
Differencing Data Streams∗

Sudarshan S. Chawathe

Department of Computer Science
University of Maryland

College Park, Maryland 20742, USA
chaw@cs.umd.edu

Abstract

We present external-memory algorithms for differencing
large hierarchical datasets. Our methods are especially
suited to streaming data with bounded differences. For in-
put sizes m and n and maximum output (difference) size e,
the I/O, RAM, and CPU costs of our algorithm rdiff are,
respectively, m + n, 4e + 8, and O(MN). That is, given
4e + 8 blocks of RAM, our algorithm performs no I/O op-
erations other than those required to read both inputs. We
also present a variant of the algorithm that uses only four
blocks of RAM, with I/O cost 8me + 18m + n + 6e + 5 and
CPU cost O(MN).

1 Introduction

We study the problem detecting differences between two
related datasets. This differencing problem has applica-
tions in diverse areas, including view maintenance, data
warehousing, change management, version control, and ef-
ficient screen updates [5, 10, 4, 18]. Typically, database sys-
tems manage the evolution of a database by requiring that
changes to the database be made only through the database
system. Triggers, integrity constraint management, and
other active-database features may then be hooked into the
update routines. However, in a heterogeneous environment
composed of multiple autonomous agents a database is of-
ten updated outside the control of a database system. For
example, consider a large XML dataset such as the Protein
Data Base [24]. Copies of this dataset, controlled by a dis-
tributed group of researchers, may diverge as updates are
made locally. In order to merge these changes back into the
main repository, while detecting potential conflicts, we need
a method that examines different versions of the dataset and
computes the differences. In addition to merging changes,

∗This work was supported in part by the U.S. National Science Foun-
dation with grants IIS-9984296, IIS-0081860, and CNS-0426683.

such differencing also forms the basis of more sophisticated
database techniques [7]. For example, the changes, once
detected, may be used to trigger notifications or other ac-
tions. Storing a history of changes permits the changes to
be queried as well.

Our focus in this paper is on external memory and
streaming environments, which we define as those that
strongly favor sequential data access. Non-streaming ac-
cess may be either unavailable or significantly more expen-
sive. As an example, consider a VRML [2] dataset storing
traces of a simulated flight for training or testing. For long
and detailed simulations (such as those designed for ren-
dering in a graphics cave), the VRML trace files can grow
very large. It is often useful to compare two or more re-
lated traces. For example, differences between two similar
test flights may reveal design problems that amplify minor
pilot errors. In such applications, the data is so large and
unwieldy that often streaming it is the only practicable ac-
cess method. In general, streaming algorithms are useful
not only when the data occur natively in a streaming form
but also when streaming is the preferred mode of access for
efficiency reasons.

Prior work has addressed several variants of the differ-
encing problem. The key distinguishing features of the
work presented in this paper are the following. (A detailed
discussion of related work appears in Section 5.) 1. We
study differencing techniques for datasets that are too large
to fit in main memory. We develop external memory algo-
rithms and analyze not only their dominant I/O cost, but also
the required main-memory (RAM) space and the CPU cost.
2. We consider streaming environments in which data ac-
cess is mainly through a sequential-read interface. To the
best of our knowledge, there has been no prior work on
differencing in streaming environments. 3. We study the
differencing problems for both sequence and hierarchical
(tree) data. While there is a substantial body of work on ef-
ficient algorithms for differencing sequences, algorithms for
differencing trees are typically very expensive, even in main
memory. (Indeed, several versions of the tree differencing



problem are NP-hard. We formulate a simpler version of
the differencing problem for trees and present efficient al-
gorithms for both main and external memory.)

The general strategy for formulating a differencing
problem is the following: Data are modeled using a suitable
structure (e.g, sequences, trees, graphs). A set of edit oper-
ations for transforming such data is defined. A sequence of
edit operations is called an edit script; it transforms data by
applying its operations in sequence. A cost model is chosen
in order to associate a cost with each edit script. Finally, the
differencing problem is defined to be the problem of find-
ing a minimum-cost edit script that transforms one input to
the other. Intuitively, an edit script describes the differences
between two datasets by specifying how one is transformed
to the other. There are typically infinitely many such edit
scripts for a given pair of datasets. The minimum-cost re-
quirement formalizes the idea that edit scripts making the
fewest changes are desirable.

In this paper, we study two problem formulations. The
first models sequences with only unit-cost insert and delete
operations. We also study its natural extension to trees. The
second formulation is more general. Data are modeled us-
ing rooted, ordered, labeled trees. Edit operations may
insert, delete, or update a tree node and may have arbitrary
costs (perhaps data dependent) associated with them.

The main contributions of this paper may be summa-
rized as follows: 1. We present an external memory al-
gorithm for differencing sequence data. To our knowl-
edge, our algorithm is the first to apply to disk-resident data
the main-memory technique of using diagonals in an edit
graph to structure computation efficiently. 2. We present an
extremely efficient algorithm for differencing hierarchical
data in a streaming environment. Given a modest amount
of main memory, our algorithm performs no I/O operations
other than those required to read the streaming inputs se-
quentially. Given input sizes M and N , output (edit script)
size E, and block size S, with m = M/S, n = N/S,
and e = E/S, our algorithm performs m + n I/O opera-
tions and uses 4e + 8 blocks of main memory. Since the
expected value of e is small for many applications (while
m and n are quite large) a main-memory requirement that
depends only on e and is independent of m and n is very
useful. 3. We also present a variant of this algorithm for
cases when sufficient main memory is unavailable. This
variant requires only 4 blocks of main memory and per-
forms 8me + 18m + n + 6e + 5 I/O operations. Again,
the small expected value of e makes the dominant term 8me
favorable in many applications. The CPU cost of both vari-
ants is O(MN).
Outline of the paper: We begin by formalizing our prob-
lem definitions and covering other preliminaries in Sec-
tion 2. In Section 3, we present an external memory al-
gorithm for comparing sequences. We describe how this

2

3

a

1

4b
a

5

a

c

b10b6

8 9 aca
7

2

3

a

1

4b
c

5

a

c

b10b6

8 9 aca
7

2

3

a

1

4b
c

5

a

c

b10b6

9 aa
7

2

3

a

1

b

5

a

c

b10b6

9 aa
7

upd(4,c)

upd(4,a)

del(8)
ins(8,2,6,c)

ins(4,2,2,c)

del(4)

T1

T2

Figure 1. Edit operations on trees

algorithm uses edit graphs and diagonal-based computation
and discuss extending it for trees. Our main algorithm for
differencing streaming hierarchical data is presented in Sec-
tion 4. We address related work in Section 5 and conclude
in Section 6.

