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Abstract— We present a method for assigning markers to
locations to enable navigation by observing short sequences of
markers. A motivating application is indoor navigation, where
pedestrians can determine their location using the sequence of
recently encountered markers as they walk along hallways in a

building. While we may solve this problem simply by assigning
a unique marker to each location, such a solution limits the
granularity of localization due to limits on the number of
distinct markers. We present a more efficient solution that uses
a sequence of recently seen markers to determine locations. We
demonstrate that our solution yields significant improvements
over the naive solution even when the marker-sequences are
quite short, consisting of only three of four markers each.

I. INTRODUCTION

The method of localizing a person using markers placed in

the environment has been effectively used in both indoor and

outdoor settings [1]. This method is particularly promising

when other methods, such as those based on GPS, are un-

suitable. Although our work is applicable in several settings,

we will focus on indoor navigation for concreteness, since

it is a prime application for marker-based localizing due to

unavailability of reliable GPS signals within large buildings.

In particular, we consider settings in which a person carries

a small mobile device that is capable of reading markers,

such as a PDA (personal digital assistant) equipped with a

camera. This mobile device uses the markers to localize the

person and provide additional services, such as navigation.

The specific technology used for the markers, such as optical

or radio, is not important for the purpose of this paper, as

our method does not make any restrictive assumptions on the

marker design. However, for concreteness, we may wish to

consider an optical system in which markers are based on

colored geometric patterns and in which markers are detected

using a camera.

In this paper, our focus is on the placement of markers in

the environment in a manner that permits efficient localizing.

A simple solution is to place a unique marker at each location

at which localizing is desired. We shall henceforth refer

to these locations as important locations. For example, in

a large office building, the part of a hallway adjacent to

each room door may be designated an important location,

so that it is possible to localize a person to the nearest room
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door. The key drawback of this simple solution is that the

number of required markers (distinct) is equal to the number

of important locations. As the region within which localizing

is desired grows (larger buildings, groups of buildings, entire

campuses), the large number of required markers may limit

the applicability of this method. For example, consider the

optical marker system suggested earlier. For a given camera

resolution, operating distance, marker size, and detection

reliability, there is a limit on the number of distinct markers

available. It is therefore useful to consider methods that make

more efficient use of the available set of distinct markers, i.e.,

those that can localize a person to a larger set of important

locations using the same number of distinct markers.

Consider a person walking inside a building using a

marker-reading device such as the PDA suggested above.

Instead of using only the current (most recently read) marker

for localizing, our method uses a sequence of k most-recently

read markers, where k is a parameter with a typical value of

3 or 4. The main idea is that we may assign identical markers

to multiple important locations if we can ensure that it is not

possible to arrive at both the locations after reading the same

k most-recent markers. If we devise such a scheme then the

required number of distinct markers is much smaller than the

number of important locations. (We quantify these statements

in Section IV.) Devising a scheme for placing markers that

satisfies the above localizing property is the main problem

addressed by this paper.

In Section II, we develop the ideas introduced informally

above to yield a formal problem definition. Our solution to

this problem, described in Section III, is based on a greedy

algorithm that efficiently checks for potential duplicates

using dynamic programming. We present some experimental

results in Section IV, where we evaluate the properties of

the marker-placement scheme produced by our algorithm, as

well as the running time of our implementation. We discuss

related work in Section V and conclude in Section VI.

II. LOCALIZING COLORINGS

We model the network of indoor locations, both important

locations and intermediate locations, using a graph in which

edges represent locations (e.g., sections of hallways) and

vertices represent intersections. (Unless indicated otherwise,

we follow standard graph terminology [2].) A marker at a



location (edge) is associated with a color assigned to the

edge. Following the scheme outlined in Section I, the color

of an edge does not uniquely identify an edge (by itself).

A person walking in a network of locations corresponds to

a walk in this graph, where a walk a sequence of edges

such that each successive pair of edges is incident on a

common vertex. We note that we do not restrict our attention

to simple walks, as is often done. The reason is that it is quite

likely that a person may repeatedly traverse some edges,

especially if he or she is lost, and the system should be

able to localize the person in such cases. Our requirement

that a person’s location is uniquely determined by the k most-

recently encountered markers (along any walk) is formalized

as a k-step localizing coloring:

A k-step localizing s-coloring of a graph G =
(V, E) is a surjective function c : E →
{1, 2, . . . , s} such that if p1 = e1, e2, . . . , ek and

p2 = f1, f2, . . . , fk are walks in G with c(ei) =
c(fi) for all i in 1..k then ek = fk. We refer to s
as the size of the coloring c.

