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Abstract— We address the problem of determining the path of  from the inherent limitations of GPS methods. Typically,
a vehicle on a given vector map of roads, based on tracking data measurement error in time and the three spatial dimensions
such as that obtained from onboard GPS receivers. We describe 5 modeled using random variables with a Gaussian dis-

a method that is based on a piecewise matching of track _ . . . . .
segments to map features. A notable feature of our method tr|bu-t|or.1. The p03|tloqal _acc_uracy may be _descrlbed using
is that it is applicable to a large class of existing methods. @ bivariate normal distribution corresponding to the two
We discuss metrics for evaluating the output of map-matching horizontal spatial dimensions, as depicted by Fig. 1. The
methods and briefly describe our implementation of a map- standard deviation of this distribution provides a measire
matching system based on our methods. the accuracy. Although the standard deviation can be quite
low in the best case, around 3 meters, it can increase several

fold due to tree cover, urban canyons, and other problems.

The map-matching problem is, in general, the problenThe second source of errors in the trajectory data is the
of correlating the path of a vehicle to a vector map ofmited sampling rate. A vehicle moving at highway speeds
roads or other features. There are several variants of tHi&Y cover a considerable distance between two consecutive

problem, based on the kinds of input data and the desiré§adings from the GPS receiver, often crossing multiple

output. On the output side, we may be interested in either tHg2tUres in a map.
instantaneous (current) position of a vehicle or a sequenceEarly methods for map-matching may be broadly classified
of recent or historical positions. On the input side, we majnto those based on geometry and those based on topology.
use data from sources such as onboard GPS receivers, deBige former use primarily geometric calculations of dis@nc
reckoning systems, and computer vision systems [12], [8knd orientation to determine a vehicle’s path on a map.
For concreteness, we focus on GPS data in this papeéithough intuitively appealing, these methods are known
however, our method is also applicable to other systems. to suffer from significant drawbacks because they do not
the dynam(i‘,@nsider the topological constraints induced by a map [6].
tTopologlcal methods use the topology of map features to
constrain the set of potential matches for a track point.
Fpr example, given prior positions on a road, several ge-
ometrically close roads may be removed from consideration
because there is no way to go from one to the other or,
ore generally, because the shortest route from one to the

the map. This problem is nontrivial because the trajecto , :
data is typically subject to considerable errors, ofterhwit°ther is longer than some threshold based on vehicle speed
nd other factors. Although these methods are less likely

magnitudes much larger than the distance between ge%n

graphical features in the map. Thus, the 90% confidend® 9€nerate topologically infeasible paths, they suffemr

region surrounding a track point may encompass several my} related problems: First, determining a globally coresis

features. Further, an implicit requirement is that the giehi and optimal (best match) path using such methods is very

path produced as output be consistent with topological ar{asource—intensive and often practically infeasible.oBe¢

other constraints induced by the map features. For examplhen used in a local manner (to improve efficiency), these

the path cannot jump from a highway to a local road umeggethods may not always yield a solution unless unlimited
there is a suitable connection between the two. such Qgcktracking is allowed, in which case the methods are again

an exit ramp. Similarly, travel along local roads must pekely to be very resource-intensive. For example, C(_)_'Sfde
consistent with their interconnections. Thus, althouga th'0@d that splits into two almost parallel, but slowly diviexgy

distance between two parallel roads may be very small, tf82ds, as suggested by Fig. 2. An initial error of choosirg th

path cannot transition from a position on one road to that offf®"d road can remain undetected for a long time, until the
the other if there is no connecting cross street. distance between the diverging roads grows large, requirin
unbounded backtracking for a guaranteed solution. An actua

There are two major sources of errors in the trajectonyase produced by our map-matching system is depicted in
data. The first is GPS measurement error, which arisesg, 3.

