
Tracking Changes in Healthcare Documents∗

Sudarshan S. Chawathe
Department of Computer Science, University of Maine, Orono, Maine 04469, USA

chaw@cs.umaine.edu

Abstract

We present methods for monitoring a large, diverse,
and autonomously modified collection of healthcare docu-
ments on the Web. Our methods do not require document-
providers to offer any special services. They are based
on explicating changes between document versions on a
per-user basis by using differencing algorithms. These
changes are presented to users in the context of the docu-
ments using special XML elements. In order to effectively
browse changes in large document collections, we use a
variable-resolution XML browser. A noteworthy feature of
this browser is that it produces usable displays at any level
of detail specified by a user.

1 Introduction

Healthcare information on the Web is growing in both
size and scope. The available information covers diverse
aspects of the field, such as research results, governing reg-
ulations from several bodies, and resources for patients and
healthcare providers. This information is distributed not
only physically, residing on servers worldwide, but also log-
ically, being controlled by diverse, autonomous organiza-
tions, such as government agencies at federal, state, and lo-
cal levels, professional organizations, and private groups.
This decentralization of control over the information is re-
sponsible, in large part, for its growth, and for the success
of the Web in general.

However, this decentralization also creates several data-
management difficulties. The decentralization results in
heterogeneity at levels ranging from data representation
(e.g., character sets and notation) to semantic (ontologies),
making it difficult to extract consistent information from the
distributed resources. Further, the information evolves in
a rapid and unpredictable manner. Thus, even if we over-
come the problems of heterogeneity and arrive at a consis-
tent view of the information we seek, it is difficult to stay
current and to separate the important and urgent changes
from those that can be ignored or processed later. In this
paper, we focus on the latter problem: How can we assist

∗This work was supported in part by the U.S. National Science Foun-
dation with grants IIS-9984296, IIS-0081860, and CNS-0426683.

a healthcare professional with the task of effectively keep-
ing track of the relevant body of Web documents when the
documents are being continually updated in unpredictable
ways by their autonomous owners?

The need for allowing readers to track changes in doc-
uments they have read, as well as to new documents that
may be of interest has been recognized by many informa-
tion providers, as evidenced by “what’s new” sections of-
ten found on Web sites. For instance, the site from which
we draw our running example (described in Section 2) in-
cludes such a section [4]. There are, however, two problems
with these efforts: First, not all providers offer such a ser-
vice. There is also a great variety in the manner and fre-
quency of such information. Second, and more important,
the interpretation of “new” is determined by the information
provider, and not the reader. This interpretation is presum-
ably based on some notion of a typical reader or an expected
frequency of visits to a Web site. A reader who visits a Web
site frequently is likely to find old information still marked
as new, whereas a reader who visits infrequently is likely to
miss changes that are removed from the “what’s new” sec-
tion between visits. Our approach in this paper avoids such
problems by providing a per-user description of changes.
The resources required for this task, such as storage space
and computational power, are based at the user’s site (e.g.,
personal computer) instead of at the server sites. Therefore,
this approach scales well as the number of users grows.

In Section 2 we introduce our running example and de-
scribe the first stage of our method: explicating changes
between versions of a document, such as the versions en-
countered on two visits to a Web site. Our solution is based
on formalizing the problem as one of finding a minimum-
cost edit script between two trees representing versions of
an XML document. The output of this stage is an edit script
that encodes the precise changes between versions. This in-
formation is derived without any additional features from
the document providers.

Although an edit script is a precise representation of
changes between versions of a document, it is better suited
for interpretation by machines than by humans. In Sec-
tion 3, we describe the second stage of our method: pre-
senting the changes found by the first stage. Our solution is
based on embedding an edit script in a recent version of the
document being monitored, allowing changes to be viewed

Figure 1. An excerpt of a document outlining a
triage protocol for flu-like illnesses [12]. An XML
rendering appears in Figure 2.

and interpreted in the appropriate context.
However, as the number of changes increases, or as the

documents being monitored get larger, this method for mon-
itoring changes may present more information than is easily
processed. In Section 4, we describe the third stage of our
method: providing a variable-resolution interface to docu-
ments and their changes. Our solution is based on an XML
browser, called FuzzyTree, that summarizes data at varying
levels of detail. By preprocessing the output of the previ-
ous stage, FuzzyTree permits multi-resolution browsing of
documents and changes with interactive response times. We
discuss related work in Section 5 and conclude in Section 6.

