Tracking Hidden Groups Using Communications

Sudarshan S. Chawathe!

Computer Science Department
University of Maryland
College Park, Maryland 20742, USA
chaw@cs.umd.edu

Abstract. We address the problem of tracking a group of agents based
on their communications over a network when the network devices used
for communication (e.g., phones for telephony, IP addresses for the In-
ternet) change continually. We present a system design and describe our
work on its key modules. Our methods are based on detecting frequent
patterns in graphs and on visual exploration of large amounts of raw and
processed data using a zooming interface.

1 Introduction

Suppose a group of suspicious agents (henceforth, suspects) has been identified
based on some a priori knowledge. Instead of taking immediate action to stop
the suspicious activities, it is often prudent to carefully monitor the suspects and
their communications in order to maximize the detection of suspects (expand the
group) and uncover the nexus of activity (locate the key or controlling agents).
Unfortunately, the suspects typically do not communicate using easily identifi-
able sources. For example, a ring of car thieves may continually change phone
numbers (using prepaid cellular phones, short-term pager numbers, etc.). Simi-
larly, globally dispersed agents planning a distributed denial-of-service attack on
the cyber-infrastructure typically do not use the same IP address for very long.
Such behavior makes it very difficult to accurately and efficiently track groups
of suspects over extended periods of time. In this paper, we describe a strategy
to solve this problem by using a combination of automated and human-directed
techniques. We begin by describing the problem more precisely.

Problem Development We will use the term agents to denote real-world entities
(typically, humans) that we are interested in monitoring. However, these agents
are not directly observable and their real-world identities are, in general, un-
known. That is, we do not have any method to directly track the actions of the
agents. Instead, all we can observe is the communications between such agents.
The medium used for such communication may be a phone network, the Inter-
net, physical mail, etc. We refer to it as the network in general. We will use the
term nodes to denote the devices used to communicate using this network (e.g.,
phone numbers in a telephone network, IP addresses on the Internet). A key
feature of nodes is that they are, by virtue of their connections to the network,

e
L nodes

————_ i ; e //’//
Unobservable Real World Network | Opservable Communication Network
Unknown and dynamic mapping between agents and nodes

Monitored messages

Fig. 1. The tracking problem

easily identifiable and observable. Agents use nodes to communicate on the net-
work. (For example, people use phone numbers to communicate using the phone
network, and IP addresses to communicate using the Internet.)

A group of communicating suspects is called a s-group. Note that since sus-
pects are, in general, not directly observable, neither are s-groups. At a given
point in time, there is a group of nodes (in the communication network) corre-
sponding to the agents in an s-group; we refer to this group of nodes as a n-group.
In contrast with s-groups, n-groups are easily observable. For example, the group
of phone numbers used by a ring of car thieves in the past few days forms a n-
group. Over time, the n-group corresponding to a given s-group changes. For
example, the ring of thieves is likely to be using a completely different set of
phone numbers two months from now. The problem at hand is then the problem
of tracking s-groups by observing only the n-groups. By observing a n-group, we
mean tracking the communications between the nodes in the group.

In this paper, we assume that the only information we can obtain from the
communication network is a timestamped list of inter-node messages. We use the
term messages in a general sense. In a phone network, a message is a phone call;
on the Internet, a message may be a TCP connection. More precisely, monitoring
the network yields a list of tuples of the form (n1,n»,t, A) indicating a message
from n; to ny at time ¢t. We use A to denote a list of additional attributes, which
depend on the particulars of the communication network and the monitoring
methods. In a phone network, A includes attributes such as the length of the
call. On the Internet, A includes the source and destination ports associated
with a TCP connection and other connection parameters. It is convenient to
regard this stream of tuples as the edges of a connection multigraph whose nodes
represent communication network nodes (e.g., phone numbers) and whose edges
represent messages annotated with additional attributes (e.g., phone calls with
durations).

