Representative Objects. Concise Representations of
Semistructured, Hierarchical Data

Svetlozar Nestorov, Jeffrey Ullman, Janet Wiener, Sudarshan Chawathe
Department of Computer Science
Stanford University
Stanford, CA 94305-9040, USA
{evtimov,ullman,wiener,chaw} @db.stanford.edu
http://www-db.stanford.edu

Abstract

In this paper we introduce the representative object,
which uncovers the inherent schema(s) in semistructured,
hierarchical data sourcesand providesa concisedescription
of thestructure of the data. Semistructured data, unlikedata
stored in typical relational or object-oriented databases,
does not have fixed schema that is known in advance and
stored separately fromthe data. Withtherapid growth of the
World Wide Web, semistructured hierarchical data sources
are becoming widely availableto the casual user. The lack
of external schema information currently makes browsing
and querying these data sources inefficient at best, and im-
possibleat worst. e show how representative obj ects make
schema discovery efficient and facilitate the generation of
meaningful queries over the data.

1. Introduction

The goal of this paper is to present a tool, the “repre-
sentative object,” that facilitates querying and browsing of
semistructured, hierarchical information, such as that found
on the web. The lack of external schema information cur-
rently makes browsing and querying these data sourcesinef-
ficient at best, and impossible at worst. For instance, a user
findinga“person” object inatraditional object-oriented sys-
tem would know the structure of itssubobjectsor fields. As
an exampl e, the class declaration for the object might tell us
that each person-object has two subaobjects: first-name and
last-name. In a semistructured world, some person-objects
might have subobjectswith first name and last name. Other
person-objects might have a single subobject with a single
name as value, or asingle “name” subobject that itself has
subobjects first- and last-name. Yet another person-object
might have a middle-name subobject, while others have no

name at al or have two name subobjects, one of whichisa
nickname or alias.

There are several ways to dea with the lack of fixed
schema. If the semistructured data is somewhat regular
but incompl ete, then an object-oriented or relational schema
can be used (along with null values) to represent the data.
This approach fails, however, if the semistructured data is
very irregular. Then, trying to fit the data into a traditional
databaseformwill either introducetoo many nullsor discard
most of the information [6].

In this paper we introduce the representative object con-
cept. The representative object allows browsers to uncover
the inherent schema(s) in semistructured, hierarchical data.
Representative objects are implemented in the Lore DBMS
as “DataGuides’ [5]. Representative objects provide not
only a concise description of the structure of the data but
also a convenient way of querying it. The next subsection
describes the primary uses of the representative objects.

1.1. Motivating applications

e Schema discovery: To formulate any meaningful
query for a semistructured, hierarchical data source
we need first to discover something about how thein-
formationis represented in the source. Only then can
we pose queries that will match some of the source's
structure. Representative objects give us the needed
knowledge of the source’s structure.

e Path queries: When querying semistructured, hierar-
chical data, we often need to expresspathsthroughthe
hierarchy that meet certain conditions, e.g., the path
ends in a“name’ object, perhaps going through one
or more other objects. Expressing such pathsrequires
“wild cards’” — symbols that stand for any sequence
of objects or objects whose class names (which we
cal “labels’) match acertain pattern. However, when

guerieshave wild-card symbol sinthem, searching the
entire structure for matches is infeasible. The repre-
sentative object can significantly reduce the search.

e Query Optimization: We can optimize some queries
or subqgueries by noticing from the representative ob-
ject that their results must be empty.

1.2. Paper organization

In Section 2, we introduce our data model and de-
fine severa terms and functions regarding the hierarchical
and semistructured nature of the data, including the OEM
(object-exchange modd) used in the TsSmmis project at
Stanford. Then in Section 3, we define both full repre-
sentative objects (FROs), which provide a description of the
global structure of the data, and the degree-k representative
objects (k-ROs), which provide a description of the local
aspects of the data, considering only paths (in the object-
subobject graph) of length &. Section 4 describes an im-
plementation of FROs as objectsin OEM and an agorithm
for extracting the relevant information from them. We also
consider minimal FROs, which allow us to answer schema
gueries most efficiently. In Section 5, we present a method
based on determinizati on and minimization of nondetermin-
istic finite automata for construction of a minimal FRO in
OEM. Section 6 describes the construction and use of the
simplest £-RO, the case ¥ = 1. Sections 7 and 8 present
two aternative approaches to building a k-RO for & > 1,
a graph-based approach and an automaton-based approach.
Section 9 presents the conclusions and outlines the future
work.

2. Preliminaries

In this section we describe the data moddl used in the
paper. The object-exchange model (OEM) [1] is designed
specifically for representing semistructured data for which
the representative objects are most applicable and useful.
The OEM described in [1] that we use is a modification of
the origina OEM introduced in [4]. We then define severa
termsthat arerelated to the structure of the objectsin OEM.
We aso define two functions that form the basis of the
representative object definitions.

2.1. The object-exchange model

Our datamodel, OEM, isasimple, self-describing object
model with nesting and identity. Every object in OEM
consists of an identifier and avalue. Theidentifier uniquely
identifiesthe object. The valueis either an atomic quantity,
such as an integer or a string, or a set of object references,
denoted as a set of (label, id) pairs. The label is a string

that describes the meaning of the relationship between the
object and its subobject with an identifier id. Objects that
have atomic values are called atomic objects and objects
that have set values are called complex objects. We can
view OEM as a graph where the vertices are the objects and
the labels are on the edges (object references).

premiership

“"Manchester
United"

"Keith Gillespie"

“King Eric’ “Eric LeRoi"

Figure 1. The premiership object.