2 Model and Problem Statement

We consider rooted, ordered, labeled trees. Each node in
such a tree has an associated label. The children of a node
are totally ordered. Thus, if a node has k children, we can
uniquely identify the i’th child, for i = 1 . . . k. There is a
distinguished node called the root of the tree. Formally, a
rooted, ordered, labeled tree consists of a finite, nonempty
set of nodes T and a labeling function l such that: (1) The
set T contains a distinguished node r, called the root of the
tree; (2) The set V − {r} is partitioned into k disjoint sets
T1, . . . , Tk, where each Ti is a tree (called the i’th subtree
of T or r); and (3) the label of a node n ∈ T is l(n) [15].
The root ci of Ti is called the i’th child of the node r, and
r is called the parent of ci. Nodes in T that do not have
any children are called leaf nodes; the rest of the nodes are
called interior nodes.

Henceforth, we use the term trees to mean rooted, or-
dered, labeled trees. Some examples are depicted in Fig-
ure 1. Each node has an identifier depicted to its left and a
label depicted to its right. The identifiers are for notational
convenience only and are not part of the input. In particu-
lar, the identifiers cannot be used to match nodes in one tree
with those in the other. For example, when we are compar-
ing two VRML datasets, the node identifiers may represent
offsets within the files or streams. Since the files are sep-
arate and may use different low-level formats, there is no
correspondence between these offsets. Computing a corre-
spondence between the nodes of the input trees is in fact the
crux of the differencing problem.



We use the following tree edit operations to model and
describe changes in trees:

Insertion: Let p be a node in a tree T , and let T1, . . . , Tk

be the subtrees of p. Let n be a node not in T , let l be an
arbitrary label, and let i ∈ [1, k+1]. The insertion operation
ins(n, i, p, l) inserts the node n as the i’th child of p. In the
transformed tree, n is a leaf node with label l.

Deletion: Let n be a leaf node in T . The deletion
operation del(n) results in removing the node n from T .
That is, if n is the i’th child of a node p ∈ T with chil-
dren c1, . . . , ck then, in the transformed tree, p has children
c1, . . . , ci−1, ci+1, . . . , ck.

Update: If n is a node in T and v is a label then the
label-update operation upd(n, v) results in a tree T ′ that is
identical to T except that, in T ′, l(n) = v.
We assume, without loss of generality, that the root of a tree
is not inserted or deleted.

An edit script is a sequence of edit operations. The re-
sult of applying an edit script to a tree T is the tree obtained
by applying the component edit operations to T , in the or-
der they appear in the script. The solid arrows in Figure 1
suggest the application of an edit script that transforms the
tree T1 in the top left corner to the tree T2 in the bottom left
corner. The edit script is the concatenation of the edit oper-
ations on the arrows: upd(4, c), del(8), del(4). The dashed
arrows suggest the application of an edit script that trans-
forms T2 back to T1.

In order to define a cost model for edit operations, let
ci(x) and cd(x) denote the costs of, respectively, inserting
and deleting node x. Let the cost of updating a label l1 to
l2 be cu(l1, l2). The cost of an edit script is the sum of the
costs of its component operations. We may now formally
define the problem of differencing trees as follows:
Problem Statement (Trees): Given two rooted, labeled,
ordered trees A and B, find a minimum-cost edit script that
transforms A to a tree that is isomorphic to B.

A sequence is a special case of such a tree; that is, every
sequence corresponds to a rooted, ordered, labeled tree of
height 1. We may therefore define the problem of differenc-
ing sequences (or strings) as follows:
Problem Statement (Sequences): Given two sequences A
B, find a minimum-cost edit script that transforms A to a
sequence that is isomorphic to B.

3 A Sequence Comparison Algorithm

The problem of differencing data using even simple edit
models is known to have a quadratic lower bound on time
complexity in terms of input size [1, 23]. However, the
expected-case running time can be improved by designing
algorithms that optimize the expected common cases. In
this section, we extend Myers’s sequence differencing al-
gorithm [13] to external memory, discuss its performance

 a
a
b
c
b
a
a
b

1

2

3

5

6

1 2 3 4 5 6 7 8 9 10

8

7

4

a a b a c b a c a b

Figure 2. Edit graph for sequence comparison

characteristics, and explore further extensions to hierarchi-
cal and stream data.

The input to Myers’s algorithm consists of two se-
quences of elements. The only permissible edit operations
are element insertion and deletion, which are both assigned
unit costs. The algorithm is based on two key ideas: First,
the min-cost edit-script problem in this simple model is re-
duced to a shortest-path problem in a grid called the edit
graph. Second, the shortest-path problem is solved effi-
ciently by computing only those shortest paths that are close
to the diagonal of the grid; we call this strategy diagonal-
based computation. These ideas are elaborated below.

3.1 Edit Graphs

The edit graph of two sequences A = (A[1] A[2] . . .
A[m]) and B = (B[1] B[2] . . . B[n]) is the (m+1)×(n+1)
grid suggested by Figure 2. (Each point where two lines
touch or cross is a node in the edit graph.) A point (x, y) in-
tuitively corresponds to the pair (A[x], B[y]), for x ∈ [1,m]
and y ∈ [1, n]. In our edit graphs, the origin (0, 0) is the
node in the top left corner; the x-axis extends to the right
of (0, 0) and the y-axis extends down from (0, 0). There is
a directed edge from each node to the node, if any, to its
right. Similarly, there is a directed edge from each node
to the node, if any, below it. For clarity, these directed
edges are shown without arrowheads in the figure. All hor-
izontal edges are directed to the right and all vertical edges
are directed down. In addition, there is a diagonal edge
from (x − 1, y − 1) to (x, y) for all x, y > 0. For clar-
ity, these edges are omitted in the figure. The edit graph
depicted in Figure 2 corresponds to the sequences (strings)
A = ababaccdadab and B = acabbdbbabc.

Traversing a horizontal edge ((x − 1, y), (x, y)) in the
edit graph corresponds to deleting A[x]. Similarly, travers-
ing a vertical edge ((x, y−1), (x, y)) corresponds to insert-
ing B[y]. Traversing a diagonal edge ((x−1, y−1), (x, y))



y
X

diag k+1

diag k−1
diag k

f(e−1,k−1)
f(e−1,k+1)

f(e,k)

p2

p1

Figure 3. Computing with diagonals

corresponds to matching A[x] to B[y]; if A[x] and B[y]
differ, such matching corresponds to an update operation.
Edges in the edit graph have weights equal to the costs
of the edit operations they represent. Thus, a horizontal
edge ((x − 1, y), (x, y)) has weight cd(ax), a vertical edge
((x, y − 1), (x, y)) has weight ci(by), and a diagonal edge
((x−1, y−1), (x, y)) has weight cu(ax, by). The weight of
a path is the sum of the weights of its constituent edges. It is
easy to show that any min-cost edit script that transforms A
to B can be mapped to a path from (0, 0) to (M,N) in the
edit graph. Conversely, every path from (0, 0) to (M,N)
corresponds to an edit script that transforms A to B [13].

