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Abstract. We present protocols for distributed computation of rela-
tional intersections and equi-joins such that each site gains no informa-
tion about the tuples at the other site that do not intersect or join with
its own tuples. Such protocols form the building blocks of distributed
information systems that manage sensitive information, such as patient
records and financial transactions, that must be shared in only a limited
manner. We discuss applications of our protocols, outlining the ramifica-
tions of assumptions such as semi-honesty. In addition to improving on
the efficiency of earlier protocols, our protocols are asymmetric, making
them especially applicable to applications in which a low-powered client
interacts with a server in a privacy-preserving manner. We present a brief
experimental study of our protocols.

1 Introduction

Motivating Applications We are witnessing a rapid rise in the number,
size, and variety of databases maintained by organizations that must cooperate
to a limited extent. In general, correlating data across two databases is likely
to be beneficial to both parties. For example the motor-vehicle departments of
two states may benefit from sharing information on recently issued drivers’ li-
cences, moving violations, and other records. However, regulations may require
that one department divulge information about a person’s moving violations to
another department only if the other department also has some violations on
record for that person. As another example, consider the information stored by
various government agencies, such as the revenue service, the immigration ser-
vice, and police departments at various levels. Correlating information across
such databases is likely to be invaluable in preventing crime and tracking sus-
pects. However, indiscriminate sharing will lead to serious violations of people’s
privacy. Again, laws or other guidelines may specify the circumstances under
which these agencies may share information about a person or group of persons.

Problem Definition In this paper, we focus on two 2-party privacy-preserving
database operations: intersection and equi-join. More precisely, given relations
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TS(A, β) and TR(A, γ) at sites (parties) S and R, respectively, we wish to com-
pute the intersection πATS ∩πATR or the equi-join TS ./ TR. (We use β and γ to
denote the non-A-attributes of TS and TR, respectively. For ease of presentation
only, we assume that there is no overlap between β and γ.) The intersection
protocol should reveal only |TS | and πAS∩πAR to R (and, similarly, reveal only
|TR| and πAS ∩ πAR to S). Similarly, the equijoin protocol should reveal only
|TS | and TS >< TR to R (and |TR| and TR >< TS to S).

We assume that parties running the protocols are semi-honest, or honest-

but-curious, meaning they execute the protocol exactly as specified, but they may
attempt to glean more than the obvious information by analyzing the transcripts.
In our example of the cooperating government agencies, this assumption means
that the officials at one agency will attempt to make the best use possible of the
information they are allowed to obtain, perhaps carefully choosing their queries
and analyzing the results. However, they will not attempt to circumvent the
protocol itself (for example, by sending incorrectly computed results or other
false data).

To illustrate some of the issues, consider the following simple protocol, which
seems reasonable at first glance: Site S sends to R the result of applying a
one-way hash function h to its A values. That is, S sends h(πATS) to R. In
turn, R applies the same hash function to its own A values to yield h(πATR).
By computing the intersection of the hashed sets, h(πATS) ∩ h(πATR), R can
determine the intersection πATS∩πATR (because the restriction of h−1 to values
in R’s database is known to R). Since h is not easily invertible on arbitrary
values, it seems that R is unable to learn about A-values at S that are not at
R. Unfortunately, this simple protocol succumbs to the following simple attack:
Given the set h(πATS) of hash values, R can enumerate the domain of A and
compute h(v) for each domain value v. When h(v) ∈ h(πATS), R infers v ∈ πATS .
When A’s domain is not very large, this attack quickly discloses all of πATS to
R, in violation of our privacy requirements.

Several approaches to solving such problems have appeared in prior work,
and we mention a couple here: Perhaps the simplest solution is for R and S to
relegate all computations to a third party trusted by both. While this approach
may be workable in some situations, such trusted third parties are often hard
to identify. Another alternative is to use one of the many secure multi-party

computation protocols. Although these protocols present elegant and general-
purpose solutions to our problem, they do so at the cost of very high computation
and communication overheads. We discuss these ideas, along with other related
work, further in Section 2.

