
Meaningful Change Detection in Structured Data�Sudarshan S. Chawathe Hector Garcia-MolinaComputer Science Department, Stanford University, California 94305-9040fchaw,hectorg@cs.stanford.eduAbstractDetecting changes by comparing data snapshots is an important requirement for di�erencequeries, active databases, and version and con�guration management. In this paper we focus ondetecting meaningful changes in hierarchically structured data, such as nested-object data. Thisis a much more challenging problem than the corresponding one for relational or at-�le data.In order to describe changes better, we base our work not just on the traditional \atomic" insert,delete, update operations, but also on operations that move an entire sub-tree of nodes, and thatcopy an entire sub-tree. This allows us to describe changes in a semantically more meaningfulway. Since this change detection problem is NP-hard, in this paper we present a heuristicchange detection algorithm that yields close to \minimal" descriptions of the changes, and thathas fewer restrictions than previous algorithms. Our algorithm is based on transforming thechange detection problem to a problem of computing a minimum-cost edge cover of a bipartitegraph. We study the quality of the solution produced by our algorithm, as well as the runningtime, both analytically and experimentally.1 IntroductionDetection of changes between data structures is an important function in many applications. Forexample, in the World Wide Web an analyst may be interested in knowing how a competitor'ssite has changed since the last time visited. This may be achieved by saving a snapshot of theprevious HTML pages at the site (something that most browsers do for e�ciency anyway). In aCAD design environment, an engineer may wish to understand the di�erences between two relatedbut concurrently developed chip designs. In a distributed �le system, an administrator may needto detect di�erences between two mirror �le systems that became partitioned and independentlymodi�ed. In a warehousing environment, the changes at a site need to be identi�ed so that amaterialized view can be incrementally maintained.In this paper we present an e�cient algorithm, mh-diff, for meaningful change detection be-tween two hierarchically structured data snapshots, or trees. The key word here is meaningful (the\M" in the name). That is, our goal is to portray the changes between two trees in a succinctand descriptive way. As is commonly done, we portray the changes as an edit script that gives thesequence of operations needed to transform one tree into another. However, in this paper we use a�This work was supported by the Air Force Wright Laboratory Aeronautical Systems Center under DARPAContract F33615-93-1-1339, by the Department of the Air Force Rome Laboratories under DARPA Contract F30602-95-C-0119, and by an equipment grant from IBM Corporation.1

richer set of operations than has ever been used before, and this leads, we believe, to much higherquality edit scripts.In particular, we use move and copy operations, in addition to the more traditional insert,delete, and update operations. Thus, if a substructure (e.g., a section of text, a shift register) ismoved to another location, our algorithm will report it as a single operation. If the substructure iscopied (e.g., a second shift register is added which is identical to one already in the circuit), thenour algorithm will identify it as such. Traditional change detection algorithms would report suchchanges as sequences of inserts and deletes (or simply inserts in the case of a copy), which do notconvey the true meaning of the change.Note that detecting moves and copies becomes more important if the moved or copied subtreeis large. For instance, if we are comparing �le systems, and a large directory with thousands of�les is mounted elsewhere, we clearly do not wish to report the change as thousands of �le deletesfollowed by thousands of �le creations. Also note that to detect moves and copies, it is essentialthat our algorithm understand the structure as well as the content of the data. Thus, our algorithmcannot treat the data as \at" information, e.g., as �les with records or relations with tuples. Thismeans that techniques developed for at change detection [Mye86, LGM96] are not applicable here.Algorithm mh-diff has two additional important features:� It does not rely on the existence of node (atomic object) identi�ers that can match nodesin one tree to nodes in the other. In many applications such identi�ers do not exist. Forinstance, sentences and paragraphs in text documents do not come with unique identi�ersattached. Even when the nodes are stored in a database system (e.g., circuit components),we may be comparing copies with the same content but di�erent identi�ers. Thus, for fullgenerality, mh-diff does not assume unique identi�ers that span the two trees, and insteadcompares the contents of nodes to determine if they are related. (If the trees have suchidenti�ers, mh-diff could easily take advantage of them, but we do not discuss that here.)� Algorithm mh-diff is based on a fairly exible cost model. Each operation in the repertoireis given a user-de�ned �xed cost, except for the update operation, whose cost is determinedby a user-provided function that compares the values of two nodes. This gives end users greatlatitude in saying what types of edit scripts are preferable for an application.There is a good reason why di�erence algorithms with the features we have described here havenot been developed earlier, even though they are clearly desirable. The reason is the inherent com-plexity of the problem; one can show that the problem is NP-hard.1 Algorithm mh-diff providesa heuristic solution, which is based on transforming the problem to the \edge cover domain." Thatis, instead of working with edit scripts, the algorithm works with edge covers that represent howone set of nodes match another set. For this, the costs of the edit operations are translated intocosts on the edges of the cover.In an earlier paper of ours [CRGMW96] we studied a much simpler version of the changedetection problem. In that work we did not consider copy operations, we assumed that the numberof duplicates of a node was very limited, we assumed ordered trees, and we assumed that nodeshad \tags" that reect the structural constraints on the input trees. (For example, nodes weretagged as say \paragraphs" or \sections," making it easier to match nodes.) All these restrictionsmade it much simpler to �nd a minimum-cost edit script, and indeed we developed an e�cient1By reduction from the \exact cover by three-sets" problem.2

algorithm that found the minimum-cost script. On the other hand, here we drop these limitations,and introduce copy operations. This leads to an algorithm that is very di�erent from the one in[CRGMW96], yielding a heuristic solution in at worst O(n3) time, where n is the number of nodes,but most often in roughly O(n2) time. In Section 7 we compare in more detail mh-diff to ourearlier work, as well as to other work on change detection.In summary, the contributions of this paper are:� We present a change detection framework that for the �rst time includes move and copyoperations. We also de�ne a exible cost model for edit operations.� We present mh-diff, an e�cient algorithm for computing meaningful edit-scripts that arevery close to the minimal cost edit script.� We present preliminary experimental results showing how close to optimal the mh-diff so-lutions are. We also experimentally evaluate the key parameter that determines the runningtime of mh-diff in practice.2 Model and Problem De�nitionWe use rooted, labeled trees as our model for structured data. These are trees in which each noden has a label l(n) that is chosen from an arbitrary domain L. The problem of snapshot changedetection in structured data is thus the problem of �nding a way to edit the tree representation ofone snapshot to that of the other. We denote a tree T by its nodes N , the parent function p, andthe labeling function l, and write T = (N; p; l). The children of a node n 2 N are denoted by C(n).We begin by de�ning the tree edit operations that we consider. Since there are many ways totransform one tree to another using these edit operations, we de�ne a cost model for these editoperations, and then de�ne the problem of �nding a minimum-cost edit script that transforms onetree to another.2.1 Edit Operations and Edit ScriptsIn the following, we will assume that an edit operation e is applied to T1 = (N1; p1; l1), and producesthe tree T2 = (N2; p2; l2). We write this as T1 e! T2. We consider the following six edit operations:Insertion: Intuitively, an insertion operation creates a new tree node with a given label, and placesit at a given position in the tree. The position of the new node n in the tree is speci�ed bygiving its parent node p and a subset C of the children of p. The result of this operation isthat n is a child of p, and the nodes C, that were originally children of p, are now children ofthe newly inserted node n.Formally, an insertion operation is denoted by ins(n; v; p; C), where n is the (unique) identi�erof the new node, v is the label of the new node, p 2 N1 is the node that is to be the parentof n, and C � C(p) is the set of nodes that are to be the children of n. When appliedto T1 = (N1; p1; l1), we get a tree T2 = (N2; p2; l2), where N2 = N1 [fng, p2(n) = p,p2(c) = n; 8c 2 C, p2(c) = p1(c); 8c 2 N1 � C, l2(n) = v, and l2(m) = l1(m); 8m 2 N1. Dueto space constraints, we describe the remaining edit operations only informally below; theformal de�nitions are in Appendix A. 3

Deletion: This operation is the inverse of the insertion operation. Intuitively, del(n) causes n todisappear from the tree; the children of n are now the children of the (old) parent of n. Theroot of the tree cannot be deleted.Update: The operation upd(n; v) changes the label of the node n to v.Move: A move operation mov(n; p) moves the subtree rooted at n to another position in the tree.The new position is speci�ed by giving the new parent of the node, p. The root cannot bemoved.Copy: A copy operation cpy(m; p) copies the subtree rooted at n to a another position. The newposition is speci�ed by giving the node p that is to be the parent of the new copy. The rootcannot be copied.Glue: This operation is the inverse of a copy operation. Given two nodes n1 and n2 such that thesubtrees rooted at n1 and n2 are isomorphic, glu(n1; n2) causes the subtree rooted at n1 todisappear. (It is conceptually \united" with the subtree rooted at n2.) The root cannot beglued. Although the glu operation may seem unusual, note that it is a natural choice foran edit operation given the existence of the cpy operation. As we will see in Example 2.1,inverting an edit script containing a cpy operations results in an edit script with a gluoperation. This symmetry in the structure of edit operations is useful in the design of ouralgorithms.In addition to the above tree edit operations, one may wish to consider operations such as asubtree delete operation that deletes all nodes in a given subtree. Similarly, one could de�ne asubtree merge operation that merges two or more subtrees. We do not consider such more complexedit operations in this paper, but note that some of these operations, (e.g., subtree deletes) maybe detected by post-processing the output of our algorithm.We de�ne an edit script to be a sequence of zero or more edit operations that can be applied inthe order in which they occur in the sequence. That is, given a tree T0, a sequence of edit operationsE = e1; e2; : : : ; ek is an edit script if there exist trees Ti; 1 � i � k such that Ti�1 ei! Ti; 1 � i � k.We say that the edit script E transforms T0 to Tk, and write T0 E! Tk.Example 2.1 Consider the tree T1 depicted in Figure 1. We represent the identi�er of each nodeby the number inside the circle representing the node. The label of each node is depicted to the rightof the node. Thus, the root of the tree T1 has an identi�er 1, and a label a. Figure 1 shows how T1 istransformed by applying the edit script to E1 = (ins(g; 1; 7; 9);mov(2; 6);cpy(6; 1)) T1. Similarly,if we start with the tree T2 in the �gure, the edit script E2 = (glu(12; 6);mov(2; 1);del(11))transforms it back to T1. We write T1 E1! T2, and T2 E2! T1.When an edit script is applied to tree, as in Example 2.1, the node identi�ers in the initial and�nal state of the tree determine a mapping between the nodes in the two states. Note however, thatin an instance of a change detection problem, we are given two trees, without any correspondencebetween their node identi�ers. That is, in a change detection problem involving the trees T1 andT2 of Figure 1, the node identi�ers of T2 would be unrelated to those of T1. We will discuss thisissue further in Section 3. 4

del(11)

mov(2,6)cpy(6,1)

glu(12,6)

ins(11, g, 1, {7, 9})

