
Representative Objects: Concise Representations of
Semistructured, Hierarchical Data

Svetlozar Nestorov, Jeffrey Ullman, Janet Wiener, Sudarshan Chawathe
Department of Computer Science

Stanford University
Stanford, CA 94305-9040, USAfevtimov,ullman,wiener,chawg@db.stanford.edu

http://www-db.stanford.edu

Abstract

In this paper we introduce the representative object,
which uncovers the inherent schema(s) in semistructured,
hierarchical data sources and provides a concise description
of the structure of the data. Semistructured data, unlike data
stored in typical relational or object-oriented databases,
does not have fixed schema that is known in advance and
stored separately from the data. With the rapid growth of the
World Wide Web, semistructured hierarchical data sources
are becoming widely available to the casual user. The lack
of external schema information currently makes browsing
and querying these data sources inefficient at best, and im-
possible at worst. We show how representative objects make
schema discovery efficient and facilitate the generation of
meaningful queries over the data.

1. Introduction

The goal of this paper is to present a tool, the “repre-
sentative object,” that facilitates querying and browsing of
semistructured, hierarchical information, such as that found
on the web. The lack of external schema information cur-
rently makes browsing and querying these data sources inef-
ficient at best, and impossible at worst. For instance, a user
finding a “person” object in a traditional object-orientedsys-
tem would know the structure of its subobjects or fields. As
an example, the class declaration for the object might tell us
that each person-object has two subobjects: first-name and
last-name. In a semistructured world, some person-objects
might have subobjects with first name and last name. Other
person-objects might have a single subobject with a single
name as value, or a single “name” subobject that itself has
subobjects first- and last-name. Yet another person-object
might have a middle-name subobject, while others have no

name at all or have two name subobjects, one of which is a
nickname or alias.

There are several ways to deal with the lack of fixed
schema. If the semistructured data is somewhat regular
but incomplete, then an object-oriented or relational schema
can be used (along with null values) to represent the data.
This approach fails, however, if the semistructured data is
very irregular. Then, trying to fit the data into a traditional
database form will either introduce too many nulls or discard
most of the information [6].

In this paper we introduce the representative object con-
cept. The representative object allows browsers to uncover
the inherent schema(s) in semistructured, hierarchical data.
Representative objects are implemented in the Lore DBMS
as “DataGuides” [5]. Representative objects provide not
only a concise description of the structure of the data but
also a convenient way of querying it. The next subsection
describes the primary uses of the representative objects.1.1. Motivating applications� Schema discovery: To formulate any meaningful

query for a semistructured, hierarchical data source
we need first to discover something about how the in-
formation is represented in the source. Only then can
we pose queries that will match some of the source’s
structure. Representative objects give us the needed
knowledge of the source’s structure.� Path queries: When querying semistructured, hierar-
chical data, we often need to express paths through the
hierarchy that meet certain conditions, e.g., the path
ends in a “name” object, perhaps going through one
or more other objects. Expressing such paths requires
“wild cards” — symbols that stand for any sequence
of objects or objects whose class names (which we
call “labels”) match a certain pattern. However, when

queries have wild-card symbols in them, searching the
entire structure for matches is infeasible. The repre-
sentative object can significantly reduce the search.� Query Optimization: We can optimize some queries
or subqueries by noticing from the representative ob-
ject that their results must be empty.1.2. Paper organization

In Section 2, we introduce our data model and de-
fine several terms and functions regarding the hierarchical
and semistructured nature of the data, including the OEM
(object-exchange model) used in the Tsimmis project at
Stanford. Then in Section 3, we define both full repre-
sentative objects (FROs), which provide a description of the
global structure of the data, and the degree-k representative
objects (k-ROs), which provide a description of the local
aspects of the data, considering only paths (in the object-
subobject graph) of length k. Section 4 describes an im-
plementation of FROs as objects in OEM and an algorithm
for extracting the relevant information from them. We also
consider minimal FROs, which allow us to answer schema
queries most efficiently. In Section 5, we present a method
based on determinization and minimization of nondetermin-
istic finite automata for construction of a minimal FRO in
OEM. Section 6 describes the construction and use of the
simplest k-RO, the case k = 1. Sections 7 and 8 present
two alternative approaches to building a k-RO for k > 1,
a graph-based approach and an automaton-based approach.
Section 9 presents the conclusions and outlines the future
work.

2. Preliminaries

In this section we describe the data model used in the
paper. The object-exchange model (OEM) [1] is designed
specifically for representing semistructured data for which
the representative objects are most applicable and useful.
The OEM described in [1] that we use is a modification of
the original OEM introduced in [4]. We then define several
terms that are related to the structure of the objects in OEM.
We also define two functions that form the basis of the
representative object definitions.2.1. The object-exchange model

Our data model, OEM, is a simple, self-describing object
model with nesting and identity. Every object in OEM
consists of an identifier and a value. The identifier uniquely
identifies the object. The value is either an atomic quantity,
such as an integer or a string, or a set of object references,
denoted as a set of hlabel; idi pairs. The label is a string

that describes the meaning of the relationship between the
object and its subobject with an identifier id. Objects that
have atomic values are called atomic objects and objects
that have set values are called complex objects. We can
view OEM as a graph where the vertices are the objects and
the labels are on the edges (object references).

