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Abstract— We describe a method for real-time monitoring
of data generated by traffic sensors. We provide a system
architecture and discuss three key components: (1) a streaming
query processor that is used to reduce the volume of data;
(2) a pattern-matching module that is used to detect when a
developing traffic situation resembles one flagged earlier; and
(3) an interface that efficiently displays the stream of sensor
data in a user-configurable manner.

I. INTRODUCTION

We propose a method for effective real-time use of the
large volume of data that is generated by traffic sensors.
Such sensors are increasingly common and measure vari-
ables such as the number of cars passing through a section
of a lane, the weight of vehicles crossing a bridge, and the
number of traffic signal violations or close calls. In addition,
sensors that measure environmental conditions, such as
temperature and rainfall, are also relevant. A judicious use
of this sensor data, in conjunction with a knowledge of
problematic patterns and situations from the past, allows
a human expert to better monitor traffic in sensitive areas
such as border checkpoints, stadiums, and tourist attractions.
While offline analysis of such data is useful, greater benefits
may be achieved by online, real-time analysis, which can
help an expert to detect and plan a timely response to a
developing public safety problem before the problem gets
out of hand. For example, such analysis may detect a pattern
of vehicles, parked near strategic intersections, that begin
moving at approximately the same time.

Architecture Figure 1 outlines the system architecture.
On the left, data from a large number (hundreds or thou-
sands) of sensors of various kinds is aggregated and or-
ganized into a streaming form amenable to querying and
analysis. For example, data from an electromagnetic sensor
that detects passing vehicles but is identified using only a
cryptic key may be combined with data mapping keys to
intelligible names, such as 18th at M, northbound. Methods
for such aggregation and organization of sensor data are not
the focus of this paper and have been discussed elsewhere
[25]. We focus on the part of the system to the right of the
vertical dotted line in Figure 1. We use XML as the common
data format in this part of the system. Unlike the sensor
network to the left of the dotted line, the modules to its
right run on machines with substantial processing, energy,
and network resources. Therefore, the space inefficiency of
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the XML format does not pose any serious problems, and
is compensated for by the increase in usability.

As depicted in Figure 1, the system consists of three
main components: 1) The Streaming Query Processor is
used to select the data of interest from the incoming XML
stream. The specification uses the XPath query language
[9]. 2) The Stream Viewer is used to present a concise and
configurable summary of the traffic data to a human analyst.
It constitutes the main user interface and is also used to
collect analyst input for refining the system’s behavior.
3) The Pattern Matching and Mining module is used to
detect user-specified patterns in the incoming stream and
to mine historical traffic data for recurring patterns. We
describe these three modules in order below, in Sections
II–IV, and discuss related work in Section V.

II. QUERYING USING XSQ

As depicted in Figure 1, the Streaming Query Processor
module operates on the aggregated stream from the sensor
network. It has two outputs, both produced in streaming
form. The first output is used to drive the interactive display
through the Stream Viewer. This output is customized using
implicit and explicit preferences from the user. The second
output is used to select data that is stored for later analysis.
This output is likely to be larger than the first because the
user may wish to save for later data that is not necessarily of
current interest. On the other hand, it may not be practical
to store all the data emerging from the sensor network; thus,
some culling is required.

We use XPath [9] as the language for specifying both
output streams as a function of the input. Thus, this module
is essentially a streaming XPath query engine with two
output streams. One of the strengths of the XPath language
is that it permits intuitive and precise specification of
interesting data, thanks to features such as such as multiple
predicates, closures (the // axis), subqueries, and reverse
axes (parent, ancestor). However, these features also pose
significant challenges for a streaming query engine. Our
methods, implemented in the XSQ system, are based on
a template-based translation of XPath queries to automata
with buffers [28]. These methods buffer data optimally in
the following sense: At any point during query processing,
any item that is buffered by XSQ must necessarily be
buffered by any other streaming query engine.

Figure 2 depicts an example of one of the building
blocks of the method used by XSQ: a pushdown transducer
augmented with a buffer (BPDT). Each BPDT is responsible
for evaluating a location step of an XPath query. The buffer
is used for storing items that may be in the query result,
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Fig. 1. System architecture for real-time monitoring of data from traffic sensors.
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Fig. 2. A simple BPDT for query /pub/book[author]/price.

depending on the data that is encountered later in the stream.
In Figure 2, when a price element is encountered in state
5, it is buffered using the enqueue operation. (The query
specifies that only prices of books that have an author
subelement are in the query result.) If an author element is
encountered later, the transition to state 6 is accompanied
by the flush operation, which sends the buffer contents to
the output. Subsequent occurrences of price children of the
current book element do not need to be buffered because an
author element for this book is known to exist; thus such
price elements are sent directly to the output from state 7.

