information. While the most obvious features that
distinguish this version of the problem from earlier work arise from the en-
vironment (e.g., lack of provisioning, high failure rates), there are additional
distinguishing features as well. There are multiple sources of data and there
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is no qualitative difference between the hosts that serve as data sources and
those that subscribe to data. Further, the arrival rate of data is likely to be
bursty and unpredictable.

Consider a stream of XML data emanating from a host. There is a set
H of hosts that need to receive selected portions of this stream. Each host
in H expresses the data of interest by sequentially subscribing to the data
using XPath [11] subscriptions or standing queries. Nodes have a limit on
the number of network connections (fan-out) they are able to support. We
wish to determine a strategy for efficiently disseminating the documents ac-
cording to the subscriptions while honoring the fan-out constraints. Further,
the stream of documents is subject to frequent changes in characteristics,
resulting in large changes in statistics. The main challenge is devising pro-
tocols that adapt to two kinds of changes at low overhead: (1) hosts joining
and leaving the network and (2) changes in data characteristics.

Our task is to devise a strategy for data dissemination that satisfies the
resource constraints and that provides each host in H with the requested
data, over time. The actions required to follow the strategy at run time must
be simple, efficient, and local. Operations that may trigger potentially inef-
ficient wide-area changes, such as global query replanning, must be avoided.
Specifically, a data dissemination strategy in this context consists of a col-
lection of rules that determine the manner in which hosts transmit data
amongst themselves at any point in time. In addition to specifying the ini-
tial setup, such a strategy indicates when and how the setup is modified,
typically in response to changes in network membership, network topology,
data characteristics, or query mix.

We note that we are required to provide a distributed strategy over time,
not simply a centralized solution to a snapshot of the problem parameters
at some instant in time. In particular, we cannot assume non-local knowl-
edge of hosts, network conditions, and data repositories. Of course, we may
convert a static centralized solution to a dynamic distributed using periodic
re-evaluation and one of the several standard methods for maintaining dis-
tributed state. However, such an approach would be very inefficient for even
a small number of hosts. A naive solution to this problem is to multicast the
stream to each node, with query evaluation done at the individual nodes.
However, this approach would entail a significant communication overhead,
especially for participants with low-selectivity queries. We seek a method
that organizes nodes into a network that takes advantage of the commonal-
ities among subscriptions. However, our focus is on a low-overhead protocol
that can respond rapidly to changes in membership, topology, subscriptions,
and data characteristics.

3 Data Dissemination in CoDD

In our implementation of the CoDD dissemination network, nodes are orga-
nized as a tree rooted at the data source. Data from the source are selectively
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propagated down tree edges, with each node other than the root receiving
data from exactly one other node, its parent in the tree. A tree-structured
dissemination network simplifies the tasks of network maintenance as nodes
join and leave the network, and as their subscriptions change over time.
However, it also excludes certain dissemination methods that require non-
tree networks. For example, it is possible, in general, for the data specified
by a node’s subscription to be routed separately to it via two or more paths
in a network. Such strategies are permitted by non-tree dissemination net-
works, but not tree networks. On the other hand, the extra overhead and
complexity associated with such networks may well negate the potential
benefit of such strategies. In particular, it is important to note that we are
addressing a very dynamic environment. Thus, the ability to rapidly and ef-
ficiently adapt the network to changes in the environment is more important
than the ability to better optimize a static situation. In what follows, we
will restrict our attention to tree-structured dissemination networks. (This
restriction is on only the overlay network used for data dissemination and
not on the underlying network; we do not make any assumptions about the
structure of the latter.)

Each node maintains an aggregate filter query for each its children. This
query denotes the set of documents needed by all descendants in its sub-
tree. On receiving a document, a node propagates it to a child only if the
document satisfies that child’s aggregate filter query. The method used to
aggregate queries depends on the query language in use, and has been ad-
dressed in prior work [7,4].

Adding a new node to the network potentially results in excess data flow-
ing along the path from the root to the node. For each ancestor of the new
node, this excess data consists of documents required by the new node that
do not satisfy the subscription query of the ancestor. By choosing the parent
of a new node judiciously, this overhead can be minimized. We may phrase
the problem as one of minimizing the amount of data flowing on network
links when each node receives at least the items satisfying its subscription.
This definition assumes that the data emerging from the source in the future
is known. In practice, we need an online method that places a node using
only information known at the time a node joins the network. Below, we
present an informal description of our method. The detailed descriptions of
the join, leave, and reorganization protocols appear in the subsections that
follow.

When a host h joins the network, or issues a new subscription, it first
requests a direct connection to the source s of the data stream. If the request
is granted, host h establishes the direct connection for the data it needs.
However, it is likely that the source s is already connected to several hosts
and cannot support any additional direct connections due to the fan-out
constraint. In this case, s forwards the request to one of the hosts, c, that
are directly connected to s and that can support additional connections.
If no such host can be found, implying they are all operating at their fan-
out capacity, the process is repeated, recursively. The process of adding
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n.parent n’s parent in overlay
n.children list of n’s children
n.ancestors list of n’s ancestors (including n)
SubTree(n) subtree rooted at n

n.query n’s subscription query
n.query(D) items in D that satisfy n.query

n.filter n’s aggregate filter query
n.level n’s depth

Fig. 1 Terminology used by protocols

hosts in this manner results in a tree-structured dissemination network.
During this process, connection requests are sent to hosts that are selected
to maximize the overlap between the host’s effective subscription and the
new subscription. A host’s effective subscription is the smallest subscription
that contains (in a query-containment sense) the subscriptions of all hosts
in the dissemination subtree rooted at that node.