In most networks, such a list is never-ending and therefore better modeled as
a stream of tuples. Another characteristic of the data from network monitoring
is that it is typically produced at a very high rate. For example, call records

Network Monitoring _
Data (edge stream) Newswires, memos, etc.

tuning Visual Q

Exploratoin +

A
| .| Online aerts } } Offling
Analysis v Andysis
mining f
- Storage

Fig. 2. System architecture

on a phone network and TCP connection build-ups and break-downs occur at a
very high rate. It is important to analyze such stream data using online meth-
ods that detect important patterns as early as possible. (For example, detecting
that a ring of thieves is about to move to another state or country may prompt
immediate action if it is detected in a timely manner.) Further, indiscriminately
storing such stream data can exhaust even the large amounts of inexpensive
storage currently available. Storing the data indiscriminately also makes it more
difficult to operate on the data as less interesting data is likely to slow access to
interesting data. On the other hand, many of the kinds of operations required
by this application are not likely to yield to purely online methods. For exam-
ple, many data mining algorithms require random access to data on disk and
cannot be easily modified for the restrictions of stream data. Thus, a practical
solution is likely to require both online and offline analysis methods that operate
cooperatively.

So far, we have not indicated how the results of the automated or semi-
automated methods suggested above are presented to the analyst responsible
for decisions, nor have we indicated how such analysts may use their knowledge
to direct and guide the tracking process. A simple solution here is to process
data in batches, and provide input in batches. For example, a detective may
analyze the output of the tracking method from yesterday and adjust the input
parameters for guiding the method when it is run on today’s data. This solution
has problems analogous to those encountered by batch-based solutions to the
tracking problem. Again, it is desirable to provide methods that permit online
viewing of the results of tracking and immediate fine-tuning of the tracking
process. Assuming we have at hand streaming methods for tracking s-groups,
we need methods for visualizing, searching, and manipulating the streaming and
dynamic data generated by these methods.

System Architecture Figure 2 depicts the high-level architecture of our system
for tracking s-groups. The monitoring devices on the network (e.g., instrumented
routers on the Internet) produce a stream of tuples, each of which describes a

message between nodes. This stream of tuples is sent to both the online analysis
module and the storage module. The storage module is responsible for recording
the stream and merging it with the archived data at suitable intervals (say, every
24 hours). The online analysis module uses the stream to trigger detection fea-
tures based on the archived data and input from the analyst. The offline analysis
module is where methods that are not suited to stream processing are imple-
mented. These methods can be classified as data mining or pattern detection
methods that require random access to data. The exploration module includes
a graphical user interface and, more important, implementation of methods for
quickly assimilating vast amounts of data at varying levels of detail. The data
includes the stream data processed to varying degrees, the results of the on-
line and offline analysis modules, and an integration with external data sources
that are relevant to an analyst’s decision making process (e.g., newswire articles,
police reports, memos).

In Section 2, we describe methods for detecting frequent patterns in the
connection graph. These methods form the building blocks for of the offline
analysis module. Section 3 describes methods for exploring large volumes of
graph data using a zooming interface that form the basis of the exploration
module. We discuss related work briefly in Section 4 and conclude in Section 5.
Due to space constraints, we do not discuss the online analysis module here, and
refer the interested reader to [5] for details.

2 Detecting Frequent Patterns

In this section, we describe our method for detecting hidden groups by analyz-
ing large volumes of historical connection data obtained by network monitoring.
This method is part of the static analysis module of Figure 2. Recall that in
this module, we are given a database consisting of a communication graph that
forms a historical record of messages between nodes and we wish to detect po-
tential s-groups for further investigation (and to serve as inputs for the online
analysis module). The goal is to help an analyst detect s-groups by highlighting
patterns in the data. The kinds of patterns of interest to analysts are likely to be
varied and complex, and we do not attempt to completely automate the task of
detecting them. Instead, our approach is to provide efficient implementation of
a few key operations that the analyst may use to investigate the data based on
real-world knowledge. In particular, we focus on the efficient implementation of
an operation that is not only useful on its own, but also forms the building block
for more sophisticated analysis methods (both automated and human directed).
This operation is the detection and enumeration of frequently occurring patterns,
which are informally patterns of communicating nodes occur frequently enough
to be of potential interest for a detailed data analysis. (Such frequently occurring
patterns are to our problem what frequent itemsets are to the problem of mining
market basket data [1].)

