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Abstract. We study the problem of finding frequent structures in semistructured
data (represented as a directed labeled graph). Frequent structures are graphs that
are isomorphic to a large number of subgraphs in the data graph. Frequent struc-
tures form building blocks for visual exploration and data mining of semistruc-
tured data. We overcome the inherent computational complexity of the problem
by using a summary data structure to prune the search space and to provide in-
teractive feedback. We present an experimental study of our methods operating
on real datasets. The implementation of our methods is capable of operating on
datasets that are two to three orders of magnitude larger than those described in
prior work.

1 Introduction

In many data mining tasks, an important (and frequently most time-consuming) task is
the discovery and enumeration of frequently occurring patterns, which are informally
sets of related data items that occur frequently enough to be of potential interest for a
detailed data analysis. The precise interpretation of this term depends on the data model,
dataset, and application. Perhaps the best studied framework for data mining uses asso-
ciation rules to describe interesting relationships between sets of data items [AIS93]. In
this framework, which is typically applied to market basket data (from checkout regis-
ters, indicating items purchased together), the critical operation is determining frequent
itemsets, which are defined as sets of items that are purchased together often enough
to pass a given threshold (called the support). For time series data, an analogous con-
cept is a subsequence of the given series that occurs frequently. This paper defines an
analogous concept, called frequent structures for semistructured data (represented as a
labeled directed graph) and presents efficient methods for computing frequent structures
in large datasets. Semistructured data is referred to data who has some structure, but is
difficult to describe with a predefined, rigid schema. The structure of semistructured
data is irregular, incomplete, frequently changing, and usually implicit or unknown to
user. Common examples of this type of data include memos, Web pages, documenta-
tion, and bibliographies.

Data mining is an iterative process in which a human expert refines the parameters
of a data mining system based on intermediate results presented by the mining system.
It is unreasonable to expect an expert to select the proper values for mining parameters
a priori because such selection requires a detailed knowledge of the data, which is what



the mining system is expected to enable. While frequent and meaningful feedback is
important for any data mining system, it is of particular importance when the data is
semistructured because, in addition to the data-dependent relationships being unknown
a priori, even the schema is not known (and not fixed). Therefore, rapid and frequent
feedback to a human expert is a very important requirement for any system that is
designed to mine semistructured data. Prior work (discussed in Section 4) on mining
such data often falls short on this requirement.

The main idea behind our method, which is called SEuSis the following three-phase
process: In the first phase (summarization), we preprocess the given dataset to pro-
duce a concise summary. This summary is an abstraction of the underlying graph data.
Our summary is similar to data guides and other (approximate) typing mechanisms
for semistructured data [GW97, BDFS97, NUWC97, NAM97]. In the second phase
(candidate generation), our method interacts with a human expert to iteratively search
for frequent structures and refine the support threshold parameter. Since the search uses
only the summary, which typically fits in main memory;, it can be performed very rapidly
(interactive response times) without any additional disk accesses. Although the results
in this phase are approximate (a supper set of final results), they are accurate enough
to permit uninteresting structures to be filtered out. When the expert has filtered poten-
tial structures using the approximate results of the search phase, an accurate count of
the number of occurrences of each potential structure is produced by the third phase
(counting).

Users are often willing to sacrifice quality for a faster response. For example, during
the preliminary exploration of a dataset, one might prefer to get a quick and approximate
insight into the data and base further exploration decisions on this insight. In order to
address this need, we introduce an approximate version of our method, called L-SEuS.
This method only returns the top-n frequent structures rather than all frequent struc-
tures. Due to space limitations we are not able to present the details of this approximate
method here. Interested readers can refer to [GC02].

The methods in this paper have three significant advantages over prior work: First,
they operate efficiently on datasets that are two to three orders of magnitude larger than
those handled by prior work of which we are aware. Second, even for large datasets,
our methods provide approximate results very quickly, enabling their use in an interac-
tive exploratory data analysis. Third, for applications and scenarios that are interested
in only the frequent structures, but not necessarily their exact frequencies, the most
expensive counting phase can be completely skipped, resulting in great performance
benefits.