The above join protocol is the static part of the data-dissemination
strategy used by CoDD. The dynamic part of the strategy involves peri-
odic reorganizations triggered by locally detected events such as a node’s
effective subscription being too large compared to its original subscription.
The reorganization protocol is similar to the join protocol. The main dif-
ference is that instead of moving down the tree from s using intensional
overlap of the subscriptions as a guide, we use extensional overlap of their
recent results. The reason is two-fold. On the one hand, extensional overlaps,
which are estimated using the intersection of the document identifiers of re-
cent results for the two subscriptions, are determined much more efficiently
than intensional overlaps, which require query-containment and common-
subexpression computations [7]. On the other hand, they may be effective
at determining overlaps that do not exist based on the known constraints
on data, but that are exhibited by recent documents. Although intensional
overlap certainly influences the extensional overlap, the relationship may
be weak in practice. For example, queries that are not very close inten-
sionally, such as //computer[model = "iMac"] and //computer[color =
"tangerine"]), may have 100% overlap extensionally because of unknown
dependencies. (Hypothetically, the only tangerine computers are iMacs.)
Our protocols favor extensional techniques over intensional ones, although
they use both.

3.1 Join Protocol

Figure 1 summarizes some of the terminology used in the following descrip-
tions of our protocols. The System Join Protocol, outlined in Figures 2
and 3, defines a distributed procedure for a new node to attach itself to
the CoDD network. In our descriptions, we use send sync msg to denote
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// protocol for joining

proc join_codd() {

seed_set s = send_sync_msg(system_agent,

TYPE_GETSEEDSET);

list candidates = {};

forall (node n in s) {

send_async_msg(n, TYPE_ADD, this);

}

// wait for timeout, or all nodes to respond

wait(candidates.length = s.size, TIMEOUT);

if (candidates.length == 0) return FAIL;

node p = min_cost_candidate(candidates);

candidates.remove(p);

while (send_sync_msg(p ,TYPE_ADDCHILD,

this) == FALSE) {

if (candidates.isempty())

return FAIL;

p = min_cost_candidate(candidates);

candidates.remove(p);

}

// wait to receive data

}

Fig. 2 CoDD Join Protocol

synchronous message passing, and send async msg to denote asynchronous
communication. When the former is used, the return value is available im-
mediately; the return value from a use of the latter is available only using a
message handler function that is asynchronously called when the action re-
quested by the message is completed. The protocol uses a distributed greedy
strategy to determine the insertion point for new nodes. An incoming node,
m, obtains a seed set S of existing nodes using an out-of-band mechanism.
Our implementation uses a special system agent node for this purpose.
Typically, the seed set S consists of the node, ROOT, that is the origin of the
data stream. In general, the seed set is an arbitrary set designed to avoid a
single point of congestion. For example, in a wireless network, the seed could
be a randomly selected node in communication range of the new node. The
min cost candidate function is used by each node to determine a point
of connection to the network from among a set of potential candidates, by
using a suitable cost-estimation function, such as network latency.

We define compute overhead(p, n) to be the additional overhead in-
curred by node p if node n were to be added as a child of p. Overhead refers
to the data that p must receive in order to propagate to n and that does not
satisfy p’s subscription. The function max overlap node(q, n) computes
the node p in n.children that is estimated to incur the least overhead upon
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// message handler for join protocol

async proc message_handler(type t, args a) {

switch (t) {

case TYPE_ADD:

// handle a request to add

if (spare capacity available) {

send_async_msg(a.sender,

TYPE_ADDRESULT, this);

return;

}

node n = max_overlap_node(a.query, this);

send_async_msg(n, TYPE_ADD, a);

break;

case TYPE_ADDRESULT:

// received a response to add request

// add the response to list of candidates

candidates.add(a.sender);

break;

case TYPE_ADDCHILD:

// add this node as a child

this.children.add(a.sender, a.query);

if (this.parent != null)

send_async_msg(this.parent,

TYPE_ADD_QUERY, a.query);

send_sync_response(a.sender, TRUE);

break;

case TYPE_ADD_QUERY:

// update aggregate filter query

this.query.add(a.query);

// and update of parent as well

if (this.parent != null)

send_async_msg(this.parent,

TYPE_ADD_QUERY, a.query);

break;

}

}

Fig. 3 Message Handlers for Join Protocol

accepting a node with query q as a child. We refer to this node p as the
maximal-overlap child of n for query q.

The join protocol for an incoming node m begin with m sending a TYPE ADD
message to each node in the seed-set S. Each node in S propagates this mes-
sage recursively to its maximal-overlap children for m.query . (Ties in the
overlap are resolved by the node m randomly.) When the message reaches
a node whose current fanout is less than its maximum fanout, the new
node is attached as a child of this node. By terminating the protocol when
the first node that can accept new children is found, the protocol favors
the construction of short trees, resulting in low latency. The early termi-
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nation also results in low overheads: The number of messages exchanged
is bounded by h × s, where h is the maximum depth of the tree, and s is
the size of the seed set. By making some simplifying assumptions about the
data and query distribution, the network can be modeled as a random split
tree [14]. With this model, the depth of the tree when constructed incre-
mentally using the above protocol grows logarithmically in the size of the
node set. Thus, we may expect the protocol to create balanced tree net-
works with low overheads. We note that the protocol is not guaranteed to
position new nodes at locations that maximize overlap. However, such an
optimal solution would require the protocol to examine the network more
extensively, incurring additional overheads. We quantify the effects of this
design decision in Section 4.

