
Meaningful Change Detection in Structured Data�Sudarshan S. Chawathe Hector Garcia-MolinaComputer Science Department, Stanford University, Stanford, California 94305fchaw,hectorg@cs.stanford.eduAbstractDetecting changes by comparing data snapshots is an im-portant requirement for di�erence queries, active databases,and version and con�guration management. In this paperwe focus on detecting meaningful changes in hierarchicallystructured data, such as nested-object data. This problemis much more challenging than the corresponding one for re-lational or at-�le data. In order to describe changes better,we base our work not just on the traditional \atomic" insert,delete, update operations, but also on operations that movean entire sub-tree of nodes, and that copy an entire sub-tree.These operations allows us to describe changes in a seman-tically more meaningful way. Since this change detectionproblem is NP-hard, in this paper we present a heuristicchange detection algorithm that yields close to \minimal"descriptions of the changes, and that has fewer restrictionsthan previous algorithms. Our algorithm is based on trans-forming the change detection problem to a problem of com-puting a minimum-cost edge cover of a bipartite graph. Westudy the quality of the solution produced by our algorithm,as well as the running time, both analytically and experi-mentally.1 IntroductionDetection of changes between data structures is an impor-tant function in many applications. For example, in theWorld-Wide Web an analyst may be interested in knowinghow a competitor's site has changed since the last time vis-ited. This may be achieved by saving a snapshot of the previ-ous HTML pages at the site (something that most browsersdo for e�ciency anyway). In a CAD design environment,an engineer may wish to understand the di�erences betweentwo related but concurrently developed chip designs. In a�This work was supported by the Air Force Wright LaboratoryAeronautical Systems Center under DARPA Contract F33615-93-1-1339, by the Department of the Air Force Rome Laboratories underDARPA Contract F30602-95-C-0119, and by equipment grants fromIBM Corporation, Digital Equipment Corporation, and Sun Microsys-tems.

distributed �le system, an administrator may need to de-tect di�erences between two mirror �le systems that becamepartitioned and independently modi�ed. In a warehousingenvironment, the changes at a site need to be identi�ed sothat a materialized view can be incrementally maintained.In this paper we present an e�cient algorithm, mh-diff,for meaningful change detection between two hierarchicallystructured data snapshots, or trees. The key word here ismeaningful (the \M" in the name). That is, our goal is toportray the changes between two trees in a succinct and de-scriptive way. As is commonly done, we portray the changesas an edit script that gives the sequence of operations neededto transform one tree into another. However, in this paperwe use a richer set of operations than has ever been usedbefore, and this leads, we believe, to much higher qualityedit scripts.In particular, we use move and copy operations, in addi-tion to the more traditional insert, delete, and update oper-ations. Thus, if a substructure (e.g., a section of text, a shiftregister) is moved to another location, our algorithm will re-port it as a single operation. If the substructure is copied(e.g., a second shift register is added which is identical toone already in the circuit), then our algorithm will identifyit as such. Traditional change detection algorithms wouldreport such changes as sequences of inserts and deletes (orsimply inserts in the case of a copy), which do not conveythe true meaning of the change.Note that detecting moves and copies becomes more im-portant if the moved or copied subtree is large. For in-stance, if we are comparing �le systems, and a large direc-tory with thousands of �les is mounted elsewhere, we clearlydo not wish to report the change as thousands of �le deletesfollowed by thousands of �le creations. Also note that todetect moves and copies, it is essential that our algorithmunderstand the structure as well as the content of the data.Thus, our algorithm cannot treat the data as \at" informa-tion, e.g., as �les with records or relations with tuples. Thismeans that techniques developed for at change detection[Mye86, LGM96] are not applicable here.Algorithm mh-diff has two additional important fea-tures:� It does not rely on the existence of node (atomic ob-ject) identi�ers that can match nodes in one tree tonodes in the other. In many applications such iden-ti�ers do not exist. For instance, sentences and para-graphs in text documents do not come with unique



identi�ers attached. Even when the nodes are stored ina database system (e.g., circuit components), we maybe comparing copies with the same content but di�er-ent identi�ers. Thus, for full generality, mh-diff doesnot assume unique identi�ers that span the two trees,and instead compares the contents of nodes to deter-mine if they are related. (If the trees have such iden-ti�ers, mh-diff could easily take advantage of them,but we do not discuss that here.)� Algorithm mh-diff is based on a fairly exible costmodel. Each operation in the repertoire is given a user-de�ned �xed cost, except for the update operation,whose cost is determined by a user-provided functionthat compares the values of two nodes. This gives endusers great latitude in saying what types of edit scriptsare preferable for an application.There is a good reason why di�erence algorithms withthe features we have described here have not been devel-oped earlier, even though they are clearly desirable. Thereason is the inherent complexity of the problem; one canshow that the problem is NP-hard.1 Algorithm mh-diffprovides a heuristic solution, which is based on transformingthe problem to the \edge cover domain." That is, insteadof working with edit scripts, the algorithm works with edgecovers that represent how one set of nodes match anotherset. In this transformation, the costs of the edit operationsare translated into costs on the edges of the cover.In an earlier paper [CRGMW96] we studied a much sim-pler version of the change detection problem. In that workwe did not consider copy operations, we assumed that thenumber of duplicates of a node was very limited, we assumedordered trees, and we assumed that nodes had \tags" thatreect the structural constraints on the input trees. (Forexample, nodes were tagged as say \paragraphs" or \sec-tions," making it easier to match nodes.) All these restric-tions made it much simpler to �nd a minimum-cost editscript, and indeed we developed an e�cient algorithm thatfound a minimum-cost script. Here, on the other hand, herewe drop these restrictions, and introduce copy operations.This leads to an algorithm that is very di�erent from theone in [CRGMW96], and that yields a heuristic solution inworst-case O(n3) time, where n is the number of nodes, butmost often in roughly O(n2) time. In Section 7 we comparein more detail mh-diff to our earlier work, as well as toother work on change detection.2 Model and Problem De�nitionWe use rooted, labeled trees as our model for structureddata. These are trees in which each node n has a label l(n)that is chosen from an arbitrary domain L. The problemof snapshot change detection in structured data is thus theproblem of �nding a way to edit the tree representation ofone snapshot to that of the other. We denote a tree T by itsnodes N , the parent function p, and the labeling function l,and write T = (N;p; l). The children of a node n 2 N aredenoted by C(n).We begin by de�ning the tree edit operations that weconsider. Since there are many ways to transform one tree toanother using these edit operations, we de�ne a cost modelfor these edit operations, and then de�ne the problem of1By reduction from the \exact cover by three-sets" problem.