Our protocols follow the general approach outlined by Agrawal, Evfimievski,
and Srikant [13]. Unlike their symmetric use of a commutative encryption scheme
to protect the privacy of both parties, our protocols are asymmetric: They use
blind signatures to protect the privacy of one party and one-way hash func-
tions to protect the privacy of the other. They incur smaller computation and
communication overheads than those incurred by the earlier protocols and their
asymmetric nature makes them especially interesting to commonly occurring
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applications consisting of a well-provisioned server communicating with clients
of modest capabilities.

Contributions We may summarize the main contributions of this paper as
follows:

– We present protocols for privacy-preserving computation of inter-database
intersections and joins. Our protocols improve on the computation and com-
munication overheads of prior work. An interesting feature of our protocols
is that the overheads are asymmetric.

– We discuss applications of our protocols, highlighting ways to take advantage
of their asymmetry and other features.

– We have publicly released our implementation of the protocols so that others
may extend and experiment with it. The Java source code is available under
GNU GPL terms at http://www.cs.umd.edu/~chaw/projects/pido/.

– We present a brief experimental study quantifying the performance of our
protocols.

Outline We begin by discussing related work in Section 2. Section 3 presents
some of the ideas upon which our work builds, including earlier work on similar
protocols [1]. In Section 4, we present our protocols along with an informal
analysis. In Section 5, we discuss applications, highlighting the ramifications of
asymmetry and the assumption of semi-honesty. Section 6 presents the results
of our experimental study. Section 7 summarizes our results and discusses future
work.

2 Related work

As noted in Section 1, the method closest to ours is that by Agrawal, Evfimievski,
and Srikant [1], which is discussed in Section 3. In this section, we discuss some
of the other work in the areas such as secure multiparty computation, privacy-
preserving data mining, private information retrieval, and privacy-preserving
recommender systems.

Du and Atallah’s paper [11] provides a good review of secure multi-party
computation (SMC) problems and develops a framework to identify new SMC
problems. Yao first investigated the secure two party computation problem [24].
This problem was later generalized to multiparty computation. Chaum, Cre-
peau, and Damgard showed that essentially any multiparty protocol problem
can be solved assuming only authenticated secrecy channels between pairs of
participants [8].

Work in the area of privacy-preserving data mining focuses on problem of
computing aggregate information from a very large amount of data without re-
vealing individual data items. A commonly used idea is to introduce random
perturbations to disguise the individual data items and to use reconstruction
methods to recover the aggregated data or the distribution of the aggregation.
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Agrawal and Srikant have proposed methods for numerical data that use Gaus-
sian and uniform perturbation to disguise the data in the decision tree classi-
fier model [2]. Canny has proposed methods for privacy-preserving collaborative
filtering [6, 7]. The methods use homomorphic encryption to allow sums of en-
crypted vectors to be computed and decrypted without revealing individual data.
In this scheme, a group of users can compute aggregations over all data with-
out gaining knowledge of specific data about others. Methods for categorical
data based on random response schemes have also been proposed. For example,
Du and Zhan have modified the ID3 classification algorithm based on random-
ized response techniques [12]. They show that if the appropriate randomization
parameters are used, the accuracy achieved is very close to that using the un-
modified ID3 algorithm on the original data. Vaidya and Clifton have addressed
privacy preservation in k-means clustering (a technique to group items into k
clusters) [22]. Their paper presents a method for k-means clustering when differ-
ent sites contain different attributes for a common set of entities. Evfimvievski et
al. have presented a method for association-rule mining in categorical data [13].
They describe the privacy leaks in the straightforward uniform randomization
method and propose a class of randomization operations that are more effective.
Iyengar has addressed the privacy protection problem in a data dissemination
environment [19]. Transformation (generalization and suppression) is performed
on the identifying content of data, such that no sensitive information is disclosed
during dissemination. Unlike our methods in this paper, methods of the kind de-
scribe above permit inaccurate or modified data and a non-perfect result. The
address an environment that consists of an information collector and several
individual data sources, and privacy concerns are limited to the data sources,
assuming a trusted collector.