I. INTRODUCTION

In the case of GPS-based map-matching,
input consists of a sequence of time-stamped geo-cooadina
(track points), which we shall henceforth call theajectory
data. The static input consists of a map of geographic
features in geocoded vector format, henceforth sinmpdy.
Intuitively, our task is that of plotting the trajectory on
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Fig. 1. Positional accuracy model. The horizontal axes dreléalz andy,

with = being the direction of travel. The ellipse outlines a 90%fictamce
region. A projection of the bivariate Gaussian probabitignsity function
on they = 0 plane is suggested by the dashed lines.

A A Fig. 3. A screenshot of a portion of the display area of theTe@tkMapper
A system (Section V) illustrating a real case similar to thecemtual example
of Fig. 2. The solid line represents the path of actual tralieé dashed line
Fig. 2. The need for unlimited backtracking due to topologicastraints.  that meanders around this solid line is trajectory of tradk{so The thicker
The bifurcated line represents roads diverging from a forll the arrow  dashed line is the map path computed by our method when usedutvitho
denotes the general direction of travel. Triangles reprietsack points while  backtracking. We note the large error near the top right: ddraputed path
circles represent map points. The filled triangle represtr@smost recent wanders off into an area that is very far from the nearesktpaints. This
track point. Although this point lies very close to the upfiek of the road, error is caused by the topological constraints induced byrdiad network.
a topology-guided method may be forced to map it to a point indlet  The incorrect choice was made at an earlier point in the phaéhctowded
fork (filled circle) well outside the elliptical error regiqsolid ellipse) of the  corner near the top left.
track point due to an erroneous decision much earlier, wherivtb forks
were well within the error region (dashed ellipse). Theatittn cannot be
remedied in a topologically consistent manner without backing that o .
changes the earlier choice of the upper fork. concrete context for describing our segment-based improve

ments. These improvements are the topic of Section Il
which describes a static segmented path-matching method

wise manner. For example, a geometry-based method mﬁguowed by a dynamic version that enables the underlying
compute the best fit between trajectory points and map roaf{pP-matching method to update accuracy estimates based
based on trajectory pieces that are limited using trajgctof" partial regults. Section IV addresses the topic of measur
points (e.g., 10 points) or the induced distance (e.g., 1009 the quality of a map-path produced by map-matching
meters). In this manner, the complexity of computing a bedp€thods by quantifying its divergence from the real path, if
fit can be controlled. Similarly, a topology-based methodnown, and the input trajectory. Our implementation of the
may limit the complexity of the combinatorial process ofc€0TrackMapper system based on these ideas is described
matching points to line segments in a map by computing tHriefly in _Section V. Rela_ted work is described i|_’1 Section yl
match 10 points at a time. We shall henceforth refer to su@d Section VIl summarizes our work and outlines ongoing
pieces of the trajectory asgments. work.

In this paper, we do not propose a new, stand-alone method
for map-matching. Instead, we propose a method that can be
used to improve many existing segment-based methods, a3, this section, we describe a simple map-matching
well as other methods adapted to segments. Although Ofethod that is based on a measure of similarity defined

modification is applicable to a variety of such methods, fOEJﬁtween track points and candidate edges, where candidate

concretquss, we shall present our work in the context @ ges are the line segments that represent the roads of a
one spe_cm(_: method: a 5|r_nple mcremenftal ”?e‘h"d that usﬁ‘?ap. Briefly, the similarity between a point and an edge
a combination of geometric and topological ideas. is composed of two parts. The first quantifies how close
The rest of this paper is organized as follows. Section the point is to the edge, while the second quantifies the
describes two simple, point-wise methods for mapping similarity in orientation (direction). The specific de&ibf
trajectory to paths in maps. The first method is based dhese calculations, which are found in prior work [11], [7],
making decisions by examining one track point at a timare immaterial for our purposes, and we therefore skip them
while the second uses a limited amount of look-ahead. Oum this paper. For our purposes, all that is needed is an
main purpose in presenting these methods is to establisteacapsulation of the similarity measure between a traakt poi