Figure 1 shows a segment of information about the top
soccer league (The Premiership) in England. Each circle
along with the text inside it represents an object and its
identifier. The arrows and their labels represent object ref-
erences.

Wewill usethe notationsidenti fier(o) and value(o) to
denote theidentifier and value of the object 0. We will also
use the notation object(id) (or obj(id) for short) to denote
the unique object with an identifier id.

2.2. Simple path expressions and data paths

A simplepath expression isasequenceof |abel sseparated
by dots. A data path is a sequence of aternating objects
and labels, separated by commas, that starts and ends with
an object and has the property that for every two consecu-
tive objects the value of the first object contains an object
reference to the second object, |abeled with the label that is
between the two objects in the given sequence. Formally,
we have the following definitions:

Definition 2.1 Let I; be a label (of object references) for
i =1.n,n> 0. Thenpe = l1.I---1, is a smple path
expression of length n.

Definition 2.2 Let o; be an object for i = 0..n, [; bealabe
for ¢ = 1..n, and (I;, identifier(o;)) € value(o;_1) for
1= 1.n,n>0. Thenp = og, 1,01, -1, 0, iSadaa
path, of length ..

Weintroducethefollowingterminology regardingsimple
path expressions and data paths.

e A datapathp = og,l1- - -1, 0, Originatesfromor is
rooted at the object op.

e An object o; is within an object o if 3 a data path
originating from o and ending with o;.

e A datapath piswithinan object o if p originatesfrom
an object withino.

e A datapath p = 0g,l1 - -, 0, iSan instance of the
simple path expressionpe = l1.l>- - - 1,.

Remark 2.3 Notethat we allow data paths of length O that
consist of a single object. \We also allow a simple path
expression of length 0. Thissimple path expression contains
no labels and is denoted by the special symbol . Any data
path of length O is an instance of e.

Example2.4 Toillustratetheabovetermsconsider thepre-
miership object from Figure 1.

e The simple path expression Player.Number has two
instance data paths within the premiership object,
namely obj(&1),Player,obj(&5),Number,obj(& 13)
and obj(&1),Player,obj(&14),Number,obj (& 18).

e Consider the following two data paths
obj(&1),Player,obj(&14),FormerClub,obj(& 24),
obj(&24),Player,0bj(& 28),FormerClub,obj(&1).
Thus, obj(&1) is within obj(&24) and obj(&24) is
within obj(&1), i.e, there is a cycle within the pre-
miership object.

2.3. Continuations

The continuation functions form the basis of the repre-
sentative object definitions presented in the next section.
However, they arise naturaly when we consider schema
discovery of semistructured data represented in OEM. We
briefly describe the schema discovery process before we
give theformal definitionsof the continuation functions.

Consider an object o in OEM. Supposethat we are inter-
ested in the structure (schema) of theobject, i.e., wewant to
perform schema discovery. By schema discovery we mean
exploring o by moving (navigating) from an object to its
subobjects and keeping track of the labels of the object ref-
erences that we traverse. By following a given sequence of
labels (a simple path expression) we can get, in generd, to
zero, one, or more objectswithino. At thispoint wewant to
know the labels of the links we could immediately traverse
if we continue our navigation. We aso want to know if
we might not be able to continue navigating, i.e., we have
reached an atomic object, but we are not (yet) interested in

the specific value of the atomic object. These observations
motivate to the following definition.

Definition 2.5 Let o be an object in OEM and pe =
L.l -1, asmplepath expression, » > 0. Then we define
continuation(o, pe) asfollows.

e continuation(o,pe) O {l | 3 a data path p =
0,11,01- -l 0n, 1, 0n 41 thatisan instance of pe.l}.

e continuation(o,pe) O {1 | 3 a data pathp =
o,11,01---1,, 0, that is an instance of pe and o, is
an atomic object}.

If we view OEM as agraph Definition 2.5 translates into
the following. The continuation of o and the simple path
expression e is the set of the labels on al outgoing edges
from o. The continuation of o and a simple path expression
pe of lengthn > 1isobtained asfollows. First, wetraverse
all possible paths of length » + 1 starting at o, such that at
the i-th step, 0 < 7 < n, we pick an edge labeled with the
i-thlabel in pe. At thelast, n + 1-th step we pick any edge.
Then the continuation of o and pe isthe set of al labels on
the edges we picked at the last step of atraversal described
above plus L if in any of the traversals we made the first »
steps but could not make the » + 1 step because we ended
up in a vertex with no outgoing edges (corresponding to an
atomic object).

Example2.6 Consider the premiership object from Fig-
ure 1. The following examples illustrate Definition 2.5.

e continuation(premiership, ¢) = {Club}

e continuation(premiership, Club) = {Name

Player, Sadium,

e continuation(premiership, Club.Player.Name) =
{First, Last, Nickname, L}

Note that in Definition 2.5 we only consider data paths
originating from the object that is the first argument of the
continuation function. By partially removing this restric-
tion, allowing the data paths to be within the given object,
and imposing a limit on the length of the simple path ex-
pression that is the second argument of the continuation
function we arrive at the following definition.

Definition 2.7 Let o be an object, £ > 1, and let pe be a
simple path expression of lengthn, 0 < n < k. Then we
define continuation® (o, pe) asfollows.

o Ifn = kthen

— continuation® (o, pe) D {l | 3 a data path p
within o, not necessarily rooted at o, that is an
instance of pe.l}.

— continuation®(o,pe) O {1 | 3 a data path
p = og, 1,01+ 1y, 04, Withino, that isan in-
stance of pe and o,, isan atomic object}.

e Otherwise (if n < k) continuation*(o,pe) =
continuation(o, pe).