The work on private information retrieval (PIR) is also related. A PIR pro-
tocol allows a user to access k (k > 1) duplicated copies of data, and privately
retrieve one of the n bits of the data in such a manner that the databases cannot
figure out which bit the user has retrieved. Chor and Gilboa have presented a
method that focuses on computational privacy, rather then information-theoretic
privacy [9]. This privacy is only guaranteed with respect to databases that are
restricted to polynomial time computations. The paper shows that the computa-
tional approach leads to substantial savings. Di-Crescenzo, Ishai, and Ostrovsky
have presented methods to reduce the communication overhead of PIR by using
a commodity-based model [10]. In this case, one or more additional commodity
servers are added to the PIR model. These servers may send off-line randomized
messages to the user and databases. With the help of these servers, their schemes
shift most of the communication to the off-line stage and are resilient against
collusions of databases with more than a majority of the commodity servers.
Beimel and Ishai have provided an efficient protocol for t-private, k-server PIR.
that is secure despite t of the k servers colluding [4]. Gertner et al. present the
Symmetrically-Private Information Retrieval (SPIR) model, which guarantees
the privacy of the database as well as that of the user [15]. That is, a user learns
only a single bit (the record) of x (the database), but no other information
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about the data. Their paper also describes how to transform PIR schemes to
SPIR schemes.

Huberman, Franklin, and Hogg have discussed a problem very similar to ours
in the context of recommendation systems [17, 16]. Their protocol is used to find
people with common preferences without revealing what the preferences. In a
database context, Lindell and Pinkas have addressed the same privacy concerns
as those in this paper [20]. Their paper addresses the privacy-preserving set-
union problem. The central idea is to make all the intermediate values seen by
the players uniformly distributed.

Protocols have also been proposed for a private equality test, which is a
simplified version of intersection operation in which each of the two parties has
a single record. Fagin, Naor, and Winkler have reviewed and analyzed dozens
of solutions for this problem [14]. Vaidya and Clifton have presented a proto-
col for securely determining the size of set intersections in the multi-party case
[23]. The main idea is to transform every party’s database by applying a secure
keyed commutative hash function and to calculate the intersection size on the
transformed databases. Ioannidis, Grama, and Atallah have described a secure
protocol for computing dot products, which can be used as a building block in
many problems, such as the intersection size problem [18]. In contrast to con-
ventional heavyweight cryptographic approaches, their protocol uses lightweight
linear algebraic technique. Atallah and Du have addressed secure two-party com-
putational geometry problems [3]. They present a secure scalar product protocol
(with a slightly different definition of the scalar product problem) and secure vec-
tor dominance protocol. Using these as building blocks, they construct efficient
protocols for the point-inclusion and polygon intersection problems.

3 Preliminaries

Recall from Section 1 that we are given relations TS(A, β) and TR(A, γ) at
sites S and R, respectively, where β and γ represent the non-A attributes of the
relations. For ease of presentation, we assume A 6∈ β∪γ. The intersection protocol
is required to compute πATS ∩ πATR, revealing only |TS | and πAS ∩ πAR to R
and, similarly, revealing only |TR| and πAS ∩ πAR to S. The equijoin protocol
is required to compute TS ./ TR, revealing only |TS | and TS >< TR to R and
revealing only |TR| and TR >< TS to S.

The protocols by Agrawal, Evfimievski, and Srikant [1] (henceforth, the
AES03 protocols) use a commutative encryption scheme as a building block.
A function f is a commutative encryption function if fa(fb(x)) = fb(fa(x)),
where a and b are two random keys. The AES03 intersection protocol may
be summarized as follows:

1. Each of S and R applies a hash function h to its data, to yield XS = h(VS)
at S and XR = h(VR) at R. Each also randomly generates a secret key. Let
eS and eR denote the secret keys of S and R, respectively.

2. Both sites encrypt their hashed data using their secret keys to yield YS =
feS

(XS) at S and YR = feR
(XR) at R.
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3. Site R sends YR to S, after reordering the items in YR randomly.
4. (a) Site S sends YS to R, after reordering the items in YS randomly.

(b) Site S encrypts each y ∈ YR using its private key eS , generating tuples
of the form (feS

(y), y). We have
Z ′

R
= {(feS

(y), y) | y ∈ YR} = {(feS
(feR

(x)), y) | x ∈ XR}.
(c) Site S sends Z ′

R
to R.