T1

T2
mov(2,1)

1
a

2 b 4 7 9

3
d

5 a 6 8 10

1
a

12 4
g

11

b
13

a
5 6 7 9

1082

d
3

d
14

a1

b2 4
g

11

d
3 a5 6 7 9

108

a1

4
g

11

a
5 6 7 9

8 10

d3

2

e

f

e

f

e

f

b

e

f

b

f

cc

cc

cccc

cd

cd

cdcd

ac

ac

acac

ad

ad

adadFigure 1: Edit operations on labeled trees2.2 Cost ModelGiven a pair of trees, there are, in general, several edit scripts that transform one tree to the other.For example, there is the trivial edit script that deletes all the nodes of one tree and then insertsall the nodes of the second tree. There are many other edit scripts that, informally, do more workthan seems necessary. Formally, we would like to �nd an edit script that is \minimal" in the sensethat it does no more work that what is absolutely required. To this end, we de�ne a cost modelfor edit operations and edit scripts.There are two major criteria for choosing a cost model. Firstly, the cost model should accuratelycapture the domain characteristics of the data being considered. For example, if we are comparingthe schematics for two printed-circuit boards, we may prefer an edit script that has as few insertsas possible, and instead describes changes with moves and copies of the old components. However,if we are comparing text documents, we may prefer to see a paragraph as a new insertion, ratherthan a description of how it was assembled from bits and pieces of sentences from the old document.Secondly, the cost model should be simple to specify, and should require little e�ort from the user.For example, a cost model that requires the user to specify dozens of parameters is not desirableby this criterion, even though it may accurately model the domain.Another issue is the trade-o� between generality of the cost model and di�culty in computinga minimum-cost edit script. For example, a very general cost model would have a user-speci�edfunction to determine the cost of each edit operation, based on the type of the edit operation, aswell as the particular nodes on which it operates. However, such a model is not amenable to thedesign of e�cient algorithms for computing the minimum-cost edit script, since it does not permitus to reason about the relative costs of the possible edit operations.With the above criteria in mind, we propose a simple cost model in which the cost of an insert,delete, move, copy, and glue operation is given by constants, ci, cd, cm, cc, and cg, respectively.Furthermore, given the symmetry between ins and del, and cpy and glu, it is reasonable to useci = cd, and cc = cg. Since, intuitively, a mov operation causes a smaller change than either cpy5

or glu , it is also reasonable to use cm < cc. Note, however, that our algorithms do not depend onsuch relationships between the cost parameters. The cost of an update operation depends on theold and new values of the label being updated; that is, c(upd(n; v)) = cu(v0; v), where v0 is the oldlabel of n, and cu is a domain-dependent function that returns a non-negative real number.Finally, the cost of an edit script E , denoted by c(E), is de�ned as the sum of the costs of theedit operations in E . That is, c(E) =Pd2E c(d).Problem Statement: Given two rooted, labeled trees T1 and T2, �nd an edit script E such thatE transforms T1 to a tree that is isomorphic to T2, and such that for every edit script E 0 with thisproperty, C(E 0) � C(E).3 Method OverviewIn this Section, we present an overview of algorithm mh-diff for computing a minimum-cost editscript between two trees. We present our algorithm informally using a running example; the detailsare deferred to later sections.
T21

2

3

4

5 6 8

9

10

cc cd

ac add a f

b e

a

7

a

e

cc cd

ac ad

g

a

d

b f

d

b

f

51

53

54

55

56 57

58

59

60

61

62

63

64

52

T1

Figure 2: The trees for the running example in Section 3.Consider the two trees depicted in Figure 2. We would like to �nd a minimum-cost edit scriptthat transforms tree T1 into tree T2. The reader may observe that these trees are isomorphic to theinitial and �nal trees from Example 2.1 in Section 2. Note, however, that there is no correspondencebetween the node identi�ers of T1 and T2 in Figure 2. This is because in Example 2.1 we applied aknown edit script to a tree, transforming it to another tree in the process, whereas in this section,we are trying to �nd an edit script, given two trees with no information on the relationship betweentheir nodes. Therefore, our �rst step consists of �nding a correspondence between the nodes of thetwo given trees.For example, consider the node 8 in Figure 2. We want to �nd the node in T2 that correspondsto this node in T1. The dashed lines in Figure 2 represent some of the possibilities. Intuitively,we can see that matching the node 8 to the node 51 does not seem like a good idea, since notonly do the labels of the two nodes di�er, but the two nodes also have very di�erent locations intheir respective trees; node 8 is a leaf node, while node 51 is the root node. Similarly, we mayintuitively argue that matching node 8 to node 62 seems promising, since they are both leaf nodesand their labels match. However, note that matching a nodes based simply on their labels ignoresthe structure of the trees, and thus is not, in general, the best choice. We make this intuitive notion6

of a correspondence between nodes more precise below.
+1 2 3 4 5 6 7 8 9 10

52 53 54 55 56 57 58 59 60 61 62 63 6451

T1 nodes

T2 nodes

complete bipartite graph

-Figure 3: The Induced Graph for the trees in Figure 23.1 The Induced GraphConsider the complete bipartite graph B depicted in Figure 3, consisting of the nodes of T1 atthe top, and the nodes of T2 at the bottom, plus the special nodes � and 	. (For clarity, not alledges of the graph are shown in Figure 3.) We call B the induced graph of T1 and T2. The dashedlines in Figure 2 correspond to the edges of the induced graph. Intuitively, we would like to �nda subset K of the edges of B that tells us the correspondence between the nodes of T1 and T2. Ifan edge connects a node m 2 T1 to a node n 2 T2, it means that n was \derived" from m. (Forexample, n may be a copy of m.) We say m is matched to n. A node matched to the special node� indicates that it was inserted, and a node matched to 	 indicates that it was deleted. Note thatthis matching between nodes need not be one-to-one; a node may be matched to more than oneother nodes. (For example, referring to Figures 2 and 3, node 6 may be matched to both node 54and node 59.) The only restriction is that a node be matched to at least one other node. Thus,�nding the correspondence between the nodes of two trees consists essentially of �nding an edgecover2 of their induced graph.The induced graph has a large number of edge covers (this number being exponential in thenumber of nodes). However, we may intuitively observe that most of these possible edge covers ofB are undesirable. For example, and edge cover that maps all nodes in T1 to 	, and all nodes in T2to � seems like a bad choice, since it corresponds to deleting all the nodes of T1 and then insertingall the nodes of T2. We will de�ne the correspondence between an edge cover of an induced graphand an edit script for the underlying trees formally in Section 4.3, where we also describe how tocompute an edit script corresponding to an edge cover. For now, we simply note that, given anedge cover of the induced graph, we can compute a corresponding edit script for the underlyingtrees. Hence, we would like to select an edge cover of the induced graph that corresponds to aminimum-cost edit script.3.2 Pruning the Induced GraphWe noted earlier that many of the potential edge covers of the induced graph are undesirable becausethey correspond to expensive and undesirable edit scripts. Intuitively, we may therefore expect asubstantial number of the edges of the induced graph to be extraneous. Our next step, therefore,consists of removing (pruning) as many of these extraneous edges as possible from the induced2An edge cover of a graph is a subset K of the edges of the graph such that any node in the graph is incident onat least one edge in S. 7

graph, by using some pruning rules. The pruning rules that we use are conservative, meaning thatthey remove only those edges that we can be sure are not needed by a minimum-cost edit script.We discuss pruning rules in detail in Section 5.3, presenting only a simple example here.As an example of the action of a simple pruning rule, consider the edge e1 = [5; 54] in Figure 3,representing the correspondence between nodes 5 and 54 in Figure 2. Suppose that the cost cU(a; d)of updating the label a of node 5 to the label d of node 54 is 3 units. Furthermore, let the costof inserting a node and deleting a node be 1 unit each. Then we can safely prune the edge[5; 54] because, intuitively, given any edge cover K1 that includes the edge e1, we can generateanother edge cover that excludes e1, and that corresponds to an edit script that is at least asgood as the one corresponding to K1. As an illustration of such pruning, consider the edge coverK2 = K1 � feg [f[5;]; [�; 54]g. This edge cover corresponds to an edit script that deletes thenode 5, and inserts the node 54. These two operations cost a total of 2 units, which is less than thecost of the update operation suggested by the edge e in edge cover K1. We therefore conclude thatthe edge [5; 54] in our running example may safely be pruned. In Section 5.3 we present PruningRule 2, which is a generalization of this example.
-