Figure 2 suggests two paths from source to sink. Con-
sider first the path depicted using the thinner line. This path
follows four horizontal edges and two vertical edges. The
delete operations denoted by the horizontal edges are ob-
tained by reading the identifier of the node above the target
of each horizontal edge, while the inserted nodes are read
from the left of the targets of vertical edges. Following this
procedure yields del(A[4]), del(A[5]), del(A[6]), del(A[7]),
ins(B[5]), ins(B[7]) as the edit script represented by the
thinner path. We can verify that this edit script does in-
deed transform A to B. However, it is not a minimum-cost
edit script. The edit script corresponding to the bold path in
Figure 2, del(A[4]), del(A[8]), has a lower cost.

3.2 Using Diagonals

A standard method for shortest path (Dijkstra’s algo-
rithm) requires O(E log V ) time in a graph with E edges
and V vertices [6]. However, the log V term can be removed
using special implementations of the priority queue used
in the shortest-path algorithm. Further, due to the struc-
ture of the edit graph, E and V are both O(MN), yield-
ing an O(MN) algorithm. The performance can be further
improved by considering the special grid structure of edit
graphs.

We will refer to the set of edit graph points {(x, y) :

x − y = k} as the k’th diagonal. Thus, the source
(0, 0) is on the 0’th diagonal and the sink (M,N) is on the
(M −N)’th diagonal. Consider the band of diagonals con-
sisting of the 0’th diagonal, along with e diagonals above
it and e below it. We call this set of diagonals the e-band.
Any path from the source to a point outside the e-band must
traverse at least e + 1 horizontal or vertical edges and must
therefore cost at least e+1. It follows that there are at most
min(M,N) · D points in the edit graph at a distance D or
less from the source. Since the single-source shortest-path
algorithm explores vertices in order of increasing distance
from the source and stops once the sink is reached, it takes
only O((M + N)D) time. (The output parameter D is the
cost of a min-cost edit script, i.e., the distance of the sink
from the source.)

Myers’s algorithm uses the idea of diagonals to compute
the shortest-path distances directly without using Dijkstra’s
algorithm. Consider the furthest point (in terms of its x
and y coordinates) on diagonal k that is reachable from the
source using a path of weight e; this point is called the
furthest-reaching e-point on diagonal k and the path is
called the furthest-reaching e-path on diagonal k. The
furthest-reaching e-path on diagonal k can always be de-
composed into the furthest-reaching (e − 1)-path on either
diagonal k − 1 or k + 1, followed by a horizontal or verti-
cal edge, respectively, followed by a 0-weight path (if any)
along diagonal k [13]. This path decomposition property
is what enables the diagonals-based method of computing
distances: We can compute the furthest-reaching e points on
diagonals −e, . . . , e recursively from the furthest-reaching
e− 1 points on diagonals −e + 1, . . . , e− 1.

Figure 3 is a graphical illustration of such a computation.
To obtain the furthest-reaching e point on diagonal k, we
first find the projections p1 and p2 of the furthest-reaching
e− 1 points on diagonals k− 1 and k +1. We then pick the
point pi that is furthest from the origin and extend the path
along the k’th diagonal by traversing diagonal edges until
we are at a point with no diagonal out-edge. This point is
the furthest e point on diagonal k. In Figure 3, p2 is fur-
ther than p1, so we traverse diagonal k starting at p2. More
precisely, we have the following recurrence for f(e, k), the
x-coordinate of the furthest e-point on diagonal k. (The y-
coordinate follows as f(e, k)− k.)

f(e, k) = s(f(e− 1, k + 1), k) (1)

if k = −e or

f(e− 1, k − 1) < f(e− 1, k + 1)

s(f(e− 1, k − 1) + 1, k)

otherwise

where s(x) intuitively represents the operation of traversing
a maximal path of zero-weight diagonal edges from (x, x−
k). That is, s(x, k) = (x + i, x − k + i) such that ∀j ∈



[0, i−1] : cu([(x+j, x−k+j), (x+j+1, x−k+j+1)]) = 0
and cu([(x + i, x− k + i), (x + i + 1, x− k + i + 1)] 6= 0.

The above recursion immediately suggests a main mem-
ory algorithm that starts by computing the furthest 0-point
on diagonal 0 and at each stage uses the furthest k-points on
the current set of diagonals to compute the furthest k + 1-
points on their neighboring diagonals. Below, we present an
external memory algorithm that builds on this main memory
algorithm.

3.3 Algorithm L1

Input: Sequences A and B stored on disk.
Output: The cost of a minimum-cost edit script that trans-
forms A to B using unit cost insert and delete operations, if
the cost is no greater than Dm, and −1 otherwise.
Method: Figure 4 lists the pseudocode for Algorithm L1.
The algorithm computes the furthest e-points on diago-
nals −e, . . . , e for increasing values of e until the sink of
the edit graph is reached or until e exceeds the limit Dm.
The outermost nested for loops set up this scheme. We
use RdBlk(X, ’F’, b) to denote reading block b of file F
into buffer X . Similarly, we use WrBlk(X, ’F’, b) to de-
note writing the contents of buffer X to block b of file F.
The main data structure is an array V containing the x-
coordinates of the furthest k-points computed so far. Imme-
diately before the inner for loop, V [i] is the furthest (k−1)-
point on on diagonal i, for i = −k + 1, . . . , k− 1. Immedi-
ately after that loop, V [i] is the furthest k-point on diagonal
i for i = −k, . . . , k. The if statement on line 10 ensures
that for each iteration of the outer loop, the inner for loop
updates the V array for only every other diagonal, starting
with −k; the other values are simply copied (line 36). The
new values are computed using the neighboring diagonals
based on Equation 1. The V array is updated in place by
using temporary variables v′ and v′′ which hold the values
of V ′[ko − 1] and V ′[ko − 2] from the previous iteration of
the outer for loop.

Figure 5 depicts the relationship between the V-arrays of
successive iterations. The arrows indicate the flow of infor-
mation from the array cells of V in one iteration to those in
the next. Only every other cell in V is updated, based on
the values of cells representing the furthest d-points on the
diagonals to either side of the current cell’s diagonal. The
remaining cells are copied over. Since the V array grows by
two cells from one iteration to the next, the array indexes are
shifted by one position at each iteration. This observation
explains the use of V [ko] instead of V [ko − 1] in lines 11
and 12 of Figure 4. The test on line 33 checks whether the
traversal has reached the sink of the edit graph; if so, the
current value of e is the cost of a shortest path from source
to sink, i.e., the cost of a min-cost edit script from A to B.
If the loops terminate before this condition is met, it means

there is no path of cost Dm or less, and we signal this fact
by returning a special value. The rest of the pseudocode in
Figure 4 is responsible for transferring the the required parts
of arrays V , A, and B between disk and RAM. The array
index x is mapped to a block address xb and block offset xo

on line 17. If the required block xb is not the block x′

b cur-
rently in buffer A then block xb is read in on lines 21–24.
The buffers B and V are handled analogously on lines 4–8
and 25–28, respectively.