5. Site R encrypts each y ∈ YS with eR, obtaining ZS = feR
(feS

(XS))
6. Finally, R compares elements in ZS with the first components of the pairs

in ZR. When a match is found for some (feS
(feR

(x)), y) ∈ ZR, R deter-
mines that the element corresponding to y (which is known to R) is in the
intersection.

The AES03 equijoin protocol is similar to the above intersection protocol.
The main difference is that, in step 4, S also encrypts the non-A attributes β of
each record with a new key that can be recovered only when the corresponding
A value is in the intersection. Thus, S performs two commutative encryptions
on each value of attribute A: The first is for the intersection and the second is
to obtain the key used to encrypt the other attributes (β). Site R first computes
the intersection as in the intersection protocol. Then, it obtains the key for
decrypting the corresponding equijoin results. For further details, we refer the
reader to the original paper [1].

For the commutative encryption function, both AES03 protocols use the
power function fe(x) = xe mod p, where p is a safe prime number. In our imple-
mentation, p is 1024 bits long.

Blind Signatures As noted earlier, our protocols use blind signatures to
help preserve the privacy of one party. Although our protocols do not depend
on any particular blind signature scheme, for concreteness we will assume the
RSA scheme in this paper [21]. Consider an RSA key pair: public key (e,N) and
private key (d,N). In the following, we omit the modulus N and refer to the
keys as simply e and d. To sign a message m with private key d, one computes
sig = md modN . To check a signature, one computes m′ = sige modN , and
checks whether m = m′. The blind signature scheme works as follows. Let e and
d be the public and private keys of S. (As usual, e, but not d, is known to others.)
Suppose R would like to obtain S’s signature on a message m without revealing
m to S. For this purpose, R first chooses a random number r and sends x = m×re

to S. Site S returns a signed version of x: sig ′ = xd = (m×re)d = md×r. Site R
computes sig = sig ′/r = md×r/r = md, which is message m with S’s signature.
All the above computations are modulo N , which we have omitted for brevity.
In comparisons with the AES03 protocols, we assume N is 1024 bits long.

4 Privacy-Preserving Protocols

Intersection Protocol Using the notation described in Section 3, we de-
scribe our privacy preserving intersection protocol below. The protocol is also
illustrated in Figure 1 (with the modulus N omitted for simplicity).
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1. Both S and R apply a hash function h to their datasets to yield XS = h(VS)
and XR = h(VR). Site S generates an RSA key pair, e and d and publishes
its public key e to R.

2. Site R blinds XR giving YR = {y = x × re | x ∈ XR}, where r is a different
random value for each x.

3. R sends YR to S.

4. S signs YR and gets the signature set ZR. S sends ZR back to R without
changing the order.

5. R uses the set of r values to unblind the set ZR and obtains the real signature
set SIGR.

6. R then applies another hash function H on SIGR. HSIGR = H(SIGR).

7. S signs XS and gets the signature set SIGS .

8. S applies H to SIGS : HSIGS = H(SIGS). S sends HSIGS to R.

9. S also signs the set HSIGS so that that, later on, S cannot deny having sent
this set and R cannot forge items into this set. This step is optional, and is
used only when the above protection is needed, for example in the equijoin
protocol described later.

10. R compares HSIGR and HSIGS . Using the known correspondence between
HSIGR and VR, R gets the intersection.

11. SIG = SIGR ∩ SIGS . R applies another one-way hash function H ′ on SIG .
H ′SIG = H ′(SIG). R then sends HSIG to S, along with H ′SIG . This step
is optional, and is used only when S needs to know the intersection, for
example, in the following equijoin protocol.