Club
&0

&20

&22

&24

premiership

Name
Stadium

&25&26

&27

"St. James’ Park"

"Newcastle"

&28

"Keith Gillespie"

&29

NameName

&21

"Liverpool"

"Robbie Fowler"

&23

Name

"English"

&19

Nationality

Player
Player

Last
Nickname

Number

Name

LastFirst

7 "French"

Number

"Eric" "Cantona"

Name Nationality

&1

&5

&6

&7 &8 &9

&13 &12

&14

&15

&16 &17

&18

First

"Andy" "Cole"

"17"

Club Club

Name

Nickname

Official

"Manchester
United"

&2

&3 "Red Devils"

&4 Nationality

FormerClubFormerClub

Player
Player

Name
Captain

&10 &11

"King Eric" "Eric Le Roi"

FrenchEnglish

Figure 1. The premiership object.

Figure 1 shows a segment of information about the top
soccer league (The Premiership) in England. Each circle
along with the text inside it represents an object and its
identifier. The arrows and their labels represent object ref-
erences.

We will use the notations identifier(o) and value(o) to
denote the identifier and value of the object o. We will also
use the notation object(id) (or obj(id) for short) to denote
the unique object with an identifier id.2.2. Simple path expressions and data paths

A simple path expression is a sequence of labels separated
by dots. A data path is a sequence of alternating objects
and labels, separated by commas, that starts and ends with
an object and has the property that for every two consecu-
tive objects the value of the first object contains an object
reference to the second object, labeled with the label that is
between the two objects in the given sequence. Formally,
we have the following definitions:

Definition 2.1 Let li be a label (of object references) fori = 1::n; n � 0. Then pe = l1:l2 � � � ln is a simple path
expression of length n.

Definition 2.2 Let oi be an object for i = 0::n, li be a label
for i = 1::n, and hli; identifier(oi)i 2 value(oi�1) fori = 1::n; n � 0. Then p = o0; l1; o1; l2 � � � ln; on is a data
path, of length n.

We introduce the following terminology regarding simple
path expressions and data paths.� A data path p = o0; l1 � � � ln; on originates from or is

rooted at the object o0.� An object o1 is within an object o if 9 a data path
originating from o and ending with o1.� A data path p is within an object o if p originates from
an object within o.� A data path p = o0; l1 � � � ln; on is an instance of the
simple path expression pe = l1:l2 � � � ln.

Remark 2.3 Note that we allow data paths of length 0 that
consist of a single object. We also allow a simple path
expression of length 0. This simple path expression contains
no labels and is denoted by the special symbol �. Any data
path of length 0 is an instance of �.
Example 2.4 To illustrate the above terms consider the pre-
miership object from Figure 1.� The simple path expression Player.Number has two

instance data paths within the premiership object,
namely obj(&1),Player,obj(&5),Number,obj(&13)
and obj(&1),Player,obj(&14),Number,obj(&18).� Consider the following two data pathsobj(&1),Player,obj(&14),FormerClub,obj(&24),obj(&24),Player,obj(&28),FormerClub,obj(&1).
Thus, obj(&1) is within obj(&24) and obj(&24) is
within obj(&1), i.e., there is a cycle within the pre-
miership object.2.3. Continuations

The continuation functions form the basis of the repre-
sentative object definitions presented in the next section.
However, they arise naturally when we consider schema
discovery of semistructured data represented in OEM. We
briefly describe the schema discovery process before we
give the formal definitions of the continuation functions.

Consider an object o in OEM. Suppose that we are inter-
ested in the structure (schema) of the object, i.e., we want to
perform schema discovery. By schema discovery we mean
exploring o by moving (navigating) from an object to its
subobjects and keeping track of the labels of the object ref-
erences that we traverse. By following a given sequence of
labels (a simple path expression) we can get, in general, to
zero, one, or more objects within o. At this point we want to
know the labels of the links we could immediately traverse
if we continue our navigation. We also want to know if
we might not be able to continue navigating, i.e., we have
reached an atomic object, but we are not (yet) interested in

the specific value of the atomic object. These observations
motivate to the following definition.

Definition 2.5 Let o be an object in OEM and pe =l1:l2 � � � ln a simple path expression, n � 0. Then we definecontinuation(o; pe) as follows.� continuation(o; pe) � fl j 9 a data path p =o; l1; o1 � � � ln; on; l; on+1 that is an instance of pe:lg.� continuation(o; pe) � f? j 9 a data path p =o; l1; o1 � � � ln; on that is an instance of pe and on is
an atomic objectg.

If we view OEM as a graph Definition 2.5 translates into
the following. The continuation of o and the simple path
expression � is the set of the labels on all outgoing edges
from o. The continuation of o and a simple path expressionpe of length n � 1 is obtained as follows. First, we traverse
all possible paths of length n + 1 starting at o, such that at
the i-th step, 0 � i � n, we pick an edge labeled with thei-th label in pe. At the last, n+ 1-th step we pick any edge.
Then the continuation of o and pe is the set of all labels on
the edges we picked at the last step of a traversal described
above plus ? if in any of the traversals we made the first n
steps but could not make the n + 1 step because we ended
up in a vertex with no outgoing edges (corresponding to an
atomic object).

Example 2.6 Consider the premiership object from Fig-
ure 1. The following examples illustrate Definition 2.5.� continuation(premiership; �) = fClubg� continuation(premiership, Club) = fName,

Player, Stadium,� continuation(premiership, Club.Player.Name) =fFirst, Last, Nickname, ?g
Note that in Definition 2.5 we only consider data paths

originating from the object that is the first argument of thecontinuation function. By partially removing this restric-
tion, allowing the data paths to be within the given object,
and imposing a limit on the length of the simple path ex-
pression that is the second argument of the continuation
function we arrive at the following definition.