Example 2.8 Consider the premiership object in Figure 1.
The following examples illustrate Definition 2.7.

° continuationl(premiership, Name) = {Official,
Nickname, First, Last, L}

° continuationz(premiership, Club) = {Name,
Player, Sadium, Captain}
e continuation’(premiership, PlayerName) =

{First, Last, Nickname, L}

The next lemma characterizes the relationship between
the functions continuation and continuation®.

Lemma2.9 Letobeanobject, £ > 1, and pe a simplepath
expression of lengthn, 0 < n < k. Then we have:

e continuation®(o,pe) = continuation(o,pe) for
n<k

e continuation®(o,pe) D continuation(o,pe) for
n==k

e if n = k, pe beginswith I where (I, id) € value(o),
and ! isuniquewithin o then
continuation® (o, pe) = continuation(o, pe).

Proof: Thefirst part of the lemma follows directly from
Definition 2.7. The second part of the lemma followsfrom
the fact that al data paths rooted at o are also within o.
Therefore, for the same object o and simple path expression
pe, the set of data paths considered in Definition 2.5 is a
subset of the set of data paths considered in Definition 2.7.
Thethird part of thelemmaisaconsequence of thefact that
any instance data path of pe must be rooted at o because no
object references within o, other than the one coming from
o, haslabel I. Thus, in Definition 2.7 only the data paths
rooted at o are effectively considered which is the the set of
data paths considered in Definition 2.5.

3. Representative object definitions

A “representative object” for an object o in OEM is any
implementation of the continuation functionfor o. Were-
fer to these implementations as “representative objects’ be-
cause in fact they are implemented in practice as objectsin
OEM. However, as discussed in later sections of this paper,
thereare many different waystorepresent thecontinuation

function, and not al are “objects’ in the usual sense. For
instance, we discuss graph-based and automaton-based rep-
resentations.

In this section we define two different kinds of represen-
tative objects. First, we define the concept of a full repre-
sentative object (FRO) for an object in OEM and justify this
definition by describing how a FRO supportsthe motivating
applications from Section 1.1. We then define the concept
of a degree-k representative object (k-RO) for an object in
OEM. k-ROs are often less complex than FROs and can be
used to approximate FROs. We also discuss the extent to
which the motivating applications are supported by &-ROs.

3.1. Full representative objects

The “full” representative object is an implementation of
the continuation function, restricted to a particular object.
Formally.

Definition 3.1 Let o be an object. Then the function
continuation,(pe) = continuation(o, pe), where pe isa
simple path expression, isa full representative object (FRO)
for o.

In order to justify this definition, we show how a FRO
supports the motivating applications from Section 1.1.

3.1.1 Schemadiscovery

Thisapplication isthe primary motivation for investigating
representative objects. Recall that by schema discovery we
mean navigatingthrough a given object and keeping track of
thelabelsof the object referencesthat wetraverse. By using
the FRO of an object we can perform schema discovery
very quickly and efficiently. We illustrate the point with an
exampl e of exploration of thepremiership objectin Figurel.
This approach to exploration has been implemented in the
DataGuide feature of Lore, a database system using the
OEM, asdiscussed in [5].

Example 3.2 Suppose we start at the root object. If we
ask the query continuationpremiership (€) We get the la-
bels of links leading from the root. In this case, the only
label is Club. The query continuationpremicrship (Club)
then lets us see all the labels of links leading from Club
objects within the premiership. These labels are Name,
Player, Captain, and Stadium. Suppose we are interested
in players. Then we may explore from Player by asking
the query continuationpy emicrship (Club. Player), where-
upon we find that links out of Player objects can be labeled
Name, Number, Nationality, or FormerClub. In the Lore
DataGuide, the queries are submitted by clicking on the
node we wish to expand, and after the sequence of queries
described above, the presentation of (part of) the represen-
tative object would be asit appearsin Figure 2.

Premiership

Club
Name Player gStadium Captain

//\\

Name Number Nationality FormerClub

Figure 2. Displaying part of the FRO for the
premiership object.

3.1.2 Path queries

Many interesting queries over semistructured data neces-
sarily involve wild cards because the schema of the data
is not known in advance or may change often. The FROs
can be used to answer efficiently such queries by finding
all smple path expressions that have instance data paths
within a given object and also match the wild-card pattern
in a query. We illustrate the point with an example. The
wild-card pattern syntax used in the exampleisdescribed in
[1] and the path expressions expressiblein it are called gen-
eral path expressions. In our example we only use“?’ that
denotes an optional label and “%” that matches any number
of characters.

Example3.3 Consider the following pattern gpe =
Club(.Player)?.(Na%) and the premiership object in Figure
1. In other words, we are looking for simple path expres-
sions that have instance data paths within the premiership
object and start with Club foll owed optionally by Player and
end with a label beginningwith“ Na” .

o First wefind continuationpyemiership(€) = {Club}.

e The label Club matches the head of gpe, the tail of
gpe is (Player.)A(Na%).

e Then we find continuationpy,emiersnip(Club) =
{Name, Player, Captain, Stadium}.

e Only the label Player matches the head of
(Player.)(Na%o) but because the head is an optional
label we have two simpl e path expressions that match
gpe 0 far: Club, and Club.Player. The remaining
tail is Na%.

o We find continuationy,emiership(Club.Player) =
{Name, Nationality, Number, FormerClub}.

e Both Name and Nationality match Na% so we
have three simple path expressions that match gpe

completely: Club.Name, Club.Player.Name, and
Club.Player.Nationality.