Key Pair: (e,d) Pub Key: (e)RS

SG is the signature on $HSIG_S$

$HSIG,H’SIG$

HSIGS , SG

HSIG = HSIGR ∩ HSIGS

SIG = SIGR ∩ SIGS

H ′SIG = H ′(SIGR ∩ SIGS)

XS = h(VS) XR = h(VR)

Data Set: VRData Set: VS

From HSIG, get intersection

YR = {x ∗ re|x ∈ XR, r is random}
YR

ZR = {yd|y ∈ YR}

SIGR = {z/r|z ∈ ZR}

HSIGR = {H(sig)|sig ∈ SIGR}

ZR

SIGS = {xd|x ∈ XS}

HSIGS = {H(sig)|sig ∈ SIGS}

From HSIG, get intersection

Fig. 1. Intersection protocol
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Analysis We now compare our intersection protocol (P2) with the AES03
intersection protocol (P1). We will not count the optional steps in P2, since the
P1 does not provide the additional functionality they enable (verifiable messages
and S’s knowledge about intersection). In any case, the additional computation
and communication costs of these steps are small.

The number of communication rounds for both protocols is the same. Com-
munication bandwidth used in the first two rounds of both protocols is (1024 ×
(NS + NR)), where NS and NR are the sizes of the two relations. In the third
round, S only sends a set of hash value in P2. In P1, S needs to send the set of
commutative encryption blocks. Since the size of hash values (for example, 128
bits for MD5) is almost one order of magnitude shorter than the encryption block
size (1024 bits), our protocol will use less communication. The communication
savings are (1024 − 128) ∗ NS bits.

In the commutative encryption scheme example described in the AES03 pa-
per [1], the encryption function used is fe(x) = xe mod p. Here p is a 1024-bit
safe prime number. e ∈ {1, 2, . . . , q − 1}, where q = (p − 1)/2. The computation
of a single encryption is almost the same as a single RSA signature operation
with a 1024-bit public number N . We performed some experiments on these
two operations with Java. The result suggests that the commutative encryption
requires about twice the running time of the RSA signature. We attribute this
result to the use of an optimized RSA operation (Java API) vs. the unoptimized
commutative encryption (implemented directly with the BigInteger class). For
our analysis here, we assume one commutative encryption and one RSA sig-
nature operation take the same amount of time, T . Also, we assume that the
hash operation is very fast compared with others, and we do not account for it.
Our protocol requires blind/unblind operations. By our experiments, we found
that the blind/unblind operation is also fast (about 100 times faster than the
signature operation), due to the fact that e is normally very small (3 or 65537).
With the above assumptions, it is easy to determine that our protocol requires
(NS + NR)× T time for signatures and NR × 2× T/100 for blind/unblind oper-
ations. Total time required is (NS + NR)T + NRT/50). In contrast, the AES03
protocol requires 2(NS + NR)T time.

Another property of our protocol is the highly asymmetric computation for
R and S. S performs most of the computation (NS + NT signatures plus some
hash operations), while R only performs NR fast blind/unblind operations. This
feature makes the protocol very useful in an asymmetric environment, such as
wireless hand-held device communicating with a powerful server.

There are two optional steps whose purpose will become clearer when we
discuss the equijoin protocol. Step 11 enables S to determine the intersection.
In the AES03 protocol, only R knows the intersection. In this step, another
hash function (H ′) is applied on the intersection’s signature set, such that R
cannot send (fake) intersection items other than those in VR, because R can
only generate the correct hash when the signature is known. Step 11 alone is
not enough to prevent R from adding fake items into intersection. R can send to
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S any value in VR − VS . To prevent this attack, at step 9, S signature-protects
the hash set, such that when R sends a fake intersection item, S can deny with
proof that that hash value was not sent to R. With steps 9 and 11 together, R
cannot fake a larger intersection set. While R can still send a smaller-than-true
intersection set, we can use the protocol in such a way that R has no incentives
to do so, as discussed in Section 5..

If we do not count the optional steps then, after the protocol, R learns the
intersection set and |VS |. S learns |VR| only. It is difficult for R and S to learn
other information such as other values from the other party not in the intersec-
tion. R’s privacy is protected by the blind operation. Due to blinding, YR seems
to be a random set to S. On the other hand, R knows only signatures on XR

after unblinding. It is very difficult for R to forge signatures on other messages if
we assume the secrecy of the blind signature scheme. S protects the signature on
XS by applying the one-way hash function H. Due to the one-way property, it is
computationally difficult for R to figure out the signature and thus the original
message from hash value.