Definition 2.7 Let o be an object, k � 1, and let pe be a
simple path expression of length n, 0 � n � k. Then we
define continuationk(o; pe) as follows.� If n = k then

– continuationk(o; pe) � fl j 9 a data path p
within o, not necessarily rooted at o, that is an
instance of pe:lg.

– continuationk(o; pe) � f? j 9 a data pathp = o0; l1; o1 � � � ln; on, within o, that is an in-
stance of pe and on is an atomic objectg.� Otherwise (if n < k) continuationk(o; pe) =continuation(o; pe).

Example 2.8 Consider the premiership object in Figure 1.
The following examples illustrate Definition 2.7.� continuation1(premiership, Name) = fOfficial,

Nickname, First, Last, ?g� continuation2(premiership, Club) = fName,
Player, Stadium, Captaing� continuation2(premiership, Player.Name) =fFirst, Last, Nickname, ?g

The next lemma characterizes the relationship between
the functions continuation and continuationk.

Lemma 2.9 Let o be an object, k � 1, and pe a simple path
expression of length n, 0 � n � k. Then we have:� continuationk(o; pe) = continuation(o; pe) forn < k� continuationk(o; pe) � continuation(o; pe) forn = k� if n = k, pe begins with l where hl; idi 2 value(o),

and l is unique within o thencontinuationk(o; pe) = continuation(o; pe).
Proof: The first part of the lemma follows directly from

Definition 2.7. The second part of the lemma follows from
the fact that all data paths rooted at o are also within o.
Therefore, for the same object o and simple path expressionpe, the set of data paths considered in Definition 2.5 is a
subset of the set of data paths considered in Definition 2.7.
The third part of the lemma is a consequence of the fact that
any instance data path of pe must be rooted at o because no
object references within o, other than the one coming fromo, has label l. Thus, in Definition 2.7 only the data paths
rooted at o are effectively considered which is the the set of
data paths considered in Definition 2.5.

3. Representative object definitions

A “representative object” for an object o in OEM is any
implementation of the continuation function for o. We re-
fer to these implementations as “representative objects” be-
cause in fact they are implemented in practice as objects in
OEM. However, as discussed in later sections of this paper,
there are many different ways to represent the continuation

function, and not all are “objects” in the usual sense. For
instance, we discuss graph-based and automaton-based rep-
resentations.

In this section we define two different kinds of represen-
tative objects. First, we define the concept of a full repre-
sentative object (FRO) for an object in OEM and justify this
definition by describing how a FRO supports the motivating
applications from Section 1.1. We then define the concept
of a degree-k representative object (k-RO) for an object in
OEM. k-ROs are often less complex than FROs and can be
used to approximate FROs. We also discuss the extent to
which the motivating applications are supported by k-ROs.3.1. Full representative objects

The “full” representative object is an implementation of
the continuation function, restricted to a particular object.
Formally.

Definition 3.1 Let o be an object. Then the functioncontinuationo(pe) = continuation(o; pe), where pe is a
simple path expression, is a full representative object (FRO)
for o.

In order to justify this definition, we show how a FRO
supports the motivating applications from Section 1.1.

3.1.1 Schema discovery

This application is the primary motivation for investigating
representative objects. Recall that by schema discovery we
mean navigating through a given object and keeping track of
the labels of the object references that we traverse. By using
the FRO of an object we can perform schema discovery
very quickly and efficiently. We illustrate the point with an
example of explorationof the premiership object in Figure 1.
This approach to exploration has been implemented in the
DataGuide feature of Lore, a database system using the
OEM, as discussed in [5].

Example 3.2 Suppose we start at the root object. If we
ask the query continuationpremiership(�) we get the la-
bels of links leading from the root. In this case, the only
label is Club. The query continuationpremiership(Club)
then lets us see all the labels of links leading from Club
objects within the premiership. These labels are Name,
Player, Captain, and Stadium. Suppose we are interested
in players. Then we may explore from Player by asking
the query continuationpremiership(Club:P layer), where-
upon we find that links out of Player objects can be labeled
Name, Number, Nationality, or FormerClub. In the Lore
DataGuide, the queries are submitted by clicking on the
node we wish to expand, and after the sequence of queries
described above, the presentation of (part of) the represen-
tative object would be as it appears in Figure 2.

Player

Name Number Nationality FormerClub

Club

Premiership

Name Stadium Captain

Figure 2. Displaying part of the FRO for the
premiership object.

3.1.2 Path queries

Many interesting queries over semistructured data neces-
sarily involve wild cards because the schema of the data
is not known in advance or may change often. The FROs
can be used to answer efficiently such queries by finding
all simple path expressions that have instance data paths
within a given object and also match the wild-card pattern
in a query. We illustrate the point with an example. The
wild-card pattern syntax used in the example is described in
[1] and the path expressions expressible in it are called gen-
eral path expressions. In our example we only use “?” that
denotes an optional label and “%” that matches any number
of characters.

Example 3.3 Consider the following pattern gpe =
Club(.Player)?.(Na%) and the premiership object in Figure
1. In other words, we are looking for simple path expres-
sions that have instance data paths within the premiership
object and start with Club followed optionallyby Player and
end with a label beginning with “Na”.� First we find continuationpremiership(�) = fClubg.� The label Club matches the head of gpe, the tail ofgpe is (Player.)?(Na%).� Then we find continuationpremiership(Club) =fName; Player;Captain; Stadiumg.� Only the label Player matches the head of

(Player.)?(Na%) but because the head is an optional
label we have two simple path expressions that matchgpe so far: Club, and Club.Player. The remaining
tail is Na%.� We find continuationpremiership(Club:Player) =fName;Nationality;Number; FormerClubg.� Both Name and Nationality match Na% so we
have three simple path expressions that match gpe

completely: Club.Name, Club.Player.Name, and
Club.Player.Nationality.