In order to evaluate our ideas, we have implemented our method in a data mining
system for (semi)structured data (also called SEuS). In addition to serving as a testbed
for our experimental study (Section 3), the system is useful in its own right as a tool
for exploring (semi)structured data. We have found it to discover intuitively meaningful
structures when applied to datasets from several domains. Our implementation of SEuS
uses the Java 2 (J2SE) programming environment and is freely available at ht t p: //
www. c¢s. und. edu/ proj ect s/ seus/ under the terms of the GNU GPL license.
Figure 1 is a screenshot of our system in action. The current set of frequent structures
is displayed together with a slider that allows the threshold to be modified. Given a
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Fig. 1. A snapshot of SEuS system

new value for the threshold, the system computes (in interactive times) the new set of
frequent structures and presents them as depicted. We have found this iterative process
to be very effective in arriving at interesting values of the parameter.

The rest of this paper is organized as follows: In Section 2, we define the structure
discovery problem formally and present our three-phase solution called SEuS. Sec-
tions 2.1, 2.2, and 2.3 describe the summarization, candidate generation, and counting
phases. Section 3 summarizes the results of our detailed experimental study. Related
work is discussed in Section 4 and we conclude in Section 5.

2 Structure Discovery

SEuUS represents semistructured data as a labeled directed graph. In this representa-
tion, objects are mapped to vertices and relations between these objects are modeled
by edges. A structure is defined to be a connected graph that is isomorphic to at least
one subgraph of the database. Figure 2 illustrates the graph representation of a small
XML database. Any subgraph of the input database that is isomorphic to a structure is
called an instance of that structure. The number of instances of a structure is called the
structure’s support. (We allow the instances to overlap.) For the data graph in Figure 2,
a structure and its three instances are shown in Figure 3. We say a structure is T-frequent
if it has a support higher than a given threshold T'. Problem statement (frequent struc-
ture discovery): Given the graph representation of a database and a threshold 7', find
the set of T-frequent structures.

A naive approach for finding frequent structures consists of enumerating all sub-
graphs, partitioning this set of subgraphs into classes based on graph isomorphism, and
returning a representative from the classes with cardinality greater than the support
threshold. Unfortunately, the number of subgraphs of a graph database is exponential in
the size of the graph. Further, the naive approach tests each pair of these subgraphs for
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isomorphism in worst case. Although graph isomorphism is not known to be NP-hard
(or in P) [For96], it is a difficult problem and an approach relying on an exponential
number of isomorphism tests is unlikely to be practical for large databases.

Given the above, practical systems must use some way to avoid examining all the
possible subgraphs and must calculate the support of structures without partitioning the
set of all possible subgraphs. Instead of enumerating all of the subgraphs in the be-
ginning, we can use a level-by-level expansion of subgraphs similar to the k-itemset
approach adopted in Apriori [AS94] for market basket data. We start from subgraphs of
size one (single vertex) and try to expand them by adding more vertices and edges. A
subgraph is not expanded anymore as soon as we can reason that its support will fall un-
der the threshold based on downward closure property: A structure has a support higher
than a threshold if all of its subgraphs also have a support higher than the threshold.

A number of systems have used such a strategy for discovering frequent struc-
tures [IWMO00, KKO01, CHOOQ] along other heuristics to speed up the process. (See
Section 4 for details.) However, The results reported in these papers, as well as our
experiments, suggest that these methods do not scale to very large databases.

The main factor hurting performance of these methods is the need to go through the
database to determine the support of each structure. Although the number of structures
for which the support has to be calculated has decreased significantly compared to the
naive approach (due to the use of downward closure properties and other heuristics),
the calculation of the support of the remaining structures is still expensive. Further, all
of these systems operate in a batch mode: After providing the input database, a user
has to wait for the structure discovery process to terminate before any output is pro-
duced. There are no intermediate (partial or approximate) results, making exploratory
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Fig. 3. A structure and its three instances

data analysis difficult. This batch mode operation can cause major problems, especially
when the user does not have enough domain knowledge to guess proper values for min-
ing parameters (e.g., support threshold).

In order to operate efficiently, SEuS uses data summaries instead of the database
itself. Summaries provide a concise representation of a database at the expense of some
accuracy. This representation allows our system to approximate the support of a struc-
ture without scanning the database. We also use the level-by-level expansion method
to discover frequent structures. SEuS has three major phases: The first phase (summa-
rization) is responsible for creating the data summary and is described in Section 2.1.
In the second phase (candidate generation), SEuS finds all structures that have an es-
timated support above the given threshold; it is described in Section 2.2. The second
phase reports such candidate structures to the user, and this early feedback is useful
for exploratory work. The exact support of structures is determined in the third phase
(counting), described in Section 2.3.