�nding a minimum-cost edit script that transforms one treeto another.2.1 Edit Operations and Edit ScriptsIn the following, we will assume that an edit operation eis applied to T1 = (N1; p1; l1), and produces the tree T2 =(N2; p2; l2). We write this as T1 e! T2. We consider thefollowing six edit operations:� Insertion: Intuitively, an insertion operation createsa new tree node with a given label, and places it ata given position in the tree. The position of the newnode n in the tree is speci�ed by giving its parent nodep and a subset C of the children of p. The result ofthis operation is that n is a child of p, and the nodesC, that were originally children of p, are now childrenof the newly inserted node n.Formally, an insertion operation is denoted byins(n; v; p;C), where n is the (unique) identi�er of thenew node, v is the label of the new node, p 2 N1 isthe node that is to be the parent of n, and C � C(p)is the set of nodes that are to be the children of n.When applied to T1 = (N1; p1; l1), we get a tree T2 =(N2; p2; l2), where N2 = N1 [ fng, p2(n) = p, p2(c) =n; 8c 2 C, p2(c) = p1(c);8c 2 N1 � C, l2(n) = v, andl2(m) = l1(m);8m 2 N1. Due to space constraints, wedescribe the remaining edit operations only informallybelow; the formal de�nitions are in [CGM97].� Deletion: This operation is the inverse of the inser-tion operation. Intuitively, del(n) causes n to dis-appear from the tree; the children of n are now thechildren of the (old) parent of n. The root of the treecannot be deleted.� Update: The operation upd(n; v) changes the labelof the node n to v.� Move: Amove operation mov(n; p) moves the subtreerooted at n to another position in the tree. The newposition is speci�ed by giving the new parent of thenode, p. The root cannot be moved.� Copy: A copy operation cpy(m;p) copies the subtreerooted at n to a another position. The new position isspeci�ed by giving the node p that is to be the parentof the new copy. The root cannot be copied.� Glue: This operation is the inverse of a copy opera-tion. Given two nodes n1 and n2 such that the sub-trees rooted at n1 and n2 are isomorphic, glu(n1; n2)causes the subtree rooted at n1 to disappear. (It isconceptually \united" with the subtree rooted at n2.)The root cannot be glued. Although the glu opera-tion may seem unusual, note that it is a natural choicefor an edit operation given the existence of the cpyoperation. As we will see in Example 2.1, inverting anedit script containing a cpy operations results in anedit script with a glu operation. This symmetry inthe structure of edit operations is useful in the designof our algorithms.In addition to the above tree edit operations, one maywish to consider operations such as a subtree delete oper-ation that deletes all nodes in a given subtree. Similarly,one could de�ne a subtree merge operation that merges two



or more subtrees. We do not consider such more complexedit operations in this paper, but note that some of theseoperations, (e.g., subtree deletes) may be detected by post-processing the output of our algorithm.We de�ne an edit script to be a sequence of zero or moreedit operations that can be applied in the order in whichthey occur in the sequence. That is, given a tree T0, asequence of edit operations E = e1; e2; : : : ; ek is an edit scriptif there exist trees Ti; 1 � i � k such that Ti�1 ei! Ti; 1 �i � k. We say that the edit script E transforms T0 to Tk ,and write T0 E! Tk .
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acFigure 1: Edit operations on labeled treesExample 2.1 Consider the tree T1 depicted in Figure 1.We represent the identi�er of each node by the number in-side the circle representing the node. The label of eachnode is depicted to the right of the node. Thus, the rootof the tree T1 has an identi�er 1, and a label a. Figure 1shows how T1 is transformed by applying the edit script toE1 = (ins(11; g; 1; f9g);mov(2; 6);cpy(7; 1)) T1. Similarly,if we start with the tree T2 in the �gure, the edit scriptE2 = (glu(12; 7);mov(2; 1);del(11)) transforms it back toT1. We write T1 E1! T2, and T2 E2! T1.2.2 Cost ModelGiven a pair of trees, there are, in general, several editscripts that transform one tree to the other. For example,there is the trivial edit script that deletes all the nodes ofone tree and then inserts all the nodes of the second tree.There are many other edit scripts that, informally, do morework than seems necessary. Formally, we would like to �ndan edit script that is \minimal" in the sense that it does nomore work that what is absolutely required. To this end, wede�ne a cost model for edit operations and edit scripts.There are two major criteria for choosing a cost model.Firstly, the cost model should accurately capture the domaincharacteristics of the data being considered. For example,if we are comparing the schematics for two printed-circuitboards, we may prefer an edit script that has as few insertsas possible, and instead describes changes with moves andcopies of the old components. However, if we are comparingtext documents, we may prefer to see a paragraph as a newinsertion, rather than a description of how it was assembledfrom bits and pieces of sentences from the old document.Secondly, the cost model should be simple to specify, and

should require little e�ort from the user. For example, acost model that requires the user to specify dozens of pa-rameters is not desirable by this criterion, even though itmay accurately model the domain.Another issue is the trade-o� between generality of thecost model and di�culty in computing a minimum-cost editscript. For example, a very general cost model would havea user-speci�ed function to determine the cost of each editoperation, based on the type of the edit operation, as wellas the particular nodes on which it operates. However, sucha model is not amenable to the design of e�cient algorithmsfor computing the minimum-cost edit script, since it doesnot permit us to reason about the relative costs of the pos-sible edit operations.With the above criteria in mind, we propose a simplecost model in which the costs of insertion, deletion, move,copy, and glue operations are given by constants, ci, cd, cm,cc, and cg, respectively. Furthermore, given the symmetrybetween ins and del, and cpy and glu, it is reasonable touse ci = cd, and cc = cg. Since, intuitively, a mov opera-tion causes a smaller change than either cpy or glu , it isalso reasonable to use cm < cc. Note, however, that our al-gorithms do not depend on these relationships between thecost parameters. The cost of an update operation dependson the old and new values of the label being updated; thatis, c(upd(n; v)) = cu(v0; v), where v0 is the old label of n,and cu is a domain-dependent function that returns a non-negative real number.Finally, the cost of an edit script E, denoted by c(E), isde�ned as the sum of the costs of the edit operations in E.That is, c(E) =Pd2E c(d).Problem Statement: Given two rooted, labeled trees T1and T2, �nd an edit script E such that E transforms T1 toa tree that is isomorphic to T2, and such that for every editscript E 0 with this property, C(E 0) � C(E).3 Method OverviewIn this Section, we present an overview of algorithm mh-diff for computing a minimum-cost edit script between twotrees. We present our algorithm informally using a runningexample; the details are deferred to later sections.
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tree, transforming it to another tree in the process, whereasin this section, we are trying to �nd an edit script, giventwo trees with no information on the relationship betweentheir nodes. Therefore, our �rst step consists of �nding acorrespondence between the nodes of the two given trees.For example, consider the node 8 in Figure 2. We wantto �nd the node in T2 that corresponds to this node in T1.The dashed lines in Figure 2 represent some of the possibil-ities. Intuitively, we can see that matching the node 8 tothe node 51 does not seem like a good idea, since not onlydo the labels of the two nodes di�er, but the two nodes alsohave very di�erent locations in their respective trees; node8 is a leaf node, while node 51 is the root node. Similarly,we may intuitively argue that matching node 8 to node 62seems promising, since they are both leaf nodes and theirlabels match. However, note that matching a nodes basedsimply on their labels ignores the structure of the trees, andthus is not, in general, the best choice. We make this intu-itive notion of a correspondence between nodes more precisebelow.3.1 The Induced GraphConsider the complete bipartite graph B consisting of thenodes of T1 on one side, and the nodes of T2 on the other,plus the special nodes � (on T1's side) and 	 (on T2's side).We call B the induced graph of T1 and T2. The dashed linesin Figure 2 correspond to a few edges of the induced graph.Intuitively, we would like to �nd a subset K of the edges of Bthat tells us the correspondence between the nodes of T1 andT2. If an edge connects a node m 2 T1 to a node n 2 T2,it means that n was \derived" from m. (For example, nmay be a copy of m.) We say m is matched to n. A nodematched to the special node � indicates that it was inserted,and a node matched to 	 indicates that it was deleted. Notethat this matching between nodes need not be one-to-one; anode may be matched to more than one other nodes. (Forexample, referring to Figure 2 node 7 may be matched toboth node 52 and node 61.) The only restriction is that anode be matched to at least one other node. Thus, �ndingthe correspondence between the nodes of two trees consistsessentially of �nding an edge cover2 of their induced graph.The induced graph has a large number of edge covers(this number being exponential in the number of nodes).However, we may intuitively observe that most of these pos-sible edge covers of B are undesirable. For example, andedge cover that maps all nodes in T1 to 	, and all nodesin T2 to � seems like a bad choice, since it corresponds todeleting all the nodes of T1 and then inserting all the nodesof T2. We will de�ne the correspondence between an edgecover of an induced graph and an edit script for the under-lying trees formally in Section 4, where we also describe howto compute an edit script corresponding to an edge cover.For now, we simply note that, given an edge cover of the in-duced graph, we can compute a corresponding edit script forthe underlying trees. Hence, we would like to select an edgecover of the induced graph that corresponds to a minimum-cost edit script.2An edge cover of a graph is a subset K of the edges of the graphsuch that any node in the graph is incident on at least one edge in K.