The main idea behind our method, which is called SEuS (Structure Extrac-
tion using Summaries) is the following three-phase process: In the first phase

(summarization), we preprocess the given dataset to produce a concise sum-
mary. This summary is an abstraction of the underlying graph data. Our sum-
mary is similar to data guides and other (approximate) typing mechanisms for
semistructured data [12,15,4]. In the second phase (candidate generation), our
method interacts with a human analyst to iteratively search for frequent struc-
tures and refine the support threshold parameter. Since the search uses only the
summary, which typically fits in main memory, it can be performed very rapidly
(interactive response times) without any additional disk accesses. Although the
results in this phase are approximate (a superset of final results), they are ac-
curate enough to permit uninteresting structures to be conservatively filtered
out. When the analyst has filtered potential structures using the approximate
results of the search phase, an accurate count of the number of occurrences of
each potential structure is produced by the third phase (counting).

year idref

title

conference

cite

child

volume

Fig. 3. Example input graph

Users are often willing to sacrifice quality for a faster response. For example,
during the preliminary exploration of a dataset, one might prefer to get a quick
and approximate insight into the data and base further exploration decisions on
this insight. In order to address this need, we introduce an approximate version
of our method, called L-SEuS. This method only returns the top-n frequent
structures rather than all frequent structures. We present only a brief discussion
of SEuS below, and refer the reader to [11] for a detailed discussion both SEuS
and L-SEuS.

Summarization We use a data summary to estimate the support of a struc-
ture (i.e., the number of subgraphs in the database that are isomorphic to the
structure). The summary is a graph with the following characteristics. For each

book

Chmld

title year
Structure

child @ child
© ®

child @ child
ORND
Subgraph 1
child @ child
ORND

Subgraph 2 Subgraph 3

Fig. 4. A structure and its three instances

distinct vertex label [in the original graph G, the summary graph X has an
l-labeled vertex. For each m-labeled edge (v1,v2) in the original graph there is
an m-labeled edge (I1,l3) in X, where [, and l» are the labels of v; and va,
respectively. The summary X also associates a counter with each vertex (and
edge) indicating the number of vertices (respectively, edges) in the original graph
that it represents. For example, Figure 5 depicts the summary generated for the
input graph of Figure 3.

journal conference

Fig. 5. Summary graph

We use the summary X to estimate the support of a structure S as follows:
By construction, there is at most one subgraph of X (say, S’) that is isomorphic
to S. If no such subgraph exists, then the estimated (and actual) support of S
is 0. Otherwise, let C' be the set of counters on S’ (i.e., C consists of counters

on the nodes and edges of S’). The support of S is estimated by the minimum
value in C. Given our construction of the summary, this estimate is an upper
bound on the true support of S.

Candidate Generation The candidate generation phase is a simple search in the
space of structures isomorphic to at least one subgraph of the database. We
maintain two lists of structures: open and candidate. In the open list we store
structures that have not been processed yet (and that will be checked later).
The algorithm begins by adding all structures that consist of only one vertex
and pass the support threshold test to the open list. The rest of the algorithm
is a loop that repeats until there are no more structures to consider (i.e., the
open list is empty.) In each iteration, we select a structure (S) from the open list
and we use it to generate larger structures (called S’s children) by calling the
expand subroutine, described below. New child structures that have an estimated
support greater than the threshold are added to the open list. The qualifying
structures are accumulated in the candidate list, which is returned as the output
when the algorithm terminates.