2.1 Summarization

We use a data summary to estimate the support of a structure (i.e., the number of sub-
graphs in the database that are isomorphic to the structure). Our summary is similar in
spirit to representative objects, graph schemas, and DataGuides [NUWC97, BDFS97,
GWQ97]. The summary is a graph with the following characteristics. For each distinct
vertex label 7 in the original graph G, the summary graph S has an [-labeled vertex. For
each m-labeled edge (v1,v2) in the original graph there is an m-labeled edge (I1,12)
in S, where [; and [, are the labels of v; and wv., respectively. The summary S also
associates a counter with each vertex (and edge) indicating the number of vertices (re-
spectively, edges) in the original graph that it represents. For example, Figure 4 depicts
the summary generated for the input graph of Figure 2.
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Since all vertices in the database with the same label map to one vertex in the sum-
mary, the summary is typically much smaller than the original graph. For example, the
graph of Figure 2 has four vertices labeled book, while the summary has only one vertex
representing these four vertices. In this simple example, the summary is only slightly
smaller than the original data. However, as noted in [GW97], many common datasets
are characterized by a high degree of structural replication, giving much greater space
savings. (For details, see Table 1 in Section 3.) These space savings come at the cost
of reduced accuracy of representation. In particular this summary tells us the labels on
possible edges to and from the vertices labeled paper, although they may not all be
incident on the same vertex in the original graph. (For example, journal and conference
vertices never connect to the same paper vertex, but the summary does not contain this
information.)

child; title
1 child; journal
child: conference o1 \ child; year
child; title cite; book
1 child; title
1

Fig. 5. Counting Lattice for paper vertex

We can partly overcome this problem by creating a richer summary. Instead of stor-
ing only the set of edges leaving a vertex label and their frequencies, we can create
a counting lattice (similar to the one used in [NAM97]), L(v) for each vertex v. For
every distinct set of edges leaving v, we create a node in L(v) and store the frequency



of this set of outgoing edges. For example, consider the vertex label paper in Figure 2.
The counting lattice for this vertex is depicted in Figure 5. In the input graph, there
are three different types of paper vertices with respect to their outgoing edges. One of
them, ps3, has a single outgoing edge labeled child leading to a title vertex. Another in-
stance, ps, has two outgoing edges to title and conference vertices. Finally, p; has four
outgoing edges. The lattice represents these three types of vertices with label paper
separately, while a simple summary does not distinguish between them. Each node in
lattice also stores the support of the paper vertex type it represents. We call the original
summary a level-0 summary and the summary obtained by adding this lattice structure
a level-1 summary. Using the level-1 summary, we can reason that there is no paper
vertex in the database that connects to both journal and conference vertices, which is
not possible using only level-0 summary. This process of enriching the summary by
differentiating vertices based on the labels of their outgoing edges can be carried fur-
ther by using the labels of vertices and edges that are reachable using paths of lengths
two or more. We refer to such summaries as level-k summaries: A level-k summary
differentiates vertices based on labels of edges and vertices on outgoing paths of length
k. However, building level-k summaries for £ > 2 is considerably more difficult than
building level-0 and level-1 summaries. Level-0 summaries are essentially data guides,
and level-1 summaries can be built with no additional cost if the file containing the
graph edges is sorted by the identifiers of source vertices. For summaries of higher lev-
els, additional passes of graph are required. Further, our experiments show that level-1
summaries are accurate enough for the datasets we study (See [GC02] for details), so
the additional benefit of higher summary levels is unclear. In the rest of this paper, we
focus on level-0 and level-1 summaries.

We assume that the graph database is stored on disk as a sequence of edges, sorted
in lexicographic order of the source vertex. Clearly, building level-0 summary requires
only a single sequential scan of the edges file. We build the summary incrementally in
memory as we scan the file. For an edge (v1, v2, 1) we increment the counters associated
with the summary nodes representing the labels Iy and I of v; and vs, respectively.
Similarly, the counter associated with the summary edge (s(l ), s(l2), ) is incremented,
where s(I;) denotes the summary node representing label I;. (If the summary nodes or
edges do not exist, they are created.) Since the edges file is sorted in lexicographic order
of the source, we can be sure that we get all of the outgoing edges of a vertex before
encountering another source vertex. Therefore, we can create the level-1 summary in
the same pass as we build the level-0 summary.