3.2 Pruning the Induced GraphWe noted earlier that many of the potential edge covers ofthe induced graph are undesirable because they correspondto expensive and undesirable edit scripts. Intuitively, wemay therefore expect a substantial number of the edges ofthe induced graph to be extraneous. Our next step, there-fore, consists of removing (pruning) as many of these extra-neous edges as possible from the induced graph, by usingsome pruning rules. The pruning rules that we use are con-servative, meaning that they remove only those edges thatwe can be sure are not needed by a minimum-cost edit script.We discuss pruning rules in detail in Section 5.3, presentingonly a simple example here.As an example of the action of a simple pruning rule,consider the edge e1 = [5; 53], representing the correspon-dence between nodes 5 and 53 in Figure 2. Suppose that thecost cU(a; ac) of updating the label a of node 5 to the labelac of node 53 is 3 units. Furthermore, let the cost of insert-ing a node and deleting a node be 1 unit each. Then we cansafely prune the edge [5; 53] because, intuitively, given anyedge cover K1 that includes the edge e1, we can generateanother edge cover that excludes e1, and that correspondsto an edit script that is at least as good as the one corre-sponding to K1. As an illustration of such pruning, considerthe edge cover K2 = K1 � feg [ f[5;	]; [�; 53]g. This edgecover corresponds to an edit script that deletes the node 5,and inserts the node 53. These two operations cost a totalof 2 units, which is less than the cost of the update opera-tion suggested by the edge e in edge cover K1. We thereforeconclude that the edge [5; 53] in our running example maysafely be pruned. In Section 5.3 we present Pruning Rule 2,which is a generalization of this example.
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-51 52Figure 3: The pruned induced graph for the trees in Figure 23.3 Finding an Edge CoverBy applying the pruning rules (Section 5.3) to the inducedgraph of our running example, say we obtain the prunedinduced graph depicted in Figure 3 (ignore for the presentthe di�erence between dotted and solid lines in the �gure).Although the pruned induced graph typically has far feweredges than the original induced graph does, it may still con-tain more edges than needed to form an edge cover. In Sec-tion 4.2 we will see that we need only consider edge coversthat are minimal; that is, edge covers that are not propersupersets of any edge cover. In other words, we would liketo remove from the pruned induced graph those edges thatare not needed to cover nodes. For example, in the prunedinduced graph shown in Figure 3, having all four of the edges[7; 61], [7; 63], [9; 61], and [9; 63] is unnecessary; we may re-move either [7; 63] and [9; 61]; or [7; 61] and [9; 63]. However,it is not possible to decide a priori which of these options isthe better one; that is, it is not obvious which choice wouldlead to an edit script of lower cost. With pruning, on theother hand, there was no doubt that certain edges could be



removed.One way to decide among these options is to enumer-ate all possible minimal edge covers of the pruned inducedgraph, �nd the edit script corresponding to each one (usingthe method described later in Section 5), and to pick theone with the least cost. However, given the exponentiallylarge number of edge covers, this is obviously not an e�cientalgorithm. To compute an optimal edge cover e�ciently, weneed to be able to determine how much each edge in theedge cover contributes to the total cost of an edit script cor-responding to an edge cover containing it. That is, we needto distribute the cost of the edit script corresponding to anedge cover over the individual edges of the edge cover. Oncewe have a cost de�ned for each edge in the pruned inducedgraph, we can �nd a minimum-cost edge cover using stan-dard techniques based on reducing the edge cover problemto a weighted matching problem [PS82, Law76]. For exam-ple, if the edges [7;61], [7; 63], [9; 61], and [9; 63], have costs0, 1.3, 0.2, and 2.4, respectively, then we generate an edgecover that includes [7; 61] and [9; 61], and excludes [7; 63]and [9; 61].Note, however, that such a reduction of the edit scriptproblem to an edge cover (and thus, weighted matching)problem cannot be exact, given the hardness of the editscript problem.3 Indeed, our method of assigning costs toedges of the induced graph (Section 5.1) is only approximate,and thus the minimum-cost edge cover is not guaranteed toproduce the best solution for the edit script problem.3.4 Generating the Edit ScriptReturning to the pruned induced graph of our running ex-ample, let us assume that we have gone through the processof determining the cost of each edge, and have computed aminimum-cost edge cover according to these costs, obtain-ing the edge cover represented by the bold edges in Figure 3.Our next step consists of using this edge cover to computean edit script that transforms the tree T1 to the tree T2.Our algorithm CtoS (Cover-to-Script) for this purpose isdescribed in Section 5. Here, we briey illustrate some ofthe ideas used by the algorithm by considering its action onan edge in the edge cover for our running example.
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[7; 61], suggesting that the node 7 was copied either directly,or indirectly (due to one of its ancestors being copied). Fur-thermore, we note that the parent (node 4) of node 7 ismatched to the parent (node 55) of node 61 (i.e., the edge[4; 55] exists in the edge cover), while the parent of node 52is not matched to the parent of node 7. This matching ofthe parents suggests that node 61 is the original instance ofnode 7, while node 52 is the copy. We therefore generatea copy operation that copies the subtree rooted at node 7to the location of node 52. A convenient way of depictingthis copy operation is by annotating the corresponding edge([7; 52] in our example) with a cpy mark; this scheme allowsus to talk about edit operations without having to refer toexplicit node identi�ers. Edges that do not correspond toany edit operation (e.g., [6; 57] in our example) are anno-tated with a nil mark. In the sequel, we will use such edgeannotations interchangeably with the actual edit operationsthat they represent.Consider next the edges [8; 53] and [8; 62]. Although boththese edge cover edges are incident on node 8, neither ofthem corresponds to a cpy operation, since the copy 52 ofnode 8 is generated \for free" when node 7 is copied. There-fore, both these edges are annotated nil. Proceeding thusly,we annotate all the edges in the edge cover of our runningexample, to obtain the annotated edge cover depicted in Fig-ure 5, which shows only the edges with non-nil annotations,for clarity. These annotations correspond to the edit script(ins(g; 1; f9g);mov(2; 6);cpy(7; 1)). We see that this editscript is identical to the one in Example 2.1, which happensto be a minimum cost edit script for our example. Of course,the above edit operations may also be listed in the order(mov(2; 6);cpy(7; 1); ins(g; 1; f9g)). Both edit scripts havethe same �nal e�ect, and have the same cost. In general, alledit scripts corresponding to a set of annotated edges havethe same overall e�ect and the same cost.
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+Figure 5: Annotated edges of the edge cover of Figure 3For the above example mh-diff produces a minimum-cost edit script, but it may sometimes not �nd one withglobally minimum cost. In Section 6 we evaluate how oftenthis happens and we briey discuss how one could performadditional searching in the neighborhood of the script foundby mh-diff .This concludes the overview of mh-diff. To summa-rize, the process consists of constructing an induced graphfrom the input trees, pruning the induced graph, �nding aminimum-cost edge cover of the pruned induced graph, and�nally, using this edge cover to obtain an edit script. Inthe following sections, we describe these phases in detail.For ease of presentation, we present these phases in a dif-ferent order than the order in which they are performed. Inparticular, in Section 4, we begin by formally de�ning thecorrespondence between and edit script and an edge coverof the induced graph. In that section, we also describe the