Equijoin Protocol Given our intersection protocol with the optional steps,
the modifications needed for an equijoin are simple. At the end of the intersec-
tion protocol, both parties know the intersection. They only need to agree on
a communication key to transfer the equijoin result. The equijoin protocol is
described below and in Figure 2 (which omits the modulus N for brevity).

1. Both S and R apply a hash function h to their datasets to yield XS = h(VS)
and XR = h(VR). Site S generates an RSA key pair, e and d and publishes
its public key e to R.

2. Site R blinds XR giving YR = {y = x × re | x ∈ XR}, where r is a different
random value for each x.

3. R sends YR to S.
4. S signs YR and gets the signature set ZR. S sends ZR back to R without

changing the order.
5. R uses the set of r values to unblind the set ZR and obtains the real signature

set SIGR.
6. R then applies another hash function H on SIGR. HSIGR = H(SIGR).
7. S signs XS and gets the signature set SIGS .
8. S applies H to SIGS : HSIGS = H(SIGS). S sends HSIGS to R.
9. S also signs the set HSIGS so that that, later on, S cannot deny having sent

this set and R cannot forge items into this set. This step is optional, and is
used only when the above protection is needed, for example in the equijoin
protocol described later.

10. R compares HSIGR and HSIGS . Using the known correspondence between
HSIGR and VR, R gets the intersection.

11. SIG = SIGR ∩ SIGS . R applies another one-way hash function H ′ to SIG .
H ′SIG = H ′(SIG). R then sends HSIG to S, along with H ′SIG.

12. On S’s side, let siga be the signature on a, and H ′′ be another one-way hash
function. ∀a ∈ VR ∩ VS ,
H ′′siga = H ′′(siga).
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From H ′′siga, deterministically generate a key k for some symmetric encryp-
tion function E.
γ = Ek(β).
Send the tuple (γ,Hsiga) to R, where Hsiga = H(siga). If the order remains
unchanged, S can send (γ) only.

13. From Hsiga and previously saved transcript, R determines siga and then
computes H ′′siga and k. After that, R may decrypt γ, determine β, and
obtain the equijoin result.

Key Pair: (e,d) Pub Key: (e)RS

$HSIG,H’SIG$

SIG is the signature on $HSIG_S$
HSIGS = {H(sig)|sig ∈ SIGS}

HSIGS , SIG

HSIG = HSIGR ∩ HSIGS

SIG = SIGR ∩ SIGS

XS = h(VS) XR = h(VR)

Data Set: VRData Set: VS

From HSIG, get intersection

YR = {x ∗ re|x ∈ XR, r is random number}
YR

ZR = {yd|y ∈ YR}

SIGR = {z/r|z ∈ ZR}

HSIGR = {H(sig)|sig ∈ SIGR}

ZR

SIGS = {xd|x ∈ XS}

Hsiga → siga → H ′′siga → k

Use k to decrypt γ

Get β and finally equijoin result

∀a ∈ VR ∩ VS

H ′′siga = H ′′(siga)

Generate k from H ′′siga

γ = Ek(siga)

Hsiga = H(siga)

H ′SIG = H ′(SIGR ∩ SIGS)

(γ, Hsiga)

From HSIG, get intersection

Fig. 2. Equijoin protocol

Analysis Compared with the AES03 equijoin protocol, the above protocol
only encrypts and sends non-A attributes when necessary, i.e., for records in the
equijoin result. The AES03 protocol encrypts and sends such attributes for every
record in TS , which can be very inefficient for large databases and large records.
The AES03 protocol sends a total of 3NR +NS commutative cipher blocks (1024
bits each) and NS symmetric cipher blocks on other attributes over the network.
Suppose the length of each record in TS is L. Then, the total communication
is: (3NR + NS) × 1024 + NSL. In our protocol, only 2NR + NRS signature
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blocks (1024 bits each) and 3NRS hash values (128 bits each) and NRS (the size
of intersection) symmetric encryption blocks on other attributes are sent. So,
the total communication is: (2NR + NRS) × 1024 + 3NRS × 128 + NRSL. For
computation, the original protocol needs time (2NS +5NR)∗T +(NS +NRS)T ′,
where T ′ is the running time for each symmetric encryption block. Our protocol
needs time (NS + NR)T + NRT/50) + 2NRST ′.