We use a level-0 summary L, to estimate the support of a structure S as follows:
By construction, there is at most one subgraph of Lq (say, S') that is isomorphic to S.
If no such subgraph exists, then the estimated (and actual) support of S is 0. Otherwise,
let C be the set of counters on S’ (i.e., C consists of counters on the nodes and edges of
S"). The support of S is estimated by the minimum value in C'. Given our construction
of the summary, this estimate is an upper bound on the true support of S. With a level-1
summary L1, we estimate the support of a structure S as follows: For each vertex v of S,
let L(v) be the set of lattice nodes in L, that represent a set of edges that is a superset of
the set of out-edges of v. Let c(v) denote the sum of the counters for nodes in L(v). The
support of S is estimated to be min, g ¢(v). This estimate is also an upper bound on



the true support of S. Further, it is a tighter bound than that given by the corresponding
level-0 summary.

2.2 Candidate Generation

A simplified version of our candidate generation algorithm is outlined in Figure 6: Can-
didateGeneration(x) returns a list of candidate structures whose estimated support is z
or higher. It maintains two lists of structures: open and candidate. In the open list we
store structures that have not been processed yet (and that will be checked later). The
algorithm begins by adding all structures that consist of only one vertex and pass the
support threshold test to the open list. The rest of the algorithm is a loop that repeats
until there are no more structures to consider (i.e., the open list is empty.) In each it-
eration, we select a structure (S) from the open list and we use it to generate larger
structures (called S’s children) by calling the expand subroutine, described below. New
child structures that have an estimated support of at least - are added to the open list.
The qualifying structures are accumulated in the candidate result, which is returned as
the output when the algorithm terminates.

Algorithm CandidateGeneration(threshold)
1. candidate +0; open <0;

2. for v € summary and support(v) > threshold

3 do create a structure s consisting of a single vertex v;
4 open <—open Us;

5. whileopen # @

6. do S <«—any structure in open;

7 open <—open —S; candidate <—candidate US;

8 children «—expand(S);

9. for ¢ € children

10 doif support(c) > threshold and ¢ ¢ candidate
11 then open <—open Uc;

Fig. 6. Simplified Candidate Generation Algorithm

Given a structure S, the expand subroutine produces the set of structures generated
by adding a single edge to S (termed the children of S). In the following description
of the expand(S) subroutine, we use S(v) to denote the set of vertices in S that have
the same label as vertex v in the data graph and V (s) to denote the set of data ver-
tices that have the same label as a vertex s in S. For each vertex s in S, we create the
set addable(S, s) of edges leaving some vertex in V'(s). This set is easily determined
from the data summary: It is the set of out-edges for the summary vertex representing
s. (As we shall discuss in Section 3, this ability to generate structures using only the
in-memory summary instead of the disk resident database results in large savings in
running time.) Each edge e = (s, v,1) in addable(S, s) that is not already in S is a
candidate for expanding S. If S(v) (the set of vertices with the same label as e’s desti-
nation vertex) is empty, we add a new vertex x with the same label as v and a new edge



(s,z,1) to S. Otherwise, for each x € S(v) if (s,z,l) in notin S, a new structure is
created from S and e by adding the edge (s, z,1) (an edge between vertices already in
S). If s does not have an [-labeled edge to any of the vertices in S(v), we also add a
new structure which is obtained from S by adding a vertex ' with the same label as v
and an edge (s, z',1).

For example consider the graph in Figure 2. Let us assume that we want to expand
a structure S consisting of a single vertex s labeled author. The set addable(S, s) is

{author CMQ book, author 'E)f book, author ij name, author cm;j paper} (all the

edges that leave an author labeled vertex in database). Since S has only one vertex, it
can be expanded only by adding these four edges. Using the first edge in the addable set,
a new structure is obtained from S by adding a new book-labeled vertex and connecting
s to this new vertex by a child edge. The other edges in addable(S, s) give rise to three
other structures in this manner.