method for generating an edit script from an edge cover ofthe induced graph. In Section 5, we describe how the costof an edit script is distributed over the edges of the corre-sponding edge cover of the induced graph. In that section,we also describe how this cost function is approximated byderiving upper and lower bounds on the cost of an edge ofthe induced graph, and how these bounds are used to prunethe induced graph. Since �nding a minimum-cost edge coverfor a bipartite graph with �xed edge costs is a problem thathas been previously studied in the literature [PS82, Law76],we do not present the details in this paper.4 Edge Covers and Edit ScriptsIn this section, we describe algorithm CtoS, which generatesan edit script between two trees, given an edge cover of theirinduced graph. Before we can describe this algorithm, weneed to understand the relationship between an edit scriptsbetween two trees and edge covers of their induced graph.Therefore, we �rst de�ne the edge cover induced by an editscript. That is, we describe how, given an edit script be-tween two trees, we generate an edge cover of the inducedgraph. (Note that this process is the reverse of the pro-cess the algorithm CtoS performs. However, a de�nitionof this reverse process is needed for the description of thealgorithm.)4.1 Edge Cover Induced by an Edit ScriptIn Section 3, we introduced the graph induced by two treesT1 and T2 as the complete bipartite graph B = (U;V;U�V ),with U = N1 [ f�g and V = N2 [ f	g (where N1 and N2are the nodes of T1 and T2, respectively). Let E be an editscript that transforms T1 to T2; that is, T1 E! T2. We nowde�ne the edge cover K(E) induced by E. Intuitively, we ob-tain K(E) as follows. Create a copy T3 of T1, and introducean edge between each node in T1 and its copy in T3. Applythe edit script to T3, moving, copying, etc. the end-points ofthe edges with the nodes they are attached to as nodes aremoved, copied, etc. Thus, when an a node n 2 T3 is copied,producing node n0, any edge [m;n] is split to produce an newedge [m;n0]. The other edit operations are handled analo-gously. Furthermore, an edge between the special nodes �and 	 is added initially, and removed when it is no longerneeded to cover either � or 	. Due to space limitations, weillustrate the de�nition of the edge cover induced by an editscript informally using an example; the formal de�nition isin [CGM97].
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our �rst step consists of creating a copy T3 of T1, and addingan edge between each node of T1 and its counterpart inT3. We also add the special nodes � and 	, along with anedge connecting them. The result of this step is depictedin Figure 6. For clarity in presentation, the edges betweenthe nodes of T1 and their counterparts in T3 are not shownin Figure 6; instead, we encode these edges using the nodeidenti�ers of T1 and T2. That is, as indicated in the �gure,imagine an edge [n;n+ 30];8n = 1 : : : 10.
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All edges [n, n+30] exist implicitlyFigure 7: Example 4.1: the �nal edge coverOur next step consists of applying the edit script fromExample 2.1 to the tree T3. To enable this applicationof the edit script for T1 to T3, we change the node iden-ti�ers in the edit script from the identi�ers of the nodesof T1 to those of T3, obtaining E1 = (ins(41; g; 31; f39g),mov(32; 36), cpy(37; 31)). As a result of the ins operation,a node with identi�er 41 and label g is inserted as a child ofnode 31, and node 37 is made its child. In addition, we addan edge [�; 41] to the induced edge cover. Next, considerthe action of the mov operation, which moves node 32 tobecome a child of node 37. This operation does not add anynew edges to the edge cover. (The existing edges [2; 32] and[3; 33] continue to exist.) Finally, the cpy operation createsa copy of the subtree rooted at node 36, and inserts thiscopy as a child of node 31. In addition, the edges [7; 42] and[8; 43] are added to the edge cover. The result is depicted inFigure 7, (which also omits edges [n;n + 30];8n = 1 : : : 10for clarity). Note that the transformed tree T3 is now iso-morphic to the tree T2 in Example 2.1, so that essentially,we now have an edge cover of the induced graph of T1 andT2.4.2 Using Edge Covers to Generate Edit ScriptsThe goal of using an edge cover is that it should capturethe essential aspects of an edit script; that is, no importantinformation should be lost in going from an edit script tothe edge cover induced by it. However, there are certain editscripts for which this property does not hold. For example,consider an edit script E2 that inserts a node p as the parentof ten siblings (children of the same parent) n1; : : : ; n10, thenmoves p to another location in the tree, and �nally deletesp. The node p is absent from both the initial tree and the�nal tree. Therefore, an edge cover of the initial and �naltrees contains no record of the temporary insertion of nodep. Thus, we have lost some information in going from E2 tothe edge cover.Is the fact that our edge covers cannot capture edit scriptslike E2 a problem? On the one hand, E2 could be the mini-mum cost edit script mh-diff is trying to �nd. For example,say that insert, delete, and move operations all cost one unit.The cost of E2 would then be the cost of one insert, plus the