Performance: Algorithm L1 has very low RAM costs,
requiring space for only the three buffers A, B, and V in
addition to scalar variables. The CPU cost is dominated
by the while loop on line 16, which traverses diagonals in
the edit graph. Since no node in the graph is visited more
than once in this manner and since at most D diagonals
are traversed (where D is the optimal edit distance), the
cost of this part of the code is O(D(M + N)). At iter-
ation e of the outer for loop, the V array has 2e + 3 el-
ements and occupies d(2e + 3)/Se blocks (where S is the
block size), each of which is read and written back (ignoring
the termination case). The outer for loop iterates through
e = 0, . . . , D. Thus the number of I/Os incurred in access-
ing V is (d+1)(d+2)+3d (ignoring boundary cases, where
d = D/S). Note that d is expected to be small and the V
array is accessed sequentially. The order of accesses to the
files A and B is not fixed, being data dependent. When di-
agonal k is traversed from (x, x− k) to (x + g, x + g− k),
ranges A[x..x+g] and B[x+g..x+g−k] of the input files
must be read. Unfortunately, the same portion of input file
A may be read multiple times, since different diagonals may
traverse that range in different (widely separated) iterations
of the outer for loop.

3.4 Extension to Trees

The idea of mapping the sequence comparison problem
to a shortest path problem in an edit graph can be extended
to our model for editing trees. Intuitively, the structure of
a tree imposes constraints on the manner in which nodes
may be inserted and deleted. For example, the deletion
of an interior node implies the deletion of its descendants.
Such constraints can also be phrased in terms of disallowing
certain paths in the edit graph. However, explicitly testing
such path constraints is too expensive and negates the per-
formance benefits of using an edit graph. Fortunately, we
can define a tree edit graph that incorporates all needed
constraints implicitly in its structure.

The edit graph for sequence comparison is a complete
grid with both horizontal and vertical edges out of all but
the boundary vertices. In contrast, the vertices in a tree
edit graph may be missing a horizontal or vertical out-
edge. Such missing edges encode the information that cer-



edge type edge range constraint
diagonal [(x, y), (x + 1, y + 1)] 0 ≤ x < M , 0 ≤ y < N A[x + 1].d = B[y + 1].d

horizontal [(x, y), (x + 1, y)] 0 ≤ x < M , 0 ≤ y ≤ N y = N or B[y + 1].d ≤ A[x].d
vertical [(x, y), (x, y + 1)] 0 ≤ x ≤M , 0 ≤ y < N x = M or A[x + 1].d ≤ B[y].d

Figure 6. Edge constraints for a tree edit graph

(0) (x′

b, y
′

b)← (−1,−1);
(1) for e← 0 to Dm do begin
(2) for k ← −e to e do begin
(3) (kb, ko)← ((e + k) div S, (e + k) mod S);
(4) if ko = 0 then begin
(5) if kb > 0 then WrBlk(V, ’V’, kb − 1);
(6) RdBlk(V, ’V’, kb);
(7) if k = 0 then V [0]← 1;
(8) end;
(9) (v′′, v′)← (v′, V [ko]);
(10) if (e + k) mod 2 = 0 then begin
(11) if k = −e or k 6= e and v′′ < V [ko] then
(12) x← V [ko];
(13) else
(14) x← v′′ + 1;
(15) y ← x− k;
(16) while x < M and y < N do begin
(17) (xb, xo)← ((x + 1) div S, (x + 1) mod S);
(18) (yb, yo)← ((y + 1) div S, (y + 1) mod S);
(19) if xb 6= x′

b then
(20) (yb, yo)← ((y + 1) div S, (y + 1) mod S);
(21) if xb 6= x′

b then begin
(22) RdBlk(A, ’A’, xb);
(23) x′

b ← xb;
(24) end;
(25) if yb 6= y′

b then begin
(26) RdBlk(B, ’B’, yb);
(27) y′

b ← yb;
(28) end;
(29) if A[xo] 6= B[yo] then break;
(20) (x, y)← (x + 1, y + 1);
(31) end;
(32) V [ko]← x;
(33) if x ≥M and y ≥ N then return(e);
(34) end;
(35) else
(36) V [ko]← v′;
(37) end;
(38) end;
(39) return(−1);

Figure 4. Algorithm L1

−8 −7−9 −5 −4 −2 −1 −0 1 −2 3 4 5

blk0 blk1 blk2 blk3

−3−6

old

new

blk0 blk1 blk2 blk3

−8 −7−9 −5 −4 −2 −1 0 1 2 3 4 5−3−6−10

Figure 5. Updating the V array in Algorithm L1

a
b
c
b
a
a
b

 a0
1
2
1
2
3
3
2

a a b a c b a c a b label
0 1 2 2 1 2 3 3 3 2 depth

1

2

3

5

6

8

7

4

1 2 3 4 5 6 7 8 9 10 id

Figure 7. Edit Graph for Trees

tain paths are not permissible. Tree edit graphs have two
key features. First, the missing edges disallow exactly those
paths that correspond do invalid edit scripts. Second, the
presence of edges is encoded using a simple arithmetic test.

Tree edit graphs use a tree representation based on listing
the label and depth of each node: We define the ld-pair of
a node with label l and depth d to be the pair (l, d). The ld-
pair representation of a tree is simply the preorder listing
of the ld-pairs of its nodes. A tree with M nodes is thus rep-
resented as an array A[1..M ] where A[i] is the ld-pair of the
i’th node in preorder. We use the notation A[i].l and A[i].d
to denote the components of the ld-pair A[i]. Henceforth,
we shall assume that the input trees are in this format.

Given trees A[1..M ] and B[1..N ], their edit graph con-
sists of grid of nodes {(x, y) : 0 ≤ x ≤ M, 0 ≤ y ≤ M}
with the edges indicated in Figure 6.

A path from the source (0, 0) to a point (x, y) in the edit
graph must pass through one the nodes (x−1, y), (x, y−1),



and (x − 1, y − 1) because these are the only nodes with
edges leading to (x, y). It follows that the distance of (x, y)
(from the source) is the minimum of the distances of these
three points from the source plus the cost of the connect-
ing edge. One or more (but not all three) of the potential
in-edges to (x, y) may be missing, so we must test for edge
presence. These observations lead to the following recur-
rence for D(x, y), the distance of (x, y) from the origin,
where G denotes the edit graph:

D(x, y) = min{m1,m2,m3} where (2)

m1 = D(x− 1, y − 1) + cu(A[x], B[y])

if ((x− 1, y − 1), (x, y)) ∈ G

∞ otherwise

m2 = D(x− 1, y) + cd(A[x])

if ((x− 1, y), (x, y)) ∈ G

∞ otherwise

m3 = D(x, y − 1) + ci(B[y])

if ((x, y − 1), (x, y)) ∈ G

∞ otherwise

The edge presence tests are easily implemented using the
arithmetic tests described above.