II. MAP-MATCHING



z and a map featur¢ in a functionsim(z, f). problem is that it matches each point almost individually,

ack considering only the feature matched to the immediately
point z in a path P = P[1], P[2] P[m] in order by preceding point, if any. In particular, it does not consider

selecting the candidate feature that maximizes the siityilar the ramifications that matching a point to a feature has on

score. The candidate features are those that are connecqé% feasuble matchlngs of later pomts. A.S indicated by our
to the feature matched to the previous track point. Thigxa_mple in Fig. 2, a I_ocally optlmal ch(_)|ce may force the
procedure is summarized a®RTMATCH in Listing 1. In choice of a poor solution later in the trajectory.

that listing, P is the input trajectory (sequence of track Listing 2 summarizes a method that matches a track point
points), G is the map,i is the index of the track point to to a map feature using a strategy of limited look-ahead.
be matched, and/ is an array storing the matching. Thatinstead of simply picking the feature that maximizes the
is, the feature matched to track poiRti] is stored inM[i].  point-wise similarity function, as done byo™NTMATCH, the

The functioncONN(f) returns the set composed of the giverfor loop of line 11 recursively computes, for each candidate
feature f along with all features connected to it, based offieature f, the aggregate similarity of matching the néxt
the topology of the underlying map. For example, if a tracltrack points, subject to the assumption that the currenttpoi
point P[3] is matched to a road, thenconNN(M [3]) returns  is matched tof. The matchingl/’ is used to hold a working

r and all roads connected ta As is the case withsiM, copy of M during these computations and the final choice
our method does not depend on the details of lmmwN is  of a feature to matchP[i] is the one,f*, that yields the
implemented. The implementation may be a simple test fonaximum aggregate similarity. Although we compute the
connectivity or a more sophisticated test that incorparateaggregate similarity by assuming a matched feature for each
direction and other attributes. If there is no previous kracof the next! points, only the matching of the poii[:] is
point, or if the feature matched to the previous track poirfinalized. That is, the points are still matched one at a time.
is unavailable, then the candidate features are thosenaathi
distancel” from the track point. Such features can be locategisting 2
efficiently using standard techniques [25].

Using the similarity functiorsim, we can match each tr

Match theith point in pathP to a feature in map
G, storing results inM and using a lookahead éfpoints
_ _ _in the path. The function returns the similarity between the
Listing 1 Match theith point in pathP to a feature in  y5tched point and the track point.
mapG, storing results /. 1: function LOCALMATCH(P, G, i, M, 1)

1: procedure POINTMATCH(P, G, i, M) 2 P=P[l]...Pm]; M[0]=L
P=P[1]...Pm]; M[0]=1

2 : 3: M — M
3 if M(P[i—1]) # L then 4 if M'(P[i—1]) # L then
4 €'« CONN(M (P[i — 1])) 5: C — CONN(M'(PJi —1]))
5: else 6: else
6: C—{feG|dPlf)<T} 7 C—{feG|dPli,f)<T}
7 end if g end if
8 MTi] + argmax ;o SIM(PIi], f) o fr=1
9: end procedure 10 v* = —o0
11:  forall fe C do
Procedure BINTMATCH considers each track point only 12: M'[i] — f

once. TheconN function is implemented to run in time 13
proportional to the number of connected features [9]. Oveta:
the entire run of BINTMATCH, each connection is accessed1s:
at most twice (once from either end). Thus the total times:
required byconN is O(|G]), where |G| denotes the size 17:
of the map. We can locate the features as indicated ors:
line 6 using multi-dimensional orthogonal range queriego:
in O(log |G| + |C]) time using a data structure that useszo:
O(|G|log'*¢|G|) space [2]. HergC| denotes the size of 21:

v« SIM(P[il, f)
v+ v+ LOCALMATCH(P,G,i+ 1,M’',1 — 1)
if v > v* then
v¥ — v
ff=1r
end if
end for
M[i] = f~
return v*

the result, as on line 6, and is expected to be small. The: end function

time spent on line 8 isn - |C| times the time required by
the similarity functionsimM. (Recall thatm is the number of
track points in the input patt® = P[1], P[2],..., P[m].)
Thus, the overall running time ©(m-log |G|+ m-|C|-S),
where S is the time required by an invocation efm.