Given a structure S, the expand subroutine produces the set of structures
generated by adding a single edge to S (termed the children of S). In the following
description of the ezpand(S) subroutine, we use S(v) to denote the set of vertices
in S that have the same label as vertex v in the data graph and V (s) to denote
the set of data vertices that have the same label as a vertex s in S. For each vertex
sin S, we create the set addable(S, s) of edges leaving some vertex in V' (s). This
set is easily determined from the data summary: It is the set of out-edges for the
summary vertex representing s. Each edge e = (s,v,1) in addable(S, s) that is
not already in S is a candidate for expanding S. If S(v) (the set of vertices with
the same label as e’s destination vertex) is empty, we add a new vertex = with
the same label as v and a new edge (s,z,1) to S. Otherwise, for each z € S(v) if
(s,z,1) in not in S, a new structure is created from S and e by adding the edge
(s,z,1) (an edge between vertices already in S). If s does not have an I-labeled
edge to any of the vertices in S(v), we also add a new structure which is obtained
from S by adding a vertex x’ with the same label as v and an edge (s,2’,1).

Support Counting Once the analyst is satisfied with the structures discovered
in the candidate generation phase, she may be interested in finalizing the fre-
quent structure list and getting the exact support of the structures. This task is
performed in the support counting phase.

Let us define the size of a structure to be the number of nodes and edges it
contains; we refer to a structure of size k as a k-structure. From the method used
for generating candidates (Section 2), it follows that for every k-structure S in
the candidate list there exists a structure S, of size k—1 or k—2 in the candidate
list such that S, is a subgraph of S. We refer to S, as the parent of S in this
context. Clearly, every instance I of S has a subgraph I' that is an instance of
Sp. Further, I' differs from I only in having one fewer edge and, optionally, one
fewer vertex. We use these properties in the support counting process.

Determining the support of a 1-structure (single vertex) consists of simply
counting the number of instances of a like-labeled vertex in the database. During
the counting phase, we store not only the support of each structure (as it is
determined), but also a set of pointers to that structure’s instances on disk. To
determine the support of a k-structure S for & > 1, we revisit the instances
of its parent S, using the saved pointers. For each such instance I', we check
whether there is a neighboring edge and, optionally, a node that, when added to
I' generates an instance I of S. If so, I is recorded as an instance of S.

[, e
Search | Count Toggle All Animations | Scramble All Graphs
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 o8 0.9 1.0
Current Threshold Ratio: 0.79 Quit
Subl E=5 C=9 Sub E 9
-
; TR e
g SHILD b < |
-~ ~ Y /
- - \ !
~ -~ 2AILD o A\ J
_ 2 EriLo \ !
DRI ; / \puo o
¥, ey A | X
o i o i
/ "
| \]
3publisher N\
Sub2 E=35 C=09- Sub4 E=5 (C]
L 0 book =
T [e3aet]
I\ s
I X\ ‘
CHILD price
{ \\A = -
HILE o AgriLe X e
/
/ \ e
| \ eAILD
en) i
2 publizher

Fig. 6. A screenshot of the SEuS system

3 Visual Exploration

In this section, we describe methods for implementing the interface module of
Figure 2. Recall that the task of this module is to help the analyst assimilate
the output of the automated analysis modules (offline and online) as well as the
external data feed (newswire articles, intelligence reports, etc.). The intercon-
nections between data items from different sources are of particular interest. In
this module, we model data as a multiscale graph in which nodes represent data
items and edges represent the relationships among them. At a high level, this
graph aggregates many data items into one node; at the lowest level, each node

Forward/Cross Back
Nni .
2] [a2] [a72] [a2] ' Lirks
[s9] L7 [st] [s8] _
Zooming-in Details
ore
—]
T
Zooming-in Numbers poodia s \ T4
id al00
name Yeo
] (oo (s [aet] [ade] s8] | publcations | | p10 pos

p7
] | 2 o

@ Chawathe More
[a2]

D2 b5 b29...

/

/

= = = =R e [
— oreLinl

Fig. 7. Two kinds of logical zooming

represents a single data item or concept (e.g., a phone number). This represen-
tation allows the analyst to work at a level of abstraction best suited to the task
at hand. We have implemented methods for exploring such graphical data at
varying levels of detail as part of our VQBD system [6], and we describe the key
ideas below.