3.1.3 Query optimization

In order to find whether a simple path expression pe has any
instance data paths originating from an object o we com-
pute continuation,(pe). Recall that continuation(o, pe)
is defined to be nonempty if pe has an instance data
path originating from o. Since continuation,(pe) =
continuation(o, pe) then an empty result means that pe
does not have any instance data paths originating fromo. If
the result isnot empty then pe has at least one instance data
path originating from o.

3.2. Degree-k representative objects

We obtain the following definition by replacing
the continuation function in Definition 3.1 by the
continuation® function.

Definition 3.4 Let o be an object and ¥ > 1. Then
continuation® (pe) = continuation® (o, pe), where pe is
asimplepath expression, isa degree-k representative object
(£-RO) for o.

While k-ROs, in general, only approximately support
the motivating applicationsfrom Section 1.1, they take less
space (usually) than FROs and may be faster to construct.
Before we show the extent to which k-ROs support the
motivating applicationswe describe amethod of computing
an approximation of continuation,(pe) from ak-RO.

Let o be an object, R;, a degree-k representative object
for o, and pe = I.1-- -1, a simple path expression. We
consider the following three cases.

e If we have that n < k& then by using R
we can find continuation®(pe) and because
continuation®(o,pe) = continuation,(pe) we
have the exact value of continuation,(pe).

elf n = k we can find continuationk(pe)
and by Lemma 2.9 the result is a superset of
continuation,(pe).

e If we have that n > k then we find
continuation® (L, _xy1.ln_k12--+1,). The result
is a superset of continuation,(pe). We can aso
checkif ;11 € continuation® (L;.liyq -+ Lirk_1) for
1= 1.n 1 k. If any of these conditionsdoes not hold
then continuation,(pe) is empty and thus we have
itsexact value.

Consider the motivating applications from Section 1.1.
We describe how they are supported by a k-RO, using the
approximation of continuation,(pe) provided by the k-
RO.

e Schema discovery: As in the FRO case we start at
the root object. As long as the length of the smple
path expression pe that we have followed isless than
k where k is the degree of the £-RO we can compute
the exact value of continuation,(pe) and thus the
k-RO provides the same support as a FRO. If the
length of the pe is at least k& then we have to use the
approximation of continuation,(pe) provided by the
k-RO. The consequenceisthat thediscovered schema
will contain the actual schema, but may also have
some paths that do not exist within o.

e Path queries: The procedure described in the FRO
case remains the same. When we compute contin-
uation of simple path expressions of length at least
k we have to use the approximation instead of the
actua vaue. Thus, the fina set of matched simple
path expressions will be a superset of the actual one
and therefore each simple path expression of length
at least k in the set should be verified.

e Query optimization: If the approximation of the con-
tinuation of the given simple path expression pe is
empty then pe has no instance data paths originat-
ing from the given object. If the result is nonempty,
however, pe may or may not have instance data paths
originating from the given object.

4. Implementation of FROsin OEM

In this section we describe one particul ar implementation
of FROs in OEM. In fact thisis how we have implemented
FROs(called DataGuides) intheLoreDBM S| 1, 5]. A FRO,
implemented in OEM, consists of an abject R, (in OEM)
and an algorithmfor computing the function continuation,
from R, where o isthe represented object. By implement-
ing FROs in OEM we gain the advantage of storing and
guerying the object part of the FROs in the same way as
ordinary objects in OEM. We aso define minimal FROs
(in OEM) that alow computing the continuation function
very efficiently.

Beforewe describe theimplementation of FROsin OEM,
we present Algorithm 4.1 that for agiven object o computes
the continuation of a simple path expression pe. The ago-
rithm first explores o for instance data paths of pe, originat-
ing from o, in a breadth first manner. For every such data
path only thelast object inthe datapath isconsidered. Then
the continuation of pe is the set of al the different labels
of object references of those objects and L if any of those
objectsis atomic.

Algorithm 4.1 Let o be an object and pe = l1.15---1,,
n > 0, a smple path expression. The algorithmin Figure 3
computes continuation, (pe).

Input:
Output:

oandpe = l1.lo-++1,,n >0
continuation(pe)

Let object set S = {o}
Fori=1.n
Letobjectset T = {}
For each object s € S
For each identifier id, such that {I;, id) € value(s)
Addobject(id)to T
If T is empty then
Return {}
Else
S=T
Endfor
Let label set C = {}
For each object s € S
If s isatomic then

Add LtoC
Else
For each object reference {1,id) € value(s)
Addlabel ito C
Endfor
Return C
Figure 3. Algorithm for computing

continuation,(pe) from o.

Then we define the implementation of FROsin OEM as
follows.

Definition 4.2 Let o1 and o, be objectsin OEM. Then oy,
along with Algorithm 4.1, is a full representative object in
OEM for o, if for any simple path expression pe we have
continuation,, (pe) = continuation,,(pe).

From Definition 4.2 it followsthat if 01 isaFRO in OEM
for o, then o, isaFRO in OEM for o;. Also any object o is
aFRO in OEM for itsdlf.

Remark 4.3 Formally, when we talk about FROs in OEM
we always have to include Algorithm 4.1 or another algo-
rithmthat computesthe continuati onfunctionfroman object
in OEM. In this section we only consider FROs in OEM so
we will omit Algorithm 4.1 and refer to the object part as
the full representative object.

4.1. Minimal FROs

Form Definition 4.2 it followsthat there are many FROs
(in OEM) for agiven object, includingthe object itself. Ide-
ally, we want to choose the onethat allows Algorithm 4.1 to
compute the continuation function fastest. Each iteration

of thefirst part Algorithm 4.1 takes time proportional to the
sizeof S. Thus, the FRO for which the size of S at each it-
eration issmallest allows the fastest computation. The next
definition describes a particular kind of FROs (in OEM) for
which S aways contains at most one complex object and at
most one atomic object.