1 2 3 4 5 6 7 8 9 10

52 53 54 55 56 57 58 59 60 61 62 63 6451

+Figure 4: The induced graph of Figure 3 after pruning3.3 Finding an Edge CoverBy applying the pruning rules to the induced graph of our running example (Section 5.3), say weobtain the pruned induced graph depicted in Figure 4. Although the pruned induced graph typicallyhas far fewer edges than the original induced graph does, it typically still contains more edges thanneeded to form an edge cover. In Section 4.3 we will see that we need only consider edge coversthat are minimal; that is, edge covers that are not proper supersets of another edge cover. In otherwords, we would like to remove from the pruned induced graph those edges that are not needed tocover nodes. For example, in the pruned induced graph shown in Figure 4, having all four of theedges [7; 61], [7; 63], [9; 61], and [9; 63] is unnecessary; we may remove either [7; 63] and [9; 61]; or[7; 61] and [9; 63]. However, it is not possible to decide a priori which of these options is the betterone; that is, it is not obvious which choice would lead to an edit script of lower cost. With pruning,on the other hand, there was no doubt that certain edges could be removed.One way to decide among these options is to enumerate all possible minimal edge covers of thepruned induced graph, �nd the edit script corresponding to each one (using the method describedlater in Section 4.3), and to pick the one with the least cost. However, given the exponentially largenumber of edge covers, this is obviously not an e�cient algorithm. To compute an optimal edgecover e�ciently, we need to be able to determine how much each edge in the edge cover contributesto the total cost of an edit script corresponding to an edge cover containing it. That is, we need todistribute the cost of the edit script corresponding to an edge cover over the individual edges of theedge cover. Once we have a cost de�ned for each edge in the pruned induced graph, we can �nd a8

minimum-cost edge cover using standard techniques based on reducing the edge cover problem toa weighted matching problem [PS82, Law76]. For example, if the edges [7; 61], [7; 63], [9; 61], and[9; 63], have costs 0, 1.3, 0.2, and 2.4, respectively, then we generate an edge cover that includes[7; 61] and [9; 61], and excludes [7; 63] and [9; 61].Note, however, that such a reduction of the edit script problem to an edge cover (and thus,weighted matching) problem cannot be exact, given the hardness of the edit script problem.3 In-deed, our method of assigning costs to edges of the induced graph (Section 5.1) is only approximate,and thus the minimum-cost edge cover is not guaranteed to produce the best solution for the editscript problem.
-

1 2 3 4 5 6 7 8 9 10

52 53 54 55 56 57 58 59 60 61 62 63 6451

+Figure 5: A minimum-cost edge cover of the induced graph in Figure 43.4 Generating the Edit ScriptReturning to the pruned induced graph of our running example, let us assume that we have gonethrough the process of determining the cost of each edge, and have computed a minimum-costedge cover according to these costs, obtaining the edge cover depicted in Figure 5. Our next stepconsists of using this edge cover to compute an edit script that transforms the tree T1 to the treeT2. We do this in two steps. First, we tag each edge of the edge cover with an annotation thatrepresents the edit operation suggested by that edge. During this annotation process, we also addsome ordering constraints between the annotations on di�erent edges. Once we have annotatedall edges in this manner, we topologically sort the annotations (based on the ordering constraintsadded by the annotation algorithm) to generate the �nal edit script. The annotation algorithm isdescribed in Section 4.3. We illustrate some of the ideas used by the algorithm by considering itsaction on an edge in the edge cover for our running example.Consider the edge e1 = [6; 52] of the edge cover in Figure 5. In Figure 6, we depict this edge inrelation to the original trees. We also depict the edges [4; 55] and [6; 57], from the edge cover. (Theedge cover edges are shown as dashed lines in Figure 6; for clarity we do not show all of them.)We observe that there is one other edge in the edge cover that is incident on node 6, viz. [6; 57],suggesting that the node 6 was copied either directly, or indirectly (due to one of its ancestorsbeing copied). Furthermore, we note that the parent (node 4) of node 6 is matched to the parent(node 55) of node 57 (i.e., the edge [4, 55] exists in the edge cover), while the parent of node 52is not matched to the parent of node 6. This matching of the parents suggests that node 52 is theoriginal instance of node 6, while node 57 is the copy. We record this fact by annotating the edge[6; 52] with a cpy mark, and the edge [6; 57] with a nil mark (indicating that no edit operation isinvolved in the matching suggested by this edge).Proceeding thusly, we annotate all the edges in the edge cover of our running example, to3unless P = NP, since we are considering a polynomial-time reduction.9

1

2

T2

3

4

5 6 8

9

10

cc cd

ac add a f

b e

a

7

a

e

cc cd

ac ad

g

a

d

b f

d

b

f

51

53

54

55

56 57

58

59

60

61

62

63

64cpy

nil

52

T1

Figure 6: Annotating edges in the edge cover of Figure 5obtain the annotated edge cover depicted in Figure 7, which shows only the edges with non-nil annotations, for clarity. Our annotation algorithm also discovers an ordering constraint thatrequires the mov operation to precede the cpy operation. As the �nal step, we generate the editoperation corresponding to each annotation, and topologically sort these operations based on theordering constraint, to yield the required edit script. In our example, one possible ordering of theedit operations that satis�es the ordering constraint is (ins(g; 1; 7; 9);mov(2; 6);cpy(6; 1)). We seethat this edit script is identical to the one in Example 2.1, which happens to be a minimum costedit script for our example. There is another ordering of the above edit operations that satis�esthe ordering constraint: (mov(2; 6);cpy(6; 1); ins(g; 1; 7; 9)). Both edit scripts have the same �nale�ect, and have the same cost. In general, all edit scripts that satisfy the ordering constraintsamong the annotations have the same overall e�ect and the same cost.
1

2

T2

3

4

5 6 8

9

10

cc cd

ac add a f

b e

a

7

a

e

cc cd

ac ad

g

a

d

b f

d

b

f

51

53

54

55

56 57

58

59

60

61

62

63

64

nil

mov

+ ins

cpy

52

T1

Figure 7: Annotated edges of the edge cover of Figure 5For the above example mh-diff produces a minimum-cost edit script, but it may sometimesnot �nd one with globally minimum cost. In Section 6 we evaluate how often this happens and webriey discuss how one could perform additional searching in the neighborhood of the script foundby mh-diff .This concludes the overview of mh-diff. To summarize, the process consists of constructing aninduced graph from the input trees, pruning the induced graph, �nding a minimum-cost edge coverof the pruned induced graph, annotating this edge cover to generate edit operations, and �nally,10

ordering these edit operations to obtain an edit script. In the following sections, we describe thesephases in detail. For ease of presentation, we present these phases in a di�erent order than theorder in which they are performed. In particular, in Section 4, we begin by formally de�ningthe correspondence between and edit script and an edge cover of the induced graph. In thatsection, we also describe the method for generating an edit script from an edge cover of the inducedgraph. In Section 5, we describe how the cost of an edit script is distributed over the edges ofthe corresponding edge cover of the induced graph. In that section, we also describe how this costfunction is approximated by deriving upper and lower bounds on the cost of an edge of the inducedgraph, and how these bounds are used to prune the induced graph. Since �nding a minimum-costedge cover for a bipartite graph with �xed edge costs is a problem that has been previously studiedin the literature [PS82, Law76], we do not present the details in this paper.4 Edge Covers and Edit ScriptsIn this section, we describe algorithm Annotate, which generates an edit script between two trees,given an edge cover of their induced graph. Before we can describe this algorithm, we need tounderstand the relationship between an edit scripts between two trees and edge covers of theirinduced graph. Therefore, we �rst de�ne the edge cover induced by an edit script. That is, wedescribe how, given an edit script between two trees, we generate an edge cover of the inducedgraph. (Note that this process is the reverse of the process the algorithm Annotate performs.However, a de�nition of this reverse process is needed for the description of the algorithm.) Next,we study some important properties of edit scripts and describe how they translate to properties ofthe induced edge covers. Finally, we present the algorithm Annotate, which uses these propertiesto generate a minimum-cost edit script from a given edge cover.4.1 Edge Cover Induced by an Edit ScriptIn Section 3, we introduced the graph induced by two trees T1 and T2 as the complete bipartitegraph B = (U; V; U � V), with U = N1 [f�g and V = N2 [f	g (where N1 and N2 are the nodesof T1 and T2, respectively). Let E be an edit script that transforms T1 to T2; that is, T1 E! T2. Wenow de�ne the edge cover K(E) induced by E . Intuitively, we obtain K(E) as follows. Create a copyT3 of T1, and introduce an edge between each node in T1 and its copy in T3. Apply the edit scriptto T3, moving, copying, etc. the end-points of the edges with the nodes they are attached to asnodes are moved, copied, etc. Thus, when an a node n 2 T3 is copied, producing node n0, any edge[m;n] is split to produce an new edge [m;n0]. The other edit operations are handled analogously.Furthermore, an edge between the special nodes � and 	 is added initially, and removed when itis no longer needed to cover either � or 	. Due to space limitations, the formal de�nition of theedge cover induced by an edit script is relegated to Appendix B. Here, we present an example thatillustrates the de�nition of the edge cover induced by an edit script.Example 4.1 Consider the edit script from Example 2.1, and the initial tree T1 from Figure 1.As described above, our �rst step consists of creating a copy T3 of T1, and adding an edge betweeneach node of T1 and its counterpart in T3. We also add the special nodes � and 	, along with anedge connecting them. The result of this step is depicted in Figure 8. For clarity in presentation,the edges between the nodes of T1 and their counterparts in T3 are not shown in Figure 8; instead,11

31

32

33

-

34

35 36 38

39

40

cc cd

ac add a f

b e

a

37

T31

2

3

4

5 6 8

9

10

cc cd

ac add a f

b e

a

7

T1

All edges [n, n+30] exist implicitly

+Figure 8: Example 4.1: the edge cover before the action of any edit operationswe encode these edges using the node identi�ers of T1 and T2. That is, as indicated in the �gure,imagine an edge [n; n+ 30]; 8n = 1 : : :10.
32