2.3 Support Counting

Once the user is satisfied with the structures discovered in the candidate generation
phase, she may be interested in finalizing the frequent structure list and getting the exact
support of the structures. (Recall that the candidate generation phase provides only a
quick, approximate support for each structure, based on the in-memory summary.) This
task is performed in the support counting phase, which we describe here.

Let us define the size of a structure to be the number of nodes and edges it contains;
we refer to a structure of size k as a k-structure. From the method used for generating
candidates (Section 2.2), it follows that for every k-structure S in the candidate list
there exists a structure S, of size k — 1 or k¥ — 2 in the candidate list such that S, is a
subgraph of S. We refer to S, as the parent of S in this context. Clearly, every instance
I of S has a subgraph I’ that is an instance of S,. Further, I' differs from I only in
having one fewer edge and, optionally, one fewer vertex. We use these properties in the
support counting process.

Determining the support of a 1-structure (single vertex) consists of simply counting
the number of instances of a like-labeled vertex in the database. During the counting
phase, we store not only the support of each structure (as it is determined), but also a set
of pointers to that structure’s instances on disk. To determine the support of a k-structure
S for k > 1, we revisit the instances of its parent S, using the saved pointers. For each
such instance I', we check whether there is a neighboring edge and, optionally, a node
that, when added to I’ generates an instance I of S. If so, I is recorded as an instance
of S. This operation of growing an instance I’ of .S, to an instance I of S is similar
to the expand operation used in the candidate generation phase; however, there are two
difference. First, in the counting phase we expand subgraphs of the database whereas
in the candidate generation phase we expand abstract structures without referring to the
disk-resident data (using only the summary). Second, in the counting phase we need
to find an edge or vertex in the database to be added to the instance that satisfies the
constraints imposed by the expansion which created the structure (e.g., the label of
the edge). Whereas in the candidate generation phase, we add any possible edges and
vertices to the structure.



3 Experimental Evaluation

In order to evaluate the performance of our method we have performed a number of
experiments. We have implemented SEuS using the Java 2 (J2SE) programming en-
vironment. For graph isomorphism tests, we have used the nauty package[McK02] to
derive canonically labeled isomorphic graphs. Since we have two levels of summaries,
we append a “-Sd” to a system’s name to show which level of summary has been used
with the method in a particular experiment (e.g., SEuS-SO is the SEuS method using
summary level-0). In the experiments described below, we have used a PC-class ma-
chine with a 900 MHz Intel Pentium 111 processor and one gigabyte of RAM, running
the RedHat 7.1 distribution of GNU/Linux. Where possible, we have compared our re-
sults with those for SUBDUE version 4.3 (serial version), which is implemented in the
C programming language. Due to space restictions we are not able to present detailed
experimental results here. Extensive results have been presented in [GC02]. Table 1
presents some characteristics of the 13 datasets we have used for our experiments.

Name |Description Vertex| Edge[Summary| Graph
labels|labels Size|  Size
Credit-* |Credit card applications 59| 20 136|3899-27800
Diabetes-*|Diabetes patient records 7 8 39| 4556-8500
Vote |Congressional voting records 4] 16 52| 8811
Chemical |Chemical compounds 66 4 338| 18506
Chess  |Chess relational domain 7 12 88| 189311
Medical-* |Medical publication citations 75 4 175| 4M-10M

Table 1. Datasets used in experiments

Figure 7 compares the running time of SEuS and SUBDUE on the 13 datasets of
Table 1. Running times of SEuUS using both levels of summaries are depicted here. It
is important to notice that SEuS versions run for a longer time compared to SUBDUE
because it is looking for all frequent structures, whereas SUBDUE only returns the n
most frequent structures (n = 5 in these experiments.). The running times of SEuS in-
creases monotonically as the size of datasets increases. The irregularities in the running
time of SUBDUE are due to the fact that, besides the size of a dataset, factors such as
the number of vertex and edge labels have a significant effect on the performance of
SUBDUE. Referring to Table 1, it is clear that Credit datasets have many more labels
than the Diabetes datasets. Although Credit-1 and Credit-2 datasets are smaller than the
Diabetes datasets, it takes SUBDUE longer to mine them because it tries to expand the
subgraphs by all possible edges at each iteration. Then SUBDUE decides which isomor-
phism class is better by considering the number of subgraphs in them and the size of
the subgraphs. (In SUBDUE the sets of isomorphic subgraphs are manipulated as bags
of subgraphs.) When there is a large number of different vertex or edge labels, there
will be a larger number of subgraphs to choose between and since SUBDUE accesses
the database for each subgraph, the running time increases considerably. The number of
edge or vertex labels affects SEuS in a similar way, but since we do not access the main



database to find the support of a structure (we use the summary instead) this number
does not significantly affect our running time.