Definition 4.4 Let R, be a FRO (in OEM) for o. Then
R, isa minimal FRO if any simple path expression pe =
Lil---1,,n > 0, hasat most one instance data path orig-
inating from R, and ending with a complex object and at
most oneinstancedata path originatingfrom R,, and ending
with an atomic object.

We prove the assertion that at each iteration of the first
part (breadth-first exploration) of Algorithm 4.1 for R, S
containsat most one complex and one atomic object for any
simple path expression. Beforethe first iteration the size of
S is1l. Thus, for asimple path expression of length O (¢)
the assertion holds since the first part of Algorithm 4.1 is
not executed. Let pe = I1.l>---1,,n > 1 be asimple path
expression. Let n > k > 0bethesmallest k& for which after
the &-th iteration S contains more than one atomic objects
or morethan one complex objects. Then we can construct at
least two datapathsthat areinstancesof thesame simplepath
expression and end with aobjects of the same kind (atomic
or complex). Let the sole complex object in S after the
i-th iteration be o;, for 7 = 1..k 1L 1. At the k-th iteration
S contains at least two different objects o, and o/ of the
same kind. Consider the data paths R, 11 - - -0x_1, Ik, Ok
and R,, 1 - - -0 _1, lg, ox!. Both data paths originate from
R,, end with objects of the same kind, and are instances
of the simple path expression {3.l>- - - I. This contradicts
Definition 4.4 and thus the assertion holdsin all cases.

We will use the assertion proved above to calculate the
runningtime of Algorithm4.1 for aminima FRO (in OEM)
R, for o and a simple path expression pe of length ». The
number of iterationsof thefirst part of Algorithm4.1 for R,
isn. Thesize of S before each iterationisat most 2. Thus,
if we can retrieve the object references that have aparticul ar
label for a given object in constant time then each iteration
takes constant time. The second part of Algorithm 4.1 takes
time proportiond to the size of continuation,(pe). Thus,
the computation of the continuation of a simple path ex-
pression for an object given a minimal FRO (in OEM) for
thisobject takes linear time with respect to thelength of the
simple path expression and the number of different labelsin
the computed continuation.

5. Construction of Minimal FROs

In this section we present amethod for constructing min-
imal FROs in OEM. The method consists of three major

steps: construction of a nondeterministic finite automaton
(NFA) from a given object, determinization and minimiza-
tion of thisNFA that resultsin adeterministicfinite automa-
ton (DFA), and construction of a minimal FRO from this
DFA. We a so provethe correctness of this method.

5.1. Finite automata

Finite automata are used in many areas of computer sci-
ence and are studied extensively[3]. A finite automaton
(@, %, 6,90, F') consists of afinite number of states @, afi-
nite alphabet 3, and transitionsfrom one state to another on
aletter of the alphabet (6 : @ x X — @). One state, qo, IS
designated as the start state and there are one or more end
(accepting) states F'. All thewordsformed by the sequences
of letters on transitions from the start state to an end state
form the language accepted by the automaton.

5.2. Construction of a NFA from an object
in OEM

Every object in OEM can be viewed as a NFA in a
straightforward manner. The objects correspond to states
and the object references and their 1abel s correspond to tran-
sitionsand their respectivel etters. Beforeweformally show
how we construct the NFA corresponding to an object o in
OEM, we introduce the function state that maps every ob-
ject within o to auniqueautomaton state correspondingtoit.
We extend this function to map a set of objectswithino to
the set of the automaton states corresponding to them. We
also define the following terms that characterize the object
o in OEM. Let A bethe set of al atomic objects within o,
C the set of al complex objects within o, and D the set of
all objectswithino. Notethat D = AUC. Let aso £ be
the set of al different labels of object references within o.
The NFA (Q, Z, 6, g0, F') corresponding to o is constructed
asfollows.

e Q = state(D) U {end}
e X=LU{Ll}

6(state(c),l) = state(object(id)) for Ve € € and
V(l,id) € value(c)

6(state(a), L) = endforVa € A

go = state(o)
e F=Q

5.3. Determinization and minimization of a

NFA

The determinization (conversion to a DFA) and mini-
mization of a NFA is a very well studied problem. The

determinization of a NFA can take exponentia time with
respect to its number of states [3]. If, however, the NFA
has a tree structure, i.e, every state has only one incoming
transition and there are no cycles, then the determinization
takes linear time. The best algorithm for minimization of a
DFA takes nlogn time where . is the number of states of
the DFA [2].

5.4. Construction of a minimal FRO from a

DFA

The transformation from a DFA to an object in OEM is
straightforward except for the treatment of some stateswith
which weassociatetwo different objects, oneatomic and one
complex. With the rest of the states we associate a unique
object. We also associate an object reference with each let-
ter transition. Before we formally describe the construction
of a minima FRO from the DFA (@, %, 6, Qo, F) we in-
troduce two functions, atomic_obj that maps a state to its
corresponding atomic object (if any) and complez _obj that
maps a state to its corresponding complex object (if any).
The minimal FRO corresponding to the DFA is constructed
asfollows.

o LetS, ={¢|q€Q,b(g,L)=end}.

o LeatS.={¢g|ge@,3,rsuchthatl ¢ £,1 # L,r €
Qandé(q,l) =r}.

e Forvq € S, atomic_obj(q) isauniqueatomic object.

e For Vg € S, complex_obj(q) is a unique complex
object and value(complex_obj(q)) =
{(identifier(atomic_obj(p)),1) | 6(¢,!) = p and
atomic_obj(q) isdefined} U
{(identifier(complex_obj(p)),1) | 6(¢,1) = pand
complez_obj(q) is defined}.

o If complez_0bj(Q,) is defined then the minimal
FRO, R,, is complez_obj(Q,). Otherwise R, =
atomic_obj(Q,).