3.1.3 Query optimization

In order to find whether a simple path expression pe has any
instance data paths originating from an object o we com-
pute continuationo(pe). Recall that continuation(o; pe)
is defined to be nonempty if pe has an instance data
path originating from o. Since continuationo(pe) =continuation(o; pe) then an empty result means that pe
does not have any instance data paths originating from o. If
the result is not empty then pe has at least one instance data
path originating from o.3.2. Degree-k representative objects

We obtain the following definition by replacing
the continuation function in Definition 3.1 by thecontinuationk function.

Definition 3.4 Let o be an object and k � 1. Thencontinuationko (pe) = continuationk(o; pe), where pe is
a simple path expression, is a degree-k representative object
(k-RO) for o.

While k-ROs, in general, only approximately support
the motivating applications from Section 1.1, they take less
space (usually) than FROs and may be faster to construct.
Before we show the extent to which k-ROs support the
motivating applications we describe a method of computing
an approximation of continuationo(pe) from a k-RO.

Let o be an object, Rk a degree-k representative object
for o, and pe = l1:l2 � � � ln a simple path expression. We
consider the following three cases.� If we have that n < k then by using Rk

we can find continuationko (pe) and becausecontinuationk(o; pe) = continuationo(pe) we
have the exact value of continuationo(pe).� If n = k we can find continuationko (pe)
and by Lemma 2.9 the result is a superset ofcontinuationo(pe).� If we have that n > k then we findcontinuationko(ln�k+1:ln�k+2 � � � ln). The result
is a superset of continuationo(pe). We can also
check if li+k 2 continuationko(li:li+1 � � � li+k�1) fori = 1::n� k. If any of these conditions does not hold
then continuationo(pe) is empty and thus we have
its exact value.

Consider the motivating applications from Section 1.1.
We describe how they are supported by a k-RO, using the
approximation of continuationo(pe) provided by the k-
RO.

� Schema discovery: As in the FRO case we start at
the root object. As long as the length of the simple
path expression pe that we have followed is less thank where k is the degree of the k-RO we can compute
the exact value of continuationo(pe) and thus thek-RO provides the same support as a FRO. If the
length of the pe is at least k then we have to use the
approximationof continuationo(pe) provided by thek-RO. The consequence is that the discovered schema
will contain the actual schema, but may also have
some paths that do not exist within o.� Path queries: The procedure described in the FRO
case remains the same. When we compute contin-
uation of simple path expressions of length at leastk we have to use the approximation instead of the
actual value. Thus, the final set of matched simple
path expressions will be a superset of the actual one
and therefore each simple path expression of length
at least k in the set should be verified.� Query optimization: If the approximation of the con-
tinuation of the given simple path expression pe is
empty then pe has no instance data paths originat-
ing from the given object. If the result is nonempty,
however, pe may or may not have instance data paths
originating from the given object.

4. Implementation of FROs in OEM

In this section we describe one particular implementation
of FROs in OEM. In fact this is how we have implemented
FROs (called DataGuides) in the Lore DBMS [1, 5]. A FRO,
implemented in OEM, consists of an object Ro (in OEM)
and an algorithm for computing the functioncontinuationo
from Ro, where o is the represented object. By implement-
ing FROs in OEM we gain the advantage of storing and
querying the object part of the FROs in the same way as
ordinary objects in OEM. We also define minimal FROs
(in OEM) that allow computing the continuation function
very efficiently.

Before we describe the implementationof FROs in OEM,
we present Algorithm 4.1 that for a given object o computes
the continuation of a simple path expression pe. The algo-
rithm first explores o for instance data paths of pe, originat-
ing from o, in a breadth first manner. For every such data
path only the last object in the data path is considered. Then
the continuation of pe is the set of all the different labels
of object references of those objects and ? if any of those
objects is atomic.

Algorithm 4.1 Let o be an object and pe = l1:l2 � � � ln,n � 0, a simple path expression. The algorithm in Figure 3
computes continuationo(pe).

Input: o and pe = l1:l2 � � � ln; n � 0
Output: continuationo(pe)
Let object set S = fog
For i = 1::n

Let object set T = fg
For each object s 2 S

For each identifier id, such that hli; idi 2 value(s)
Add object(id) to T

If T is empty then
Return fg

ElseS = T
Endfor
Let label set C = fg
For each object s 2 S

If s is atomic then
Add ? to C

Else
For each object reference hl; idi 2 value(s)

Add label l to C
Endfor
Return C

Figure 3. Algorithm for computingcontinuationo(pe) from o.
Then we define the implementation of FROs in OEM as

follows.

Definition 4.2 Let o1 and o2 be objects in OEM. Then o1,
along with Algorithm 4.1, is a full representative object in
OEM for o2 if for any simple path expression pe we havecontinuationo1(pe) = continuationo2(pe).

From Definition 4.2 it follows that if o1 is a FRO in OEM
for o2 then o2 is a FRO in OEM for o1. Also any object o is
a FRO in OEM for itself.