In offline map-matching, the entire trajectory is available
and the locALMATCH method can be applied directly as
described above. In online map-matching, the trajectory is
available as it develops in real time. In this case, we may

Although RPOINTMATCH provides a simple method for interpret the limited lookahead as an option for limited
matching track points to map features, it does not provideacktracking by reversing the direction of the lookahead.

satisfactory results on typical real data. Intuitivelye tmain

That is, instead of examining the nekttrack points to



determine the matching of the current one, we reexamine tifignction is very similar to the bcaLMATCH function of
last track-points to determine if we should alter an earliet.isting 2, with a lookahead oK. The main difference is that
match based on the newly arrived track points. Using awhile one invocation of bCALMATCH results in matching
analysis similar to that for ®INTMATCH, we can determine only one track point (although others are considered), a

that the running time of bBCALMATCH is at most/ times
that of POINTMATCH.

single invocation of MTCH matches all track points in the
given segment. A simple option is to implementalMtH

by invoking LocALMATCH (Listing 2) K times. However,

Ill. SEGMENT-WISE MATCHING

SEGPATHMATCH does not assume such an implementation;

o _ S therefore, MATCH may also be implemented using other
The description of the previous section implicitly assumeghethods, such as one that determines the geometric best-fit
that map-matching benefits from considering more than ong the i points in the segment to the underlying map.

point at a time. When the track points in the input have

very similar positional accuracy, this assumption is Va"“Listing 3 Segmented Path Matching (Static) Match trajec-

However when, as is often the case, the positional accuragyy p to map G by matching segments of K track points in
of track points varies significantly over the trajectoryisth ,qer of nonincreasing segment scores.

assumption is not valid. For example, it is very common
for the positional accuracy to drop significantly (i.e., the >
standard deviation to rise significantly) when a vehiclesnt
an area with tall buildings or dense tree cover. In such gases,
a look-ahead that includes the low-accuracy track pointg ma _.
degrade the quality of the solution by causing mismatches fo
near-by high-accuracy track points. Intuitively, we wolilke

to strike a balance between using a larger number of trac
points (larger look-ahead) of, in general, lower accurany a
using a smaller number of more accurate track points.

Hw

o~ O O

10:

Our segment-based matching methods build on the above:
idea. We use a functiosCOREto encapsulate the varying 12:
effectiveness of track points for the purpose of accurates:
matching. As with functionssim and CONN of the previ-  14:
ous section, our methods do not depend on any specifis:
implementation of thescore function. A simple version 16:
of this function assigns to each track point a score that is7:
inversely proportional to its positional accuracy. Howeve 18:
a more sophisticated version of this function may also useo:
other factors that affect the likelihood of a correct matchpo:
such as the sampling frequency and the number of candidate:
features. For instance, a track point with a low positionab2:

1: procedure SEGPATHMATCH(P, G)

P =P[1]... P[m]
S[0] « 0
forall i =1...m do
Si] « ScorgPJi], Q)

end for

v+—0

forall :=1...K —1do
v «— v+ SJi]

end for

forall i =K...m do
v—v—S[i— K]+ S[i
Q.INSERT(v, ©)

end for

T[l...m]«—0...0

foral j=1...[m/K] do

repeat
n «— @.DELETEMAX()
until T[n] =0
Tn] «— 1
MATCH(P[n— K +1...n],G)
end for

accuracy may nevertheless be assigned a high score becaemeend procedure

there is only one candidate feature in its vicinity. A track

point on a remote highway with dense tree cover, and a Lines 3 through 14 build the hedplinear time by making

resulting low positional accuracy, may thus receive a hig
score because there are no other roads nearby and there
no risk of matching it to the wrong road.