SEuS has a phase of data summary generation which SUBDUE does not perform. In
small datasets this additional effort is comparable to the overall running time. Also note
that the running time of SEuS increases if we use level-1 summary instead of level-0
summary. This increase in running time is mainly due to the overhead of creating a
richer summary. This additional effort will result in more accurate results (lower over-
estimation which yeilds less waste of time in the counting phase). We are comparing a
Java implementation of SEuS with the C implementation of SUBDUE. While the dif-
ference in efficiency of these programming environments is not significant for large
datasets, it is a factor for the smaller ones.
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Fig. 7. Running time

As the datasets grow, the running time of SUBDUE grows very quickly, while SEuS
does not show such a sharp increase. With our experimental setup, we were unable to
obtain any results from SUBDUE for datasets larger than 3 MB (after running for 24
hours). For this reason, Figure 7 presents the running time of only SEuS method for the
large datasets. To best of our knowledge, other complete structure discovery methods
cannot handle datasets with sizes comparable to those we have used here. AGM and
FSG methods, presented in [IWMO00, KKO01], take respectively eight days and 600 sec-
onds to process the Chemical dataset, for which SEuS only needs 20 seconds[KKO1].
(Unfortunately, we were unable to obtain the FSG system to perform a more detailed
comparison.) One should note that for very small thresholds, these methods will have a
better performance because with those thresholds a large number of structures will be
frequent and our summary does not provide a significant pruning while introducing the
overhead of creating a summary.



As discussed in Section 1, the SEuS system provides real-time feedback to the user
by quickly displaying the frequent structures resulting from different choices of the
threshold parameter. This interactive feedback is possible because the time spent in
the candidate generation (search) phase is very small. Figure 8 justifies this claim. It
depicts the percentage of time used by each of the three phases in processing different
datasets. As datasets get larger, the fraction of running time spent on summarizing the
graph falls rapidly. Also the time spent in the candidate generation phase is relatively
small. Therefore, our strategy of creating the summary once and running the candidate
generation phase multiple times with different input parameters (in order to determine
suitable values before proceeding to the expensive counting phase) is very effective.
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4 Related Work

Much of the prior work on structure discovery is domain dependent (e.g., [Win75,
Lev84, Fis87, Leb87, GLF89, CG92]) and a detailed comparison of these methods ap-
pears in [Con94]. We consider only domain independent methods in this paper. The
first such system, CLIP, discovers patterns in graphs by expanding and combining pat-
terns discovered in previous iterations [YMI93]. To guide the search, CLIP uses an
estimate of the compression resulting from an efficient representation of repetitions of
a candidate structure. The estimate is based on a linear-time approximation for graph
isomorphism. SUBDUE [CHO0O] also performs structure discovery on graphs. It uses
the minimum description length principle to guide its beam search. SUBDUE uses an
inexact graph matching algorithm during the process to find similar structures.

SUBDUE discovers structures differently from CLIP. First, SUBDUE produces only
single structures evaluated using minimum description length, whereas CLIP produces a
set of structures that collectively compress the input graph. CLIP has the ability to grow
structures using the merge operator between two previously found structures, while
SUBDUE only expands structures one edge at a time. Our system is similar to SUBDUE
with respect to structure expansion. Second, CLIP estimates the compression resulting
from using a structure, but SUBDUE performs an expensive exact measurement of com-
pression for each new structure. This expensive task causes the SUBDUE system to be
very slow when operating on large databases.