Although VQBD is extensible and incorporates many features for the power
user, it is designed to be accessible to a casual user. To this end, the basic
modes of interacting with the system are very simple. At all times, the VQBD
display consists of a single window with a graphical representation of the XML
data. Although, as we shall see below, this representation may be the result of
some complex operations, the user interface is always the same: There are nodes
(boxes) representing data elements (often summarized) and arcs (lines) repre-
senting relationships among them. There are no tool-bars, scroll-bars, sliders,
or other widgets. We believe this simplicity is key to usability by a casual user.
The basic modes of controlling, described below, VQBD are also simple and un-
changing. The first three are meant for the casual user, while the next two are
for users who have gained more experience with the system.

Panning The displayed objects can be moved in any direction relative to the
canvas by a dragging motion with the left button of the mouse.

Zooming The display may be zoomed in (or out) by a right- (respectively, left-)
dragging motion with the right mouse button. VQBD uses the position of the

pointer to determine the type of zooming. If the pointer is outside all graphical
object then the result is simple graphical zooming (e.g., larger objects, bigger
fonts). If the pointer is inside a graphical object then the data resolution of that
object, and any others of a similar type, is increased. For example, consider the
screenshot in Figure 3. The lower part represents speech and line objects and
includes sample values from the input document. Zooming in with the pointer
inside the larger box (representing the collection of line objects) results in the
display of a larger number of sample speech objects. Zooming in with the pointer
inside one of the smaller boxes representing an individual line object displays
that object in more detail (more text). Figure 7 illustrates these two modes of
zooming. In the case of other visualization modules (e.g., histograms), zooming
results in actions appropriate to that module (e.g., histogram refinement).

Link Navigation Clicking on a link causes the display to recenter itself around
the target of the link at an appropriate zoom level. Following the design method
of the Jazz toolkit, such link navigation is not instantaneous; instead it occurs at
a speed that allows the viewer to discern the relative positions of the referencing
and referenced objects. In addition to selecting an appropriate graphical zoom
level, VQBD automatically picks a suitable logical zoom level. For example, a
collection of numbers that is too large to display in its entirety is often presented
as a histogram.

View Change While VQBD automatically selects an appropriate method for
visualizing data at the available resolution, the user may override this selection
a pop-up menu bound to the middle mouse button. For example, a user interested
in the highest values in a collection of numbers may force VQBD to change the
view from histogram to sorted list.

Querying The XML document may be queried using a query-by-example inter-
face. This interface permits users to specify selection conditions as annotations
on displayed objects. In addition, the user may mark objects as distinguished
objects for use in queries. Intuitively, these objects can be used as the starting
points for query-based exploration. VQBD has built-in query modules for regu-
lar expressions and XPath. Additional query modules can be easily added using
the plug-in interface. More precisely, these objects are logically inserted into a
table that can be used in the from clause of OQL-like queries.

Since we do not have access to realistic monitoring data, we illustrate the
key features of VQBD using a sample user session based using Jon Bosak’s XML
rendition of Shakespeare’s A Midsummer Night’s Dream, available at http:
//www.ibiblio.org/xml/examples/shakespeare/. The system parses the data
and graphically and presents a summary of its implicit structure with objects
representing the play, acts, scenes, and lines. This structural summary is the
default view presented by VQBD. A screenshot appears as Figure 3. Note that
the screenshots in Figure 8 are based on a rather small VQBD display (approx-
imately 350x350 pixels). While we picked this size primarily to fit the space

]]
& =o| & = B3
"I_?ile_| WView File View

e, ECEME Il. A hall in FCENE L A church]a ECENE &
root the caztle. Id. hoom in t
. A
1
PLAY
e ol Eive him the morey| [fo ErgBi
/ = x LIN E B thee notes, Rej |or cortfin
F: - ' ! naldo. B
[E usmul _ ACT FM [Food gentlemen, he Pialoms, dear Rocarc Madress
"1\ v ‘_ ¥ v kb much ak'd of ¥ mrlnz and Guikdencis Emuwet e
= ql’ -.‘. = \., %5 = pu: - go.
o B b [Thiz physic butjm | If he steal aught th Bnd afte
PEROUP 'SCEME pngs thy sickly days 3';hl|£_ltﬂ1l3 Pay nh our ju
A . aying
b . [P nothing: bring mel thing, my lord! hows if
= .'? to him. Hide fox, 4 weeps
o p nd allafier. ong.
SPEECH . g
ut that this fall Horatio, when thopy He sha
b J ?nuts ?t ¥ ihﬂ It have ove rlogkeolease L