2 Changes in Documents

Figure 1 depicts a small excerpt from a document de-
scribing the protocol for triage of patients with flu-like
symptoms [12]. An XML rendering of this document is
suggested by Figure 2, in which we use ellipses (...) to
denote additional data that has been omitted for brevity.

Suppose the document of Figure 2 is modified by its is-
suing authority, perhaps to reflect changes in the protocol
prompted by recent research. Figure 3 suggests such a mod-
ified version (hypothetical) of the document. As indicated
by the line marked with a !, the code for the answer “greater
than 65” has been changed from blue to red. Further, the
lines marked + indicate newly inserted data: a procedure
for ages 16–22, along with a qualifying note. We note that
the ! and + marks are for ease of presentation only and are
not part of the document.

Thus, we have the following problem: Given two docu-
ment versions, such as those suggested by Figures 2 and 3,
how do we determine precisely what has changed between
versions? In order to formalize this problem, we model
the XML documents as rooted, ordered, labeled trees. This
model is widely used, with the trees representing DOM in-
terpretations of the XML documents [8]. Figure 4 suggests

<site> <fordoctors>
<protocols> <clinical> <protocol>

<title>Telephone triage for flu-like
illness</title>
<form-item>Name of caller</form-item>
<form-item>Name of patient, if different
</form-item>
<note>Look at patient medical notes to
supplement the information provided by
patient.</note>
<qblock category="Age of the patient">

<assessment id="00201">
<answer code="blue" id="00231">
Greater than 65.
</answer>
<answer code="blue">
Less than 65 with co-morbidity.
</answer>
<answer code="blue">
Child less than 12.

<note>Zanamivir not recommended
in this age group.</note>

</answer>
<note>May or may not require

referral to a doctor depending
on overall condition.</note>

</assessment>
</qblock> ...

</protocol> ... </clinical> ... </protocols>
... </fordoctors> ... </site>

Figure 2. XML representation of a medical informa-
tion site [4], with details corresponding to the docu-
ment of Figure 1.

a few such trees. Tree nodes are represented as circles that
contain text representing the node’s value (XML content).
To simplify presentation, we do not distinguish between
XML attributes and XML content of various types; such
distinctions, along with others, such as typing, are easily
added.

Changes to XML documents are modeled as edit oper-
ations on the corresponding trees. We use a simple edit
model consisting of three operations: (1) insertion of a tree
node, (2) deletion of a node, and (3) update of a node’s la-
bel. The effect of these operations is suggested by the ar-
rows in Figure 4. The notation and semantics of the edit
operations are summarized below:

upd(n, v) Update the label of node n to v.

del(n) Delete node n, which must not have
any descendants.

ins(n, p, c, v) Insert a node n labeled v as the c’th
child of node p, which must exist
and have at least c − 1 children.

A sequence of edit operations is called an edit script;
its action on a tree is the result of applying its con-
stituent operations, in sequence. In Figure 4, proceeding
from the top-left tree T1 to the bottom-left tree T2 along
the arrows depicts the result of applying the edit script
upd(6, B), upd(8, F), del(8), upd(6, C).

2

...
<qblock category="Age of the patient">

<assessment>
! <answer code="red">

Greater than 65.
</answer>
<answer code="blue">
Less than 65 with co-morbidity.
</answer>

+ <answer code="blue">
+ Between 16 and 22.
+ <note>Especially college students.</note>
+ </answer>
...

Figure 3. A modified version (hypothetical) of the
document of Figure 2. The ellipses denote several
unchanged lines at the beginning and end of the doc-
ument that have been omitted for brevity. The “!”
and “+” indicators that highlight the differences are
for our presentation here only, and are not part of the
document.