AGM [IWMO0O] is an Apriori-based algorithm for mining frequent structures which
are induced subgraphs of the input graph. The main idea is similar to that used by the
market basket analysis algorithm in [AS94]: a (k¥ + 1)-itemset is a candidate frequent
itemset only if all of its k-item subsets are frequent. In AGM, a graph of size £ +
1 is considered to be a candidate frequent structure only if all its subgraphs of size
k are frequent. AGM only considers the induced subgraphs to be candidate frequent
structures. (Given a graph G, subgraph G is called an induced subgraph if V(G;) C
V(Q@),E(Gs) C E(G) and Yu,v € V(Gs),(u,v) € E(Gs) & (u,v) € E(G).)
This restriction reduces the size of the search space, but also means that interesting
structures that are not induced subgraphs cannot be detected by AGM. After producing
the next generation of candidate frequent structures, AGM counts the frequency of each
candidate by scanning the database. As in SUBDUE, this need for a database scan at
each generation limits the scalablity of this method.

FSG [KKO01] is another system that finds all connected subgraphs that appear fre-
quently in a large graph database. Similar to AGM, this system uses the level-by-level
expansion adopted in Apriori. The key features of FSG compared to AGM are the fol-
lowing: (1) it uses a sparse graph representation which minimizes storage and computa-
tion, (2) there is no restriction on the structure’s topology (e.g., induce subgraph restric-
tion) other than their connectivity, and (3) it incorporates a number of optimizations for
candidate generation and counting which makes it more scalable (e.g., transaction ID
lists for counting). However, this system still scans the database in order to find the sup-
port of next generation structures. The experimental results in [KKO01] show that FSG
is considerably faster than AGM. One should note that AGM and FSG both operate on
a transaction database where each transaction is a graph, so that their definition of a
frequent structure’s support can be applicable. In SEuS we do not have this restriction,
and SEuS can be applied to both a transaction database and a large connected graph
database. As mentioned in Section 3, for a common Chemical dataset, FSG needs 600
seconds, where SEuS returned the frequent structures in less than 20 seconds.

Asai [AAKT02] proposes FREQT algorithm for discovering frequent structures in
semistructured data. FREQT models semistructured data and the frequent structures
using labeled ordered trees. The key contribution of this work is the notion of the right-
most expansion, a technique to grow a tree by attaching new nodes only to the rightmost
branch of the tree. The authors show that it is sufficient to maintain only the instances
of the rightmost leaf to efficiently implement incremental computation of structure fre-
quency. Limiting the search space to ordered trees allows the method to scale almost
linearly in the total size of maximal tree contained in the collection.

In [CYLWO02], authors propose another method for frequent structure discovery in
semistructured collections. In this work, the dataset is a collection of semistructured
objects treated as transactions similar to FSG method. Motivated by the semistructured
data path expressions, the authors try to represent the objects and patterns as a set of
labeled paths which can include wildcards. After introducing the notion of weaker than
for comparing a structure path set with a transaction object, the algorithm tries to dis-
cover the set of all patterns that have a frequency higher than a given threshold. The
authors discuss that the methods is motivated and well-suited for collections consisting
of similarly structured objects with minor differences.



The problem of finding frequent structures is related to the problem of finding im-
plicit structure (or approximate typing) in semistructured databases [NAM97, NAM98].
In type inference, the structures are typically limited to rooted trees and each structure
must have a depth of one. Further, the frequency of a structure is not the only metric
used in type inference. For instance, a type that occurs infrequently may be important
if its occurrences have a very regular structure. Despite these differences, it may be
interesting to investigate the possibility of adapting methods from one problem for the
other.

5 Conclusion

In this paper, we motivated the need for data mining methods for large semistructured
datasets (modeled as labeled graphs with several million nodes and edges). We focused
on an important building block for such data mining methods: the task of finding fre-
quent structures, i.e., structures that are isomorphic to a large number of subgraphs of
the input graph. We presented the SEuS method, which finds frequent structures effi-
ciently by using a structural summary to estimate structure support.

Our method has two main distinguishing features: First, due to their use of a sum-
mary data structure, they can operate on datasets that are two to three orders of magni-
tude larger than those used by prior work. Second, our methods provide rapid feedback
(delay of a few seconds) in the form of candidate structures, thus permitting their use in
an interactive data exploration system.

As ongoing work, we are exploring the application of our methods to finding as-
sociation rules and other correlations in semistructured data. We are also applying our
methods to the problems of classification and clustering by using frequent structures to
build a predictive model.
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