The maximal query overlap computation (function max overlap node in
Figure 3) uses two methods: (1) an extensional method based on statistics on
recently encountered data and (2) an intensional method based on structural
overlaps among subscriptions. For the the first method, we maintain, at each
node, statistics that describe the data encountered so far. These statistics
are used to estimate the commonality of the requirements of a pair of nodes
by comparing the document-sets received by them in the recent past. We use
bitmaps and simple summary structures at each node to describe data that
have passed through it. For each document arriving at a node, that node’s
bitmap has the bit for the document’s ID set to 1. Nodes can efficiently
determine overlap by exchanging and comparing these bitmaps.

In general, the summary structures depend on the data and query model.
We describe below the scheme we use for XML documents and XPath twig
queries. At each node, we maintain a data-summary tree that summarizes
the set of XML documents encountered at that node. Each vertex of the tree
has a document-ID bitmap in which the bit for a document-ID is set if the
XML data tree (DOM tree) for the corresponding document had a similarly
labeled vertex at the same position as in the summary tree. For example,
consider document i with a root n that has two children: left and right.
When this document arrives at a node, that node’s data-summary tree is
modified by setting ith bit in the bitmaps of nodes corresponding to n, left,
and right. If the subtree composed of these three nodes does not exist in the
data-summary tree, then it is added. As new documents are encountered,
this structure can be efficiently updated in a single pass on the XML tree of
the new document. Lookups to check for the set of documents that match a
given twig query are performed by tracing the twig pattern representing the
given query on this structure, and checking to see which document ID bits
are set in each vertex of the subtree traversed in this process. The query-
overlap computation for a new node consists of comparing the subscription
query of a new node with the set of documents received at prospective nodes
as determined above. Our method uses a least-recently-used (LRU) policy
to bound the size of the summary structure.

Although the above method works well once several documents have
passed through the dissemination system, it is not meaningful immediately
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proc leave_codd() {

if (is_leaf(this)) {

send_async_msg(this.parent, TYPE_LEAVE, this);

return;

}

node n = max_overlap_node(this.query, this);

send_async_msg(n, TYPE_NEWPARENT, this.parent);

forall (node c in n.this.children) {

send_async_msg(c, TYPE_NEWPARENT, n);

}

}

Fig. 4 CoDD Leave Protocol

after the system is brought up because the statistics have not been seeded
sufficiently. In this priming phase, CoDD uses a structural match between
queries to estimate the overlap in their sets of matching documents. For
XPath, our structural-match methods compares the XPath structures and
literals in the queries in order to obtain an estimate of the intensional over-
lap. Any inaccuracies introduced by this method do not cause long-lasting
inefficiencies because of reorganizations, as described in Section 3.3.

3.2 Leave Protocol

In CoDD, a node may leave the network gracefully after it has received the
data it needs. The leave protocol for a node n reorganizes the subtree rooted
at n locally. It replaces n by the child n∗ of n that has maximal overlap with
n. By choosing a replacement with maximal overlap, the protocol attempts
to restructure the subtree rooted at n in a manner that minimizes network
traffic. The protocol then re-inserts each of the existing children of n, except
n∗, into the network using the join protocol described above, with seed set
{n∗}. Finally, it uses a similar method to add each of n∗’s children to the
subtree rooted at n∗. Thus, the only set of nodes affected by n leaving are
the children of n and its replacement, n∗. The protocol is summarized in
Figure 4. When a node leaves the network ungracefully, its departure is
detected by each of its children using keep-alive messages and timeouts.
Each orphaned child re-inserts itself into the network by initiating the join
protocol. However, it may use a modified set of seed nodes that reflects its
knowledge of the network. For example, it may initiate the protocol at its
earlier grandparent.

3.3 Reorganization Protocol

The reorganization protocol is the reactive component of CoDD. The proto-
col is initiated by a node when it observes a rise in the number of extraneous
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// message handler for leave protocol

async proc message_handler(type t, args a) {

switch (t) {

case TYPE_LEAVE:

// remove child

this.children.remove(a.node);

send_async_msg(this,

TYPE_REMOVE_QUERY, a);

break;

case TYPE_REMOVE_QUERY:

// remove query from filter

this.query.remove(a.query);

if (this.parent != null)

send_async_msg(this.parent,

TYPE_REMOVE_QUERY, a);

break;

case TYPE_NEWPARENT:

// add node to new parent

send_async_msg(a, TYPE_ADDCHILD, this);

break;

}

Fig. 5 Message Handlers for Leave Protocol

documents it receives, and results in the subtree rooted at that node moving
to another part of the network. The protocol associates a cost with the re-
organization, and accepts a reorganization request only when the expected
gain to the system outweighs the cost of the reorganization.

CoDD maintains a timeout parameter for each node, which defines a
constraint on the amount of time that must pass between successive reor-
ganization requests for any given node. A request for reorganization can be
made periodically after a configurable time-limit has passed (the reorgani-
zation frequency), or on demand when the node detects an increase in the
amount of spurious data it is receiving beyond a threshold (the reorganiza-
tion overhead threshold). Thus, the protocol allows the system to react to
increases in the data overhead, while the timeout restriction prevents nodes
from unfairly initiating these requests very often.