The problem of explicating changes in XML is then the
problem of discovering such an edit script that transforms
the tree representing the old version of an XML document
into the tree representing the new version. For example,
we may be given the top-left and bottom-left trees, T1 and
T2, of Figure 4 as input and be asked to determine the edit
script. We note here that, given any two trees, there are
many edit scripts that transform one to the other, but some
are intuitively more desirable than others. For instance, we
may always use an edit script consisting of operations to
delete all nodes in the first tree followed by operations to
insert the nodes in the second tree. Such an edit script is
intuitively undesirable because it seems to include unneces-
sary operations. We formalize this notion by defining the
cost of an edit script to be the number of operations it con-
tains and seeking a minimum-cost edit script.

In our example of Figure 4 it is easy to verify that the
edit script upd(6, C), del(8) is a minimum-cost edit script
that transforms the top-left tree to the bottom-left one. The
upd(6, B) and upd(8, F) operations in the edit script dis-
cussed earlier are unnecessary because node 6 is updated
again later, while node 8 is deleted later. In larger examples,
such as those arising in the scenario suggested by Figures 2
and 3, determining a min-cost edit script is not this easy,
but has been the subject of prior work. For example, we
may use Selkow’s method [13], or a modification for large
datasets [1] based on the Myers’s technique of computing
along diagonals [11]. For our running example, such meth-
ods yield the following as an edit script that transforms the
tree of Figure 2 into that of Figure 3:

upd(00231,code,"red")

ins(01001,00201,1,<answer code="red">)

ins(01002,01001,1,"Between 16 and 22.")

ins(01003,01002,1,<note>)

ins(01004,01003,1,"Especially college students.")

C

A

F

B A

D E

B

C

1

2

3 5

4 9

6

7
8

C

A

F

B B

D E

B

C

1

2

3 5

4 9

6

7
8 C

A

F

B B

D F

B

C

1

2

3 5

4 9

6

7
8

C

A

F

B B

B

C

1

2

3 5

4 9

6

7

C

A

F

B C

D

B

C

1

2

3 5

4 9

6

7

upd(6,B) upd(8,F)

del(8)

upd(6,C)

D

T1

T2

Figure 4. Edit operations for describing changes in
hierarchical documents, such as the one in Figure 3.

In the above edit script, the node identifiers refer to id
attributes in our XML data. For example, the first insert op-
eration indicates that a new node with id 01001 (the first
line marked + in Figure 3) is inserted as the first child of
a preexisting node with id 00201 (the first assessment
node in Figure 2) . These identifiers are analogous to the
numbers next to the nodes in Figure 4. They are, in gen-
eral, implementation-specific and their values are not pre-
dictable. In particular, we cannot use such identifiers to
reliably find matching nodes in old and new versions of a
document.

3 Presentation of Differences

Although our method of Section 2 allows us to deter-
mine the precise changes made to a document since the
last time we viewed it, the form in which these changes are
presented is not convenient. For our running example, the
output of this method is the edit script outlined at the end
of the previous section. Although the changes in our run-
ning example are few and intuitively easy to describe, the
changes encoded by the edit script are difficult to decipher,
even in conjunction with Figures 2 and 3 (for determining
the meaning of the node identifiers). When we consider the
larger documents and more numerous changes expected in
our motivating scenarios, it is unreasonable to expect users
to decipher such edit scripts.

An appealing solution to the above problem consists of,
intuitively, embedding the edit script in the new version of
the document itself, as suggested by Figure 5 for our run-
ning example. The edit script of the previous section is em-
bedded using new XML attributes and elements that use a
namespace denoted d in the figure. Following usual conven-
tions, such a namespace identifier is bound to a longer, glob-

3

...
<qblock category="Age of the patient">

<assessment>
* <answer code="red"
* d:aup="code" d:aov="blue">

Greater than 65.
</answer>
<answer code="blue">
Less than 65 with co-morbidity.
</answer>

* <answer code="blue" d:ins>
* <d:itx/> Between 16 and 22.
* <note d:ins><d:itx/>Especially
* college students.</note>

</answer>
...