33
d

b

-

31

34

35 36
a

e

T3

38

39

40

cd

ac ad

37
cc

41

a

g

1

2

3

4

5 6 8

9

10

cc cd

ac add a f

b e

a

7

T1

f

All edges [n, n+30] exist implicitly

42

d

b43

44

f

+

Figure 9: Example 4.1: the �nal induced edge coverOur next step consists of applying the edit script from Example 2.1 to the tree T3. To enablethis application of the edit script for T1 to T3, we change the node identi�ers in the edit script fromthe identi�ers of the nodes of T1 to those of T2, obtaining E1 = (ins(41; g; 31; f37; 39g),mov(32; 36),cpy(36; 31)). As a result of the ins operation, a node with identi�er 41 and label g is inserted asa child of node 31, and nodes 37 and 39 are made its children. In addition, we add an edge [�; 41]to the induced edge cover. Next, consider the action of the mov operation, which moves node 32to become a child of node 36. This operation does not add any new edges to the edge cover. (Theexisting edges [2; 32] and [3; 33] continue to exist.) Finally, the cpy operation creates a copy of thesubtree rooted at node 36, and inserts this copy as a child of node 31. In addition, the edges [6; 42],[2; 43], and [3; 44] are added to the edge cover. The result is depicted in Figure 9, (which also omitsedges [n; n+30]; 8n = 1 : : :10). Note that the transformed tree T3 is now isomorphic to the tree T2in Example 2.1, so that essentially, we now have an edge cover of the induced graph of T1 and T2.4.2 Using Edge CoversThe goal of using an edge cover is that it should capture the essential aspects of an edit script; thatis, no important information should be lost in going from an edit script to the edge cover inducedby it. However, there are certain edit scripts for which this property does not hold. For example,consider an edit script E2 that inserts a node p as the parent of ten siblings (children of the same12

parent) n1; : : : ; n10, then moves p to another location in the tree, and �nally deletes p. The nodep is absent from both the initial tree and the �nal tree. Therefore, an edge cover of the initialand �nal trees contains no record of the temporary insertion of node p. Thus, we have lost someinformation in going from E2 to the edge cover.Is the fact that our edge covers cannot capture edit scripts like E2 a problem? On the one hand,E2 could be the minimum cost edit script mh-diff is trying to �nd. For example, say that insert,delete, and move operations all cost one unit. The cost of E2 would then be the cost of one insert,plus the cost of one move, plus the cost of one delete, for a total cost of 3. If we do not use the\bulk move trick" that E2 uses, we need to move each of n1; : : : ; n10 individually, for a cost of 10.Thus, E2 could be the minimum cost edit script, and if we rule it out, then mh-diff would miss it.On the other hand, scripts like E2 do not represent transformations that are meaningful orintuitive to an end user. In other words, if a user saw E2, he would not understand why node p wasinserted, since it really has no function in his application. True, the costs provided by the user areintended to describe the desirability of edit operations, but if we abuse these numbers we can endup with \tricky" scripts like E2 that are more confusing than helpful.Our decision for mh-diff is to rule out \tricky" scripts like E2, even if we miss some low-costscripts. Because of this restriction, our edge covers are indeed able to capture all edit scripts ofinterest. The two properties below describe precisely the scripts we are considering for mh-diff.Property 1 Any given node is operated on by at most one structure-changing operation (ins,del, mov, cpy, and glu).This property states that once a node is inserted, it is not moved, deleted, copied, or glued.Similarly, a node may be moved at most once. Note, however, that this restriction applies onlyto the nodes directly operated upon, not to the nodes in their subtrees (which are operated uponindirectly). For example, if a node is moved, the nodes in its subtree (which get moved with it) arenot subject to this restriction, and can be moved, copied, deleted, etc.Property 2 A node that is either the source or the target of an indirect cpy operation (that is, anode that is copied as a result of a cpy operation on one of its ancestors) is neither the source northe target of a (direct or indirect) glu operation.One of the important consequences of Properties 1 and 2 is that we can restrict our attentionto minimal edge covers. De�ne a minimal edge cover to be a an edge cover K such that no propersubset of K is an edge cover. We then have the following Lemma, proved in Appendix D:Lemma 4.1 If E is an edit script satisfying Properties 1 and 2, then the edge cover K(E) inducedby E is a minimal edge cover.Minimal edge covers of a graph have the following property that is useful in the description ofour algorithm in Section 4.3:Lemma 4.2 If K is a minimal edge cover of a graph, K does not contain any path of length three.Thus, the edges of any minimal edge cover can be partitioned such that all edges in each partitionare incident on a common node; that is, they have a \star" con�guration. For a bipartite graph,13

For each edge e = [m;n] 2 K not already annotated, do:Let M = fm0 2 T+1 : [m0; n] 2 KgN = fn0 2 T+2 : [m;n0] 2 KgCase 1: jM j = 1 ^ jN j = 1Case 1.1: M = f�g; N = fng; n 6= 	A(�; n) insCase 1.2: M = fmg; m 6= �; N = f	gA(m;) delCase 1.3: M = f�g; N = f	gA(�;) nilCase 1.4: M = fmg; m 6= �; N = fng; n 6= 	if [p(m); p(n)] 2 K then A(m;n) nilelse A(m;n) movCase 2: jM j = 1 ^ jN j > 1Case 2.1: M = fmg ^m 6= �.See Figure 16, Appendix DCase 2.2: M = f�g.See Figure 17, Appendix D.Case 3: jM j > 1 ^ jN j = 1Analogous to Case 2.Case 4: jM j > 1 ^ jN j > 1Not possible because K is minimal; see Lemma 4.2.For each edge e = [m;n] 2 K, do:If l(m) 6= l(n) then A(m;n) A(m;n):updFigure 10: Algorithm Annotatewe call these partitions of an edge cover owers. The common node of the edges in each ower wecall the base, and the node of each edge that is not a base, we call a petal. This terminology isuseful for explaining the algorithm Annotate in Section 4.3.4.3 Generating an Edit Script from an Edge CoverWe now describe how, given a minimal edge cover K of the graph induced by trees T1 and T2, wecompute a minimum-cost edit script corresponding to this edge cover. Our method has two steps.In the �rst step, we mark each edge in the given edge cover with an annotation that describes theedit operations (if any) mandated by that edge. During this step, we will also discover the orderingconstraints over the edit operations represented by these annotations. The second step consists ofgenerating the edit operation corresponding to each annotation, and ordering them in a way thatsatis�es the ordering constraints discovered in the �rst step.Algorithm AnnotateInput: A minimal edge cover K of the bipartite graph B(T1; T2) induced by trees T1 and T2.Output: An annotated edge cover Ka = f[m;n; l] : [m;n] 2 K ^ l 2 A+g, whereA+ = fnil; ins;del;upd;mov;cpy;glu;mov:upd;cpy:upd;glu:updg. These annotations rep-14

resent the edit operations with the corresponding names, while the compound annotations (e.g.,mov:upd) represent two edit operations (e.g., a mov operation and an upd operation). Also, aset of ordering constraints D between the annotations, such that ordering the edit operations rep-resented by the annotations subject to the ordering constraints D produces an edit script E suchthat K(E) = K, and such that K(E 0) = K) c(E) � c(E 0).Method: Let T+1 = T1 [�, and let T+2 = T2 [. We consider each edge e = [m;n] of the edgecover K in turn, and consider the di�erent cases based on the degrees of m and n, as suggestedby the pseudo-code in Figure 10. Consider Case 1 of the algorithm, which corresponds to an edgee = [m;n] such that there is no other edge in K incident on m and n. If m is the special node�, this edge suggests that n is inserted, since it does not correspond to any real node in T1. Wetherefore annotate e with ins. The sub-case where n is the special node 	 is analogous. The onlyinteresting sub-case is when both m and n are regular tree nodes. In this case, if the parents of mand n do not match (i.e., there is no edge between them in K), we need to move m to the properparent.Consider now Case 2.1 of the algorithm, which is the case of an edge [m;n] such that there are anumber of other edges incident on m. Clearly, all but one of the nodes that match m are producedas a result of copy operations. Naively, we may be therefore be tempted to annotate all but one ofthe edges incident on m with cpy annotations. However, note that we a node may be copied bothdirectly (by a copy operation acting on it) and indirectly, by virtue of being (at some point duringthe execution of the edit script) in the subtree of some other node that is copied. We call copiesobtained indirectly in such a manner \free" copies. Furthermore, note that the only way in whichwe can get a copy of a node m without directly copying m is by copying some node a such that, atthe time of the copy, m is in the subtree of a.Another key observation is the following: If n and n0 are two nodes matched tom, and if neithern nor n0 is copied directly, then either p(m) is matched to two or more nodes in T2, or p(n) andp(n0) are both matched to the same node m0 in T1 (or both). If m0 = p(m), we get the copies ofm for free because some ancestor of m is copied to some ancestor of n and some ancestor of n0. Ifm0 6= p(m), we get a free copy of m by moving m to m0 before m0 is copied. Note this argumentapplies to the case where we have more than two copies of m too. In general, therefore, we groupthe copies ni of m by the node to which their parents match. We call such groups copy-owers.Each such copy-ower potentially generates a number of free copies (equal to the number ofnodes in the ower). However, in the case where m0 6= p(m), we need to move a copy of m fromsome other location to m0. Copies of m for this purpose are obtained from free copies generatedby an ancestor of m being copied. When such free copies are in short supply, it is prudent toallocate them to the larger copy-owers, since that generates a greater number of free copies. Theonly remaining complexity is the e�ect of insertions. If the node m0 above is the special node�, we need to continue upwards in the tree, looking for a non-� ancestor in order to get a freecopy. (Recall that inserted nodes may not be copied.) The pseudo-code in Figure 16 in Appendix Csystematically explores all the above possibilities, and arrives at the best possible way of annotatingthe set of edges incident on m.Case 2.2 of the algorithm is quite similar to Case 2.1, the only di�erence being that the nodem is now the special node �. Finally, Case 3 is completely analogous to Case 2. Due to spaceconstraints, we do not discuss these cases in detail in this paper. Instead, we illustrate the operationof Case 2 on our running example from Section 3.Example 4.2 Consider the running example from Section 3, with the edge cover depicted in15