Remark 4.3 Formally, when we talk about FROs in OEM
we always have to include Algorithm 4.1 or another algo-
rithm that computes the continuationfunction from an object
in OEM. In this section we only consider FROs in OEM so
we will omit Algorithm 4.1 and refer to the object part as
the full representative object.4.1. Minimal FROs

Form Definition 4.2 it follows that there are many FROs
(in OEM) for a given object, including the object itself. Ide-
ally, we want to choose the one that allows Algorithm 4.1 to
compute the continuation function fastest. Each iteration

of the first part Algorithm 4.1 takes time proportional to the
size of S. Thus, the FRO for which the size of S at each it-
eration is smallest allows the fastest computation. The next
definition describes a particular kind of FROs (in OEM) for
which S always contains at most one complex object and at
most one atomic object.

Definition 4.4 Let Ro be a FRO (in OEM) for o. ThenRo is a minimal FRO if any simple path expression pe =l1:l2 � � � ln; n � 0, has at most one instance data path orig-
inating from Ro and ending with a complex object and at
most one instance data path originatingfromRo and ending
with an atomic object.

We prove the assertion that at each iteration of the first
part (breadth-first exploration) of Algorithm 4.1 for Ro S
contains at most one complex and one atomic object for any
simple path expression. Before the first iteration the size ofS is 1. Thus, for a simple path expression of length 0 (�)
the assertion holds since the first part of Algorithm 4.1 is
not executed. Let pe = l1:l2 � � � ln; n � 1 be a simple path
expression. Let n � k > 0 be the smallest k for which after
the k-th iteration S contains more than one atomic objects
or more than one complex objects. Then we can construct at
least two data paths that are instances of the same simple path
expression and end with objects of the same kind (atomic
or complex). Let the sole complex object in S after thei-th iteration be oi, for i = 1::k � 1. At the k-th iterationS contains at least two different objects ok and ok0 of the
same kind. Consider the data paths Ro; l1 � � �ok�1; lk; ok
and Ro; l1 � � �ok�1; lk; ok0. Both data paths originate fromRo, end with objects of the same kind, and are instances
of the simple path expression l1:l2 � � � lk. This contradicts
Definition 4.4 and thus the assertion holds in all cases.

We will use the assertion proved above to calculate the
running time of Algorithm 4.1 for a minimal FRO (in OEM)Ro for o and a simple path expression pe of length n. The
number of iterations of the first part of Algorithm 4.1 forRo
is n. The size of S before each iteration is at most 2. Thus,
if we can retrieve the object references that have a particular
label for a given object in constant time then each iteration
takes constant time. The second part of Algorithm 4.1 takes
time proportional to the size of continuationo(pe). Thus,
the computation of the continuation of a simple path ex-
pression for an object given a minimal FRO (in OEM) for
this object takes linear time with respect to the length of the
simple path expression and the number of different labels in
the computed continuation.

5. Construction of Minimal FROs

In this section we present a method for constructing min-
imal FROs in OEM. The method consists of three major

steps: construction of a nondeterministic finite automaton
(NFA) from a given object, determinization and minimiza-
tion of this NFA that results in a deterministic finite automa-
ton (DFA), and construction of a minimal FRO from this
DFA. We also prove the correctness of this method.5.1. Finite automata

Finite automata are used in many areas of computer sci-
ence and are studied extensively[3]. A finite automaton(Q;Σ; �; q0; F) consists of a finite number of states Q, a fi-
nite alphabet Σ, and transitions from one state to another on
a letter of the alphabet (� : Q � Σ 7! Q). One state, q0, is
designated as the start state and there are one or more end
(accepting) states F . All the words formed by the sequences
of letters on transitions from the start state to an end state
form the language accepted by the automaton.5.2. Construction of a NFA from an objectin OEM

Every object in OEM can be viewed as a NFA in a
straightforward manner. The objects correspond to states
and the object references and their labels correspond to tran-
sitions and their respective letters. Before we formally show
how we construct the NFA corresponding to an object o in
OEM, we introduce the function state that maps every ob-
ject within o to a unique automaton state corresponding to it.
We extend this function to map a set of objects within o to
the set of the automaton states corresponding to them. We
also define the following terms that characterize the objecto in OEM. Let A be the set of all atomic objects within o,C the set of all complex objects within o, and D the set of
all objects within o. Note that D = A [C. Let also L be
the set of all different labels of object references within o.
The NFA (Q;Σ; �; q0; F) corresponding to o is constructed
as follows.� Q = state(D) [fendg� Σ = L[f?g� �(state(c); l) = state(object(id)) for 8c 2 C and8hl; idi 2 value(c)� �(state(a);?) = end for 8a 2 A� q0 = state(o)� F = Q5.3. Determinization and minimization of aNFA

The determinization (conversion to a DFA) and mini-
mization of a NFA is a very well studied problem. The

determinization of a NFA can take exponential time with
respect to its number of states [3]. If, however, the NFA
has a tree structure, i.e, every state has only one incoming
transition and there are no cycles, then the determinization
takes linear time. The best algorithm for minimization of a
DFA takes n logn time where n is the number of states of
the DFA [2].5.4. Construction of a minimal FRO from aDFA

The transformation from a DFA to an object in OEM is
straightforward except for the treatment of some states with
which we associate two different objects,one atomic and one
complex. With the rest of the states we associate a unique
object. We also associate an object reference with each let-
ter transition. Before we formally describe the construction
of a minimal FRO from the DFA (Q;Σ; �; Q0; F) we in-
troduce two functions, atomic obj that maps a state to its
corresponding atomic object (if any) and complex obj that
maps a state to its corresponding complex object (if any).
The minimal FRO corresponding to the DFA is constructed
as follows.� Let Sa = fq j q 2 Q; �(q;?) = endg.� Let Sc = fq j q 2 Q; 9l; r such that l 2 Σ; l 6= ?; r 2Q and �(q; l) = rg.� For8q 2 Sa atomic obj(q) is a unique atomic object.� For 8q 2 Sc complex obj(q) is a unique complex

object and value(complex obj(q)) =fhidentifier(atomic obj(p)); li j �(q; l) = p andatomic obj(q) is definedg [fhidentifier(complex obj(p)); li j �(q; l) = p andcomplex obj(q) is definedg.� If complex obj(Qo) is defined then the minimal
FRO, Ro, is complex obj(Qo). Otherwise Ro =atomic obj(Qo).