0 passes over the track poinf3[1]... P[m]. The first
s (first for loop) computes the score of each point while
the second pass (second and third for loops) computes the

We refer to a sequence of contiguous track-points as a segeight Zf:B_KH Score(Pli],B) for B = K...m by
ment. The main idea of segment-based matching is to matofaintaining a running total, and uses it as a key for insgrtin
track-points belonging to high-score segments beforeethosegmentP[B — K + 1]... P[B] (identified by B) in the

belonging to low-score segments. In contrast, the methbds leeap. Lines 15 through 22 repeatedly dequeue and match
the previous section match track points in sequential ordéne unmatched segment with the largest weight. Unmatched
by time. segments are identified using the arfBy

The first of these methods is summarized as procedureOther than line 21, the running time of ProcedureGSs
SEGPATHMATCH in Listing 3. This procedure uses a heapPATHMATCH is dominated by the heap operations on lines
(priority queue [9]) @ to organize segments of lengti 13 and 18, which are invoked(m) times. Given the
in nonincreasing order of aggregate scores. The first patandard O(log|m|) implementation of heaps, we have
of the procedure computes the aggregate scores and buildénlogm) plus the time spent in MrcH as the total
the heap@ and the second part matches all points in eachunning time. Our implementation of a segment-based match
segment as it is removed fro@ in heap order. The MrcH is very similar to that of proceduredcALMATCH of the



previous section, and each track point is considered onlysting 4 ~ Dynamic Segmented Path Matching. Match
once. Thus the overall running time @(m - logm +m - trajectory P to map ¢ segment-wise, as in Listing 3, but
log |G|+ m-|C|-S), where, as before§ is the time required With updates between segment matches.

by an invocation ofsim. 1: procedure DYNSEGPATHMATCH(P, G, M)
As suggested earlier, a sophisticatedoRE function % P = P[l]... P[m|
' o3 S[0] — 0

which is used to gauge the expected accuracy of matching a _
track point, may depend on not only the positional accuracy . for gl[l,fj éc'o.gézo(k])a['] G, M)
of a track point, but also other factors. Some of these factor ’ &

may depend on the partial matching of track points to mapsf end for

a o

. : v—0

features. In such cases, computing the scores of all track .

! : forall i=1...K —1do
points at once, before any matches have been made, as .

R ) . R v — v + S[i
done in Listing 3 is not suitable. Instead, we use a dynamic end for
segment-wise matching method as summarized in Listing N
; . VT — —00
as the recursive procedureY®SEGPATHMATCH. In this 1o _—
procedure, we first determine a segment with maximum:’ ! )
. . 13: forall i=K...m do

aggregate score. We use a different score funcSa@Rre2, : .

. 14: v—v—S[i— K]+ S[i]
to indicate that the scores now depend on the current ; .

. . SO . g : if v > v* then
partial matching)/, which is its third argument. Similarly, -
the maximum-score segment is matched using a function v* - v
MATCH2 that takes the partial matching as an argument.’ Lt

. . . : end if
After the segment is matched, the portions of the trajectoqg_ end for
bfefore and after the segment, if nonempty, are _mat_ched recyr’ M — MUMATCH2(P[i* — K +1...i°],G)
sively. On average, we may expect the recursive invocations e
; : if i* > K then

of DYNSEGPATHMATCH on lines 22 and 25 to occur on o

. : ; ; X DYNSEGPATHMATCH(PIL...i* — K|,G, M)
trajectories of roughly half the size of the parent invomati end if

Thus, this modification to SGPATHMATCH adds at most a i
factor oflog m to the expected running time. In worst case,

) 25
it may add a factor ofn.