Our goal of making an efficient use of the available distinct

markers may then be incorporated yielding the following

problem definition:

Minimum k-Step Localizing Coloring (k-MLC):

Given a graph G and a positive integer k, find

an integer s∗ and a k-step localizing s∗-coloring

c such that there is no k-step localizing s-coloring

for s < s∗.

III. MARKER PLACEMENT ALGORITHM

Our method for placing markers for indoor navigation

in a manner that ensures k-step localization is based on a

greedy algorithm that traverses a graph in depth-first order

and assigns to each edge the lowest-numbered color that does

not create duplicate k-sequences of colors. We describe this

algorithm in more detail below. Since distinct markers may

be assigned integer identifiers, we henceforth assume that the

markers (colors) are integers.

We traverse the input graph in depth-first order, coloring

each encountered edge as follows: Until a suitable color

for the edge is found, we try all colors, in order. During

each trial, we test whether coloring the edge with the trial

color results in any duplicate k-sequences of colors, i.e.,

whether the resulting graph contains two distinct k-walks

that generate identical sequences of colors. When no such

duplicates are found, the color for the edge is finalized.

In the above algorithm, the test for duplicate color-

sequences is the most expensive operation. All other op-

erations are implemented efficiently using standard data

structures. In order to check for duplicates, we need an

efficient method for enumerating all k-walks that contain a

given edge. Our solution to this sub-problem is based on

precomputing (before the above depth-first traversal of the

graph) an index that maps each edge e to the set of k-walks

that contain e.

The bulk of the work during this precomputation is

done using a dynamic-programming algorithm that computes

S(l, e, p) for l = 0, 1, . . . , k−1, in sequence. Here S(l, e, p)
is the set of l-walks (walks of length l) that begin at endpoint

p of edge e, and whose first edge is not e. (The edge e may

appear as a subsequent edge in such walks.)

The algorithm is based on the following recurrence: For

l > 0, S(l, e, a) is the union, over all edges f = (a, x),
apart from e, incident on a, of the sets of l-walks obtained

by prefixing f to each of the (l − 1)-walk in S(l − 1, f, x).
That is,

S(l, e, p) =
⋃

f=(a,x) 6=e

⋃

w∈S(l−1,f,x)

(f) · w

where · is the concatenation operator on walks: That is, w1 ·
w2 is a walk that traverses, in order, all the edges in w1

followed by all the edges in w2. For the base case, we have

S(0, e, p) = {()} for all e and p. Here {()} denotes the

singleton set containing only the 0-walk (), i.e., the walk with

no edges. This recurrence is easily converted to a dynamic

programming algorithm using standard methods, so we skip

the details.

Once S is computed as above, the set of k-walks con-

taining an edge e is computed as the union of the following

cross-products, for la = 0, . . . , k − 1:

S(l1, e, a) × {(e)} × S(k − 1 − la, e, b)

where a and b denote the two endpoints of e and {(e)}
denotes a set containing the 1-walk (e) composed of only

edge e. The cross product operator used above is similar

to the standard set-theoretic operator except that the results

are flattened. It combines the walks in its two operands by

concatenation. That is, given sets W1 and W2 of walks,

W1 × W2 =
⋃

w1∈W1

⋃

w2∈W2

w1 · w2

That the resulting coloring of the graph is k-step localizing

follows directly from the test used when colors are assigned.

Other properties of the resulting coloring, as well as the

running time of the algorithm, are described next.

IV. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation

of our methods, which we have implemented in Java.

Experiments were conducted using Sun Java version 1.5.10,

with Debian GNU/Linux 4.0 (Etch) as the operating system,

running on a very modest machine (AMD Mobile Duron 800

MHz processor, 1 GB of RAM).

A. Sequences

We begin by quantifying the benefit of using a sequence

of markers, instead of single markers, for localization in

the simple case of a linear graph. This case corresponds to

localization within a long interior hallway, for instance. We

applied our method to linear graphs (sequences) of various

lengths and computed the minimum number of distinct

markers (colors) required by a scheme that guarantees k-step

localization, for k = 2, . . . , 6.
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Fig. 1. Number of colors used for a k-step observable sequence as a
function of the number of segments in the sequence.

Figure 1 summarizes the results of these experiments, with

sequence length on the horizontal axis and the number of

distinct markers on the vertical axis, for varying values of k.