cost of one move, plus the cost of one delete, for a total costof 3. If we do not use the \bulk move trick" that E2 uses,we need to move each of n1; : : : ; n10 individually, for a costof 10. Thus, E2 could be the minimum cost edit script, andif we rule it out, then mh-diff would miss it.On the other hand, scripts like E2 do not represent trans-formations that are meaningful or intuitive to an end user.In other words, if a user saw E2, he would not understandwhy node p was inserted, since it really has no function inhis application. True, the costs provided by the user are in-tended to describe the desirability of edit operations, but ifwe abuse these numbers we can end up with \tricky" scriptslike E2 that are more confusing than helpful.Another example of a potentially unintuitive edit scriptis the following: Consider an edit script E3 that moves a noden1 to become a child of another node n2, then makes severalcopies of the subtree rooted at n2 (thus making copies of n1as well), and �nally deletes the original copy of n1. Thisedit script moves n1 to a place where it does not need to be(under n2) only to generate free copies of n1.The cause of the unintuitive nature of the edit scripts de-scribed above is an interaction between di�erent edit opera-tions, which gives rise to a \compound" e�ect. For example,in the edit script E2 above, the e�ect of the move operationis compounded because it acts on a node that was previouslyinserted. Similarly, in edit script E3 above, the e�ects of thecopy operations are compounded because they act on a sub-tree into which a node was previously moved. Our approachis to disallow such unintuitive compound e�ects.A simple way of characterizing edit scripts that disallowundesirable compound e�ects is to require edit operations tooccur in phases, and to order the phases appropriately. Inthe following discussion, we use the names ins, del, etc. todenote phases consisting of, respectively, ins operations, deloperations, etc. First, we require that the ins phase occurafter the del phase, so that an edit script cannot �rst inserta node and then delete it. Next, we require the other editphases (upd, mov, cpy, and glu) to occur after the delphase (so that nodes operated on by these phases cannotbe later deleted), and before the ins phase (so that insertednodes cannot be operated on by these phases). Furthermore,we require that the upd (respectively, mov) phase occur af-ter the cpy phase and before the glu phase, so that an editscript cannot compound the e�ect of an upd (respectively,mov) operation by copying the updated node (and similarlyfor glues). These ordering constraints yield the following or-der of edit phases: del, cpy, upd, mov, glu, ins. (We chosethe relative order of the upd and mov phases arbitrarily.)One additional restriction, not covered by the above order-ing constraint, is the following: A node in a subtree operatedon by a cpy operation cannot be operated on by a glu op-eration. We call edit scripts that satisfy these restrictionsstructured edit scripts. In the sequel, we consider only struc-tured edit scripts. Structured edit scripts have the followingimportant property that allows us to consider only minimaledge covers in the sequel. (A minimal edge cover is an edgecover that is not a proper superset of any edge cover.)Lemma 4.1 The edge cover induced by a structured editscript is minimal.The reader may observe that, in addition to disallowingunintuitive compound e�ects, the above restrictions also dis-allow some intuitive sequences of operations. For example,a structured edit script cannot delete a node produced as a

result of a cpy operation. Therefore, a structured edit scriptcannot copy a subtree containing 100 nodes if 99 of them areneeded, because it would be unable to delete the unwantedcopy of the 100th node. An analogous situation exists forins and glu operations. Our algorithms [CGM97] actu-ally do permit such deletions (called ghost deletions) aftercopies, and insertions (called ghost insertions) before glues.For similar reasons, we also permit certain move operationsto occur before the cpy phase. Furthermore, we allow amove or copy operation to a destination that is currentlyunavailable (e.g., because it is produced by a copy opera-tion) to be \paused" until the destination becomes available.Lemma 4.1 remains true under these weaker restrictions.We now describe how, given a minimal edge cover Kof the graph induced by trees T1 and T2, we compute aminimum-cost edit script corresponding to this edge cover.As explained in Section 3, we also represent the edit oper-ations of such an edit script as annotations on the a�ectededges. Due to space constraints, we do not present the fulldetails of our algorithm CtoS (cover-to-script) in this paper,and present instead a brief explanation of the basic ideasbehind the algorithm. The detailed algorithm is presentedin [CGM97].The algorithm proceeds in phases that roughly reect thephases of a structured edit script described above. We referto edges belonging to the given edge cover K as K-edges. Wesay two nodes are matched to each other if there is a K-edgeconnecting them. The �rst phase of the algorithms is thedelete phase, in which we generate an edit operation del(m)for each node m that is matched to the special node 	. Weclaim that any edit script that matches m to 	 must con-tain this del operation, due to the following observations:Firstly, any node matched to 	 is absent from the �nal tree.Furthermore, there are only two ways in which a node canbe made to disappear: either it is deleted explicitly, or it isglued to some other node. (We use here the fact that struc-tured edit scripts cannot �rst glue a node to another andthen delete the second node.) However, the second methodwill not result in m matching 	 in the edge cover induced bythe script; instead, m will match the node to which it wasglued. Therefore we can safely produce a del(m) operationfor all such nodes m.The next phase of the algorithm handles copy operations.In particular, it looks for sets two or more of K-edges inci-dent on a common nodem 2 T1. Note that from Lemma 4.1,and the observation that minimal edge covers cannot con-tain any path of length three, it follows that if e = [m;n]is such an edge, there can be no other K-edge incident onn. We call such a set of edges a ower with base m. Thisset of edges represents copies of the node m. However, aswe have seen in Section 3, some of the copies of m couldbe produced as a result of some ancestor of m being copied.We call such copies free copies of m. Our algorithm con-siders owers in preorder of the base nodes. As copy oper-ations are generated for some node m, we also keep trackof the number of free copies of nodes in the copied subtree.Knowing the number of available free copies allows us todetermine exactly which owers correspond to explicit copyoperations and which correspond to implicit (free) copies.Furthermore, any unused free copies are nodes that need tobe deleted after the copy operation is performed. These arethe ghost deletions we introduced above. Finally, note thata free copy may need to be moved to its �nal location; thissituation is easily detected by checking whether the parentsof the a�ected nodes match.