if i* <m —1 then
DYNSEGPATHMATCH(P[i* +1...m|,G, M)
26: end if

IV. METRICS 27: end procedure

One measure of the quality of the solution produced by a

map_—matching method is, intuitiyely, the'closeness betwe&) 5m from the nearest point in path CD, and vice versa;
the input trajectory, or real trajectory, if known, and thethus,dH(AB,CD) = 0.5. However, the two paths are very

output path. To quantify this idea, we use the idea ofjissimilar to each other for map-matching purposes.
a distance between the two curves representing the input _ .
trajectory and the output path. Several definitions of such a 1N€ above shortcoming of the Hausdorff distance may be

distance have been proposed in prior work [4]. An obviou@ddressed by using the Frechet distance, which takes the
choice is the Hausdorff metric between two paths, using tHPSition along paths into account. Intuitively, the Freche
Euclidean space as the underlying metric space. Intuftiveldistance between two paths is the length of the shortest
the Hausdorff distance between pathsandps is the small- p035|_bl_e rope that could be tied between two cars Whlle
est number such that every point ip; is within a distancel  PE'Mitting the cars to travel on the two paths, respectvely
of some point inp,. We may think of the Hausdorff distance M0Ving oqu in the forward direction. That is, the cars can
as the thickness of the padding that we must add to each p&fiUst their speeds to try to accommodate for the rope, but
so that the other will lie completely inside the padded ared€Y cannot move backward along the path at any time. More
More precisely, the Hausdorff distance between pathand  Precisely, the Frechet distance between pathsind p, is
p2 is given by given by
= 1 d 5 - i f d t 5 t
du (p1,p2) s xiréi d(ry,22) F(p1,p2) e —01] o] (ma(t), ma(t))

whered(z1, z2) is the Euclidean distance between poinfs where the pathg, andp, are parameterized usirtgand the
andzs. infimum ranges over all possible reparameterizatiansand

Although the Hausdorff distance is popular, it is not’"2’ for p1 andp_g, respectively, and wher.é IS, as before,

the Euclidean distance. The reparameterizatieasand m

ideal for map-matching applications because, intuitivély ired to b i d d . dt
does not take the position along the paths into accourﬁt}:e required to be continuous and hondecreasing, and fo map

For example, consider the two paths suggested by Fig. e points 0 and 1 to themselves.
It is clear that every point on the path AB is at most Returning to the two paths suggested by Fig. 4, it is clear
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Fig. 5. A screenshot of the visualization component of @eTrackMapper map-matching system. The window shows a map of streets in Falmouth
Massachusetts. The path composed of thick edges, near toenbiaght corner of the screenshot, depicts a trail that lesnkzorrectly mapped based on
track points.

1@ proposed [7]. Although not obvious from the definition, the
D/}\ Frechet distance between pafhsand ps, with n; andns
i A e it Ml points, respectively, can be computedifngnalog?(nins))
T el B S A time [3].
|
et Al T V. IMPLEMENTATION
N AN N R M- Based on the methods described in this paper, we have
(R P S AN IS IS I built a map-matching system callggeoTrackMapper. The
C | implementation uses pure Java and therefore runs on any
i Al SaCal Al Bl Mt platform supported by théava2 SE 5.0 runtime environment.

A B The graphical features use the stand&aing libraries,
. o _ . _ and some file formats are supported using GeoTools
Fig. 4. Dissimilar paths AB and CD with low Hausdorff distaraed high libraries [10]. The system has a modular design that support
Frechet distance. . . . L . .
multiple uses, ranging from time-sensitive in-vehicle map
matching to large batch simulations using a combination

that the Frechet distance is much higher than the Hausdoﬂif real and synthetic datasets. For example, not only can

distance. For example, if the dotted line represents a rof)l%e system evaluate various map-matching methods on real

of length approximately 5m, then the two circles represent Qa_p datasetg, but it can also trans.f.or_m those datasets in
configuration in which no car can make forward progresgarlous ways in order to test the sensitivity of the methads t

without breaking the rope. It is sometimes useful to usgroperties such as road-segment lengths, number andylensit

a variant of the Frechet distance, called the weak Frech f[mtersecyons, rfatlo of road_-segments o intersecians
distance, in whose definition the reparameterizatiansand the resolution of lines modeling the roads.