The figure also includes the line y = x for comparison with

the case when k = 1 and the number of distinct markers is

the same as the number of locations. The figure illustrates the

sharp reduction in the required number of distinct markers

for k values greater than 2. It also suggests a pattern in which

increasing the number of distinct markers by one increases

the length of the sequences that can be localized by a large

amount for k > 2.

B. Graph Generation

In order to evaluate our method on graphs, we need a

method that produces random graphs of varying sizes. There

are several standard models for random graphs. For instance,

the G(n, p) model, for integer n > 1 and real p ∈ [0, 1]
produces graphs with n vertices by creating an edge between

each of the n(n − 1)/2 pairs of vertices with probability p.

While this model, and a few others, have several interesting

properties and have been well studied, the resulting graphs

are not suitable for our purposes because they do not

resemble the networks of hallways in the interior navigation

scenarios we consider. While the precise differences are

difficult to quantify, they are easily visualized when the

graph is depicted pictorially. One common problem is that

the graphs generated by this model have too many branches

and are often disconnected.

We remedy the above problem by using a two-step

procedure for generating graphs for our experiments. In the

first step, we generate a graph using the G(n, p) model

described above. In the second step, we modify the resulting

graph by replacing each edge with a path of length s, where

s is an integer chosen uniformly from the range [1, S], S
being a parameter. In what follows, order to avoid confusion

between the edges of the graph produced by the first step and

those of the graph produced by the second, we reserve the

term edges to refer to the former and use the term segments

to refer to the latter.

Fig. 2. Screenshot of the visualization module of our implementation

For our experiments, we used parameters that resulted in

graphs that are (informally) similar to typical indoor local-

ization environments. We tested our choice of parameters by

visually inspecting the resulting graphs. Figure 2 depicts a

screen-shot of this visualization part of our implementation.

Although we have selected a small graph for presentation

purposes, our implementation is effective for much larger

ones. The visualization of larger graphs is aided by features

that allow both automated rearrangement of the graph (using

a ball-and-spring model) and manual repositioning of ver-

tices on screen (using drag and drop).

C. Marker Utilization

Our main set of experiments studies the growth of the

required number of distinct markers (colors) as the number

of segments increases, for different values of k. In the naive

solution (k = 1), each segment is assigned a distinct marker

(color) whereas when k is larger, several segments typically

share a color. Thus, the number of colors per segment

provides a good metric of marker utilization, with smaller

values indicating a better utilization of available markers.

Figures 3–6 summarize the results of our experiments for

different values of k. In each figure, the horizontal axis

indicates the number of segments in the graph and the

vertical axis indicates the required number of colors per

segment.

Each of the Figures 3–6 also plots the function y =
x1/k/x, which is a loose lower bound on the minimum value

of the number of colors per segment. That this function

gives a lower bound follows by noting that there are only

yk distinct k-sequences that use y distinct markers, so that

y = x1/k is a lower bound on the number of required

markers. It is easy to observe that this lower bound is not

achievable by considering a few simple examples. We plot

it mainly to serve as a reference.

Perhaps the most interesting observation for the results

in Figures 3–6 is that the values of the required number of
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Fig. 3. Number of colors used per segment for varying graph sizes,
measured as the number of segments in the graph.
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Fig. 4. Number of colors used per segment for varying graph sizes,
measured as the number of segments in the graph.
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Fig. 5. Number of colors used per segment for varying graph sizes,
measured as the number of segments in the graph.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 2000  4000  6000  8000  10000 12000 14000 16000

c
o
lo

rs
 p

e
r 

s
e
g
m

e
n
t

segments

k = 5
(x**0.2)/x

Fig. 6. Number of colors used per segment for varying graph sizes,
measured as the number of segments in the graph.

colors per segment are all very low in an absolute sense. For

example, Figure 4 suggests that a typical case for k = 3 is

0.025 colors per segment, which corresponds to each distinct

marker being used by 40 segments on average. This number

is a significant improvement over the naive case of k = 1
with one distinct marker per segment.

Figures 3–6 also suggest a slight downward trend in the

required number of colors per segment as the number of

segments increases (i.e., as the input graphs get larger). The

variance in values of the required number of colors per

segment also decreases as we move to larger graphs.

D. Sensitivity Analysis

Our next set of experiments studies the sensitivity of the

above results to some key problem parameters. We first study

the effect of the parameter p of the random-graph model

G(n, p) that is used in the first step of our graph-generating

method (Section IV-B). Figure 7 summarizes the results of

this study, with the horizontal axis indicating the values of p
used in the graph-generating process. As above, the vertical

axis indicates the required number of colors per segment.
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Fig. 7. Number of colors used per segment for varying edge probabilities.