(a) Zoomed out—structural sum-
mary

(b) Zoomed in—instances

Fig. 8. Two screenshots of VQBD in action

constraints of this report, it also illustrates how VQBD’s zooming interface al-
lows it to function effectively at this size. In this example, the summary is small
enough to be displayed in its entirety. However, when the summary is larger (or
the screen smaller), the panning and graphical zooming features of VQBD are
used to view the summary.

Now suppose the analyst zooms in on the speech object using a dragging
motion with the right mouse button. Initially, the zooming results in standard
graphical results (larger objects, higher resolution text, etc.). However, as soon
as the object becomes large enough to display graphical elements within it, the
graphical zooming is accompanied by a logical zooming: a few sample elements
are displayed. VQBD displays randomly sampled elements, with the number of
displayed elements increasing as the available space increases as a result of the
zooming in operation. Figure 8(b) is a screenshot at this stage of exploration.
In addition to details of the speech and line elements, details of scene elements
(appearing above the speech elements in this figure as in Figure 8(b)) are par-
tially visible, providing a useful context. These figures do not convey the colors
used by VQBD for indicating many relationships, including grouping elements
based on parents (enclosing elements). When a sample element is displayed in
this manner, VQBD reads its attributes and sub-elements to pick a short string
that distinguishes the element from others with the same tag. This string is

displayed within the object representing the element on screen. In our example,
VQBD uses the scene titles to identify scene elements on screen. At this stage,
the analyst also has the option of single-clicking on any of the displayed ob-
jects, causing VQBD to display all details of the selected object. For example,
clicking on the scene object labeled A hall in the castle results in displaying the
scene in greater detail (as much as will fit in the VQBD window). Note that
this clicking action is simply an accelerated form of zooming; the same result
could be achieved by zooming in to the scene object. Subelements of the scene
element are displayed as active links that can be activated in order to smoothly
transport the display to the referenced object. This link-based navigation can
be freely interleaved with zooming. Zooming out at this point results in VQBD
retracing its steps, displaying data in progressively less detail until we are back
at the original structural summary view.

In addition to browsing data in this manner, an analyst may also query data
using the VQBD interface. For example, if a scene object is selected as the origin
of a search for the string Lysander, VQBD executes the query and highlights ob-
jects in the query result. In our sample data, the query string matches elements of
different types (two persona elements, one stagedir element, and several speaker
and line elements). If the current resolution is insufficient to display individual
objects, only the structural summary objects corresponding to the individual
objects are highlighted. To view the query results in detail, one may zoom in as
before. Unlike the earlier zooming action, which displayed a random sample of
all elements corresponding to the summary object, VQBD now displays a sam-
ple chosen only from the elements in the query result. When all elements in the
query result have been displayed, further zooming results in a random selection
from the remaining elements (as before). (Colors are used to distinguish the el-
ements in the query result from the rest of the elements.) This exploration of
query results may be interleaved with zooming, panning, query refinement, and
other VQBD operations.

4 Related Work

There is a long history of work on network and graph analysis. However, many of
the methods do not scale to the amount of data generated by the network mon-
itoring situations that interest us. For high-volume data, work on Communities
of Interest [10,9] is perhaps the closest to our work. A method for managing
high-volume call-graph data from a phone network based on daily merging of
records is described in [10].

There is work on structure discovery in specific domains; a detailed compar-
ison of several such methods appears in [7]. We are more interested in domain
independent methods such as CLIP and Subdue [16, 8]. The method of Section 2
differs from these in its use of a summary structure to yield an interactive system
with high throughput. A detailed discussion and performance study appears in
[11]. AGM [13] is an algorithm for finding frequent structures that uses an algo-
rithm similar to the apriori algorithm for market basket data [2]. The FSG [14]

is similar to AGM but uses a sparse graph representation that minimizes storage
and computation costs. The FREQT algorithm is based on the idea of discover-
ing tree structures using by attaching nodes to only the rightmost branches of
trees [3].