Unfortunately, Algorithm L1 cannot be applied in a
straightforward manner to tree edit graphs because the path
decomposition property described in Section 3.2 does not
hold for tree edit graphs. In effect, there may be no hori-
zontal edge connecting the furthest reaching e-point on di-
agonal k−1 to a point on diagonal k. Similarly, the desired
vertical edge connecting the furthest-reaching e-point on di-
agonal k + 1 to diagonal k may be missing. It is possible
to formulate an alternate path decomposition property for
tree edit graphs that works around such problems. How-
ever, the result is not as clean as the property for sequence
edit graphs. Further, even with such a workaround, we are
left with the performance problems described in Section 3.3
when applying the results to external memory. Therefore,
we do not pursue this strategy further in this paper. Instead,
in the next section we present an efficient streaming algo-
rithm that uses the ideas of this section without relying on
the path decomposition property.

4 Differencing Streaming Trees

In this section, we present our algorithm rdiff which
uses ideas from the previous section to efficiently difference
streaming data. Intuitively, the problem with the diagonal-
based computation in Algorithm L1 is that accesses to phys-
ically contiguous portions of the inputs are scattered over
time, resulting in a block being read multiple times. This
observation suggests a strategy of performing all the com-

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 8. Tiling the distance matrix

������
������

������
������

��������������������

������
������

	�		�	
	�		�	


�

�


�

�


�������������������������

�������������������������

��
��

������
������

��������������������

������
������

��������������������

������
������

�������������������������

�������������������������

������
������

������
������

��������������������

������
������

2e+3

j axis

i axis

Figure 9. A D-band of distance matrix tiles

putations on an input block immediately after it is read. Fol-
lowing through on this strategy leads to the blocked ver-
sion of the classic Wagner-Fisher algorithm [19, 3], with
quadratic I/O cost. It seems as though the idea of comput-
ing distances using diagonals in the edit graph and the idea
of performing all required computation on input data im-
mediately after it is read are incompatible. However, it is
possible to decouple the idea of computing distances using
diagonals from the idea of restricting computation to diag-
onals in a certain range. We present the details below after
covering a few preliminaries.

We define a distance matrix D to be the set {D(x, y) :
0 ≤ x ≤M, 0 ≤ y ≤ N} where, as in the previous section,
D(x, y) denotes the distance of the edit graph point (x, y)
from the origin (0, 0). Figure 8 represents this matrix pic-
torially using dots for entries. Our algorithm is based on
tiling the distance matrix as suggested by the figure. Note
that we are abusing the term tiling, since neighboring tiles
actually overlap on their boundary elements.

Our algorithm is based on two key ideas: First, given the
top and left edges of a tile, we can compute the distance
submatrix for the rest of the tile by using the recurrence
of Equation 2 in Section 3.4. Further, storing only the tile
edges incurs significantly smaller I/O costs compared with
storing the entire distance matrix. We refer to the set of



distance-matrix entries that lie on tile edges as the distance
grid. Since each tile edge contains S elements, all the mn
tiles can be stored on disk using 2mnS units or 2mn blocks.

The second key idea behind our algorithm is that of re-
stricting computation to a band of tiles close to the 0’th di-
agonal. Specifically, we do not compute distances for tiles
that lie completely outside the band of 2D + 1 diagonals
centered at the origin. We call this region the D-band. (See
Figure 9.)

Within the D-band, we organize our computation by
traversing the tiles in the D-band in column-major order.
Since the border of the D-band cuts diagonally across the
tiles near its top edge, we are faced with the prospect of
computing the distances in such a tile without access to its
top edge (which is outside the D-band). This situation is
resolved by assuming all distances on the top edge to be
infinity for the purposes of computing the tile using Equa-
tion 2 in Section 3.4. Recall that every insert and delete
operation costs at least one unit. Thus, a path cannot exit
the D-band without exceeding D in cost. Therefore, setting
the top edge distances to infinity does not introduce errors
in the computation of distances within the D-band.

4.1 Algorithm rdiff

Input: Data streams SA and SB representing, in the l-d pair
notation (Section 3.4), trees with M and N nodes, respec-
tively.
Output: The cost of a minimum-cost edit script from tree
SA to tree SB , if that cost is at most e;∞ otherwise.
Method: Figure 10 lists the pseudocode for Algorithm
rdiff. In the following description, we assume that the first
block of input A has a dummy first node, (0, 0). Each suc-
cessive block has as its first node a copy of the last node
from the previous block. The blocks of B are also assumed
to be in this format. We also assume that the input sizes
M and N are both integral multiples of S ′ = (S − 1),
where S is the block size, with m = M/S and n = N/S.
These assumptions are not necessary for our algorithm; we
make them only to simplify its presentation. Using the
nested for loops, the algorithm traverses all tiles in the e-
band of the tiled edit graph. The indices i and j identify the
(i, j)’th tile. The algorithm uses a buffer to hold the most
recently read block of data from input stream SA. Blocks
from the input streams are read (sequentially) using the get-
NextBuffer function. For the input stream SB , we store
the last 2e + 3 blocks read in buffers B−e−1, . . . , Be+1.
To avoid confusion between indices of buffers and indices
within buffers, we use subscripts (e.g., B2) for the for-
mer and brackets (e.g., A[5]) for the latter. The procedure
leftShiftBuffers assigns the contents of buffer Bk to buffer
Bk−1 for k = −e . . . e + 1, essentially maintaining a FIFO
queue of the 2e + 3 most recently read blocks of stream

(1) (a, b)← (0, 0);
(2) for i← 0 to m− 1 do begin
(3) H ← (∞, . . . ,∞);
(4) A← getNextBuffer(SA);
(5) leftShiftBuffers(B);
(6) Be+1 ← getNextBuffer(SB);
(7) leftShiftBuffers(V );
(8) Ve+1 ← (∞, . . . ,∞);
(9) for j ← max{0, i− e− 1} to i + e + 1 do begin
(10) if j = 0 then initD(’H’, H,A, a);
(11) if i = 0 then initD(’V’, Vj−i, Bj−i, b);
(12) processTile(A,Bj−i, H, Vj−i);
(13) end;
(14) if allInfinity(V ) then return∞;
(15) end;
(16) return H[S′];

Figure 10. Algorithm rdiff

(1) procedure initD(d,D, F, a)
(2) D[0]← a;
(3) for i← 1 to S′ do begin
(4) if d = ’H’ then c← cd(F [i]);
(5) else c← ci(F [i]);
(6) D[i]← D[i− 1] + c;
(7) end;

Figure 11. Procedure initD

SB . We use leftShiftBuffers as described mainly as a nota-
tional convenience to simplify subscripting. Its implemen-
tation can avoid the in-memory data copy operations by us-
ing a pointer-based data structure. The buffer H holds the
top (horizontal) edge of the current tile, while the buffers
V−e−1, . . . , Ve+1 hold the left (vertical) edges of the tiles in
the current (i’th) column of the e-band.