Example 5.1 As an illustration of the method described in
this section Figure 4 shows the minimal FRO in OEM for
the premiership object in Figure 1. Note that there are two
link labeled “Name” coming from the same “Club” object.
This does not contradict Definition 4.4 because one of the
“Name” subobjects is atomic and the other one is complex.5.5. Correctness proof

In order to prove that the method we present is correct
we have to show that the object constructed in the third step

Club

Name
Name

Nickname Official

Stadium

Name

Captain

Nationality
Number

Name

Player

Name

First Last Nickname

English French

FormerClub

Number
Nationality

R premiership

Figure 4. The minimal FRO for the premier-
ship object.

of the method is indeed a minimal FRO in OEM for the
original object.

Let o be an object, No the NFA constructed fromo as described in Section 5.2, Do the DFA obtained
after the determinization and minimization of No, andRo the object constructed from Do as described in Sec-
tion 5.4. We will show that continuationo(pe) =continuationRo(pe) for any simple path expression pe by
showing that continuationo(pe) � continuationRo(pe)
and continuationo(pe) � continuationRo(pe).

Let pe = l1:l2 � � � ln; n � 0, be a simple path expression
and l 2 continuationo(pe). Then pe has an instance data
path p = o; l1; o1 � � �on. From the construction of No we
have:� �(state(o); l1) = state(o1).� �(state(oi�1); li) = state(oi), for i = 2::n.

There are two possible cases for l, l = ? and l 6= ?. In
the first case, l = ?, we have that on is atomic and thus�(state(on);?) = end. In the second case, l 6= ? we have
that on has an object reference to an object on+1 labeled
with l and thus �(state(on); l) = state(on+1). Therefore,
in both cases the word l1l2 � � � lnl is accepted by No. The
DFA Do is equivalent to No by construction and thereforeDo and No accept the same language. Thus, the wordl1l2 � � � lnl is accepted by Do. Then there are states Qi
in Do for i = 0::n + 1, such that �(Qi�1; li) = Qi fori = 1::n, �(Qn; l) = Qn+1, Q0 is the start state of Do,
and Qn+1 is an accepting state. Then from the construction
of Ro we have that hidentifier(complex obj(Qi)); lii 2value(complex obj(Qi�1)) for i = 1::n � 1. Thus, the
data path P = Ro; l1 � � � ln�1; complex obj(Qn�1) exists.
If l = ? we have that Qn 2 Sa and thus, atomic obj(Qn)
is defined. Therefore, ? 2 continuationRo(pe) because

of the data path P; ln; atomic obj(Qn). If l 6= ? we
have that Qn 2 Sc and thus complex obj(Qn) is de-
fined. Therefore, l 2 continuationRo(pe) because of the
data pathP; ln; complex obj(Qn); l; obj where obj is eithercomplex obj(Qn+1) or atomic obj(Qn+1), whichever is
defined. Therefore we proved that continuationo(pe) �continuationRo(pe). Similarly we can show that if l 2continuationRo(pe) then the word l1l2 � � � lnl is accepted
by Do and thus by No. Then we can show that l 2continuationo(pe) and therefore continuationo(pe) �continuationRo(pe). We can also show that Ro is a mini-
mal FRO from its construction fromDo and the fact that Do
is a DFA. With this we conclude the proof of correctness of
the minimal-FRO construction method.

6. Constructing a 1-representative object

The simplest representative object to construct is the 1-
RO. While the 1-RO only guarantees that its paths of length 2
exist within the represented object, it nonetheless indicates
the set of possible labels that may succeed an individual
label. Furthermore, the 1-RO provides a very compact de-
scription of the represented object, is easy to construct, and
easy to comprehend. We represent the 1-RO as a graph
with the nodes corresponding to labels. Intuitively, the 1-
RO contains each unique label exactly once, and contains
an edge between two labels if the simple path expression
consisting of the two labels has an instance data path within
the given object. For example, Figure 6 shows the 1-RO for
the OEM object in Figure 5. In this section, we describe an
algorithm for constructing the 1-RO for an object in OEM in
one physical, sequential scan of all objects within the given
object.

a a

b

c

b a

ab

Figure 5. An example object.

$ a

b

c

Figure 6. The 1-RO for the example object.6.1. 1-representative object algorithm
The goal is to find all pairs of labels (l1; l2) such that

there is a data path o0; l1; o1; l2; o2 within the given ob-
ject. Each object oi contains pairs of identifiers and la-
bels (object references) but does not contain the labels
on incoming links. Thus we must must examine all ob-
jects that have links to oi. Our approach is to remem-
ber all (identifier(oi); li+1; identifier(oi+1)) triples (the
id table) and join it with itself on identifer(oi+1) =identifer(oi) to produce (li+1; li+2) pairs.

The id table can be built in one scan of the objects (in
any order). The cost of computing the pairs of labels then
depends on the size of the id table. If it fits in memory,
then an in-memory join is performed for no extra I/O cost.
Otherwise, the additional I/O cost is that of a join, which is
2 � size(idtable)) for a two-pass hash (self-)join.