Our main observation here is that although there is some



variation, as is to be expected for inputs based on random

graphs, there is no strong dependence of the result on

the parameter p. Intuitively, this result indicates that our

earlier results are not greatly affected by whether the indoor

environment is sparsely or densely connected.

Next, we study the effect of the parameter k in the defi-

nition of the kMLC problem. That is, we study the effect of

increasing the number of sequential marker observations that

are required for guaranteed localization. Figure 8 summarizes

the results, with k on the horizontal axis and the number of

colors per segment on the vertical.
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Fig. 8. Number of colors used per segment for varying number of steps
required to identify a segment (the k parameter of the k-step observable
graph problem).

As before, we note that the absolute values on the vertical

axis are low when compared to the value of 1 for the naive

k = 1 case, which is not shown. The figure also confirms

the downward trend in the required number of colors that is

suggested by Figures 3–6. Although larger values of k result

in a better utilization of distinct markers, they require a larger

number of observations for localization. In this regard, it is

useful to note that a very large fraction the benefit of larger

k values (say, k = 6) over the naive case (k = 1) is obtained

by using very small k values (say, k = 3). Thus, it does

not seem necessary to complicate the run-time localization

process with k values larger than 3 or 4.

Our last set of sensitivity experiments study the effect of

the segmentation parameter S used in the second step of

our graph-generation procedure. (Recall, from Section IV-B,

that each edge of the random graph generated by step one,

using the G(n, p) model, is replaced by a path of length

s, where integer s is selected uniformly from the range

[1, S].) Figure 9 summarizes the results for two values of

the probability parameter p, with S on the horizontal axis.

As before, the vertical axis indicates the required number

of colors per segment. We observe that, excluding very low

S values, there is a low sensitivity to this graph-generation

parameter.

E. Running Time

Our final set of experiments quantifies the running time

of our method. Figures 10–12 summarize the results for
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different values of the parameter k from the definition of

kMLC. In each figure, the horizontal axis indicates the size

of the graph, measured as the number of segments, and

the vertical axis indicates the measured running time, in

seconds. Time was measured by simply subtracting the wall-

clock time at the beginning of program execution from the

time at program termination, without any corrections for

concurrently running processes. In each figure, we also plot

the fitted curve of the form y = ax2.5 as a reference.
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Fig. 10. Running time for k = 2.

V. RELATED WORK

Our work in this paper has been motivated by work on the

M-CubITS system [1], [3], [4], [5], [6]. As indicated by that

work, marker-based methods are attractive in both indoor and

outdoor settings, and have been validated experimentally in

the field. In particular, the M-CubITS implementation using

cameras that detects markers that are patterned tiles attached

to the floor or sidewalk is directly relevant to our work in

this paper, as discussed in Section I.

A few variants of our idea of a k-step localizing coloring

(Section II) have been addressed in other domains. Perhaps

the closest are the notions of trackability and observable
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graphs [8], and the Viterbi algorithm [9], [10]. However, the

definition of observable graphs places no a priori limit on the

length of the walk that must be traversed before a location

is identified. While this variation raises some interesting

questions, it is not suitable for our motivating applications

in which it is important to identify a location using a small

number of steps.

Another related idea is that of the distinguishing number

of a graph [11], [12], [13], [14]. Much of this work developed

from the following recreational problem posed by Frank

Rubin in 1979 [15], [16]: A person must distinguish keys on

a key-ring (circular) using only colored markers placed on

the keys. What is the minimum number of distinct colors that

can achieve this goal? Although there has been much work

on variants of this problem, it is not directly relevant to our

applications because it is typically permissible to use non-

local information in the graph for the purpose of uniquely

identifying locations. In our applications, it is important that

only local information be used, since non-local markers are

typically invisible.

VI. CONCLUSION

We have described a marker-based method for indoor

localizing in which multiple locations are, in general, as-

signed identical markers. Locations with identical markers

are distinguished on the basis of other markers that are

encountered by walks leading to those locations. We have

presented an algorithm for assigning markers to locations to

yield a scheme that satisfies this property. The key benefit

of this method is that it permits a super-linear growth in the

number of identifiable locations as the number of distinct

markers is increased. We have presented experimental results

that quantify this benefit on synthetic environments and that

illustrate the efficiency of our method. In continuing work,

we are evaluating our method in real environments. Al-

though, for concreteness, this paper has focused on localizing

for indoor navigation applications, our method is applicable

in several other settings, both indoor and outdoor.
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