Let us ignore the two if statements in the inner loop for
now; they handle the boundary cases discussed below. The
bulk of the work for each tile is done by the procedure pro-
cessTile, which is explained below. This procedure takes as
inputs buffers (A and Bj−i) containing segments of the two
inputs corresponding to the current tile (i, j), along with the
buffers holding the top and left edges (H and Vj−i). When
processTile procedure returns, H and Vj−i have been up-
dated in-place (destructively) to hold the bottom and right
edges of the current tile.

The algorithm thus uses the top and left edges of each
tile in the e-band to compute its bottom and right edges.
When the loops terminate, the buffer H contains the lower
edge of the tile in the bottom right corner of the edit graph.
Its last entry is the required cost of a min-cost path from



(1) procedure processTile(A,B,H, V )
(2) H[0]← V [S′];
(3) for i← 1 to S′ do begin
(4) t← V [0];
(5) V [0]← H[i];
(6) for j ← 1 to S′ do begin
(7) (m1,m2,m3)← (∞,∞,∞);
(8) if A[i].d = B[j].d then m1 ← t + cu(A[i], B[j]);
(10) if j = S′ or A[i].d ≥ B[j + 1].d

then m2 ← V [j] + cd(A[i]);
(11) if i = S′ or A[i + 1].d ≤ B[j].d

then m3 ← V [j − 1] + ci(B[j]);
(12) t← V [j];
(13) V [j]← min{m1,m2,m3};
(14) end;
(15) H[i]← V [S′];
(16) end;

Figure 12. Procedure processTile

the source to the sink, that is, the cost of a min-cost edit
script between the two inputs. The statement with a call
to function allInfinity is an optimization that terminates the
algorithm early if all entries in all V buffers are found to be
∞. (In such a case, we know that the sink cannot be reached
by a path from the source that stays completely within the
e-band.)

Procedure processTile: This procedure computes all dis-
tances in the distance matrix tile corresponding to its inputs
using the nested loops to iterate over all positions in the tile.
The distances (costs) are computed based on Equation 2 in
Section 3.4. The entire distance submatrix of the tile is not
materialized at once (to avoid O(S2) RAM cost); instead,
the H and V buffers are modified in-place to progress step-
wise to the bottom and right, respectively.

Boundary cases: The above description holds for the
bulk of the processing done by the the algorithm, when the
indices i and j are not close to the edges of the distance ma-
trix or the e-band. Let us now consider the boundary cases.

The first boundary case is when we are at a tile that is at
the upper limit of the e-band. For such a tile, the top edge
has not been previously computed, since the tile that would
perform this computation lies above the e-band. However,
we know that the distances in this edge must be greater than
e and are thus ∞ for our purposes. This case is therefore
handled by initializing all positions in H to ∞ by default.
The symmetric boundary case is when we are at a tile that is
at the lower limit of the e-band. For such a tile, the left edge
has not been previously computed, since the tile that would
perform this computation lies below the e-band. However,

as above, we know that the distances in this edge must be
greater than e and are thus∞ for our purposes. These two
boundary cases are handled by lines 3 and 8 in Figure 10.

The next boundary case is when we are at a tile on the
upper boundary of the distance matrix; i.e., when j = 0.
For such a tile, the top edge has not yet been computed,
since there is no tile above it. From the structure of the edit
graph, we know that a path can reach a point on the upper
boundary of the edit graph only if it follows only horizontal
edges from the source to that point. Therefore, this case is
handled (on line 10 of Figure 10) by computing costs along
this upper boundary. We use an accumulator variable a for
this purpose, adding the edge costs in procedure initD. The
symmetric case of a tile on the left boundary of the distance
matrix is handled analogously on line 11.

Performance: Algorithm rdiff performs no I/O other than
reading the two inputs sequentially using the getNextBuffer
function; thus, the I/O cost is m + n. Other than the
small amount of RAM space required for scalar variables
and program state, the algorithm requires space for the
buffers A, B−e−1, . . . , Be+1, H , and V−e−1, . . . , Ve+1:
1+(2e+3)+1+(2e+3) = 4e+8 blocks. The CPU cost
is easily seen to be O(MN) since only constant-cost oper-
ations are performed within the nested loops that dominate
the cost. We may summarize Algorithm rdiff’s performance
as follows:

I/O RAM CPU
m + n 4e + 8 O(MN)

4.2 Recovering the Edit Script

As presented the above algorithm returns only the cost
of a min-cost edit script, not the script itself. Fortunately, it
is easily modified to return the script. Before destructively
modifying the buffers containing distances of points on tile
edges, we write the old contents of these buffers out to disk.
When the algorithm terminates successfully, we will have
on disk the bottom and right edges of each tile in the D-
band, indexed by the tile identifiers (i, j) (along with the
top and left edges of those D-band tiles that are also on the
top and left boundaries of the distance matrix). We call this
set of distance matrix edges the D-band grid.

More precisely, we modify Algorithm rdiff by inserting
the following lines at positions suggested by their numbers
relative to the line numbers in Figure 10. The last two lines
below write the bottom and right edges of a tile to disk
immediately after they are computed. The first two lines
write out the edges on the top and left boundaries of the edit
graph.

(10.5) if j = 0 then putStreamBuffer(D,H);
(11.5) if i = 0 then putStreamBuffer(D,Vj−i);



(12.5) putStreamBuffer(D,H);
(12.6) putStreamBuffer(D,Vj−i);

Note that since the computation follows a regular pattern
(down the D-band in column-major order), we can write the
buffers H and V to a stream output and maintain associa-
tive lookup based on tile (i, j). Thus these disk operations
proceed at sequential-access speeds.

Given the D-band grid on disk, a minimum-cost edit
script is recovered as follows We start at the sink, (M,N),
and traverse an optimal path backwards by using the recur-
rence in Equation 2 (Section 3.4) backwards. The only dif-
ference is that instead of direct access to all needed distance
matrix points, we must now recompute the distance matrix
points in each tile using its top and left edges (as is done
in procedure processTile). During this recovery procedure,
each block of the inputs SA and SB is accessed exactly
once, giving m + n I/Os. Note that these reads of the in-
put data are sequential in reverse order. In moving from one
distance matrix tile to the next, we move to either the left,
the top, or the top-left direction, bringing us at least one tile
closer to the origin. Since the longest path in the edit graph
has m+n tiles, it follows that at most m+n tiles are recom-
puted, with an I/O cost of 2(m + n) for reading in the top
and left edge of each tile. These reads, while not sequential,
are still in reverse physical order and can thus be efficiently
implemented in a stream interface that supports skipping re-
gions of the input. The total I/O cost of the recovery is thus
3(m + n). Although CPU operations are quadratic in the
block size (length of a tile edge), the block size is constant
and thus the CPU cost is O(M + N). The RAM costs of
the recovery method as described is 4S + S2; however, us-
ing techniques similar to those in [3], the RAM cost can be
reduced to 6S.