The update phase of the algorithm is straightforward,and produces an update operation for each edge [m;n] suchthat the labels of m and n di�er. Since we are consideringonly structured edit scripts, there is no way to avoid suchan update; in particular, \tricks" like updating a node andthen copying it are disallowed. The glue and delete phases ofthe algorithm are analogous to the copy and insert phases,respectively. The details are in [CGM97].5 Finding the Edge CoverIn this section we describe how mh-diff �nds a minimal edgecover of the induced graph. The resulting cover will serveas input to algorithm CtoS (Section 4). Our goal is to �ndnot just any minimal edge cover, but one that correspondsto a minimum-cost edit script. Let us call such an minimaledge cover the target cover.Consider an edge e in our pruned induced graph. To getto the target cover, mh-diff must decide whether e shouldbe included in the cover. To reach this decision, it would benice if mh-diff knew the \cost" of e. That is, if e remains inthe target cover, then it would be annotated (by algorithmCtoS) with some operation, and we could say that the costof this operation is the cost of e. Unfortunately, we have a\chicken and the egg problem" here: CtoS cannot run untilwe have the target cover, and we cannot get the target coveruntil we know the costs it will imply. To break the impasse,our approach uses the following idea:Instead of trying to compute the actual cost of e, wecompute an upper and lower bound to this cost. Thesebounds can be computed without the knowledge of whichother edges are included in the target cover, and serve twopurposes: Firstly, they allow us to design pruning rules thatare used to conservatively eliminate unnecessary edges fromthe induced graph. Secondly, after pruning, the bounds canguide our search for the target cover.As an enhancement, we actually use a variation on theedge cost suggested above. The following example showsthat simply \charging" each annotation to the edge it is onis not entirely \fair." We are given a tree T1 containing twonodes, n1 and n2 with the same label l. Furthermore n1 haschildren n11 and n12 with labels a and b, respectively, and n2has children n21 and n22 with labels c and d, respectively.Suppose T2 is a logical copy of T1. (That is, T1 and T2are isomorphic.) Consider an edge cover that matches eachnode in T1 to its copy in T2 except that it \cross matches"n1 and n2 across the trees, as shown in Figure 8. Given thisedge cover, algorithm CtoS will produce a move operationfor each of the nodes n11, n12, n21, and n22. However, thesemove operations were caused not by any mismatching of thenodes n11, n12, n21, or n22, but instead, by the mismatchingof n1 and n2. Therefore it would be intuitively more fair tocharge these move operations to the edges responsible forthe mismatch, viz. [n1; n02] and [n2; n01]. To achieve this,we use the following scheme: If e is annotated with ins,del, or upd in the target cover, we do charge e for thisoperation. However, if e is annotated by mov, cpy, or glu,then the parent of e, and not e is charged. We call the edgecosts computed in such a fashion fair costs, and de�ne thembelow:
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llFigure 8: Distributing edge costs fairly5.1 An Edge-wise Cost FunctionLet K be an annotated minimal edge cover. For an edgee 2 K, if the annotation on e is mov, cpy, or glu, let cx(e)denote the cost of that operation. If e is annotated with ins,del, or upd, then let cs(e) denote the cost of the operation.Furthermore, let E(m) be the set of edges in K that areincident on m, that is, E(m) = f[m;n] 2 Kg. Let C(m) bethe set of the children of m. We then de�ne the fair cost ofeach edge [m;n] 2 K as follows:cK([m;n]) = cs(m;n)+ 12jE(m)j Xm02C(m) X[m0;n0 ]2K cx([m0; n0])+ 12jE(n)j Xn02C(n) X[m0;n0 ]2K cx([m0; n0]) (1)Note that this cost depends on K, and thus is not a func-tion of e alone. The following lemma, proved in [CGM97],states that the above scheme of distributing the cost of anedge cover over its component edges is a sound one; that is,adding up the cost edge-wise yields the overall cost of theedge cover (i.e., the cost of the corresponding edit script).Lemma 5.1 If K is an annotated, minimal edge cover ofthe graph induced by two trees, then c(K) =Pe2K cK(e).5.2 Bounds on Edge CostsAlthough Lemma 5.1 suggests a method of distributing thecost of an annotated edge cover (and thus an edit script)over the component edges, the cost of each edge depends onthe other edges present in the edge cover, and is thus notdirectly useful for computing a minimum-cost edge cover.However, we use that distribution scheme to derive upperand lower bounds on the fair cost cK(e) of an edge e overall minimal edge covers K.Intuitively, given that the cost of any upd annotation onan edge is charged to that edge (by Equation 1), a simplechoice for the lower bound on the cost of an edge [m;n] issimply the cost cu(m;n) of updating the label m to that of n.However, we can do a little better. In some cases, selectingan edge [m;n] (as part of the edge cover being constructed)may force some of the children m0 of m to be moved to n. Inparticular, this happens for those children of m0 for whichthere is no edge that could possibly match m0 to a child ofn. We call such moves forced moves. In cases where we candetermine a forced move exists, the cost of a mov is added tothe lower bound cost. However, according to Equation 1 notall the cost of a forced move goes to edge [m;n]. In the worst



case, the number of edges incident on m, jE(m)j, is large,leaving [m;n] with an insigni�cant contribution. However,if jE(m)j is greater than 1, we know by Lemma 4.1 thatjE(n)j = 1, so forced moves on the n side would contributeto [m;n]. Thus, we may add the minimum of the second andthe third terms in Equation 1 to the lower bound function.Formally, let E be the set of edges in the induced graph ofT1 and T2.4 We de�ne the forced move cost, cmf (m0; n) of anodem0 2 T1 with respect to another node n 2 T2 as follows:cmf (m0; n) = cm, if 69n0 2 C(n) such that [m0; n0] 2 E, and0 otherwise. The cost cmf(m;n0) is de�ned analogously.We then de�ne the lower bound fair cost, clb, of an edge asfollows:clb([m;n]) = cu(m;n)+12 min8<: Xm02C(m) cmf (m0; n); Xn02C(n) cmf(m;n0)9=;To help us compute the upper bound, let us now de�nea conditional move cost, cmc. Intuitively, cmc(m0; n) costsone mov cost unless there is a partner of m0 that is a childof n. Formally, cmc(m0; n) = 0, if 9n0 2 C(n) such that[m0; n0] 2 E, and cm otherwise. The cost cmc(n0;m) is de-�ned analogously. Furthermore, de�ne cw(m;n) = cu(m;n)if m and n are regular nodes, 0 if (m = �) ^ (n = 	), ciif(m = �) ^ (n 6= 	), and cd if (m 6= �) ^ (n = 	).Using reasoning similar to that used for deriving thelower bound cost above, we arrive at the following de�ni-tion for the upper bound fair cost, cub, of an edge:cub([m;n]) = cw(m;n)+ 12 Xm02C(m)(cc(jE(m0)j � 1) + cmc(m0; n))+ 12 Xn02C(n)(cg(jE(n0)j � 1) + cm?(n0;m))Note that both cub(e) and clb(e) can be computed bymh-diff without knowing the target cover. Furthermore,the following lemma, proved in [CGM97], states that theabove de�nitions of cub(e) and clb(e), are upper and lowerbounds, respectively, on the fair cost contribution cK(e) ofedge e to any minimal edge cover K that contains e.Lemma 5.2 Let B = (U;V;E) be the bipartite graph in-duced by trees T1 and T2. Let B0 = (U;V; E0), whereE0 � E. Let K denote the collection of all minimal edgecovers of B0. We then have the following inequalities:clb(e) � minK2K cK(e) and cub(e) � maxK2K cK(e)5.3 Pruning RulesWe now use the upper and lower bound functions for thecost of an edge as de�ned above to introduce the pruningrules we use to reduce the size of the induced graph of thetwo trees being compared. Let e1 = [m;n] be any edge in4As we will see later, although E initially includes all edges in thecomplete bipartite graph, the pruning of edges results in successivereduction of the size of E.

the induced graph. Let e2 be any edge incident onm, and lete3 be any edge incident on n. Intuitively, our �rst pruningrules removes an edge with a lower bound cost that is sohigh that it is preferable to match each of its nodes usingsome other edge that has a suitably low upper bound cost.Pruning Rule 1 Let Ct = maxfcm; cc; cgg. If clb(e1) �cub(e2) + cub(e3) + 2Ct then prune e1.Example 5.1 To illustrate this rule, consider a tree T1 con-taining, among others, two childless nodes 1 (label f) and 2(label g). Similarly, T2 contains childless nodes 3 (label g)and 4 (label f), among others. Say the costs cm, cc, and cgare one unit each, while the update costs are cu(f; g) = 3,and cu(f;f) = cu(g; g) = 0. Let us now consider if edgee1 = [1; 3] can be pruned because edges e2 = [1; 4] ande3 = [2; 3] exist. Since the nodes have no children, it is easyto compute clb(e1) = cu(f; g) = 3, cub(e2) = cu(f;f) = 0,and cub(e3) = cu(g; g) = 0. Since Ct = 1, we see that Prun-ing Rule 1 holds and e1 can be safely removed. The intuitionis that in the worst case we can replace e1 by edges e2 ande3. Using the latter edges could introduce at most the costscub(e2) and cub(e3), plus the cost of two mov, cpy, or gluoperations. The last factor can arise, for instance, if node 2ends up being matched not only to node 3 but to anothernode in T2. This means that node 2 needs to be copied,which would not have been necessary if we had kept edgee1 and not used e2. Similarly, the removal of edge e1 maycause an extra glue operation for node 4. However, even inthis worst case scenario, the costs would be less than thecost of updating the label of node 1 to that of node 2, so wecan safely remove the [1; 2] edge.Our second pruning rule (already illustrated in Section 3)states that if it is less expensive to delete a node and insertanother, we do not need to consider matching the two nodesto each other. More precisely, we state the following:Pruning Rule 2 If clb(e1) � cd(m) + ci(n) then prune e1.Note that the above pruning rules are simpler to apply ifwe let e2 and e3 be the minimum-cost edge incident onm andn, respectively. The following lemma, proved in [CGM97],tells us that the pruning rules are conservative:Lemma 5.3 Let Ep be the set of edges pruned by repeatedapplication of Pruning Rules 1 and 2. Let K1 be any mini-mal edge cover of the graph B. There exists a minimal edgecoverK2 such that (1)K2\Ep = ;, and (2) C(K2) � C(K1).The pruning phase of our algorithm consists of repeat-edly applying Pruning Rules 1 and 2. Note that the absenceof edges raises the lower bound function, and lowers theupper bound function, thus possibly causing more edges toget pruned. Our algorithm updates the cost bounds for theedges a�ected by the pruning of an edge whenever the edgeis pruned. By maintaining the appropriate data structures,such a cost-update step after an edge is pruned can be per-formed in O(logn) time, where n is the number of nodes inthe induced graph.5.4 Computing a Min-Cost Edge CoverAfter application of the pruning rules described above, weobtain a pruned induced graph, containing a (typically small)