The result table, the label table, is then indexed by l1
so that lookups are efficient. Duplicate label pairs are dis-
carded.6.2. Computing 1-continuations

Suppose that we wish to find the continuation of a simple
path expression consisting of a single label l. Then we look
for all pairs (l; l2) in the label table; the set of all such l2 is
the 1-continuation of l. The time required is the cost of an
index lookup: O(1) if the label table index fits in memory
and nothing if the label table itself fits in memory.

7. A graph-based approach to constructing k-
ROs

Let us be given an object o in OEM. Let P be the set of
simple path expressions, having length up to k+1, that have
instance data paths within o. Specifically, we shall think of
the set P as having strings of length k + 1. To represent
simple path expressions of length less than k + 1, we pad
them with the special label $ at the beginning. We shall also
refer to the elements of P as k + 1-paths of o.

Evidently, the set of stringsP is a suitable representation
of the k-RO. It is also not hard to compute P ; it requires a
generalization of the technique discussed in Section 6 for the
1-RO. However, P is not a very compact representation of

the k-RO. Thus, we shall show how to compact the set into
a graph, from which k-continuations can be read efficiently.7.1. Converting sets of strings into a com-pact graph

Our idea is to compact the set of simple path expressions
into a graph such that all the paths of lengthk+1 in the graph
have label sequences that appear within the given object,
and conversely. One can then compute the k-continuation
by searching the graph. An index on the nodes that directs
us to all the nodes of the graph bearing a given label will
make this search quite efficient.

A suitable graph may be constructed by listing all thek + 1-paths of an object and partitioning the positions of
those paths into clusters of mergeable positions. The nodes
of the graph will each represent a cluster of positions. For
positions to be mergable, they must surely have the same
label, since they will be represented by a single node of the
graph.

i

j

A

B

Figure 7. A cross-over string: requirement on
positions that are mergeable.

However, there is also another condition they must sat-
isfy. Suppose that we wish to merge position i of a k + 1-
path A = a1:a2 � � �ak+1 with position j of the k + 1-pathB = b1:b2 � � �bk+1. Then any k + 1-path that we con-
struct by starting with bm:bm+1 � � � bj and continuing withai+1:ai+2 � � �ak�j+i+m must also be a k + 1-path of the
given object. Figure 7 suggests the k + 1-path that must
also appear in the given object. We call this k + 1-path a
cross-over string.

Example 7.1 Figure 5 shows a graph representation of an
object o in OEM. Let k = 2, so paths of length three are
considered. The eight sequences of 3 labels (counting the
special label $) that appear in Figure 5 are shown in Fig-
ure 8.

Consider paths (6) and (7), and suppose we wish to merge
the last position of (6) with the first position of (7). Both
hold label b, so it is possible that the merger will succeed.
We need to consider a string of 3 labels, beginning in (6),
reaching the b at the end, treating that b as if it were the first
position of (7), and continuing in (7) until a total of three

1) $$a
2) $ab
3) $ac
4) acb
5) aba
6) bab
7) bac
8) cba

Figure 8. Length-3 paths of the example ob-
ject.

positions are visited. That sequence of three positions must
also be on the list of Figure 8.

The only way the new sequence could not be on the list is
if we take the middle positions of (6) and (7), along with the
merged b. This string is aba, and it is string (5) in Figure 8.
In fact, in this example, every position bearing the same
letter can be merged. It is also possible to merge positions
2 of string (1) with positions 1 of strings (2) and (3). The
only case in which positions bearing the same label cannot
be merged is that position 1 of string (1) cannot be merged
with the other positions holding $. If we make one node of
the graph for each cluster of mergeable positions, we get
the graph shown in Figure 9.

$

$

a

c b

Figure 9. Graph constructed for the example
object.

Observe that things are not always as simple as suggested
by Example 7.1. For instance, suppose we remove the
lowest object with label b within the object o of Figure 5,
and call the resulting object o0. The set of 3-paths for o0 is
the same as for o, except it is missing the string (6): bab.
That would prevent merging many pairs of positions. For
instance, we could not merge the first and third positions
of string (5), which is aba, because that would require that
string bab were also present in the object o0. In that case,

the best we could do would be to use a copy of o0 itself, with
two nodes labeled $ above the top a in Figure 5, and with
the bottom b deleted, of course.

There are several simplifications that can be made to our
test for whether two positions are mergeable.� First positions with the same label are always merge-

able. The reason is that each of the strings induced by
the cross-over process suggested in Figure 7 must be
one of the two strings involved in the merger.� Similarly, last positions with the same label are surely
mergeable.� If j < i, then there is no room for a cross-over string as
in Figure 7, so unless i = j we only have to consider
cross-over strings that begin in one of the two strings
whose positions we are considering merging (the one
with the further right of the positions being merged).� When we merge strings, a new cross-over string could
only be obtained if we use something from each string,
other than the merged positions. In terms of Figure 7,
the cross-over string must begin before position j ofB, and it must end after position i of A. Thus, m < j
may be assumed.� Thus, in the special case k = 2, the only cross-over
strings that can prevent a merger are those with one po-
sitionbefore the merged positionof one string and one
position following the merged position of the other.7.2. Computing k-continuations

The data structure used to represent the graph influences
how fast we can compute k-continuations. For maximum
efficiency, we need to have a main index that maps labels to
the set of nodes with that label. We also need to have for
each node an index mapping labels to the successors of that
node having that label.

Assume these structures are available and can retrieve
the desired set of nodes in time proportional to the size of
the set. Suppose we wish to know the continuations of pathl1:l2: � � � :lk. Then we use the main index to find the set of
nodes labeled l1. For each of these nodes, we use the index
for that node to find the successors labeled l2, and so on.