We present a set of policies that can be used by CoDD to limit the
overhead of reorganization without significant loss in performance. First, the
choice of reorganization frequencies and overhead thresholds can be used to
achieve a suitable tradeoff between performance and overhead. Second, top-
c reorganization accepts the top c pending reorganization requests, where
the nodes are ordered by decreasing overhead, and allows the system to
move those nodes that are expected to give the highest potential benefit.
Third, delta-thresholds chooses only those requests that have an expected
benefit higher than a threshold value. This benefit is the difference in the
overhead between the current and the new position for the node, and thus
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proc reorganize() {

best_parent_overhead = MAX_VALUE;

queue prospective = {ROOT};

best_parent = NULL;

repeat {

node c = prospective.dequeue();

(curr_overhead, c.children) =

send_sync_msg(c, TYPE_GETOVERHEAD, this);

if (c has spare capacity) {

if (curr_overhead < best_parent_overhead

&& c != this.parent) {

best_parent = c;

best_parent_overhead = curr_overhead;

}

}

else if (2*curr_overhead <

best_parent_overhead) {

forall (node p in c.children)

if (p != this)

prospective.enqueue(p);

}

} until (prospective.length == 0);

if (best_parent == NULL) {

// unable to get better parent

return FAIL;

}

send_async_msg(best_parent,

TYPE_ADDCHILD, this);

}

// message handler for reorganize protocol

sync proc message_handler(type t, args a) {

switch (t) {

case TYPE_GETOVERHEAD:

// return overhead for reorganize

overhead = compute_overhead(this, a.node);

return (overhead, this.children);

}

}

Fig. 6 CoDD Reorganization Protocol

allows only those nodes where the potential gain is known to outweigh the
cost of the move.

A high-overhead node that is eligible for reorganization may send a re-
quest to a child node with which it has the least overlap (and thus con-
tributes most to its overhead) to move to another part of the network. The
protocol proceeds with the child node, n, sending a TYPE REORGANIZE mes-
sage to the system agent node, which checks that the requesting node is
eligible for reorganization. The node then proceeds as outlined in Figure 6.
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It maintains a current best node while traversing the tree in a breadth-first
manner. The protocol prunes search paths in the tree by estimating the over-
head of examining the children of a current node, and using this estimate
to stop the search along paths that are known to entail higher overheads
than the current topology. The algorithm terminates by returning a new
parent for the node that needs to be reorganized. The protocol maintains a
queue of candidate nodes that may contain solutions. If the node currently
examined has a free child slot, it is processed by comparing its overhead
with that of the current best node. If the fanout constraint for the node is
already satisfied, then the protocol tries to estimate if a child of this node
could contain a better solution than the current one. If so, the protocol
adds each child of this node to the prospective candidate queue. Otherwise,
this subtree is pruned from the search space. The compute overhead(p, n)
function, as defined earlier, computes the overhead that is expected to be
incurred upon adding n as a child of p. Upon determining the new point of
attachment in the network, a reorganizing node uses the system join proto-
col to add itself to the new parent, and does so by sending an asynchronous
TYPE ADDCHILD message.

4 Experimental Evaluation

The CoDD protocols are simple and efficient, but are not guaranteed to pro-
duce an optimal solution to any given static configuration of the network.
Given the highly dynamic nature of the interimistic environment that we
have described earlier, the speed with which the protocols respond to net-
work events, such as nodes joining and leaving, is more important than
static optimality. Nevertheless, it is desirable that the data-dissemination
network produced by the CoDD protocols be efficient in the sense that the
amount of data transmitted in the network is small. We develop this idea
further below and quantify the performance of CoDD using several metrics.
We also compare CoDD with the Siena system [4].

The current implementation of CoDD consists of a set of Java classes
that can be deployed in a distributed setting. We have also developed a
simulator for nodes, allowing us to test a large number of configurations
locally. We conducted our experiments using the Sun Java SDK version
1.4.1 01 on a PC-class machine with a 1.6 GHz Pentium IV processor and
256 MB of main memory, running the Redhat 9 distribution of GNU/Linux
(kernel 2.4.22). We simulate network data transfers using standard inter-
process communication mechanisms, such as local pipes for the simulator
and sockets for the distributed deployment of CoDD. Each node runs an
instance of a query engine corresponding to the data and query language in
use. This engine evaluates each child’s filter query on each data item, and
enqueues the item to be sent to each of the children whose filter query it
satisfies.

The primary metric we study is the network overhead. Consider the
transfer of a data item over a network link. If the item does not satisfy
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the destination’s subscription, the transfer is termed extraneous. (The item
may be useful to one of the node’s descendants in the multicast tree.) A
node’s overhead is computed by dividing the number of extraneous transfers
sent to the node by the total number of transfers sent to it. Similarly, the
system overhead is computed by dividing the number of extraneous transfers
(occurring over all links in the network) by the total number of transfers.
In some cases we are interested in measuring system average over the set
of nodes that potentially receive extraneous items (i.e., the non-leaf nodes),
and we refer to this as the interior node overhead.

Our test dataset is an abstraction of the mapping between data and
subscriptions. We assign nodes to one or more of k category buckets. Intu-
itively, each bucket represents an interest class. We use k = 20 by default.
Subscription queries are modeled by mapping each data item to every mem-
ber of a fixed number of these buckets. The selectivity (s) of the query set
for each experiment is defined as the fraction of the total number of doc-
uments a query is mapped to, averaged over the total number of queries.
We model changes in data distribution by performing a random shuffle on
the buckets, at a rate determined by the change-frequency parameter cf .
Each shuffle operation consists of splitting c buckets into two sub-buckets
and merging uniformly randomly chosen pairs of these sub-buckets to form
new mappings. We use c = k/5 by default. The default synthetic dataset we
used had a selectivity (s) of 0.2, with 400 nodes (n), and 10000 documents
(d) being published in the system. The document distribution was made to
change every 200 documents (cf ), and the default fanout (f) was 6. The
reorganization was initiated after every 200 documents were published in
the system, by nodes that experienced an overhead greater than a threshold
(rthresh) of 0.2.