Our protocol enables S to learn NR as well as values of R.A that appear
in the intersection, while in the AES03 protocol, S only knows NR. This extra
information leakage not only makes the protocol much more efficient, but also
enables the practical usage of our protocol without the semi-honest assumption,
as explained in Section 5.

5 Applications

Before we give a real application example, we analyze more carefully the semi-
honest assumption. With this assumption, the attending parties send exactly
what they have to each other. If the parties are less than semi-honest, then
there are two easy attacks on the protocols (and all other protocols that rely on
the semi-honest assumption). One attack is for sites to give out less data than
they really have and the other is for sites to claim more data than they have. In
the less data case, a possibly smaller intersection set will result. When more data
is sent, a possibly bigger intersection set will result, and the other party’s pri-
vacy may be violated, because more information about the other party’s dataset
will be known. It seems very difficult to prevent these two attacks with the pro-
tocols themselves. To address this difficulty, we consider the protocols and the
applications together. In the following, we will only discuss the equijoin protocol.
To prevent R and S from claiming less data, the applications may provide in-
centives, such that with less-than-true data sites will be worse off. On the other
hand, to keep sites from claiming more data, the applications may be designed so
that extra data causes extra utility and false data causes eventual punishment.

We may describe our application template as follows. Imagine there is a client
R and a server S. Client R is to interact with S for the equijoin (TR.A = TS .A)
on these two databases. Neither R nor S wishes the other to learn of its data
unless that data is necessary for equijoin. That is, at the end of the protocol, R
only knows the equijoin result and size of S’s database and S only knows the
size of R’s database and TR.A values that are in the equijoin result. Since the
server’s signature operations are expensive, the service is not free and the charge
is based on the number of items (|YR|) sent from R to S in step 3 of the equijoin
protocol as well as the size of final equijoin result. We need the applications to
run in such environment that if cheating is found, later punishment is possible.
Certainly, we need to assume the equijoin result is useful to R, otherwise, there
is no reason for R to pay and run this protocol. We now assume that the parties
are rational instead of semi-honest.

At step 3, R has no incentives to send less data, since sending less data
may result in a smaller equijoin result. R has no incentives to send more data
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either, otherwise more money is paid to S. At step 4, S has to send back the
correct signature set, since R can check with the given public key if desired. At
step 8, S will not send less data to R, since doing so may result in a smaller
intersection and equijoin result, implying less money for S. S does not have
incentives to send more data, since the data which S does not have may appear
in the equijoin result. When S cannot provide such data or provides false data,
later punishment may occur. In step 11, R will send exact intersection to S.
The protocol doesn’t allow R to send a bigger set, and a smaller set leads to
a smaller equijoin result to R. In step 12, S has to send the correct equijoin
result; otherwise, with the help of earlier transcripts, R can prove that S did
not provide enough results. The above analysis assumes that each record in S’s
database is of the same importance to R, and that the amounts of charge and
punishment are appropriately set.

While there are several applications fitting the above application template, we
present a typical one here: a credit query system. Consider several credit history
authorities, each of which has credit histories for a large number of people, but
none of which has the data for all people. There is also a large number of agents
who query the credit histories of individuals The agents query the authorities
in a batch mode, say, once per day. The query is based on the combination of
several attributes, such as social security number, birth date, and name, such
that it is not easy for an agent to fake a query. The authorities do not wish
to divulge to agents credit records other than those queried; otherwise they are
leaking information (the combination of SSN, birth date and name as well as the
credit status) about individuals. For similar reasons, the agents do not wish the
authorities to know all their client information unless the authorities have that
information already. To prevent the agents from randomly combining SSN, birth
date, and name and hopes of a lucky match with the authorities record, and as
a reward for the authority’s computation and information, the query is charged
based on the size of the agent’s query set and the final equijoin result. Mapping
this application to our protocol, V is the combination of three fields, SSN, birth
date, and name. X is the set of hash value on the combined attributes. The
agents are R, and the authorities are S. The equijoin result should include not
only the credit point, but also other information, say, the person’s address, such
that it is possible for the agent to check the validity of the returned data. The
previous general incentive analysis applies to this application, so with proper
setup and rational players assumption, the equijoin protocol is applicable here.