While this search could be exponential, we only need to
find successors of each node at most once for each position
in the string. If we keep track in a table of those pairs (i; n)
such that we found for node n (whose label must be li) the
successors ofnwith label li+1, then the total amount of work
we do is at most kN 2, where N is the number of nodes of
the graph.

8. A finite automaton-based approach to con-
structing k-ROs

In Section 7, we presented a graph-basedk-representative
object. The graph encodes the set P of simple path expres-
sions of length up to k + 1 that have instance data paths
within the object being represented. In this section, we
present a construction for k-representative objects based on
finite automata. We treat simple path expressions as strings
over the alphabet of OEM labels. The language represented
by the set P is then encoded using an automaton that accepts
the strings in P .8.1. Constructing an automaton represent-ing an object in OEM

As in Section 7, we assume that we have computed the
set P of all simple path expressions of length up to k + 1
that appear in the object o being represented. Consider an
alphabet V consisting of the labels in o. Then P represents
a finite, and hence regular, language over the alphabet V .
Using standard techniques [3], we construct a finite automa-
ton A that recognizes the language P . (We assume that
the automatonA is minimized using the subset construction
method [3].)

Consider the example in Section 7, involving the object
in Figure 5. Figure 8 shows the 3-paths of that object, that
is, the set P above for k = 2. A finite automaton that
accepts the language suggested by P (interpreting simple
path expressions as strings) is shown in Figure 10. The
initial state is marked with a short arrow, and the accepting
states are circled.

a

a
b,c

a

b

$

a

c

b
c

b

b

$

Figure 10. Finite-automaton-based 2-RO for
the example object.8.2. Computing k-continuations
Having an automaton-based representation of the k-

representative object as described above allows us to com-
pute k-continuation as follows. Suppose we wish to know

the continuation of the simple path expression a1:a2 : : :ak.
We start in the initial state of the automaton and follow the
transition with label ai for i = 1::k to reach a state sk. (If,
at some stage, we are in a state with no transition with the
desired label, the continuation is empty.) Let A be the set
of transitions that go from sk to an accepting state. The set
of labels in A is the continuation of the given simple path
expression.

If we use an index to represent the transitions out of
each state in the automaton, finding the next state requires
at most O(logl) time, where l is the number of labels in the
represented object. Finding the state sk therefore requires at
most O(klogl) time. If there are c labels in the continuation
of the given simple path expression, we can retrieve the
labels on the transitions out of sk in no more than O(c)
time. (Note that all these transitions must lead to accepting
states, since every path of length k + 1 in the automaton
leads to an accepting state.) Thus, the total time required to
compute the k-continuation isO(klogl+c). In practice, we
can achieve a running time close to O(k + c) if we use an
associative array for the label-index. Thus, the time required
to find the k-continuation is bounded by O(klogl + c).8.3. Comparison

For the object of the example of Figure 5, the finite
automaton-based 2-representative object is more compli-
cated than the graph-based 2-representative object in Fig-
ure 9. However, for other objects, the finite automaton-
based representative object is simpler than the graph-based
one.

9. Conclusions

In this paper we have introduced the representative object
concept that provides a concise representation of the inher-
ent schema of a semistructured hierarchical data source. We
make the case that representative objects are very useful for
semistructured data and show some of their primary uses.
We also described an implementation of FROs in OEM that
has the advantage that the data part of the FRO can be stored
and queried as an object in OEM. We presented a construc-
tion method for an important class of FROs: minimal FROs.
Minimal FROs allow efficient querying of the schema of
the represented data. Since constructing minimal FROs has
very high complexity we described several alternative ap-
proaches to constructing k-ROs that are approximations of
an FRO. In many case, even a 1-RO provides a good ap-
proximation of an FRO.9.1. Future work

We are investigating the following topics.

� Storing information about the typical object in the
FROs. The FROs provide informationabout the over-
all schema of the data but do not provide any infor-
mation about the instance objects. For example, an
FRO can tell you that a link labeled “Book” can only
be followed by links labeled “Author”, “Title”, and
“Publisher” but cannot tell you if every link labeled
“Book” is followed by a link labeled “Title”.� Graph-based construction algorithms for k-ROs. We
are looking at more complicated conditions that can
help the graph-based approach to constructingk-ROs.� Updating minimal FROs in OEM. When the object
changes its minimal FRO in OEM also must change.
Since the construction of a minimal FRO from scratch
is expensive we need to have a way of updating the
old minimal FRO accordingly.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener.
The lorel query language for semistructured data. Technical
report, Dept. of Computer Science, Stanford University, 1996.
Available by anonymous ftp to db.stanford.edu.

[2] J. Hopcroft. An n logn algorithm for minimizing the states in
a finite automaton. In The Theory of Machines and Computa-
tions, pages 189–196. Academic Press, New York, 1971.

[3] J. Hopcroft and J. Ullman. Introduction to automata the-
ory, languages, and computation. Addison-Wesley, Reading,
Massachusetts, 1979.

[4] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Ob-
ject exchange across heterogeneous information sources. In
Proceedingsof the Eleventh International Conferenceon Data
Engineering, pages 251–260, Taipei, Taiwan, Mar. 1995.

[5] D. Quass and et. al. Lore: A lightweight object repository
for semistructured data. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, page 549,
Montreal, Canada, June 1996.

[6] J. Ullman. Principles of Database and Knowledge-Base Sys-
tems, Volume II. Computer Science Press, Rockville, Mary-
land, 1989.