mo are not required to be nondecreasing. In the intuitive For our testing, we have made extensive use of real road
interpretation of a car traveling along each paths with a&ropdata provided by a number of U.S. agencies. For example,
connecting the cars, this variant permits the cars to badkg. 5 depicts a screenshot of a map dataset from the
up along the paths in order to accommodate the rope. OthiassGIS collection, which contains detailed road data for
variants, such as the average Frechet distance, have a&iso bihe major towns in Massachusetts [20]. We have found some



of the map-transformation features of GeoTrackMapper twhose effect is larger for shorter trajectories. We alse not
be quite useful in dealing with some problematic featurethat the segmented method exhibits an improvement in
of such real data. For instance, we found that in order taccuracy and that this improvement is more pronounced for
properly model intersections so that topology-based matclonger trajectories. This result is also expected, becthese
ing methods work properly, it was useful to smooth the mapotential for large errors in non-segmented methods iggrea
dataset by merging the endpoints of features that are cloder longer paths. That is, once a non-segmented method
than a specified threshold. makes a matching decision, the longer the path, the greater
the likelihood that that decision leads to a very large error

800 =3 later in the trajectory. For the segmented method, on theroth
S hand, the errors are limited by segment length and, further,
700 . : .
the ordering of segment-matching by the score functions
600 helps reduce the likelihood of errors.
5 500
5 VI. RELATED WORK
2 400 \
g 300} ‘ ", An early paper by Bernstein and Kornhauser provides a
200 - ' R good introduction to the general prqblem of map—ma}tching
Poini‘fda;tcchﬁ“g methods [6]. A more recent survey appears in Quddus’s thesis [22].
100 r [ ocalMatch - .- 1 As indicated in Section Il, we have presented our segment-
o LSeghathMacch | —*0 |, | based method in the context of a simple local-matching
50 100 150 200 250 300 350 400 450 500 method proposed by Brakatsoulas, Pfoser, Salas, and Wenk
trajectory length [7], which in turn uses similarity measures described by

Greenfeld [11]. Alt, Erfat, Rote, and Wenk describe a method
for the efficient evaluation of the Frechet distance disedss

Figure 6 summarizes the results of some experiments usié@ Section |V [5]. Alstrup, Brodal, and Rauhe describe

; ; thods for multi-dimensional orthogonal range queries in
GeoTrackMapper. For this set of experiments, we used th e . .
map of Falmouth, Massachusetts, depicted in Fig. 5, (log |G| +C]) time andO(|G|log"* |GI) space [2]; these
the basis. Trajectories were generated by first generati ow eff_|C|ent Iocathn of map feature; in the proximity O.f
a path in the network of roads and then perturbing th ck paints, as required for bootstrapping the map-matchi

geo-locations of this path using a random variable with g1ethod of Section Il.

Gaussian distribution of varying parameters. To generate Aigong, Voon, and Look describe the use of map-matching
a path in the road network, we first randomly select aimn a GPS/GIS ERP system in Singapore [1]. Quddus, Noland,
intersection in the network using a uniform distribution.and Ochieng study the effect of map quality on map-
Edges (road segments) are added to the path one at a timatching algorithms [23]. As noted in Section V, our imple-
by randomly selecting one edge among those incident anentation of theseoTrackMapper system allows us to study
the current intersection, with a uniform distribution withe such issues by performing various transformations, such as
exception: If the edge selected is the one that was takemoothing and reduction of detail, on real [20] and syntheti
to arrive at this intersection then we make another randomaps. The modular design @eoTrackMapper is suitable
selection, up to a total of five times. This correction getea for use in real-time vehicle-location problems, as studigd
paths that reflect real trajectories more accurately théimspa Jagadeesh, Srikanthan, and Zhang [15].