In order to evaluate an XPath query composed of several
location steps, XSQ uses a hierarchical arrangement of
BPDTs, such as the one depicted in Figure 3. There are two
key ideas. First, in any state, the hierarchical arrangement
encodes the predicates in the query that are known to be
true: A predicate is known to be true in the current state
if and only if the current state is in the left subtree of that
predicate’s BPDT. For example, in state 15, the [author]
predicate is known to be true (for the enclosing book) while
the [year>2000] predicate has not yet been satisfied
(for the enclosing pub element). Second, when control
moves from a BPDT to its parent in the hierarchy, its buffer

Fig. 5. Monitoring streaming data using the FuzzyTree stream viewer.

items are transferred to the parent’s buffer using the upload
operation. For details, we refer the reader to a longer paper
[28].

III. MONITORING THE STREAM WITH FuzzyTree

Perhaps the most obvious method for monitoring a stream
is displaying the last w elements encountered in the stream,
where w is a parameter called the window-size. Although
this method is easy to implement and is commonly used, it
is not suitable for a high-throughput stream, such as the one
generated by the traffic sensors in our architecture, because
the list of the last w elements changes too rapidly to permit
human comprehension or interaction. A simple alternative is
refreshing the display only infrequently, in effect sampling
the input stream periodically, at a low frequency. Although
this method permits user interaction, it suffers from the
obvious disadvantage of ignoring the vast majority of data
in a high-throughput stream.

The general problem here is that of concisely summa-
rizing streaming data. Our solution is based on ranking
the XML elements that have been encountered in the
stream using a score that has structural and user-defined
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Fig. 3. HPDT: a hierarchical arrangement of BPDTs.

Fig. 4. Reducing the stream volume using XSQ.

components (described below). At any time, the w highest-
scoring nodes are displayed. Here, w is a parameter that
indicates the maximum number of elements that a user
wishes to view simultaneously.

The structural component of a node’s score intuitively
favors nodes that participate in frequently-occurring pat-
terns. In more detail, let ti denote the tree (DOM [19])
representation of the XML data encountered before the
position (equivalently, time) i in the stream. Let ti(n)
denote the subtree rooted at node (XML element) n and let
|ti(n)| denote the number of nodes in ti(n). Let Ii(t) denote
the set consisting of subtrees of ti that are isomorphic to

t. Then the structural score si(n) of a node n at time i is
defined as si(n) = |ti(n)| × |Ii(n)|.

The user-defined component of a node’s score is based
on explicit XPath specifications of interesting data as well
as implicit specifications derived from the user’s interac-
tion with the displayed data. The implicit specification is
derived by increasing the score of every displayed node
on which the user clicks. In addition, the scores of nodes
adjacent to a clicked node are also increased by amounts
that decay exponentially with increasing distance from the
clicked node. Each increase in a node’s score resulting
from such user interaction is in effect for a limited time,



h, representing the length of interaction history that is
used for scoring. Limiting the effect of interactions in this
manner is necessary to avoid confusing long-term effects of
exploratory actions. The explicit specification is based on
an optional set of XPath queries that the user may provide
in order to fine-tune the display.

We have implemented these ideas in the FuzzyTree sys-
tem. Figure 5 is a screen-shot of FuzzyTree displaying
selected nodes from a dataset composed of XML versions
of Shakespeare’s plays [7]. The lower portion of the display
is used to specify the parameter w using either the slider
or the text input box. The system updates the display
interactively in response, displaying the w nodes with the
highest combined score. Other parameters, such as the
history length h, are specified using the menus. The display
of nodes (XML elements) is organized using a method
similar to the commonly used JTree interface in Java [21].

One of the challenges in implementing FuzzyTree is the
need to interactively update the display as the user-defined
components of node scores change (as a result of explicit or
implicit input from the user). The necessary operations, such
as ranking nodes by isomorphism classes, are compute-
intensive and would result in very poor performance if
performed naively. Another challenge is the high rate of
the input stream, which results in the XML tree changing
rapidly.

IV. MINING WITH SEuS

The Pattern Matching and Mining (PMM) module (Fig-
ure 1) mines the stored data for interesting patterns. Patterns
are deemed interesting if they satisfy some user-specified
conditions (e.g., a cluster of vehicle sensors that report
values greater than 20). A second source of interesting
patterns is historical data in the store. For example, the
PMM module may determine that a portion of the currently
displayed data (in the Stream Viewer module) occurs very
frequently in the store. Such detection of frequent patterns
forms the basis of an intelligent system that can aid the
analyst in predicting likely problems. This task may be
addressed using a variety of methods, and we present only
one here. (For example, current data may be matched with
a database of incidents by computing nearest-neighbors
in a high-dimensional space whose dimensions represent
incident attributes [29].)