subset of the edges in the original induced graph. In favor-able cases, the remaining edges contain only one minimaledge cover. However, typically, there may be several mini-mal edge covers possible for the pruned induced graph. Wenow describe how we select one of these minimal edge covers.We �rst approximate the fair cost of every edge e thatremains after pruning by its lower bound elb(e). (We couldhave also use the upper bound, or an average of both bounds,since this is only an estimate.) Then, given these con-stant estimated costs, we compute a minimum-cost edgecover by reducing the edge cover problem to a bipartiteweighted matching problem, as suggested in [PS82]. Sincethe weighted matching problem can be solved using stan-dard techniques, we do not present the details in this paper,noting only that given a bipartite graph with n nodes and eedges, the weighted matching problem can be solved in timeO(ne). For our application, e is the number of edges thatremain in the induced graph after pruning.6 Implementation and PerformanceIn this section, we describe our implementation of mh-diff,and discuss its analytical and empirical performance. Fig-ure 9 depicts the overall architecture of our implementa-tion, with rectangles representing the modules (numbered,for reference) of the program, and other shapes represent-ing data. Given two trees T1 and T2 as input, Module 1constructs the induced graph (Section 3.1). This inducedgraph is next pruned (Module 2) using the pruning rulesof Section 5.3 to give the pruned induced graph. In Mod-ule 2, the update cost for each edge in the induced graphis computed using the domain-dependent comparison func-tion for node labels (Section 2.2). The next three modulestogether compute a minimum-cost edge cover of the prunedinduced graph using the reduction of the edge cover prob-lem to a weighted matching problem [PS82]. That is, thepruned induced graph is �rst translated (by Module 3) intoan instance of a weighted matching problem. This weightedmatching problem is solved using a package (Module 4)[Rot] based on standard techniques [PS82]. The output ofthe weighted matching solver is a minimum-cost matching,which is translated by Module 5 into K0, a minimum-costedge cover of the pruned induced graph. Next, Module 6uses the minimum-cost edge cover computed, to producethe desired edit script, using the method described in Sec-tion 4.2).
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Recall that since we use a heuristic cost function to com-pute a minimum-cost edge cover, the edge cover producedby our program, and hence the edit script may not be theoptimal one. We have also implemented a simple searchmodule that starts with minimum-cost edge cover K0 (seeFigure 9) computed by our program and explores its neigh-borhood of minimal edge covers in an e�ort to �nd a bettersolution. The search proceeds by �rst exploring minimaledge covers that contain only one edge not in K0. Next,we explore minimal edge covers containing two edges not inK0, and so on. The intuition is that we expect the optimalsolution to be \close" to the initial solution K0. Although,in the worst case, such an exploration may be extremelytime-consuming, note that as a result of pruning edges, thesearch space is typically much smaller than the worst case.Due to space constraints, we do not describe the details ofthis search phase in this paper.We have used our implementation to compute the di�er-ences between query results as part of the Tsimmis and C3projects at Stanford [CGMH+94, WU95]. These projectsuse the oem data model, which is a simple labeled-objectmodel to represent tree-structured query results. In par-ticular, we have run our system on the output of Tsimmisqueries over a bibliographic information source that con-tains information about database-related publications in aformat similar to BibTeX. Since the data in this informationsource is mainly textual, we treat all labels as strings. Forthe domain-dependent label-update cost function, we usea weighted character-frequency histogram di�erence schemethat compares strings based on the number of occurrences ofeach character of the alphabet in them. For example, con-sider comparing the labels \foobar" and \crowbar." Thecharacter-frequency histograms are, respectively, (a : 1; b :1; f : 1; o : 2; r : 1) and (a : 1; b : 1; c : 1; o : 1; r : 2; w : 1). The dif-ference histogram is (c :�1; f : 1; o : 1; r :�1; w :�1). Addingup the magnitudes of the di�erences gives us 5, which wethen normalize by the total number of characters in thestrings (13), and scale by a parameter (currently 5), to getthe update cost (5=13) � 5 = 1:9.Let us now analyze the running time of our program. Letn be the total number of nodes in both input trees T1 and T2.Constructing the induced graph (Module 1, in Figure 9) in-volves building a complete bipartite graph with O(n) nodeson each side. We also evaluate the domain-dependent label-comparison function for each pair of nodes, and store thiscost on the corresponding edge. Thus, building the in-duced graph requires time O(kn2), where k is the cost ofthe domain-dependent comparison function. Next, considerthe pruning phase (Module 2). By maintaining a priorityqueue (based on edge costs) of edges incident on each nodeof the induced graph, the test to determine whether an edgemay be pruned can be performed in constant time. If theedge is pruned, removing it from the induced graph requiresconstant time, while removing it from the priority queuesat each of its nodes requires O(logn) time. When an edge[m;n] is pruned, we also record the changes to the costscmc(m;p(n)), cmc(n; p(m)), cmf (m;p(n)), and cmf (n; p(m)),which can be done in constant time. Thus, pruning an edgerequires O(logn) time. Since at most O(n2) are pruned, thetotal worst case cost of the pruning phase is O(n2logn). Lete be the number of edges that remain in the induced graphafter pruning. The minimum-cost edge cover is computed intime O(ne) by Modules 3, 4, and 5. The computation of theedit script from the minimum-cost edge cover can be donein O(n) time by Module 6. (Note that the number of edges