4.3 Reducing RAM requirements

Recall from Section 4.1 that Algorithm rdiff requires
4e + 8 blocks of RAM buffer space, where e is the max-
imum (interesting) edit distance between the inputs. The
maximum edit distance e is expressed in units of blocks;
that is e = dE/S′e, where E is the maximum edit distance
in scalar units. In applications of interest to us, such as de-
tecting and marking up differences between two versions of
a VRML file, e is expected to be small. However, even in
such applications we may encounter cases when e is large
and 4e + 8 blocks of RAM are unavailable. Fortunately, a
few modifications to Algorithm rdiff permit it to run with
very low RAM requirements, with a modest increase in I/O
cost. We describe the modified algorithm, called rdiff2, be-
low.

Instead of storing the buffer arrays B−e−1, . . . , Be+1

and V−e−1, . . . , Ve+1 in RAM, we use 2e+3 blocks on disk
for each buffer array. The disk blocks for each buffer array

(1) (a, b)← (0, 0);
(2) B ← (0, . . . , 0);
(3) V ← (0, . . . , 0);
(4) for j ← −e− 1 to e + 1 do begin
(5) if j ≥ 0 then B ← getNextBuffer(SB);
(6) enQStr(S′

B , B); enQStr(S′

V , V );
(7) end;
(8) for i← 0 to m− 1 do begin
(9) H ← (∞, . . . ,∞);
(10) A← getNextBuffer(SA);
(11) V ← deQStr(S′

V );
(12) V ← (∞, . . . ,∞);
(13) enQStr(S′

V , V );
(14) B ← deQStr(S′

B);
(15) B ← getNextBuffer(SB);
(16) enQStr(S′

B , B);
(17) for j ← i− e− 1 to i + e + 1 do begin
(18) V ← deQStr(S′

V );
(19) B ← deQStr(S′

B);
(20) if j = 0 then initD(’H’, H,A, a);
(21) if i = 0 and j ≥ 0 then initD(’V’, V,B, b);
(22) if j ≥ 0 then processTile(A,B,H, V );
(23) enQStr(S′

B , B);
(24) enQStr(S′

V , V );
(25) end;
(26) if allInfinity(V ) then return∞;
(27) end;
(28) return H[S′];

Figure 13. Algorithm rdiff2

are organized as a simple FIFO queue. We assume a stream
interface to this queue; however, this assumption is not criti-
cal since we can emulate the stream interface using the stan-
dard disk interface. In particular, we use enQStr(S,X) to
denote the operation that enqueues buffer X in queue S, and
X ← deQStr(S) to denote the dequeuing operation.
Method: Figure 13 depicts the pseudocode for Algorithm
rdiff2. (The inputs and outputs are identical to those of
rdiff.) Most of the code is similar to that in Figure 10 and
we focus on only the key differences here. Consider the
steady state (ignoring boundary conditions for now) pro-
cessing in the inner for loop (lines 18–24). The required
buffers for B and V (corresponding to buffers Bj−i and
Vj−i in Figure 10) are read in from their respective FIFO
queues.on lines 18–19. The next three lines are completely
analogous to lines 10–12 in Figure 10. The buffer B is en-
queued again on line 23 since each block of the input stream
SB is used by 2e + 3 columns of the D-band grid being
computed. Lines 13–15 are responsible for changing the
contents of the FIFO queue S ′

B used as a temporary store
for SB’s blocks. Before progressing to the next column of



the D-band grid (next set of iterations of the inner loop), the
earliest enqueued S′

B block is removed and the next block
from SB is enqueued. Line 24 inside the inner loop and
lines 11-12 outside it perform a similar function for the V
buffers. The rest of the new code handles the boundary con-
ditions. Lines 2–7 prime the FIFO queues with sentinel el-
ements to enable proper start-up conditions for the steady
state code in the for loops. The use of sentinel elements in-
curs unnecessary I/O operations and can easily be avoided;
we use it here since it simplifies the presentation.
Performance: Let us consider the additional I/O incurred
in accessing the FIFO queues for the B and V buffers. Each
iteration of the inner for loop incurs 4 additional I/O oper-
ations (lines 18, 19, 23, 24). Since there are m(2e + 3)
iterations, the total I/O cost from these lines is 4m(2e + 3).
Similarly, the new I/O operations on lines 10, 11, 13, 14,
and 16 contribute a total of 5m I/O operations. Finally, lines
4–7 contribute (2e + 2) + (4e + 3) = 6e + 5 operations.
The total number of additional I/O operations is therefore
4m(2e+3)+5m+6e+5 = 8me+17m+6e+5. Adding
this number to the I/O cost m+n of the original Algorithm
rdiff gives 8me+18m+n+6e+5 as the total I/O cost. This
algorithm requires RAM storage for only the four buffers
A, B, H , and V (in addition the small amount needed for
scalar variables and program state). The CPU cost remains
O(MN) since only constant work is done within the nested
loops. We may summarize Algorithm rdiff2’s performance
as follows:

I/O RAM CPU
8me + 18m + n + 6e + 5 4 O(MN)

5 Related Work

Main memory differencing algorithms have been exten-
sively studied, especially for sequences [14]. One of the
earliest algorithms for differencing strings (sequences) is
the classic O(mn) dynamic-programming algorithm due to
Wagner and Fischer [19] (where m and n denote the sizes
of the two inputs). For trees, Selkow’s recursive algorithm
uses an edit model similar to ours and has quadratic run-
ning time. A quadratic lower bound for sequence differ-
encing (and therefore tree differencing in Selkow’s model)
is well known [1, 23]. For finite alphabets, the use of the
four-Russians technique yields an O(nm/ log n) algorithm
[11].

Edit graphs for sequence comparison and diagonal-based
shortest-path computations were introduced by Myers [13],
along with a linear-space enhancement that forms the basis
of the diff utility found on most current Unix systems [12].
Earlier implementations of Unix diff used the Hunt and Szy-
manski algorithm, with running time O((R + N) log N)
where R is the number of ordered pairs of positions at which

the two inputs match [9]. The parameter R is thus data-
dependent, a property it shares with the parameter D in
Myers’s algorithm. However, while D is N in the worst
case, R could be as large as N 2 yielding O(N2logN) as
the worst-case running time. As a practical note, it is com-
mon for text files to have a large number of blank lines,
resulting in a high value of R. The related Unix utility bdiff
differences files too large to fit in RAM by splitting them
into smaller segments, differencing the segments, and com-
bining the results; however, this strategy does not produce a
min-cost edit script in general. Myers’s O(ND) algorithm
has been modified to yield an O(NP ) algorithm, where P
is the number of deletions in an optimal edit script [25].
This algorithm uses the path-compression technique used
for shortest-path problems [17, 8] and is especially efficient
when one of the inputs is much smaller than the other.