The problem of mining XML data for frequently occur-
ring patterns may be formalized as follows: Given a labeled
graph G (representing XML data), we wish to determine the
set F of frequent subgraphs, which are defined as subgraphs
G′ that are isomorphic to at least s distinct subgraphs of
G. The parameter s is a user-specified support level. For
example, Figure 7 depicts a frequent subgraph for the data
of Figure 6. Given the well-known hardness of the subgraph
isomorphism problem, it is clear that an efficient solution
to this problem requires a heuristic approach.

Our method, implemented in the SEuS system [14], is
based on building the set F of frequent subgraphs by
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Fig. 8. Summary graph for the data of Figure 6.

growing each of its elements one edge at a time. In order
to prune the search space of subgraphs, we first compute
a summary of the given graph. The summary is similar
in spirit to data guides and other methods for extracting
structure from graph data and provides an upper bound on
the number of instances of any subgraph. Figure 8 depicts
the summary for the data of Figure 7. When we grow the
set F by adding, at each step, an edge to each of F ’s
elements, we also compute the upper bound for each of
the resulting subgraphs using the summary structure. If this
bound is lower than s for some subgraph G′′, we can safely
remove from consideration G′′ and all its descendants (all
graphs that may be derived from G′′ by adding one or more
edges). (The descendants of a subgraph cannot be any more
frequent than the subgraph.) Although (given the hardness
of the problem) it is possible to devise inputs for which such
pruning does not save much effort, our experiments indicate
that for typical datasets this pruning is very effective [14].

V. RELATED WORK

XPath evaluation has received considerable recent atten-
tion. Most of this work focuses on the task of filtering
documents using XPath expressions [2], [17], [13], [23],
[8], [18]. In filtering, the input stream is assumed to be
segmented into documents and XPath evaluation produces
a boolean outcome for each document-query pair, indicating
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Fig. 9. Analyzing patterns using SEuS

whether the document contains data that matches the query.
This task is simpler than the task of querying addressed
by XSQ, which must evaluate an XPath query over an
input that is not (necessarily) segmented into documents
and determine the collection of elements that form the query
result.

Among querying systems, the XML Stream Machine
(XSM) [24] maps each subexpression of a decomposed
XPath query to an automaton and uses a network of such
automata for query evaluation. A similar method is used by
SPEX [26]. In XAOS [4], [5], reverse axes are supported
by filtering data using an X-dag data structure and storing
potential results in an X-tree structure. However, query
results are not generated until the end of the stream, when
the X-tree is traversed. An alternate approach is to rewrite
queries to replace reverse axes by forward axes [27].

Evaluating XPath in a non-streaming environment is
known to be P-hard (combined data and query complexity)
[16] and is amenable to polynomial-time main-memory al-
gorithms [15]. The issue of expressiveness and containment
for various fragments of XPath has also been addressed [6].

The method used by SEuS for analyzing patterns and
discovering structure is applicable to any data that may
be fruitfully modeled as a graph and is thus domain
independent. Compared to the body of work on domain
dependent methods, as surveyed by Conklin [11], there
has been little work on domain independent methods for
structure discovery. We discuss a few of these briefly:
The CLiP system [30] guides its search for patterns us-
ing the estimated compression resulting from an efficient
representation of instances of a substructure. Similarly, the
SUBDUE [12] system uses a beam search guided by the



the minimum description-length principle, based on a fast,
but inexact, graph-matching method as a subroutine. As in
SEuS, structures in SUBDUE are generated by adding edges
one at a time.

The FREQT algorithm [3] is limited to ordered trees,
and is based on the idea of a rightmost expansion, which
grows a tree by attaching nodes to its rightmost branch.
The method by Cong et al. [10] is based on representing
objects and patterns as a set of labeled paths with optional
wildcards.

The AGM method [20] uses ideas similar to those used
by the well-known a priori market basket analysis algorithm
[1]: A (k + 1)-itemset is a candidate frequent itemset only
if all of its k-item subsets are frequent. In AGM, a graph of
size k+1 is considered to be a candidate frequent structure
only if all its subgraphs of size k are frequent. However,
AGM searches for only frequent induced subgraphs. (Given
a graph G = (V,E), subgraph Gs = (V ′, E′) is called
an induced subgraph if V ′ ⊂ V , E′ ⊂ E and ∀u, v ∈
V ′, (u, v) ∈ E′ ⇔ (u, v) ∈ E.) The FSG system [22] uses
a similar method, but is based on a sparse representation of
the graph and other optimizations for candidate generation.
Further, unlike AGM, FSG is not restricted to induced
subgraphs. FSG and AGM are both based on a transaction
database model in which the database graph consists of a
collection of (relatively small) disjoint graphs representing
transactions. While SEuS is applicable to such databases, it
is also applicable to databases that cannot be decomposed
into transactions in this manner.
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