Figure 7 summarizes the results of our experiments studying overhead
with a changing document distribution for the default synthetic dataset
described above, using a fanout of 6. The figure displays the overhead of
the top 100 interior CoDD nodes with and without reorganization (CoDD-R
and CoDD-NR, respectively), ranked according to their overhead. Overhead
for leaf nodes is always zero, since they do not need to accept items for the
purpose of transferring them to their descendants. Reorganization is seen
to significantly lower overhead: the average overhead decreases by over 50%
as a result of initiating reorganization, indicating that reorganization allows
CoDD to adapt well to changing data distributions.

We also compared our system with Siena [4], an event-based publish-
subscribe system used to selectively disseminate data to a large set of sub-
scribers. Siena uses a set of coordinated brokers, with each client being
mapped to one broker. Brokers communicate with each other depending
on the requirements of the clients they serve. This design is significantly
different from that of CoDD, and is based on a centrally controlled setup
of the server environment. In contrast, CoDD assumes no central coordi-
nation. Nevertheless, Siena is the implementation that is closest to CoDD.
For purposes of comparison, we emulate CoDD’s server-less environment
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using Siena as follows. The network is built incrementally, with a fraction of
randomly selected nodes designated as brokers. These nodes are connected
in a balanced tree topology, and clients connect to a uniformly randomly
selected server in this network. We use f clients per server, where f models
the fanout constraint in the corresponding CoDD environment.
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Figure 8 depicts the results of experiments comparing the overheads of
Siena and CoDD using the default dataset. Our experimental setup favors
Siena because we measure the overhead for only the designated broker nodes
in Siena. We do not include the overhead incurred by Siena to to set up these
brokers in the first place. (Recall that Siena, unlike CoDD, assumes some
centralized control for this purpose.) Nevertheless, we note that CoDD per-
form well because it generates topologies that are data-aware. We note a
sharp decrease in the overhead of Siena at x = 29. Recall that, in both
CoDD and Siena protocols, only interior nodes in the data-dissemination
tree incur overhead. However, Siena’s centralized setup protocol creates a
balanced tree whereas CoDD’s completely distributed protocols result in
trees with more variable structure. Therefore, the trees produced by CoDD
have, in general, a larger fraction of leaf nodes than do the corresponding
trees produced by Siena. The leaf nodes incur no overhead, and are re-
sponsible for the flat portion of the curve for Siena beyond x = 29 in the
figure.

In Figure 9, we summarize our study of the effect of fanout on over-
head. We observe that the overhead in CoDD drops rapidly as fanout is
increased from 2 to 4, with further increases in fanout providing only mi-
nor improvements. This result suggests that it is not necessary to use high
fanouts, which have the effect of increasing the processing and network load
on each node. In contrast, Siena’s overhead gradually increases as fanout is
increased. This result may be explained by noting that increasing the fanout
increases the number of children for each interior node in the tree. These
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nodes are usually going to have little overlap with their new children, and
thus their overhead is likely to increase significantly.

Figure 10 summarizes the results of experiments varying the number of
nodes in the system, with two fanouts (4 and 6), using Siena and CoDD, the
latter both with (CoDD-R) and without (CoDD-NR) reorganization. The
figure suggests that the overhead is substantially lowered by reorganization.
Further, the rate at which overhead increases with increasing network size
is lower for the reorganization case.

4.1 Depth of nodes

The depth of a node in the overlay network built by CoDD affects properties
such as the latency of data delivery. In general, the depth of a node varies
over time due to reorganization. We define the weighted average depth of a
node to be the average of the depths of that node in the network, where each
depth is weighted by the number of documents received by the node at that
depth. Smaller values of this metric are desirable, as they indicate a node
receiving documents at a lower depth (and thus lower latency) overall. Fig-
ure 11 depicts the results of our experiments measuring node depths on the
synthetic datasets, with and without reorganization. Reorganization is seen
to reduce the weighted average depth significantly, indicating the benefits
of adapting the topology to changing document distributions. The curves
in Figure 11 have stepped shapes because depths occur in discrete values.
The maximum node depth with reorganization is substantially lower than
that without reorganization. As a result, there are fewer distinct values of
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node depths, and thus fewer steps, in the curve for reorganization. Figure 12
depicts the rise in average depth with increasing network size. We note that
the increase in depth is gradual, roughly following a log x curve, indicating
that CoDDscales well with a large number of participants. However, without
reorganization, depth is seen to increase linearly with network size.

4.2 XML datasets

For this set of experiments, we used XML datasets and XPath subscrip-
tions. The datasets were generated using three real DTDs: (1) the News
Industry Text Format (NITF) DTD, available at http://www.nitf.org,
which is used by many major news agencies; (2) the Protein Sequence
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NITF PSD CIML

Max Depth 12 9 6
Avg Depth 5.83 4.37 3.32
Elements 132 66 78
Avg Raw Size (kb) 11.3 7.65 4.54
Recursive N N N

Fig. 13 XML Document Data Used

Database (PSD) DTD, available at the Georgetown Protein Information
Resource at http://pir.georgetown.edu; and (3) the Customer Iden-
tity/Name and Address Markup Language (CIML) DTD, available at http:
//xml.coverpages.com/ciml.html. We generated test data conforming to
these DTDs using IBM’s XML Generator tool (http://www.alphaworks.
ibm.com/tech/xmlgenerator). Figure 13 summarizes the properties of the
DTDs and datasets.