1

2

T2

3

4

5 6 8

9

10

cc cd

ac add a f

b e

a

7

a

e

cc cd

ac ad

g

a

d

b f

d

b

f

51

53

54

55

56 57

58

59

60

61

62

63

64cpy

nil

nil

nil

mov

52

T1

Figure 11: Action of Case 2.1 of Algorithm Annotate for Example 4.2Figure 5. In Section 3, we saw how the cpy annotation in Figure 6 is determined. To illustrateCase 2.1, let us now consider annotating the edge [2; 53], depicted in Figure 11. Consulting theedge cover in Figure 5, we note that there is one other edge, [2; 58], incident on the node 2; thus,Case 2.1 of algorithm Annotate is applicable. We note that the parent (node 51) of node 53, andthe parent (node 57) of node 58 match the same node (node 6) in T1. We therefore group nodes 53and 58 together, and look for a \spare" copy (the set S in Figure 16) of node 2 that we can moveto under node 6. We discover that the default copy of node 2 (viz., the node that would haveappeared as a child of the root in tree T2) is not present, and is thus available as a spare. Wetherefore resolve to move it to node 6 by annotating the edge [2; 58] with a mov annotation. Thesecond edge, [2; 53], is annotated with nil, since this copy of node 2 will be made for free whennode 6 is copied. This, of course, assumes that the cpy operation occurs after the mov operation,which is recorded by a dependency from the cpy annotation to the mov annotation (indicated bythe dotted arrow in Figure 11).5 Finding the Edge CoverIn this section we describe how mh-diff �nds a minimal edge cover of the induced graph. Theresulting cover will serve as input to algorithm Annotate (Section 4). Our goal is to �nd not justany minimal edge cover, but one that corresponds to a minimum-cost edit script. Let us call suchan minimal edge cover the target cover.Consider an edge e in our pruned induced graph. To get to the target cover, mh-diff mustdecide whether e should be included in the cover. To reach this decision, it would be nice if mh-diffknew the \cost" of e. That is, if e remains in the target cover, then it would be annotated (byalgorithm Annotate) with some operation of a given cost, and we could say that this is the cost ofe. Unfortunately, we have a \chicken and the egg problem" here: Annotate cannot run until wehave the target cover, and we cannot get the target cover until we know the costs it will imply. Tobreak the impasse, our approach uses the following idea:Instead of trying to compute the actual cost of e, we compute an upper and lower bound tothis cost. These bounds can be computed without the knowledge of which other edges are includedin the target cover, and serve two purposes: Firstly, they allow us to design pruning rules thatare used to (conservatively) eliminate unnecessary edges from the induced graph. Secondly, after16

pruning, the bounds can guide our search for the target cover.As an enhancement, we actually use a variation on the cost of edge e suggested above. Thefollowing example shows that simply \charging" each annotation to the edge it is on is not entirely\fair." We are given a tree T1 containing two nodes, n1 and n2 with the same label l. Furthermoren1 has children n11 and n12 with labels a and b, respectively, and n2 has children n21 and n22with labels c and d, respectively. Suppose T2 is a logical copy of T1. (That is, T1 and T2 areisomorphic.) Consider an edge cover that matches each node in T1 to its copy in T2 except that it\cross matches" n1 and n2 across the trees, as shown in Figure 12. Given this edge cover, algorithmAnnotate will produce a move operation for each of the nodes n11, n12, n21, and n22. However,these move operations were caused not by the mismatching of the nodes n11, n12, n21, or n22, butinstead, by the mismatching of n1 and n2. Therefore it would be intuitively more fair to chargethese move operations to the edges responsible for the mismatch, viz. [n1; n02] and [n2; n01]. Toachieve this, we use the following scheme: If e is annotated with ins, del, or upd in the targetcover, we do charge e for this operation. However, if e is annotated by mov, cpy, or glu, then theparent of e, and not e is charged. We call the edge costs computed in such a fashion fair costs.
a

n1

n11 n12 n22n21

n2 n1’

n11’ n12’ n22’

n2’

n0 n0’

mov mov

mov

mov

a

l l

bab a b
n21’

b

m m

llFigure 12: Distributing edge costs fairlyIn summary, mh-diff �rst computes upper and lower bounds for the fair cost of each edge inthe pruned induced graph. These bounds are then used to prune edges in the induced graph, and�nally to search for the target cover. We begin by de�ning the fair cost of an edge below.5.1 An Edge-wise Cost FunctionLet K be an annotated minimal edge cover. For an edge e 2 K, if the annotation on e is mov, cpy,or glu, let cx(e) denote the cost of that operation. (Recall that, given Properties 1 and 2, therecan be at most one of these three annotations on a given edge.) If e is annotated with ins, del,or upd, then let cs(e) denote the cost of the operation. Furthermore, let E(m) be the set of edgesin K that are incident on m, that is, E(m) = f[m;n] 2 Kg. Let C(m) be the set of the children ofm. We then de�ne the fair cost of each edge [m;n] 2 K as follows:cK([m;n]) = cs(m;n)+ 12jE(m)j Xm02C(m) X[m0;n0]2K cx([m0; n0])+ 12jE(n)j Xn02C(n) X[m0;n0]2K cx([m0; n0]) (1)17

Note that this cost depends on K, and thus is not a function of e alone. The following lemma,proved in Appendix D, states that the above scheme of distributing the cost of an edge cover overits component edges is a sound one; that is, adding up the cost edge-wise yields the overall cost ofthe edge cover.Lemma 5.1 If K is an annotated, minimal edge cover of the graph induced by two trees, thenc(K) =Pe2K cK(e).5.2 Bounds on Edge CostsAlthough Lemma 5.1 suggests a method of distributing the cost of an annotated edge cover (andthus an edit script) over the component edges, the cost of each edge depends on the other edgespresent in the edge cover, and is thus not directly useful for computing a minimum-cost edge cover.However, we use that distribution scheme to derive upper and lower bounds on the fair cost cK(e)of an edge e over all minimal edge covers K.Intuitively, given that the cost of any upd annotation on an edge is charged to that edge (byEquation 1), a simple choice for the lower bound on the cost of an edge [m;n] is simply the costcu(m;n) of updating the label m to that of n. However, we can do a little better. In some cases,selecting an edge [m;n] (as part of the edge cover being constructed) may force some of the childrenm0 of m to be moved to n. In particular, this happens for those children of m0 for which there isno edge that could possibly match m0 to a child of n. We call such moves forced moves. In caseswhere we can determine a forced move exists, the cost of a mov is added to the lower bound cost.However, according to Equation 1 not all the cost of a forced move goes to edge [m;n]. In theworst case, the number of edges incident on m, jE(m)j, is large, leaving [m;n] with an insigni�cantcontribution. However, if jE(m)j is greater than 1, we know by Lemma 4.2 that jE(n)j = 1, soforced moves on the n side would contribute to [m;n]. Thus, we may add the minimum of thesecond and the third terms in Equation 1 to the lower bound function.Formally, let E be the set of edges in the induced graph of T1 and T2.4 We de�ne the forced movecost, cmf (m0; n) of a node m0 2 T1 with respect to another node n 2 T2 as follows: cmf(m0; n) = cm,if 69n0 2 C(n) such that [m0; n0] 2 E, and 0 otherwise. (The cost cmf (m;n0) is de�ned analogously.)We then de�ne the lower bound fair cost, clb, of an edge as follows:clb([m;n]) = cu(m;n) + 12 min8<: Xm02C(m) cmf (m0; n); Xn02C(n) cmf (m;n0)9=; (2)To help us compute the upper bound, let us now de�ne a conditional move cost, cm?. Intuitively,cm?(m0; n) costs one mov cost unless there is a partner of m0 that is a child of n. Formally,cm?(m0; n) = 0, if 9n0 2 C(n) such that [m0; n0] 2 E, and cm otherwise. The cost cm?(n0; m) isde�ned analogously. Furthermore, de�ne cw(m;n) = cu(m;n) if m and n are regular nodes, 0 if(m = �) ^ (n =), ci if(m = �) ^ (n 6=), and cd if (m 6= �) ^ (n =).4As we will see later, although E initially includes all edges in the complete bipartite graph, the pruning of edgesresults in successive reduction of the size of E. 18

Using reasoning similar to the one used for deriving the lower bound cost above, we arrive atthe following de�nition for the upper bound fair cost, cub, of an edge:cub([m;n]) = cw(m;n)+ 12 Xm02C(m)(cc(jE(m0)j � 1) + cm?(m0; n))+ 12 Xn02C(n)(cg(jE(n0)j � 1) + cn?(n0; m)) (3)Note that both cub(e) and clb(e) can be computed by mh-diff without knowing the targetcover. Furthermore, the following lemma, proved in Appendix D, states that the above de�nitionsof cub(e) and clb(e), are upper and lower bounds, respectively, on the fair cost contribution cK(e)of edge e to any minimal edge cover K that contains e.Lemma 5.2 Let B = (U; V; E) be the bipartite graph induced by trees T1 and T2. Let B0 =(U; V; E0), where E 0 � E. Let K denote the collection of all minimal edge covers of B0. We thenhave the following inequalities:clb(e) � minK2K cK(e) and cub(e) � maxK2K cK(e)5.3 Pruning RulesWe now use the upper and lower bound functions for the cost of an edge as de�ned above tointroduce the pruning rules we use to reduce the size of the induced graph of the two trees beingcompared. Let e1 = [m;n] be any edge in the induced graph, as shown in Figure 13. Let e2 be anyedge incident on m, and let e3 be any edge incident on n. Intuitively, our �rst pruning rules triesto remove edges with a lower bound cost that is so high that it is preferable to match each of itsnodes using some other edges, given the existence of such edges with a suitably low upper boundcost.
T2

nm
e1

e3
e2

T1Figure 13: Applying pruning rulesPruning Rule 1 Let Ct = maxfcm; cc; cgg. If clb(e1) � cub(e2) + cub(e3) + 2Ct then prune e1.Example 5.1 To illustrate this rule, consider a tree T1 containing, among others, two childlessnodes 1 (label f) and 2 (label g). Similarly, T2 contains childless nodes 3 (label g) and 4 (labelf), among others. Say the costs cm, cc, and cg are one unit each, while the update costs arecu(f; g) = 3, and cu(f; f) = cu(g; g) = 0. Let us now consider if edge e1 = [1; 3] can be pruned19