Example5.1 Asan illustration of the method described in
this section Figure 4 shows the minimal FRO in OEM for
the premiership object in Figure 1. Note that there are two
link labeled “ Name” coming fromthe same * Club” object.
This does not contradict Definition 4.4 because one of the
“Name” subobjectsisatomic and the other oneis complex.

5.5. Correctness proof

In order to prove that the method we present is correct
we haveto show that the object constructed in thethird step

R premiership

FormerClub

Nickname/ Official . Number

Figure 4. The minimal FRO for the premier-
ship object.

of the method is indeed a minima FRO in OEM for the
original object.

Let o be an abject, N, the NFA constructed from
o as described in Section 5.2, D, the DFA obtained
dafter the determinization and minimization of N,, and
R, the object constructed from D, as described in Sec-
tion 54. We will show tha continuation,(pe) =
continuationg, (pe) for any simple path expression pe by
showing that continuation,(pe) C continuationg, (pe)
and continuation,(pe) D continuationg, (pe).

Let pe = l1.0r---1,,n > 0, be asimple path expression
and ! € continuation,(pe). Then pe has an instance data
path p = o,11,01---0,. From the construction of N, we
have:

o S(state(o), 1) = state(o1).
e S(state(oi—1), ;) = state(o;), fori = 2..n.

There aretwo possiblecasesforl,I = L andl # L. In
the first case, | = L, we have that o, is aomic and thus
8(state(o,), L) = end. Inthesecond case, I # L we have
that o, has an object reference to an object 0,41 labeled
with I and thus é(state(on),!) = state(on+1). Therefore,
in both cases the word [31, - - - 1,1 is accepted by N,. The
DFA D, isequivdent to N, by construction and therefore
D, and N, accept the same language. Thus, the word
Lil,---1,1 is accepted by D,. Then there are states Q;
in D, for ¢ = O..n + 1, such that §(Q;_1,4) = @Q; for
t = L.n, 6(Qn,1) = Quni1, Qo isthe start state of D,,
and @y, 11 isan accepting state. Then from the construction
of R, we have that (identifier(complex_obj(Q;)), k) €
value(complez_obj(Q;-1)) for i = 1.n L 1. Thus, the
data path P = R,,l1- - -l _1, complex_obj(Qn_1) exists.
If I = 1 wehavethat Q,, € S, and thus, atomic_obj(Q5)
is defined. Therefore, L € continuationg, (pe) because

of the data path P,l,, atomic_obj(Q,). If I # L we
have that @, € S. and thus complez_obj(Q,) is de-
fined. Therefore, I € continuationg, (pe) because of the
datapath P, I,,, complez_obj(Qx), I, obj Whereobj iseither
complez_obj(Qn41) OF atomic_obj(Qn+1), Whichever is
defined. Therefore we proved that continuation,(pe) C
continuationg, (pe). Similarly we can show that if I €
continuationg, (pe) then the word I1ls - - - 1,1 is accepted
by D, and thus by N,. Then we can show that | ¢
continuation,(pe) and therefore continuation,(pe) O
continuationp, (pe). We can aso show that R, isamini-
mal FRO fromitsconstructionfrom D, and thefact that D,,
isaDFA. With thiswe conclude the proof of correctness of
the minimal-FRO construction method.

6. Constructing a 1-representative obj ect

The simplest representative object to construct is the 1-
RO. Whilethe 1-RO only guaranteesthat itspaths of length 2
exist within the represented object, it nonetheless indicates
the set of possible labels that may succeed an individua
label. Furthermore, the 1-RO provides a very compact de-
scription of the represented object, is easy to construct, and
easy to comprehend. We represent the 1-RO as a graph
with the nodes corresponding to labels. Intuitively, the 1-
RO contains each unique label exactly once, and contains
an edge between two labels if the simple path expression
consisting of the two label s has an instance data path within
the given object. For example, Figure 6 showsthe 1-RO for
the OEM object in Figure 5. In this section, we describe an
algorithmfor constructingthe 1-RO for an objectin OEM in
one physical, sequential scan of all objectswithinthe given
object.

Figure 5. An example object.

o7

Figure 6. The 1-RO for the example object.

6.1. 1-representative object algorithm

The god is to find al pairs of labels (11, 12) such that
there is a data path o, I3, 01, I2, 02 Within the given ob-
ject. Each object o; contains pairs of identifiers and la
bels (object references) but does not contain the labels
on incoming links. Thus we must must examine al ob-
jects that have links to o;. Our approach is to remem-
ber al (identifier(o;), li+1, identifier(o;41)) triples(the
id table) and join it with itsalf on identifer(oi;1) =
tdentifer(o;) to produce (I; 11, l;12) pairs.

The id table can be built in one scan of the objects (in
any order). The cost of computing the pairs of 1abels then
depends on the size of the id table. If it fits in memory,
then an in-memory join is performed for no extra 1/O cost.
Otherwise, the additional 1/0 cost isthat of ajoin, whichis
2« size(idtable)) for atwo-pass hash (self-)join.

The result table, the label table, is then indexed by I3
so that lookups are efficient. Duplicate label pairs are dis-
carded.

6.2. Computing 1-continuations

Supposethat we wish to find the continuation of asimple
path expression consisting of asinglelabel . Then welook
for al pairs (i, 1) inthelabel table; the set of all such ; is
the 1-continuation of 1. The time required is the cost of an
index lookup: O(1) if the label table index fitsin memory
and nothing if the label tableitsalf fitsin memory.