Figure 5. The document of Figure 3 with annota-
tions, in the XML namespace d, indicating differ-
ences from the version of Figure 2. The ellipses mark
omitted lines, as in Figure 3. The “*” indicators are
for our presentation here only, and are not part of the
document.

ally unique string in the XML preamble, which we omit.
The affected lines are marked with * for ease of presen-
tation. The d:aup="code" annotation on the first an-
swer element indicates that the code attribute of that ele-
ment was updated. The old value is preserved as the value
of the d:aov attribute that follows. Inserted elements are
annotated with a d:ins attribute, as is the third answer ele-
ment, and the note element it contains, in Figure 5. Finally,
inserted text is marked using a d:itx element.

The XML embedding of edit scripts suggested above is
suitable for displaying changes to documents in context and
frees users from having to decode edit scripts using node
identifiers. However, it does not scale very well as the
number of changes, and size and number of documents,
increases. For example, consider a document that is sev-
eral hundred pages in length and that has been modified in
dozens of places all over the document. Using the method
described so far, we can detect the precise changes and
present the user with a marked-up version of the document,
perhaps using different colors and fonts to mark changes
and improve readability. However, the user is still forced to
browse the entire document and visually scan for changes.
The situation is worse if there are several such documents.
In addition to the increased demands on the user’s atten-
tion and time, very large documents and large numbers of
changes also pose implementation problems for browsing
tools. In the next section, we present a method for cop-
ing with large document collections and large numbers of
changes.

4 Variable-Resolution Interfaces

We may state the problem outlined at the end of the pre-
vious section as follows, continuing with our model, from
Section 2, of XML documents as rooted, ordered, labeled
trees: We are given as input a typically large tree and must
produce as output a representative substructure that best
represents the input tree at a specified level of detail. In
order to complete the problem definition, we now define
each of the italicized phrases. We define a representative
substructure to be a tree that is a connected subgraph of the
input tree, with the same root. (It is possible to conceive of
other options, such as permitting disconnected subgraphs;
however, our preliminary experiments reveal that this defi-
nition results in structures that are intuitively easier to map
to the original data than are others.) We define the level of
detail to be the number of nodes in the representative sub-
structure. The definition of the phrase best represents is the
one most open to alternatives. Our operational definition,
presented below, is one we have found to yield usable re-
sults on a variety of datasets from diverse domains.

Figure 6 is a screen-shot of FuzzyTree, our implementa-
tion of a variable-resolution XML browser, displaying the
document suggested by Figure 5. For this test, we used the
complete document, not the small excerpt suggested by ear-
lier figures. By design, the FuzzyTree browser requires the
user to manipulate only one parameter: the level of detail,
specifically, the number of nodes (XML elements) in the
display. This parameter is set using the slider that appears
near the top of the browser window. The number of ele-
ments displayed, as well as the total number of elements in
the file, are reported by FuzzyTree below the slider. The
level of detail may also be entered directly using a text box
that appears below the slider. This feature is useful when
the range of the slider is very large and large moves are re-
quired.

The main part of the interface is an extension of Java’s
standard JTree interface [9], which in turn is similar to clas-
sic Macintosh Finder interface in details mode. In a JTree
interface, a tree structure, such as an XML DOM tree or a
filesystem hierarchy, is depicted using a horizontal layout
of the tree. An interior node of this tree may be in either
an open state, in which case its children are displayed, or
a closed state, in which case its children, and all descen-
dants, are hidden. A user may toggle between these states
for a node by clicking on its icon. FuzzyTree adds a third
state, which we call half-open, in which some, but not all,
of a node’s children are displayed. In Figure 6, the site,
protocol, qblock, and assessment nodes are in this state,
as indicated by the node icons with indicator lines at 45-
degree angles. The assessment node, for example, has only
four of its five children displayed. Clicking on a node in
the FuzzyTree interface has semantics different from those

4

Figure 6. A screen-shot of the FuzzyTree
variable-resolution browser operating on the docu-
ment of Figure 5. The selective display algorithm ex-
poses the modified data (aov, aup, ins, etc.) while
hiding other, less important, data.

in JTree. Instead of instantly opening or closing the corre-
sponding node, such an action may be thought of as gen-
tly suggesting greater or lesser interest in that node, and
thus affects the display indirectly. More precisely, clicks on
node icons control the third term in a node’s display score,
which is described later in this section. The only remaining
features of the interface are the buttons near the bottom for
loading a new file and viewing online help. (The Change
Parameters button at the bottom of the window sets param-
eters meant mainly for debugging.)