in a minimal edge cover is always O(n).)The number of edges that remain in the induced graphafter pruning (denoted by e above) is an important metricfor three main reasons. Firstly, as seen above, a lower num-ber of edges results in faster execution of the minimum-costedge cover algorithm. Secondly, a smaller number of edgesdecreases the possibility of �nding a suboptimal edge cover,since there are fewer choices that need to be made by thealgorithm. Thirdly, having a smaller number of edges in theinduced graph reduces exponentially the size of the space ofcandidate minimal edge covers that the search module needsto explore.
0100200300400500600700 0 50 100 150 200 250Edgesafterpruning(e) Number of nodes (n)10% edits: 3333333 33333320% edits: +++++++ +++ +++n2n=2Figure 10: E�ectiveness of pruningGiven the importance of the metric e, we have conducteda number of experiments to study the relationship between eand n. We start with four \input" trees representing actualresults of varying sizes from our Tsimmis system. For eachinput tree, we generate a batch of \output" trees by applyinga number of random edits. The number of random edits iseither 10% or 20% of the number of nodes in the input tree.Then for each output tree, we run mh-diff on it and itsoriginal input tree. The results are summarized by the graphin Figure 10. The horizontal axis indicates the total numberof nodes in the two trees being compared (and hence, in theinduced graph). The vertical axis indicates the number ofedges that remain after pruning the induced graph. Notethat the ideal case (best possible pruning) corresponds toe = dn=2e, since we need at least dn=2e edges to cover nnodes, whereas the worst case is e = n2 (no pruning at all).For comparison, we have also plotted e = n=2 and e = n2on the graph in Figure 10. We observe that the relationshipbetween e and n is close to linear, and that the observedvalues of e are much closer to n=2 than to n2.Note that in Figure 10 we have plotted the results fortwo di�erent values of d, the percentage of random edit op-erations applied to the input tree. We see that, for a givenvalue of n, a higher value of d results in a higher value of e,in general. We note that some points with a higher d valueseem to have a lower value of e than the general trend. Thisis because applying d random edits is not the same as hav-ing the input and output trees separated by d edits, dueto the possibility of redundant edit operations. Thus, somedata points, even though they were obtained by applying drandom edits, actually correspond to fewer changes in thetree.

We have also studied the quality of the initial solutionproduced by mh-diff. In particular, we are interested in�nding out in what fraction of cases our method producessuboptimal initial solutions, and by how much the cost ofthe suboptimal solution exceeds that of the optimal. Giventhe exponential (in e) size of the search space of minimaledge covers of the induced graph, it is not feasible to tryexhaustive searches on large datasets. However, we haveexhaustively searched the space of minimal edge covers, andcorresponding edit scripts, for smaller datasets. We ran 50experiments, starting with an input tree T1 derived as inthe experiments for e above, and using 6 randomly generatededit operations to generate an output tree.5 We searched thespace of minimal edge covers of the pruned induced graphexhaustively for these cases, and found that the mh-diffinitial solution di�ered from the minimum-cost one in only2 cases out of 50. That is, in 96% of the cases mh-difffound the minimum cost edit script, and of course it didthis in much less time than the exhaustive method. In thetwo cases where mh-diff missed, the resulting script costabout 15% more that the minimum cost possible.7 Related WorkThe general problem of detecting changes from snapshots ofdata has been studied before from di�erent angles. For ex-ample, [WF74] de�nes a string-to-string correction problemas the problem of �nding the best sequence of insert, delete,and update operations that transform one string to another.The problem is developed further in [Wag75], which addsthe \swap" operation to the list of edit operations. Thesepapers also introduce the structure of a \trace" or a match-ing between the characters of the strings being comparedas a useful tool for computing an edit script. A simplerchange detection problem for strings, using only insertionsand deletions as edit operations has been studied extensively[Mye86, WMG90]. The idea of a longest common subse-quence replaces the idea of a trace in this simpler problem.A variant of the algorithm presented in [Mye86] for comput-ing the longest common subsequence is implemented in thegnudi� [HHS+] program. All these algorithms work withstrings, that is, with at-�le, or relational data, and are notsuitable for computing changes in structured data.In [ZS89, SZ90], the authors de�ne a change detectionproblem for ordered trees, using insertion, deletion, and label-update as the edit operations, observing its added di�cultycompared to the equivalent problem for strings; they alsopresent an e�cient dynamic-programming based algorithmto solve that problem. A proof of the NP-hardness of a simi-lar change detection problem (using insertion, deletion, andlabel-update) for unordered trees is presented in [ZWS95],which also presents an algorithm for a restricted version ofthe change detection problem. In [SWZS94], the authorspresent an enumerative (exponential time) algorithm forthe change detection problem for unordered trees, as wellas heuristic algorithms based on search techniques such assimulated annealing. An important assumption made bythe algorithms in [ZS89, SZ90, ZWS95, SWZS94] is that thecost of updating any label to any other label is always lessthan the cost of deleting a node with the old label and in-serting a node with the new label. While this restrictionis reasonable for some domains, it does not always lead to5In these preliminary experiments, we used a slightly di�erent ver-sion of the algorithm described in Section 4.1; we believe that thedi�erences do not impact the results signi�cantly.



intuitive results. For example, consider two trees with thesame structure, but completely di�erent labels on the nodes(e.g., two trees representing di�erent query results, but witha similar structure). Assuming the cost of label update is al-ways lower than the cost of the corresponding insertion anddeletion will result in an edit script that simply updates allthe labels in the trees. While this is technically sound, it isnot the semantically desirable result for this example.In [CRGMW96] we de�ned a variant of the change de-tection problem for ordered trees, using subtree moves asan edit operation in addition to insertions, deletions, andupdates, and presented an e�cient algorithm for solvingit. That algorithm uses domain characteristics to �nd asolution e�ciently. A major drawback of the algorithm in[CRGMW96] is that it assumes that the number of dupli-cates (or near duplicates) in the labels found in the inputtrees is very small. Another drawback of of the algorithmin [CRGMW96] is that it assumes each node of the inputtrees has a special tag that describes its semantics. (For ex-ample, an ordered tree representing a document may havetags \paragraph," \section," etc.) Furthermore, that algo-rithm assumes the existence of a total order <t over thesetags such that a node with tag t1 cannot be the child of anode with tag t2 unless t1 � t2. While these assumptionsare reasonable in a text comparison scenario, there are manydomains in which they do not hold.The work presented in this paper di�ers from previouswork in several important ways. Firstly, we detect the changedetection problem for unordered trees, which is inherentlyharder than the similar problem for ordered trees. Secondly,we consider a rich set of edit operations, including copy andmove operations, that make the edit script computed moremeaningful and intuitively usable. Furthermore, we do notassume that the nodes of the input trees are \tagged" in amanner required by the algorithm in [CRGMW96], nor dowe assume the absence of duplicates (or near duplicates) inthe labels of the nodes in the input trees. Finally, we donot assume that the cost of updating any label to any otherlabel is always less than the cost of deletion and insertion.8 ConclusionWe have described the need for computing semantically mean-ingful changes in structured data. We have introduced op-erations such as subtree copy and subtree move that allowus to describe changes to structured data more meaningfullythan is possible by using only the traditional insert, delete,and update operations. We have formally de�ned the prob-lem of computing a minimum-cost edit script, consisting ofthese operations, between two trees. To solve this problem,we have presented an algorithm that is based on represent-ing an edit script between two trees as an edge cover of abipartite graph induced by the trees. We have also studiedthe the performance of our algorithm both analytically andempirically. The experimental results, although preliminary,are very encouraging.References[CGM97] S. Chawathe and H. Garcia-Molina. Meaningfulchange detection in structured data. Available at urlhttp://www-db.stanford.edu, 1997. Extended version.
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