To generate a workload of XPath queries to be used as subscription
queries for each of the nodes, we developed an XPath query generator. The
query generator takes as input a DTD and a set of parameters describing
query characteristics. These parameters include p∗, the probability of a lo-
cation step using a wildcard (∗); pc, the probability of a node having more
than one child; and pλ, the probability of generating a closure axis.

Figure 14 summarizes the results of our experiments on the three datasets
using queries generated with (p∗, pc, pλ) = (0.2, 0.3, 0.2). The resulting XPath
queries had measured selectivities of 0.28, 0.15 and 0.31 for the NITF, PSD
and CIML datasets respectively, averaged over each query in the respec-
tive query workload. The y-axis of Figure 14 denotes the system overhead,
as defined earlier. We measured the overhead in the system with (R) and
without (NR) reorganization. Reorganization was triggered every 200 doc-
uments. As we may expect, the overhead for the NITF dataset is slightly
lower than the overhead for the more complex PSD dataset. However, the
variation in data characteristics do not result in significant problems for our
protocols. In particular, we observe that CoDD, with reorganization, incurs
overheads of less than 10%, even with low fanouts. Further, an important
feature that is not immediately apparent is that the CoDD protocols do
not include any specialization to the characteristics of any dataset. Thus,
good performance is maintained even when, say, the dataset characteristics
change from those of NITF to those of PSD.

4.3 Effects of reorganization

In Figure 15, we summarize an experiment that studied the temporal vari-
ance of overhead, and the effects of reorganization. We used the the default
synthetic dataset for this experiment. Time is measured in increments of
events denoting a document being published or or a reorganization occur-
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ring. We measure the average overhead of all the nodes in the system that
have positive overhead. That is, we ignore leaf nodes, which have zero over-
head. The impulses in the figure indicate reorganization events. The average
overhead is seen to drop appreciably near the end of the curve, suggesting
the system converging to a low overhead configuration. The results compare
favorably with the overhead at interior nodes in a Siena-like configuration,
indicating the benefits of the data-aware topologies used by CoDD.

We also analyzed the data from the previous experiment to measure the
effects of reorganization events on the overhead of the node that initiates
the reorganization. In Figure 16, we quantify the effect of the reorganization
by depicting on the y-axis the ratio of the overhead after the reorganiza-
tion (and before the next one) with the overhead before the organization.
The x-axis measures time in units of reorganization events, and unlike the
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previous figure, does not include intermediary events like node joins and
leaves. The graph indicates that initially the overhead ratio fluctuates sig-
nificantly. Early reorganizations often do not benefit the requesting node.
However, the later reorganizations are much more successful. This result
may be explained by noting that the statistics maintained by the system
improve over time, allowing it to make more informed decisions.

5 Related Work

Siena [4] is a closely related event-based publish-subscribe system. Clients
in Siena subscribe to messages by registering subscription queries. Data
messages are routed using cooperating brokers that share subscription in-
formation. The primary data model used in Siena represents events as a
set of typed attributes. Queries express constraints over a subset of these
attributes. Subscriptions are aggregated using internal data structures that
describe a partial order on the covering relationships of these queries, and
that can be efficiently traversed to match incoming notifications. The bro-
kers comprise a centralized infrastructure that the protocol maintains, and
scalability is achieved by adding brokers to the system. SIFT [25] is a
keyword-based text filtering and dissemination system for Internet News ar-
ticles. It supports two profile models, one that does exact boolean predicate
matches, and one that does a fuzzy match using a similarity value assigned
to every (document, profile) pair. The Gryphon [18] system implements data
transformation and dissemination using a similar architecture. An informa-
tion flow graph is used to describe the flow of events in the system, and
each node in the graph implements operators that merge, transform, filter
and interpret data items. This graph is then optimized and deployed on
a network of brokers, which are used for data delivery. CoDD differs from



22 Sudarshan S. Chawathe, Abheek Anand

these systems by using protocols that are decentralized, and that work well
with loosely-coupled subscriber nodes without centrally controlled servers.
CoDD also enables resource-poor nodes to participate because nodes can
manage their level of cooperation using capacity constraints and reorgani-
zation. Another difference is the use of extensional overlaps in CoDD. While
this feature precludes methods that take advantage of specific features of
the query language, it permits easy application of our protocols to a variety
of data models and query languages.

Xlyeme [21] is a system used in conjunction with publish-subscribe sys-
tems that tackles the problem of finding the events associated with moni-
toring queries that are satisfied by incoming documents. It uses a hierarchy
of hash tables to index sets of atomic events that compose more complex
events. Le Subscribe [16] proposes a predicate model to specify subscrip-
tions. To match incoming events (i.e., a set of attribute value pairs) with
predicates efficiently, all predicates are indexed, and all subscriptions are
clustered by their common conjunctive predicates. A cost model and algo-
rithms are developed to find good clustering structure and to dynamically
optimize it. A common feature of these systems, in contrast with CoDD, is
the use of restricted profile languages and data structures tailored to the
complexity of the languages in order to achieve high throughput.