The general idea of using a succinct summary of a graph for various purposes
has a large body of work associated with it. For example, this idea is devel-
oped in semistructured databases as graph schemas, representative objects, and
data guides, which are used for constraint enforcement, query optimization, and
query-by-example interfaces [4,15,12].

5 Conclusion

We described and formalized the problem of tracking hidden groups of entities
using only their communications, without a priori knowledge of the communica-
tion device identifiers (e.g., phone numbers) used by the entities. We discussed
the practical constraints on the environment in which this problem must be
solved and presented a system architecture that combines offline analysis, online
analysis, and interactive exploration of both raw and processed data. We de-
scribed our work on methods that form the basis of some of the system modules.
We have conducted detailed evaluation of these methods by themselves and are
now working on assembling and evaluating the system as a whole.

Acknowledgments

Shayan Ghazizadeh helped design the and implement the SEuS system. Jihwang
Yeo and Thomas Baby implemented parts of the VQBD system. This work was
supported by National Science Foundation grants in the CAREER, (I1S-9984296)
and ITR (IIS-0081860) programs.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining associations between sets of
items in massive databases. SIGMOD Record, 22(2):207-216, June 1993.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of
the 20th International Conference Very Large Data Bases, pages 487-499. Morgan
Kaufmann, 1994.

3. Tatsuya Asai, Kenji Abe, Shinji Kawasoe, et al. Efficient substructure discov-
ery from large semi-structured data. In Proc. of the Second SIAM International
Conference on Data Mining, 2002.

4. P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure to un-
structured data. In Proceedings of the International Conference on Database The-
ory, 1997.

5. Sudarshan S. Chawathe. Tracking moving clutches in streaming graphs. Techni-
cal Report CS-TR-4376 (UMIACS-TR-2002-56), Computer Science Department,
University of Maryland, College Park, Maryland 20742, May 2002.

10.

11.

12.

13.

14.

15.

16.

Sudarshan S. Chawathe, Thomas Baby, and Jihwang Yeo. VQBD: Exploring
semistructured data. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD), Santa Barbara, California, May 2001.
Demonstration Description.

D. Conklin. Structured concept discovery: Theory and methods. Technical Report
94-366, Queen’s University, 1994.

D. J. Cook and L. B. Holder. Graph-based data mining. ISTA: Intelligent Systems
& their applications, 15, 2000.

Corinna Cortes and Daryl Pregibon. Signature-based methods for data streams.
Data Mining and Knowledge Discovery, 5:167-182, 2001.

Corinna Cortes, Daryl Pregibon, and Chris Volinsky. Communities of interest. In
Fourth International Symposium on Intelligent Data Analysis (IDA 2001), Lisbon,
Portugal, 2001.

Shayan Ghazizadeh and Sudarshan S. Chawathe. SEuS: Structure extraction using
summaries. In Steffen Lange, Ken Satoh, and Carl H. Smith, editors, Proceedings
of the 5th International Conference on Discovery Science, volume 2534 of Lecture
Notes in Computer Science (LNCS), pages 71-85, Lubeck, Germany, November
2002. Springer-Verlag.

R. Goldman and J. Widom. DataGuides: Enabling query formulation and opti-
mization in semistructured databases. In Proceedings of the Twenty-third Interna-
tional Conference on Very Large Data Bases, Athens, Greece, 1997.

A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In Proc. of the 4th European Conference
on Principles and Practice of Knowledge Discovery in Databases, pages 13-23,
2000.

M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proc. of the 1st
IEEE Conference on Data Mining, 2001.

S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe. Representative objects:
Concise representations of semistructured, hierarchial data. In Proceedings of the
International Conference on Data Engineering, pages 79-90, 1997.

K. Yoshida, H. Motoda, and N. Indurkhya. Unifying learning methods by colored
digraphs. In Proc. of the International Workshop on Algorithmic Learning Theory,
volume 744, pages 342-355, 1993.