selected uniformly at random, because the latter tend te hav Q

hiah d f redoubling. To obtai uddus, Ochieng, Zhao, and Noland describe an appli-
a very high degree of redoubling. 1o 0 tain a sequence 85tion of map matching that monitors vehicle performance
geo-locations from a path, the path is sampled withx [

) . ) and emissions [24]. Their algorithm combines GPS data with
points uniformly s_eparated along the path, wherns the data from low-cost dead reckoning sensors using an extended
nhumber of edges in the path. Kalman filter. Pyo, Shin, and Sung use a multiple-hypothesis

For each trajectory thus generated, we find a matchirtgchnique that consists of generating pseudo-measurement
path in the network using three method®IRTMATCH of on roads in the vicinity of the location indicated by a
Listing 1, LocALMATCH of Listing 2, and &§GPATHMATCH  GPS measurement, along with a Kalman filter to estimate
of Listing 3. For each resulting path, we compute the errahe bias errors . They report experimental results indigati
as the sum of the distances between the trajectory pointgnsistent performance despite signal degradation innurba
before addition of Gaussian errors, and the mapped poinenvironments. Lamb and Thiebaux describe a method that
The scaled error, which is plotted in Fig. 6, is obtained byises closely coupled Kalman filters and Markov models .
dividing the error by the number of trajectory points. Weenot The former are used to process the metric aspects of the map-
that, in general, the scaled error decreases with incrgasimatching problem, while the latter is used for the topolatic
trajectory lengths. This behavior is expected, because thspects. The output of the Kalman filters is used to update
aggregate errors are typically caused by a few large errotbe belief states of the Markov model. In turn, the Markov

Fig. 6. Matching error as a function of trajectory length.



model provides a probability distribution for over the Kam

filters. Hummel and Tischler present a map-matching metho
based on a Bayesian classifier that incorporates a Hidde
Markov Model in order to model topological constraints of
the road network [14]. Their method is based solely on GP 5!
data, without inputs from addition in-vehicle sensors, buty
nevertheless has been shown experimentally to be robust In
urban environments that are challenging for GPS. It should
be interesting to combine probabilistic methods such asethe 7]
with the segment-based scheme we describe in this paper.

(3]
4]

As suggested earlier, there is a trade-off between thelengt
of a segment and the average score of its constituent pointtl
In general, the longer the segment, the lower the average
score, which could lead to lower-quality results. On thesoth [g]
hand, longer segments provide for more look-ahead, so that
it is possible to make locally nonoptimal decisions thatites [
in better overall results. We may achieve a judicious tradgt1)
off by selecting segments in order of nonincreasilegsity,
where the density of a segment is defined as the aver
score of track points in that segment. It is possible to use
recent work on efficient computation of maximum-density13]
substrings for this purpose [18], [17], [13], [19].

VIl. CONCLUSION [14]
We presented techniques for modifying existing meth-
ods for map-matching based on the idea of segment—wif1
matching, where a segment is contiguous sequence of trac
points. Track points and segments are assigned scores that
quantify the expected accuracy of matching them to map®!
features. A notable feature of our techniques is that they
do not make strong assumptions about the specific lovit7]
level methods used for matching points to features. For
concreteness, we described our work in the context of [gg
simple map-matching method based on geometric and topo-
logical matching. However, the ideas apply to other, morrTﬁ19
sophisticated methods as well. We briefly discussed some
issues related to quantifying the quality of the output of
map-matching methods based on the Frechet distance. YX&
also briefly described th&eoTrackMapper map-matching
system that we have implemented based on the methods
of this paper. We have tested our work on several re:al]
and synthetic datasets, such as those fidassGIS [20].
In continuing work, we are adding additional map-mapping
methods taGeoTrackMapper and evaluating its performance
on additional datasets, both real and synthetic. In pdaticu |2
we are investigating the effect of non-Gaussian noise and

nonuniform sampling. [23]
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