Network layer multicast [13] is an efficient mechanism for packet deliv-
ery in one-to-many data transfer applications. It uses protocols operating
in the interior of the network that create a connected tree, with the clients
at the leaves of the trees, such that the length of the path from the root
to each client along the tree is close to the underlying network path. End
system multicast [10,20] pushes the functionality needed to create this tree
to edge nodes on the network, and the data is transmitted over an over-
lay architecture. The tradeoff for using this end-to-end approach is a sub-
optimal performance in terms of network paths and number of duplicate
packets on each link. The hierarchical approach used by CoDD is similar
to the approach taken in NICE [3], an end system multicast protocol that
organizes nodes in a layered tree hierarchy, and is designed to have low
control overheads and scale well with the size of the participant set. The
fanout constraint is captured in NICE using a parameter that determines
the number of nodes at each layers, and bounds the number of outgoing
connections for each node. CoDD works in a more general environment,
where the data is disseminated selectively to participating clients, and the
topology is constructed according to implicit constraints imposed by each
clients requirements and the data distribution.

Content-based multicast (CBM) in ad-hoc networks [27] describes a simi-
lar problem in wireless sensor networks, where the data needs to be multicast
to a subset of the group based on its content. Sensors push data to neigh-
boring nodes, and clients pull data from these nodes. Geographical regions
are divided into blocks, and an election mechanism creates leader nodes for
each block that are responsible for coordinating the local dissemination. In
a CBM system, mobile node express interest in data that is a d distance
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away, or that will be available after time t (assuming a relative-velocity of
the node towards the source). In contrast, CoDD uses general-purpose query
languages that allow nodes to express more precise subscription interests.
Further, CBM concentrates on wireless node mobility, and uses leader nodes
to simulate a centralized infrastructure, while CoDD assumes a decentral-
ized, connected environment that allows it to make more general-purpose
optimizations (like reorganization).

Filtering systems are designed to efficiently match data items with a
set of predicates expressed in a query language specific to the data model.
XFilter [1] uses an XML data model and encodes XPath queries as FSMs by
mapping location steps in the expression to machine states. Arriving XML
documents are parsed with an event-based (SAX) parser, and the events
raised during parsing are used to drive the FSMs through their various
transitions. A query is determined to match a document if during pars-
ing an accepting state is reached in the corresponding FSM. YFilter [15]
extends this idea for multiple queries, by merging common prefixes into a
single NFA, which is processed once for multiple queries. This approach
makes it possible to share processing costs between multiple queries, and
reduces the number of machine states that need to be maintained. There has
also been related work on maintaining index data structures for efficiently
filtering data against a set of queries. In contrast with XFilter, XTrie [8]
indexes on input substrings that contain parent-child operators rather than
element names. This allows it to share the processing of common substrings
among queries using this index, and allows it to decrease the number of in-
dex probes necessary and avoid redundant matchings. In our description of
CoDD, we present policies to create topology structures that are indepen-
dent of the data model being used. The filtering component in the system
can be replaced by any of these techniques to enable fast filtering of data
streams without any change to the topology management protocols.

Work on Query Merging seeks to reduce the cost of answering a set of
subscription queries by grouping similar queries, such that the aggregated
queries match a superset of the documents matched by each input query.
Given a set Q of queries and a cost model for answering these queries,
the task is that of determining a collection M of subsets of Q such that
evaluating queries as suggested by M minimizes cost. Previous work has
shown QM to be NP-Hard in the general case (|Q| > 2), by reducing it to
the set cover problem [12]. This work also quantifies the effect of merging
for various cost models, and presents a set of heuristics for approximating
the QM problem. While CoDD uses similar techniques to group queries, it
does so without assuming a-priori knowledge of all nodes (and their respec-
tive queries) that will participate in the dissemination. Instead of relying
on heuristics to try and optimize the query merging, it uses adaptive reor-
ganization combined with data-independent statistics on query matches to
maintain low overhead topologies.

The decentralized services provided by CoDD have several characteris-
tics that are similar in nature to the resource discovery problem in pervasive
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computing environments. For example, in the VIA system [5], domains or-
ganize into clusters based on their resources. Resources are described using a
list of attribute-value pairs. Queries are specified as a set of constraints on a
subset of these attributes. Clusters are built using upper-bound queries that
are created by replacing some constraints by wildcard constraints. These
upper-bound queries are then used to discover commonalities in metadata
and to build a topology corresponding to these commonalities in a bottom-
up fashion. VIA∗ [6] extends these techniques to allow queries to be gen-
eralized based on an impedance parameter. The query impedance is the
average number of times a data attribute does not match a query attribute,
and describes the relevant importance of that attribute in contributing to
query matches. The extensional method for grouping nodes used by CoDD
may be viewed as a generalization of this idea. The emphasis in CoDD is
low-overhead protocols for dynamic environments that emphasize node au-
tonomy. In VIA, groups of nodes are managed by an administrative domain
controller. It would be interesting to explore combinations of these methods.

Web-service interfaces provide an attractive mechanism for CoDD peers
to interact in a manner specified by our protocol. It should be interest-
ing to define such interfaces using established and emerging methods for
the design of Web-service interfaces [17]. The data-dissemination require-
ments in the scenario described in Section 1 are a special case of the general
problem of providing group-oriented services in a mobile environment [23].
The CoDD system, as described in this paper, uses a syntactic method for
matching data to subscriptions. However, since the CoDD protocols do not
make strong assumptions about the details of this matching method, it is
not difficult to extend them to use other methods, such as those based on
ontologies [2]. In generalizing our work beyond data dissemination to more
interactive communications between peers in the network, it may be useful
to build on work on matchmaking engines such as IPSI-PF [24]. In addition
to the best-effort method used by CoDD to provide efficient dissemination,
it is interesting to consider methods based on quality-of-service guarantees
[26,19].