because edges e2 = [1; 4] and e3 = [2; 3] exist. Since the nodes have no children, it is easy tocompute clb(e1) = cu(f; g) = 3, cub(e2) = cu(f; f) = 0, and cub(e3) = cu(g; g) = 0. Since Ct = 1,we see that Pruning Rule 1 holds and e1 can be safely removed. The intuition is that in the worstcase we can replace e1 by edges e2 and e3. Using the latter edges could introduce at most the costscub(e2) and cub(e3), plus the cost of two mov, cpy, or glu operations. The last factor can arisefor instance if node 2 ends up being matched not just to node 3 but to another node in T2. Thismeans that node 2 needs to be copied, which would not have been necessary if we had kept edgee1 and not used e2. Similarly, the removal of edge e1 may cause an extra glue operation for node4. However, even in this worst case scenario, the costs would be less than the cost of updating thelabel of node 1 to that of node 2, so we can safely remove the [1; 2] edge.Our second pruning rule (already illustrated in Section 3) states that if it is less expensive todelete a node and insert another, we do not need to consider matching the two nodes to each other.More precisely, we state the following:Pruning Rule 2 If clb(e1) � cd(m) + ci(n) then prune e1.Note that the above pruning rules are simpler to apply if we let e2 and e3 be the minimum-costedge incident on m and n, respectively. The following lemma, proved in Appendix D, tells us thatthe pruning rules are conservative:Lemma 5.3 Let Ep be the set of edges pruned by repeated application of Pruning Rules 1 and 2.Let K1 be any minimal edge cover of the graph B. There exists a minimal edge cover K2 such that(1) K2 \Ep = ;, and (2) C(K2) � C(K1).The pruning phase of our algorithm consists of repeatedly applying Pruning Rules 1 and 2. Notethat the absence of edges raises the lower bound function, and lowers the upper bound function, thuspossibly causing more edges to get pruned. Our algorithm updates the cost bounds for the edgesa�ected by the pruning of an edge whenever the edge is pruned. By maintaining the appropriatedata structures, such a cost-update step after an edge is pruned can be performed in O(logn) time,where n is the number of nodes in the induced graph.5.4 Computing a Min-Cost Edge CoverAfter application of the pruning rules described above, we obtain a pruned induced graph, con-taining a (typically small) subset of the edges in the original induced graph. In favorable cases,the remaining edges contain only one minimal edge cover. However, typically, there may be severalminimal edge covers possible for the pruned induced graph. We now describe how we select one ofthese minimal edge covers.We �rst approximate the fair cost of every edge e that remains after pruning by its lower boundelb(e). (We could have also use the upper bound, or an average of both bounds, since this is just anestimate.) Then, given these constant estimated costs, we compute a minimum-cost edge cover byreducing the edge cover problem to a bipartite weighted matching problem, as suggested in [PS82].Since the weighted matching problem can be solved using standard techniques, we do not presentthe details in this paper, noting only that given a bipartite graph with n nodes and e edges, theweighted matching problem can be solved in time O(ne). For our application, e is the number ofedges that remain in the induced graph after pruning.20

6 Implementation and PerformanceIn this section, we describe our implementation of mh-diff, and discuss its analytical and empiricalperformance. Figure 14 depicts the overall architecture of our implementation, with rectanglesrepresenting the modules (numbered, for reference) of the program, and other shapes representingdata. Given two trees T1 and T2 as input, Module 1 constructs the induced graph (Section 3.1). Thisinduced graph is next pruned (Module 2) using the pruning rules of Section 5.3 to give the prunedinduced graph. In Module 2, the update cost for each edge in the induced graph is computed usingthe domain-dependent comparison function for node labels (Section 2.2). The next three modulestogether compute a minimum-cost edge cover of the pruned induced graph using the reduction ofthe edge cover problem to a weighted matching problem [PS82]. That is, the pruned induced graphis �rst translated (by Module 3) into an instance of a weighted matching problem. This weightedmatching problem is solved using a package (Module 4) [Rot] based on standard techniques [PS82].The output of the weighted matching solver is a minimum-cost matching, which is translated byModule 5 into K0, a minimum-cost edge cover of the pruned induced graph. Next, Module 6 usesthe minimum-cost edge cover computed, to produce an annotated edge cover, with edge annotationsrepresenting edit operations (Section 4.3), and a set of ordering constraints (dependencies). Finally,Module 7 performs a topological sort of the annotations based on the dependencies, resulting inthe desired edit script that transforms T1 to T2.
T1

Builder

translator

Graph
Graph

Induced
Graph
Induced
Pruned

wt.
matching
problem

costmin-
matching

T2

edge cover
min-cost

Annotator Annotated
edge cover

Dependencies

ScriptorEdit Script

(1) Induced
(2) Pruner

(7)

(6)

K0

(3) Edge cover
to wt. match

Translator

(4) weighted

solver

matching
(5) Matching

to cover

Figure 14: System ArchitectureRecall that since we use a heuristic cost function to compute a minimum-cost edge cover, theedge cover produced by our program, and hence the edit script may not be the optimal one. Wehave also implemented a simple search module that starts with minimum-cost edge cover K0 (seeFigure 14) computed by our program and explores its neighborhood of minimal edge covers in ane�ort to �nd a better solution. The search proceeds by �rst exploring minimal edge covers thatcontain only one edge not in K0. Next, we explore minimal edge covers containing two edges notin K0, and so on. The intuition is that we expect the optimal solution to be \close" to the initialsolution K0. Although, in the worst case, such an exploration may be extremely time-consuming,21

note that as a result of pruning edges, the search space is typically much smaller than the worstcase. Due to space constraints, we do not describe the details of this search phase in this paper.We have used our implementation to compute the di�erences between query results as part of theTsimmis [CGMH+94] and C3 [WU95] projects at Stanford. These projects use the oem data model,which is a simple labeled-object model to represent tree-structured query results. In particular, wehave run our system on the output of Tsimmis queries over a bibliographic information source thatcontains information about database-related publications in a format similar to BibTeX. Since thedata in this information source is mainly textual, we treat all labels as strings. For the domain-dependent label-update cost function, we use a weighted character-frequency histogram di�erencescheme that compares strings based on the number of occurrences of each character of the alphabetin them. For example, consider comparing the labels \foobar" and \crowbar." The character-frequency histograms are, respectively, (a : 1; b : 1; f : 1; o : 2; r : 1) and (a : 1; b : 1; c : 1; o : 1; r : 2; w : 1).The di�erence histogram is (c : �1; f : 1; o : 1; r : �1; w : �1). Adding up the magnitudes of thedi�erences gives us 5, which we then normalize by the total number of characters in the strings (13),and scale by a parameter (currently 5), to get the update cost (5=13) � 5 = 1:9.Let us now analyze the running time of our program. Let n be the total number of nodes inboth input trees T1 and T2. Constructing the induced graph (Module 1, in Figure 14) involvesbuilding complete bipartite graph with O(n) nodes on each side. We also evaluate the domain-dependent label-comparison function for each pair of nodes, and store this cost on the correspondingedge. Thus, building the induced graph requires time O(kn2), where k is the cost of the domain-dependent comparison function. Next, consider the pruning phase (Module 2). By maintaining apriority queue (based on edge costs) of edges incident on each node of the induced graph, the testto determine whether an edge may be pruned can be performed in constant time. If the edge ispruned, removing it from the induced graph requires constant time, while removing it from thepriority queues at each of its nodes requires O(logn) time. When an edge [m;n] is pruned, we alsorecord the changes to the costs cm?(m; p(n)), cm?(n; p(m)), cmf(m; p(n)), and cmf (n; p(m)), whichcan be done in constant time. Thus, pruning an edge requires O(logn) time. Since at most O(n2)are pruned, the total worst case cost of the pruning phase is O(n2logn). Let e be the number ofedges that remain in the induced graph after pruning. The minimum-cost edge cover is computedin time O(ne) by Modules 3, 4, and 5. The annotation of the minimum-cost edge cover can bedone in O(n) time by Module 6. (Note that the number of edges in a minimal edge cover is alwaysO(n).) Finally, note that we have O(1) ordering constraints per annotation, and O(1) annotationsper edge of the edge cover, so that ordering the edit operations corresponding to the annotationscan be done in O(n) time by Module 7 to produce the �nal edit script.The number of edges that remain in the induced graph after pruning (denoted by e above) isan important metric for three main reasons. Firstly, as seen above, a lower number of edges resultsin faster execution of the minimum-cost edge cover algorithm. Secondly, a smaller number of edgesdecreases the possibility of �nding a suboptimal edge cover, since there are fewer choices that needto be made by the algorithm. Thirdly, having a smaller number of edges in the induced graphdrastically reduces the size of the space of candidate minimal edge covers that the search moduleneeds to explore.Given the importance of the metric e, we have conducted a number of experiments to studythe relationship between e and n. We start with four \input" trees representing actual results ofvarying sizes from our Tsimmis system. For each input tree, we generate a batch of \output" treesby applying a number of random edits. The number of random edits is either 10% or 20% of thenumber of nodes in the input tree. Then for each output tree, we run mh-diff on it and its original22

0100200300400500600700
0 50 100 150 200 250Edgesafterpruning(e) Number of nodes (n)

10% edits: 3333333 33333320% edits: +++++++ +++ +++n2n/2
Figure 15: Number of unpruned edges as a function of the number of nodesinput tree. The results are summarized by the graph in Figure 15. The horizontal axis indicatesthe total number of nodes in the two trees being compared (and hence, in the induced graph).The vertical axis indicates the number of edges that remain after pruning the induced graph. Notethat the ideal case (best possible pruning) corresponds to e = dn=2e, since we need at least dn=2eedges to cover n nodes, whereas the worst case is e = n2 (no pruning at all). For comparison, wehave also plotted e = n=2 and e = n2 on the graph in Figure 15. We observe that the relationshipbetween e and n is close to linear, and that the observed values of e are much closer to n=2 thanto n2.Note that in Figure 15 we have plotted the results for two di�erent values of d, the percentageof random edit operations applied to the input tree. We see that, for a given value of n, a highervalue of d results in a higher value of e, in general. We note that some points with a higher d valueseem to have a lower value of e than the general trend. This is because applying d random edits isnot the same as having the input and output trees separated by d edits, due to the possibility ofredundant edit operations. Thus, some data points, even though they were obtained by applyingd random edits, actually correspond to fewer changes in the tree.We have also studied the quality of the initial solution produced by mh-diff. In particular,we are interested in �nding out in what fraction of cases our method produces suboptimal initialsolutions, and by how much the cost of the suboptimal solution exceeds that of the optimal. Giventhe exponential (in e) size of the search space of minimal edge covers of the induced graph, it isnot feasible to try exhaustive searches on large datasets. However, we have exhaustively searchedthe space of minimal edge covers, and corresponding edit scripts, for smaller datasets. We ran 50experiments, starting with an input tree T1 derived as in the experiments for e above, and using 6randomly generated edit operations to generate an output tree. We searched the space of minimaledge covers of the pruned induced graph exhaustively for these cases, and found that the mh-diffinitial solution di�ered from the minimum-cost one in only 2 cases out of 50. That is, in 96% of thecases mh-diff found the minimum cost edit script, and of course it did this in much less time thanthe exhaustive method. In the two cases where mh-diff missed, the resulting script cost about15% more that the minimum cost possible. 23