7. A graph-based approach to constructing k-
ROs

Let us be given an object o in OEM. Let P bethe set of
simple path expressions, having lengthup to & + 1, that have
instance data paths within o. Specifically, we shall think of
the set P as having strings of length &£ + 1. To represent
simple path expressions of length less than & + 1, we pad
them with the special label $ at the beginning. We shall aso
refer to the elements of P as k + 1-pathsof o.

Evidently, the set of strings P isasuitable representation
of the k-RO. It is also not hard to compute P; it requires a
generalization of thetechniquediscussed in Section 6 for the
1-RO. However, P isnot avery compact representation of

the k-RO. Thus, we shall show how to compact the set into
agraph, from which k-continuationscan be read efficiently.

7.1. Converting sets of strings into a com-
pact graph

Our ideaisto compact the set of simple path expressions
intoagraph suchthat all thepathsof length &+ 1 inthegraph
have label sequences that appear within the given object,
and conversaly. One can then compute the k-continuation
by searching the graph. An index on the nodes that directs
us to al the nodes of the graph bearing a given label will
make this search quite efficient.

A suitable graph may be constructed by listing al the
k + 1-paths of an object and partitioning the positions of
those pathsinto clusters of mergeable positions. The nodes
of the graph will each represent a cluster of positions. For
positions to be mergable, they must surely have the same
label, since they will be represented by a single node of the

graph.
[

A (90—

\,
s [—)

Figure 7. A cross-over string: requirement on
positions that are mergeable.

However, there is also another condition they must sat-
isfy. Suppose that we wish to merge positionsz of ak + 1-
path A = aj.az- - -ax41 With position 5 of the & + 1-path
B = b1.by---bgr1. Then any k + 1-path that we con-
struct by starting with b,,.b,,41 - - - b; and continuing with
@i+1.Gi+2 " * Ok —j4+i+m Must dso be a k + 1-path of the
given object. Figure 7 suggests the & + 1-path that must
also appear in the given object. We call this & + 1-path a
cross-over string.

Example 7.1 Figure 5 shows a graph representation of an
object o in OEM. Let & = 2, so paths of length three are
considered. The eight sequences of 3 labels (counting the
special labdl $) that appear in Figure 5 are shown in Fig-
ure 8.

Consider paths(6) and (7), and supposewewishto merge
the last position of (6) with the first position of (7). Both
hold label b, so it is possible that the merger will succeed.
We need to consider a string of 3 labels, beginning in (6),
reaching the b at the end, treating that b asif it were thefirst
position of (7), and continuing in (7) until a total of three

1) $%e
2) $ab
3) $ac
4) ach
5) aba
6) bab
7) bac
8) «cba

Figure 8. Length-3 paths of the example ob-
ject.

positionsare visited. That sequence of three positions must
also be on thelist of Figure 8.

The only way the new sequence could not beonthelistis
if we take the middle positions of (6) and (7), along with the
merged b. Thisstringisaba, anditisstring (5) in Figure 8.
In fact, in this example, every position bearing the same
letter can be merged. It is also possible to merge positions
2 of string (1) with positions 1 of strings (2) and (3). The
only case in which positionsbearing the same label cannot
be merged isthat position 1 of string (1) cannot be merged
with the other positionsholding $. If we make one node of
the graph for each cluster of mergeable positions, we get
the graph shown in Figure 9.

&)

&)

()
(—=®)

Figure 9. Graph constructed for the example
object.

Observethat thingsare not always as ssimpl e as suggested
by Example 7.1. For instance, suppose we remove the
lowest object with label & within the object o of Figure 5,
and call the resulting object o'. The set of 3-pathsfor o' is
the same as for o, except it is missing the string (6): bab.
That would prevent merging many pairs of positions. For
instance, we could not merge the first and third positions
of string (5), which is aba, because that would require that
string bab were also present in the object o’. In that case,

the best we could do would be to useacopy of o' itself, with
two nodes labeled $ above the top ¢ in Figure 5, and with
the bottom b deleted, of course.

There are several simplificationsthat can be made to our
test for whether two positions are mergeable.

e First positionswith the same label are aways merge-
able. Thereason isthat each of the stringsinduced by
the cross-over process suggested in Figure 7 must be
one of the two stringsinvolved in the merger.

e Similarly, last positionswith the same label are surely
mergeable.

e If 7 < 4,thenthereisnoroomfor across-over string as
inFigure7, so unlessi = j we only haveto consider
cross-over stringsthat begin in one of the two strings
whose positionswe are considering merging (the one
with the further right of the positionsbeing merged).

e Whenwe merge strings, anew cross-over string could
only beobtained if weuse something from each string,
other than the merged positions. Interms of Figure 7,
the cross-over string must begin before position 5 of
B, and it must end after positionz of A. Thus, m < j
may be assumed.

e Thus, in the specia case k = 2, the only cross-over
stringsthat can prevent amerger arethosewith onepo-
sitionbeforethe merged position of onestringand one
position following the merged position of the other.

7.2. Computing k-continuations

The data structure used to represent the graph influences
how fast we can compute &-continuations. For maximum
efficiency, we need to have a main index that maps labelsto
the set of nodes with that label. We aso need to have for
each node an index mapping label sto the successors of that
node having that label.

Assume these structures are available and can retrieve
the desired set of nodes in time proportiona to the size of
the set. Suppose we wish to know the continuations of path
l1.1o. - -+ .Iz. Then we use the main index to find the set of
nodes labeled I;. For each of these nodes, we use the index
for that node to find the successors labeled 1,, and so on.