6 Conclusion

We motivated the need for data management in interimistic environments
in which computing and communication resources are continually chang-
ing. We discussed the characteristics of such environments and the design
guidelines resulting from them. A key feature distinguishing methods that
are viable in this environment from those found in prior work is that cur-
rency and short-term properties are much more important than long-term
properties. We presented our work on the problem of disseminating data
in such environments using a server-less network of computers that is in a
state of continual change. Our methods are based on simple, low-overhead
network-formation and reorganization protocols. We presented our exper-
imental evaluation of these methods. A notable feature of our methods is
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the emphasis on extensional overlap of queries, determined on recently en-
countered data, over intensional overlap, defined using the logical analysis
of queries. Our results suggest that these protocols, though simple to de-
scribe and implement, are well suited to coping with the changes to network
membership, network topology, data characteristics, and query mix.

References

1. M. Altinel and M. J. Franklin. Efficient filtering of XML documents for
selective dissemination of information. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 53–64, 2000.

2. I. Arpinar, R. Zhang, B. Aleman-Meza, and A. Maduko. Ontology-driven Web
services composition platform. Information Systems and e-Business Manage-
ment, 3(2):175–199, 2005.

3. S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application
layer multicast. In Proceedings of the ACM SIGCOMM Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Commu-
nication (SIGCOMM), Aug. 2002.

4. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems
(TOCS), 19(3):332–383, Aug. 2001.

5. P. Castro, B. Greenstein, R. Muntz, P. Kermani, C. Bisdikian, and M. Pa-
padopouli. Locating application data across service discovery domains. In
Proceedings of the International Conference on Mobile Computing and Net-
working (MOBICOM), pages 28–42, 2001.

6. P. Castro and R. Muntz. An adaptive approach to indexing pervasive data.
In Proceedings of the ACM International Workshop on Data Engineering for
Wireless and Mobile Access, 2001.

7. C. Chan, W. Fan, P. Felber, M. Garofalakis, and R. Rastogi. Tree pattern
aggregation for scalable XML data dissemination. In Proceedings of the In-
ternational Conference on Very Large Data Bases (VLDB), Aug. 2002.

8. C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi. Efficient filtering of
XML documents with XPath expressions. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 235–244, Feb. 2002.

9. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continu-
ous query system for internet databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 379–390,
May 2000.

10. Y. Chu, S. G. Rao, and H. Zhang. A case for end system multicast. In Proceed-
ings of ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, pages 1–12, Santa Clara, California, June
2000.

11. J. Clark and S. DeRose. XML path language (XPath) version 1.0. W3C
Recommendation. http://www.w3.org/, Nov. 1999.

12. A. Crespo, O. Buyukkokten, and H. Garcia-Molina. Efficient query subscrip-
tion processing in a multicast environment. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 83–83, Mar. 2000.

13. S. E. Deering and D. R. Cheriton. Multicast routing in datagram internet-
works and extended lans. ACM Transactions on Computer Systems (TOCS),
8(2):85–110, 1990.



26 Sudarshan S. Chawathe, Abheek Anand

14. L. Devroye. Universal limit laws for depths in random trees. SIAM Journal
on Computing, 28(2):409–432, 1999.

15. Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer. Path sharing
and predicate evaluation for high-performance XML filtering. ACM Transac-
tions on Database Systems (TODS), 28(4):467–516, 2003.

16. F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha.
Filtering algorithms and implementation for very fast publish/subscribe. In
Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD), 2001.

17. G. Feuerlicht. Design of service interfaces for e-business applications using
data normalization techniques. Information Systems and e-Business Man-
agement, 3(4):363–376, Dec. 2005.

18. The Gryphon messaging system. http://www.research.ibm.com/gryphon/.
19. Y. Huang, X. Geng, and A. B. Whinston. Network mapping services for dy-

namic selection of web services: promises and challenges. Information Systems
and e-Business Management, 3(3):281–297, Oct. 2005.

20. J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O. Jr..
Overcast: Reliable multicasting with an overlay network. In Proceedings of the
Symposium on Operating System Design and Implementation, pages 197–212,
Oct. 2000.

21. B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitoring XML data
on the web. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 437–448. ACM Press, 2001.

22. F. Peng and S. S. Chawathe. XSQ: A streaming XPath engine. ACM Trans-
actions on Database Systems (TODS), 30(2):577–623, June 2005.

23. U. Varshney. Group-oriented mobile services: requirements and solutions.
Information Systems and e-Business Management, 2(4):325–335, Sept. 2004.

24. A. Wombacher, B. Mahleko, and E. Neuhold. IPSI-PF a business process
matchmaking engine based on annotated finite state automata. Information
Systems and e-Business Management, 3(2):127–150, July 2005.

25. T. W. Yan and H. Garcia-Molina. The SIFT information dissemination sys-
tem. ACM Transactions on Database Systems (TODS), 25(4):529–565, 1999.

26. T. Yu and K.-J. Lin. Service selection algorithms for Web services with end-
to-end QoS constraints. Information Systems and e-Business Management,
3(2):103–126, July 2005.

27. H. Zhou and S. Singh. Content based multicast (CBM) in ad hoc networks.
In Proceedings of the 1st ACM International Symposium on Mobile ad hoc
Networking and Computing, pages 51–60. IEEE Press, Aug. 2000.