7 Related WorkThe general problem of detecting changes from snapshots of data has been studied before fromdi�erent angles. For example, [WF74] de�nes a string-to-string correction problem as the problemof �nding the best sequence of insert, delete, and update operations that transform one string toanother. The problem is developed further in [Wag75], which adds the \swap" operation to the listof edit operations. These papers also introduce the structure of a \trace" or a matching between thecharacters of the strings being compared as a useful tool for computing an edit script. A simplerchange detection problem for strings, using only insertions and deletions as edit operations hasbeen studied extensively [Mye86, WMG90]. The idea of a longest common subsequence replacesthe idea of a trace in this simpler problem. A variant of the algorithm presented in [Mye86] forcomputing the longest common subsequence is implemented in the gnudi� [HHS+] program. Allthese algorithms work with strings, that is, with at-�le, or relational data, and are not suitablefor computing changes in structured data.In [ZS89, SZ90], the authors de�ne a change detection problem for ordered trees, using inser-tion, deletion, and label-update as the edit operations, observing its added di�culty compared tothe equivalent problem for strings; they also present an e�cient dynamic-programming based al-gorithm to solve that problem. A proof of the NP-hardness of a similar change detection problem(using insertion, deletion, and label-update) for unordered trees is presented in [ZWS95], whichalso presents an algorithm for a restricted version of the change detection problem. An importantassumption made by the algorithms in [ZS89, SZ90, ZWS95] is that the cost of updating any labelto any other label is always less than the cost of deleting a node with the old label and inserting anode with the new label. While this restriction is reasonable for some domains, it does not alwayslead to intuitive results. For example, consider two trees with the same structure, but completelydi�erent labels on the nodes (e.g., two trees representing di�erent query results, but with a similarstructure). Assuming the cost of label update is always lower than the cost of the correspondinginsertion and deletion will result in an edit script that simply updates all the labels in the trees.While this is technically sound, it is not the semantically desirable result for this example.In [CRGMW96] we de�ned a variant of the change detection problem for ordered trees, usingsubtree moves as an edit operation in addition to insertions, deletions, and updates, and presentedan e�cient algorithm for solving it. That algorithm uses domain characteristics to �nd a solutione�ciently. A major drawback of the algorithm in [CRGMW96] is that it assumes that the numberof duplicates (or near duplicates) in the labels found in the input trees is very small. Anotherdrawback of of the algorithm in [CRGMW96] is that it assumes each node of the input trees hasa special tag that describes its semantics. (For example, an ordered tree representing a documentmay have tags \paragraph," \section," etc.) Furthermore, that algorithm assumes the existence ofa total order <t over these tags such that a node with tag t1 cannot be the child of a node withtag t2 unless t1 � t2. While these assumptions are reasonable in a text comparison scenario, thereare many domains in which they do not hold.The work presented in this paper di�ers from previous work in several important ways. Firstly,we detect the change detection problem for unordered trees, which is inherently harder than thesimilar problem for ordered trees. Secondly, we consider a rich set of edit operations, includingcopy and move operations, that make the edit script computed more meaningful and intuitivelyusable. Furthermore, we do not assume that the nodes of the input trees are \tagged" in a mannerrequired by the algorithm in [CRGMW96], nor do we assume the absence of duplicates (or nearduplicates) in the labels of the nodes in the input trees. Finally, we do not assume that the cost of24

updating any label to any other label is always less than the cost of deletion and insertion.8 ConclusionWe have described the need for computing semantically meaningful changes in structured data.We have introduced operations such as subtree copy and subtree move that allow us to describechanges to structured data more meaningfully than is possible by using only the traditional insert,delete, and update operations. We have formally de�ned the problem of computing a minimum-cost edit script, consisting of these operations, between two trees. To solve this problem, we havepresented an algorithm that is based on representing an edit script between two trees as an edgecover of a bipartite graph induced by the trees. We have also studied the the performance of ouralgorithm both analytically and empirically. The experimental results, although preliminary, arevery encouraging.References[CGMH+94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, andJ. Widom. The Tsimmis project: Integration of heterogeneous information sources. In Proceedings of100th Anniversary Meeting of the Information Processing Society of Japan, pages 7{18, Tokyo, Japan,October 1994.[CRGMW96] S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change detection in hierarchicallystructured information. In Proceedings of the ACM SIGMOD International Conference on Managementof Data, pages 493{504, Montr�eal, Qu�ebec, June 1996.[HHS+] M. Haertel, D. Hayes, R. Stallman, L. Tower, P. Eggert., and W. Davison. The gnu di� program.Texinfo system documentation. Available through anonymous ftp from prep.ai.mit.edu.[Law76] E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, 1976.[LGM96] W. Labio and H. Garcia-Molina. E�cient snapshot di�erential algorithms for data warehousing. InVLDB Conference, India, September 1996.[Mye86] E. Myers. An O(ND) di�erence algorithm and its variations. Algorithmica, 1(2):251{266, 1986.[PS82] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Prentice-Hall, 1982.[Rot] E. Rothberg. The wmatch program for �nding a maximum-weight matching for undirected graphs.Live OR collection. Available at url: http://www.orsoc.org.uk/home.html.[SZ90] D. Shasha and K. Zhang. Fast algorithms for the unit cost editing distance between trees. Journal ofAlgorithms, 11:581{621, 1990.[Wag75] R. Wagner. On the complexity of the extended string-to-string correction problem. In Seventh ACMSymposium on the Theory of Computation, 1975.[WF74] R. Wagner and M. Fischer. The string-to-string correction problem. Journal of the Association ofComputing Machinery, 21(1):168{173, January 1974.[WMG90] S. Wu, U. Manber, and G.Myers. An O(NP) sequence comparison algorithm. Information ProcessingLetters, 35:317{323, September 1990.[WU95] J. Widom and J. Ullman. The C3 project: Changes, consistency, and con�gurations in heteroge-neous distributed information systems. Unpublished project description, available through the sc urlhttp://www-db.stanford.edu/c3/synopsis.html, 1995.[ZS89] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between trees and relatedproblems. SIAM Journal of Computing, 18(6):1245{1262, 1989.[ZWS95] K. Zhang, J. Wang, and D. Shasha. On the editing distance between undirected acyclic graphs.International Journal of Foundations of Computer Science, 1995.25

A De�nitions of Edit OperationsIn this section, we present the formal de�nitions of the edit operations discussed in Section 2.1.� An insertion operation is denoted by ins(n; v; p; C), where n is the (unique) identi�er ofthe new node, v is the label of the new node, p 2 N1 is the node that is to be the parentof n, and C � C(p) is the set of nodes that are to be the children of n. When appliedto T1 = (N1; p1; l1), we get a tree T2 = (N2; p2; l2), where N2 = N1 [fng, p2(n) = p,p2(c) = n; 8c 2 C, p2(c) = p1(c); 8c 2 N1 � C, l2(n) = v, and l2(m) = l1(m); 8m 2 N1.� A deletion operation is denoted by del(n), where n 2 N1 and n is not the root of T1.When applied to T1 = (N1; p1; l1), we get a tree T2 = (N2; p2; l2) with N2 = N1 � fng,p2(c) = p1(n); 8c 2 C(n), p2(c) = p1(c)8c 2 N2 � C(n), and l2(m) = l1(m); 8m 2 N2.� An update operation applied to T1 = (N1; p1; l1) is denoted by upd(n; v), where n 2 N1, andproduces T2 = (N2; p2; l2), where N2 = N1, p2 = p1, l2(n) = v, and l2(m) = l1(m); 8m 2N2 � fng.� A move operation applied to T1 = (N1; p1; l1) is denoted by mov(n; p), where n; p 2 N1, andp is not in the subtree rooted at n.5 The resulting tree is T2 = (N2; p2; l2), where N2 = N1,l2 = l1, p2(n) = p, and p2(c) = p1(c); 8c 2 N2 � fng.� A copy operation applied to T1 = (N1; p1; l1) is denoted by cpy(n; p), where n; p 2 N1, andn is not the root. Let T3 = (N3; p3; l3) be a new tree that is isomorphic to the subtree ofT1 rooted at n, and let n0 be the root of T3. The result of the copy operation is the treeT2 = (N2; p2; l2), where N2 = N1 [N3, l2(m) = l1(m); 8m 2 N1, l2(m) = l3(m); 8c 2 N3,p2(n0) = p, p2(m) = p1(m); 8m 2 N1, and p2(m) = p3(m); 8m 2 N3.� A glue operation applied to T1 = (N1; p1; l1) is denoted by glu(n1; n2). Let T3 be the subtreerooted at n1, and let T4 = (N4; p4; l4) be the subtree rooted at n2. The precondition of thisglu operation is that T4 is isomorphic to T3�T4. The result of the glue operation is the treeT2 = (N2; p2; l2), where N2 = N1 �N4, p2(c) = p1(c); 8c 2 N2, and l2(c) = l1(c); 8c 2 N2.B De�ning the Edge Cover Induced by an Edit ScriptLet E be an edit script that transforms T1 to T2; that is, T1 E! T2. We now de�ne K(E), the edgecover (of the induced graph of T1 and T2) induced by E . Let T3 be a tree that is isomorphic to T1,with f being the isomorphism. Thus, f : T1 ! T2 is a one-to-one, onto function that preserves theparent-child and label relationships de�ning labeled trees. More precisely, label(f(m)) = label(m),and parent(f(m)) = f(parent(m)) for all nodes m 2 T1. Let us extend f to T1 [f�g and T2 [f	gby de�ning f(�) =). We will now de�ne how, given the edit script E , we derive a mapping g(E),called the mapping induced by E , from the isomorphism f . We will see that the mapping g is anonto mapping from T1 to T2, and is thus isomorphic to an edge cover of the induced graph B.Base case: If the edit script is empty, that is if E = (), then g = f .5This restriction is necessary to disallow moving a subtree to a node in the same subtree, since the resultingstructure would not be a tree. 26