For tree comparison, several edit models have been pro-
posed. For ordered trees with insertions, deletions, and up-
dates, and a cost model that satisfies a triangle inequality,
Zhang and Shasha’s algorithm is O(MNb), where b is the
product of min(depth(Ti), leaves(Ti)) for the input trees T1

and T2 [26]. The complexity can be lowered for a simplified
cost model [16]. These algorithms use definitions of node
insertion and deletion that are more general than ours. For
example, they permit a node to be deleted without deleting
its descendants. The differencing problem for unordered
trees is known to be NP-hard, with efficient algorithms for
restricted cases [27].

All the above algorithms are for main memory. To
our knowledge, there has been very little work on external
memory differencing algorithms. In earlier work, we have
presented an O(MN) external-memory tree-differencing
algorithm [3]. Unlike the methods in this paper, that algo-
rithm requires a O(MN) I/Os even when the two inputs are
identical, while the Algorithm rdiff of this paper performs
only M + N I/Os.

The problems of differencing and pattern matching are
closely related, and it may be possible to use ideas from
tree matching methods (e.g, [22, 20, 21]) to design tree dif-
ferencing algorithms.

6 Conclusion

We studied two formulations of the differencing prob-
lem. The first applies to sequence data that are edited using
insert and delete operations of unit cost. The second applies
to data modeled as rooted, ordered, labeled trees that are
edited using node insertions, deletions, and updates, with
arbitrary costs (with lower bound 1). We generalized to
external memory the diagonal-based computation method
that forms the basis of a class of efficient main-memory dif-
ferencing algorithms. We studied the performance of our
external-memory sequence comparison algorithm and dis-



cussed extensions for streaming and tree-structured data.
We presented a very efficient algorithm for differencing
streaming hierarchical data that performs no I/Os other than
those required to read its inputs. We analyzed the per-
formance of this algorithm and also studied a variant that
works with very little RAM.

As continuing work, we are studying further applica-
tions of the diagonal-based differencing technique to ex-
ternal memory and streaming algorithms. We also plan
to devise cache-conscious main-memory differencing algo-
rithms. Differencing algorithms form the foundation of a
larger change management system that includes differenc-
ing operators as primitives. We are also working on incor-
porating a difference operator into general-purpose query
language and on devising an algebra for such use.

References

[1] A. Aho, D. Hirschberg, and J. Ullman. Bounds on the com-
plexity of the longest common subsequence problem. Jour-
nal of the Association for Computing Machinery, 23(1):1–
12, Jan. 1976.

[2] R. Carey and G. Bell. The Annotated VRML 2.0 Reference
Manual. Addison-Wesley, June 1997.

[3] S. S. Chawathe. Comparing hierarchical data in external
memory. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 90–101, Edinburgh,
Scotland, Sept. 1999.

[4] S. S. Chawathe, S. Abiteboul, and J. Widom. Representing
and querying changes in semistructured data. In Proceed-
ings of the International Conference on Data Engineering
(ICDE), pages 4–13, Orlando, Florida, Feb. 1998.

[5] Y. Chen, F. K. H. A. Dehne, T. Eavis, and A. Rau-Chaplin:.
Parallel ROLAP data cube construction on shared-nothing
multiprocessors. In Proceedings of the International Par-
allel and Distributed Processing Symposium, Nice, France,
2003.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. MIT Press, June 1990.

[7] B. Eaglestone, B. C. Desai, R. Holton, and E. Gulati. Tem-
poral database support for cooperative creative work. In
Proceedings of the Database Engineering and Applications
Symposium (IDEAS), pages 266–275, Cardiff, Wales, 1998.

[8] F. Hadlock. Minimum detour methods for string or sequence
comparison. Congr. Numer., 61:263–274, 1988.

[9] J. Hunt and T. Szymanski. A fast algorithm for comput-
ing longest common subsequences. Communications of the
ACM, 20(5):350–353, May 1977.

[10] W. Labio and H. Garcia-Molina. Efficient snapshot differen-
tial algorithms for data warehousing. In Proceedings of the
International Conference on Very Large Data Bases, Bom-
bay, India, September 1996.

[11] W. Masek and M. Paterson. A faster algorithm computing
string edit distances. Journal of Computer and System Sci-
ences, 20:18–31, 1980.

[12] W. Miller and E. Myers. A file comparison pro-
gram. Software–Practice and Experience, 15(11):1025–
1040, 1985.

[13] E. Myers. An O(ND) difference algorithm and its variations.
Algorithmica, 1(2):251–266, 1986.

[14] D. Sankoff and J. Kruskal. Time Warps, String Edits, and
Macromolecules: The Theory and Practice of Sequence
Comparison. Addison-Wesley, 1983.

[15] S. Selkow. The tree-to-tree editing problem. Information
Processing Letters, 6(6):184–186, Dec. 1977.

[16] D. Shasha and K. Zhang. Fast algorithms for the unit
cost editing distance between trees. Journal of Algorithms,
11:581–621, 1990.

[17] E. Simon and P. Valduriez. Integrity control in distributed
database systems. In Proceedings of the Nineteenth Annual
Hawaii International Conference on System Sciences, pages
621–632, 1986.

[18] W. Tichy. RCS—A system for version control. Software—
Practice and Experience, 15(7):637–654, July 1985.

[19] R. Wagner and M. Fischer. The string-to-string correction
problem. Journal of the Association of Computing Machin-
ery, 21(1):168–173, January 1974.

[20] J. Wang, G. Chirn, T. Marr, B. Shapiro, D. Shasha, and
K. Zhang. Combinatorial pattern discovery for scientific
data: some preliminary results. In Proceedings of the ACM
SIGMOD Conference, pages 115–125, May 1994.

[21] J. Wang, D. Shasha, G. Chang, L. Relihan, K. Zhang, and
G. Patel. Structural matching and discovery in document
databases. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 560–563,
1997.

[22] J. Wang, K. Zhang, K. Jeong, and D. Shasha. A system for
approximate tree matching. IEEE Transactions on Knowl-
edge and Data Engineering, 6(4):559–571, Aug. 1994.

[23] C. Wong and A. Chandra. Bounds for the string editing prob-
lem. Journal of the Association for Computing Machinery,
23(1):13–16, Jan. 1976.

[24] C. H. Wu, H. Huang, L. Arminski, et al. The Protein In-
formation Resource: an integrated public resource of func-
tional annotation of proteins, 2002. Nucleic Acids Ressearch
30,35-37.

[25] S. Wu, U. Manber, and G.Myers. An O(NP) sequence com-
parison algorithm. Information Processing Letters, 35:317–
323, September 1990.

[26] K. Zhang and D. Shasha. Simple fast algorithms for the
editing distance between trees and related problems. SIAM
Journal of Computing, 18(6):1245–1262, 1989.

[27] K. Zhang, J. Wang, and D. Shasha. On the editing distance
between undirected acyclic graphs. International Journal of
Foundations of Computer Science, 1995.