The server performs most of the asymmetric computation and gets paid.
The charge here is both payment for the server’s computations and incentive
for the client’s honest behavior. One problem with this approach is that when
the number of simultaneous clients is large, the quality of the service may drop
due to the intense server-side computation. One optimization is for the server
to not compute the signatures on VS every time there is a client. Instead this
computation is done for every, say, 100 clients. Then, most of the time, when a
new client arrives, the only signatures computed are those on the client’s data
(VR) which, in our setup, is small compared to the server’s data.
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6 Experimental Study

We have implemented our protocols and the AES03 protocols [1] using Sun’s Java
SDK 1.4. RSA key length, as well as p’s length in the commutative encryption
scheme, is set to 512 for the purpose of fast experimental runs. The commutative
encryption key e is randomly chosen from {1, 2, . . . , q−1}, where p = 2q+1. The
experiments were performed using synthetic data on GNU/Linux machines with
dual Pentium III 1.6 GHz processors and 1 GB of RAM. In all the simulations,
running time is measured from the first step to the last step of the protocols
at the client (R) side. The time to generate RSA key pairs and commutative
encryption key pairs is not included.
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Fig. 4. Running time as a function of |R|, varying |S| with |R ∩ S| = 200.

We conducted five experiments, summarized in Figures 3–7. Each data point
represents the average value measured over 14 runs. The 95% confidence interval
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Fig. 5. Running time as a function of |R ∩ S|, varying |R| and |S|, with |R| = |S|.

for all points in Figures 3, 4, 5, 6, and 7 are smaller than 0.12%, 0.14%, 0.13%,
0.14%, and 0.18% of the corresponding mean values, respectively. In the figures,
we use P1 to denote the AES03 protocols and P2 to denote our protocols. We
use NR, NS , and NRS to denote |R|, |S|, and |R ∩ S|, respectively.
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Fig. 6. Running time as a function of |R ∩ S|, varying |R|, with |R ∩ S|/|S| = 0.5.

The results indicate the performance benefits of our protocol. The benefit in
scaling is greater for R than for S. This trend can be observed in Figures 3 and
4. Curves for the AES03 protocol are steeper in Figure 4 because it performs
encryption and decryption on S’s data twice but on R’s data five times. Figure 5
indicates that the two protocols are not sensitive to the intersection size. This
result is expected for the AES03 protocol. Our protocol may be expected to fare
worse with larger intersection sizes. However, since our experiments were run
with R and S on the same machine, this effect is reduced and not noticeable.
We note that the slopes of the lines for P1 are higher in Figure 7 than in Figure 6,
confiriming the higher sensitivity of the AES03 protocol to R’s size.
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The above experiments assume that S has only two attributes: one key at-
tribute and one non-key attribute. In real applications, there may be a larger
number of non-key attributes. In such a case, the improvement of our protocol
over the AES03 protocol will be greater. Further, our code for either implemen-
tation is not optimized for exponentiation and a more careful implementation
will generate better results for both protocols.

7 Conclusion

We proposed privacy-preserving protocols for computing intersections and joins.
Compared to prior work, our protocols are computationally asymmetric and
more efficient in terms of computation and communication. We discussed how
the problems due to the semi-honest assumption made by protocols such as ours
can be overcome in practice using application features. We outlined the results
of a brief experimental study of our protocols. Our implementation is publicly
available.

As ongoing work, we are studying the the multi-party case. One possibility is
running the two-party protocols repeatedly. However, we may be able to develop
more efficient methods that take advantage of the asymmetry of our protocols.
For example, in a 3-party scenario in which A joins with B and C (using A.a =
B.b and A.a′ = C.c), A can run the 2-party protocol in parallel with B and
C, relegating the heavy computations (signatures) to them, performing only the
two sets of light computations locally.
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