Inductive case: The edit script is non-empty. Let d be the last edit operation in the edit script E ;that is, E = E 0:d for some edit script E 0. Let T 02 be the tree script obtained by applying E to T1;that is, T1 E! T2. Let g0 be (inductively) the mapping induced by E 0; that is g0 = g(E 0). We havethe following cases, based on the last edit operation d. (Recall the formal de�nitions of the editoperations from Section 2.)Case 1: d is an update operation. Then g(E) = g(E 0).Case 2: d is an insert operation ins(n; l; p; C). Then g(E) = g(E 0)[f(�; n)g.Case 3: d is a delete operation del(n). If n 2 T1, then g(E) = g(E 0)[f(n;)g, else g(E) = g(E 0).Case 4: d is a move operation mov(n1; n2). Then g(E) = g(E 0).Case 5: d is a copy operation cpy(n1; n2). Let t1 be the subtree rooted at n1, and let t01 be thesubtree isomorphic to t1 that is created as a result of this copy operation. Let h be theisomorphism between t1 and t01. Then g(E) = g(E 0) [h.Case 6: d is a glue operation glu(n1; n2). Let t1 be the subtree rooted at n1, and let t2 be thesubtree (isomorphic to t1) rooted at n2. (Recall that the subtree t1 disappears as a result ofthis glue operation, being \united" with the subtree t2.) Let h be the isomorphism betweent1 and t2. Let h0 = (n; g(E 0)(n))8n 2 t1. Then g(E) = g(E 0) [h� h0.Finally, if the � node and the 	 node are both mapped to more than one node, we remove [�;]from the mapping. Now observe that after performing the operations indicated above for all theedit operations in E , T3 is transformed to a tree that is isomorphic to T2 (by the de�nition of E), sothat the mapping g(E) may be viewed as an onto mapping between T1 and T2. An onto mappingbetween the nodes of T1 and T2 is isomorphic to an edge cover of the bipartite graph induced byT1 and T2; thus g(E) de�nes the edge cover induced by an edit script.C Pseudo-code for the Algorithm AnnotateRecall our description of algorithm Annotate in Section 4.3. Figures 16 and 17 present the pseudo-code for Case 2.1 and Case2.2, respectively, of the algorithm.D ProofsLemma 4.1 If E is an edit script satisfying Properties 1 and 2, then the edge cover K(E) inducedby E is a minimal edge cover.Proof: (outline) We use an inductive argument that reects the inductive de�nition of the edgecover induced by an edit script in Section 4.1. The edge cover induced by an empty edit script isminimal, since it is a one-to-one mapping between the trees. The only operations that cause morethan one edge to become incident on a given node (other than the special nodes � and) are cpyand glu . Given Property 2, a node n belonging to an intermediate tree T 03 produced by an editscript that is matched to more than one node in the original tree T1 cannot be copied, thus avoidingthe creation of a three-path. An analogous argument applies for the case of a node being glued.27

Case 2.1: M = fmg; m 6= �; jN j > 1Partition N = N1 [N2 [N3 as follows:N1 = fn 2 N : [p(m); p(n)] 2 KgN2 = fn 2 N : 9m0 2 T1 3 [m0; p(n)] 2 KgN3 = fn 2 N : [�; p(n)] 2 KgPartition N1 = [k1j=1N1j such that8j = 1 : : :k1; n1; n2 2 N1j) p(n1) = p(n2)8j = 1 : : :k1, do:Pick n� 2 N1jA(m;n�) nil8n 2 N1j ; n 6= n�; do:A(m;n) cpyPartition N2 = [k2j=1N2j as follows:8j = 1 : : :k2; n1; n2 2 N2j) 9m0 2 T1 3[m0; p(n1)]; [m0; p(n2)] 2 KPartition N3 = [k3j=1N3j as follows:8j = 1 : : :k3; n1; n2 2 N3j) 9m0 2 T1; l 2 Z+ 38i = 1 : : : l � 1; [�; pi(n1)]; [�0; pi(n2)] 2 K; ^[m0; pl(n1)]; [m0; pl(n2)] 2 KLet Ppm = fn 2 T2 : [p(m); n] 2 KgS = Ppm � fp(n) : n 2 NgC = the jSj largest sets from Nij ; i = 1; 2; j = 1 : : :ki8Nij , do:Pick n� 2 Nijif Nij 2 C, then A(m;n�) movelse A(m;n�) cpy8n 2 Nij ; n 6= n�, do:A(m;n) nilD = D [f[m;n�; fmov;cpyg]! ngFigure 16: Case 2.1 of the annotation algorithm
28

Case 2.2: M = f�g ^ jN j > 1Let NL = fn0 2 N : l(n0) = l(n)gIf jNLj = 1 thenA(�; n) inselse Partition NL = [kLj=1NLj 3/* similar to N3 in case 2.1 */8j = 1 : : :kL; n1; n2 2 NLj) 9l 2 Z+ 38i = 1 : : : l; [�; pi(n1)]; [�0; pi(n2)] 2 K;8NLj , do:Pick n� 2 NLjA(�; n�) ins8n0 2 NLj ; n0 6= n�, do:A(�; n0) nilD = D [f[�; n�; ins]! n0Figure 17: Case 2.2 of the annotation algorithmFor the case of edges incident on the � and 	 nodes, we note that the possibility of a three-pathis avoided by the de�nition of the induced edge cover because it removes the edge [�;] wheneverthere are multiple edges incident on both � and 	. 2Lemma 4.2 If K is a minimal edge cover of a graph, K does not contain any path of length three.Proof: Suppose n1; n2; n3; n4 is a path in K. (That is, [ni; ni+1] 2 K; i = 1 : : :3.) Then K �f[n2; n3]g is an edge cover contradicting the minimality of K. 2Lemma 5.1 If K is an annotated, minimal edge cover of the graph induced by two trees, thenc(K) =Pe2K cK(e).Proof: By accounting. Recall that the cost c(K) of an annotated edit script is the sum of thecosts of the annotations in K (where the cost of each annotation is equal to the cost of the editoperation it represents). Each annotation in K is on some edge e 2 K. If the annotation is anupd , it is charged (by cK(e)) to the edge e itself. For other annotations, each node of e is chargedfor half the cost of the annotation. Furthermore, the cost of each node is distributed evenly overall edges e0 2 K incident on its parent. Since the special edge between the (dummy) roots of thetwo trees being considered is never annotated (without loss of generality), it follows that the twomethods of accounting for the cost of an annotated edge cover are equivalent. 2Lemma 5.2 Let B = (U; V; E) be the bipartite graph induced by trees T1 and T2. Let B0 =(U; V; E0), where E 0 � E. Let K denote the collection of all minimal edge covers of B0. We thenhave the following inequalities:clb(e) � minK2K cK(e) and cub(e) � maxK2K cK(e)Proof: (outline) Given an edge [m;n] in a minimal edge cover K, the upper bound cost functionassumes the worst possible case. In particular, it assumes that, for each child m0 of m, a cost of ccand cg, respectively, is incurred for all but one edges incident on m0; the remaining edge is assumed29

to incur a cost cm for a move.6 The only exception is when there is an edge [m0; n0] for some childn0 of n; such an edge clearly does not involve a move, and therefore contributes 0 units to the cost.An analogous worst-case scenario is assumed for each child n0 of n. Furthermore, the cost of [m;n]is highest when jE(m)j = jE(n)j = 1, which is what the upper bound function assumes, resultingin the overall upper bound.Similarly, the lower bound function assumes the best possible case for each child m0 of m. Inparticular, it assumes that no cost is incurred on behalf ofm0 except in those cases where matchingm to n would force a child m0 to be moved; in such a case, a cost contribution of cm is added.Furthermore, note that the cost of an edge [m;n] is lower as E(m) and E(n) are bigger. However,since K is restricted to be a minimal edge cover, at least one of E(m) and E(n) must be a singletonset (containing just the edge [m;n]), or else there would be a path of length three inK, contradictingLemma 4.2. Therefore, the cost of [m;n] includes at least the lower of the two costs propagatedfrom each of m, and n. Since this is precisely what the lower bound function de�nes clb to be, wesee that the inequality for clb holds. 2Lemma 5.3 Let Ep be the set of edges pruned by repeated application of Pruning Rules 1 and 2.Let K1 be any minimal edge cover of the graph B. There exists a minimal edge cover K2 such that(1) K2 \Ep = ;, and (2) C(K2) � C(K1).Proof: The proof is by induction on the cardinality of Ep. When jEpj = 0, the lemma is triviallytrue. Now assume that the lemma is true whenever jEpj � k, for any k � 0. We will show that thelemma is also true when jEpj = k+1. Each (successful) application of a pruning rule adds one edgetoEp. Consider the edge e1 that was pruned last. Using the induction hypothesis forE 0p = Ep�fe1g,we can generate an edge cover K 01 such that (1) K 01 [E 0p = ;, and (2) C(K 01) � C(K1).If K 01 does not contain e1, let K2 = K 01. If K 01 contains e1, we modify K 01 to obtain K2 asfollows. If e1 was pruned using Pruning Rule 1, then let K2 = K 01�fe1g[fe2; e3g, where e2 and e3are the edges used in the application of Pruning Rule 1. Else, e1 was pruned using Pruning Rule 2;in this case, let K2 = K 01 � fe1g [f[n1;]; [�; n2]g, where e1 = [n1; n2].Clearly, K2 [Ep = ;. Since K 01 is an edge cover of B, and since the only nodes that could bepossibly exposed as a result of removing e1 from K 01 (namely, n1 and n2) are covered by the edgesadded to K 01 to obtain K2, it follows that K2 is also an edge cover of B. From the de�nition of thepruning rules, and Lemma 5.2 we see that C(K2) � C(K 01) � C(K1). 2
6Recall that we assume that cpy and glu both cost more than a mov .30