Whilethis search could be exponentia, we only need to
find successors of each node at most once for each position
inthestring. If we keep track in atable of those pairs (i, n)
such that we found for node n (whose label must be [;) the
successors of n withlabel I; 1 1, thenthetotal amount of work
we do is at most kN2, where N is the number of nodes of
the graph.

8. A finite automaton-based approach to con-
structing k-ROs

In Section 7, wepresented agraph-based k-representative
object. The graph encodes the set P of simple path expres-
sions of length up to k& + 1 that have instance data paths
within the object being represented. In this section, we
present a construction for k-representative objects based on
finite automata. We treat simple path expressions as strings
over the aphabet of OEM labels. The language represented
by the set P isthen encoded using an automaton that accepts
the stringsin P.

8.1. Constructing an automaton represent-
ing an object in OEM

Asin Section 7, we assume that we have computed the
set P of all simple path expressions of lengthupto k& + 1
that appear in the object o being represented. Consider an
alphabet V' consisting of the labelsin o. Then P represents
afinite, and hence regular, language over the aphabet V.
Using standard techniques|[3], we construct afinite automa
ton A that recognizes the language P. (We assume that
the automaton A is minimized using the subset construction
method [3].)

Consider the example in Section 7, involving the object
in Figure 5. Figure 8 shows the 3-paths of that object, that
is, the set P above for & = 2. A finite automaton that
accepts the language suggested by P (interpreting simple
path expressions as strings) is shown in Figure 10. The
initial state is marked with a short arrow, and the accepting
states are circled.

Figure 10. Finite-automaton-based 2-RO for
the example object.

8.2. Computing k-continuations

Having an automaton-based representation of the k-
representative object as described above allows us to com-
pute k-continuation as follows. Suppose we wish to know

the continuation of the simple path expression ay.a;. . . ak.
We start in the initial state of the automaton and follow the
transition with label a; for i« = 1..k to reach a state s;.. (If,
at some stage, we are in a state with no transition with the
desired label, the continuation is empty.) Let A be the set
of transitionsthat go from s;, to an accepting state. The set
of labelsin A isthe continuation of the given simple path
expression.

If we use an index to represent the transitions out of
each state in the automaton, finding the next state requires
at most O(logl) time, wherel isthe number of labelsin the
represented object. Finding the state s, thereforerequiresat
most O(klogl) time. If there are c labelsin the continuation
of the given simple path expression, we can retrieve the
labels on the transitions out of s; in no more than O(c)
time. (Notethat al these transitions must lead to accepting
dtates, since every path of length & + 1 in the automaton
leads to an accepting state.) Thus, thetotal timerequired to
computethe k-continuationis O (klogl + ¢). Inpractice, we
can achieve arunning time close to O(k + ¢) if weuse an
associativearray for thelabel-index. Thus, thetimerequired
to find the k-continuationis bounded by O(klogl + ¢).

8.3. Comparison

For the object of the example of Figure 5, the finite
automaton-based 2-representative object is more compli-
cated than the graph-based 2-representative object in Fig-
ure 9. However, for other objects, the finite automaton-
based representative object is ssmpler than the graph-based
one.

9. Conclusions

Inthispaper we haveintroduced therepresentative object
concept that provides a concise representation of the inher-
ent schema of asemistructured hierarchical datasource. We
make the case that representative objects are very useful for
semistructured data and show some of their primary uses.
We al so described an implementation of FROsin OEM that
hasthe advantage that the data part of the FRO can be stored
and queried as an object in OEM. We presented a construc-
tion method for an important class of FROs: minimal FROs.
Minima FROs allow efficient querying of the schema of
the represented data. Since constructing minimal FROs has
very high complexity we described severa aternative ap-
proaches to constructing k£-ROs that are approximations of
an FRO. In many case, even a 1-RO provides a good ap-
proximation of an FRO.

9.1. Future work

We are investigating the following topics.

e Storing information about the typica object in the
FROs. The FROsprovideinformationabout the over-
all schema of the data but do not provide any infor-
mation about the instance objects. For example, an
FRO can tell you that alink labeled “Book” can only
be followed by links labeled “Author”, “Title", and
“Publisher” but cannot tell you if every link labeled
“Book” isfollowed by alink labeled “Title".

e Graph-based construction agorithmsfor £-ROs. We
are looking at more complicated conditions that can
hel p the graph-based approach to constructing £-ROs.

e Updating minimal FROs in OEM. When the object
changes its minimal FRO in OEM a so must change.
Sincetheconstruction of aminimal FRO from scratch
is expensive we need to have a way of updating the
old minimal FRO accordingly.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener.
The lorel query language for semistructured data. Technical
report, Dept. of Computer Science, Stanford University, 1996.
Available by anonymousftp to db. st anf or d. edu.

[2] J.Hopcroft. Ann logn algorithm for minimizing the statesin
afinite automaton. In The Theory of Machinesand Computa-
tions, pages 189-196. Academic Press, New York, 1971.

[3] J. Hopcroft and J. Ullman. Introduction to automata the-
ory, languages, and computation. Addison-Wesley, Reading,
Massachusetts, 1979.

[4] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Ob-
ject exchange across heterogeneous information sources. In
Proceedingsof the Eleventh International Conferenceon Data
Engineering, pages 251260, Taipei, Taiwan, Mar. 1995.

[5] D. Quassand et. a. Lore: A lightweight object repository
for semistructured data. In Proceedingsof the ACM SGMOD
International Conferenceon Management of Data, page 549,
Montreal, Canada, June 1996.

[6] J. Ullman. Principles of Database and Knowledge-Base Sys-
tems, Volume Il. Computer Science Press, Rockville, Mary-
land, 1989.