We note that the FuzzyTree display of Figure 6, although
limited to 15 nodes (an artificially low limit for purposes
of illustration), conveys nicely the overall structure and the
most important parts of the document of Figure 5. We
now describe the method used by FuzzyTree to select nodes
that achieve such a result in general. Each node is as-
signed a score that is the sum of three terms, which are de-
scribed below. The D highest-scoring nodes are displayed
by FuzzyTree, where D is the level-of-detail parameter set
using the slider.

The first term in the score is based on structural isomor-
phism and is a measure of how many other nodes in the tree
are structurally similar to it. In more detail, let t(n) denote
the subtree rooted at a node n and let |t(n)| denote the num-
ber of nodes in t(n). Let I(t) denote the set of subtrees of
the input tree that are isomorphic to a tree t. Then the first
term of n’s score is |t(n)| · |I(t(n))|. Isomorphism is de-
fined recursively as follows: (1) Two leaf nodes are isomor-

phic if they have identical content. (2) Two interior nodes
are isomorphic if they have the same number of children
and, further, if their corresponding children are isomorphic,
recursively.

The second term in a node’s score is based on the re-
sults of Section 2. Nodes that are annotated in order to
mark changes, as well as nodes representing the annotations
themselves, such as <d:itx/>, have a value K for this
term, while others have value 0. The parameter K deter-
mines the significance of this term in relation to the first.

The third term in a node’s score, unlike the other two, is
not fixed based on the input; rather, it’s value depends on
user actions during browsing. (Recall our description of the
FuzzyTree interface above.) Initially, this term is zero for all
nodes. When the user clicks on a node that is closed or half-
open, this term for that node is incremented. When a user
clicks on a fully open node, this term is decremented. This
interpretation of user clicks provides a gently changing dis-
play that we have found to be very useful in browsing large
documents. Nevertheless, a large increment or decrement
may be achieved in a single click using a shift-click combi-
nation, with the effect of immediately fully opening or fully
closing a node.

5 Related Work

Vasilyeva et al. emphasize the need for adaptive user
interfaces for healthcare information systems and present
a framework for such systems [14]. Curé describes the
XIMSA system for providing information to patients to aid
self-medication [6]. XIMSA uses information from a sim-
plified electronic health record and a knowledge base with
a suitable ontology. The above methods share many goals
with our work in this paper and it would be interesting to
explore how they may be combined. Ciampolini et al. ad-
dress the problem of verifying compliance of medical sys-
tems with medical protocols on-the-fly, as the system oper-
ates, by analyzing the stream of events [5]. Their method
is based on social integrity constraints expressed using a
logic-based formalism. Our FuzzyTree system may be used
to present the results of such compliance verification to an
administrator, with node scores representing, in part, the se-
riousness of violations. Lau et al. use structural features
of documents to analyze relationships among regulations
from diverse sources, such as regulations for disabled per-
sons’ access from federal, state, and local governments [10].
Their study underscores the complexity of such documents
and the need for tools that help users discover relevant in-
formation and monitor changes. Combining some of their
techniques, such as the structure-based similarity detection,
with our methods for differencing and browsing should be
a promising direction for further work.

Several forms of the general problem of differencing data

5

have been studied. GNU diff [7] is a popular differencing
program that is used in many applications, such as version
control and file merging. This program treats the input files
as sequences of lines (by default) and uses Myers’s algo-
rithm [11]. Although such sequence-comparison methods
may be applied to hierarchical XML data as well, the use of
tree-differencing methods yields results that are more mean-
ingful in the context of hierarchical data. An early method
is Selkow’s dynamic programming solution [13] using edit
operations very similar to those used in this paper. Recent
work has focused on improving efficiency on large datasets
and streams [1, 2]. Further, enhanced edit models, such
as those including operations that move and copy subtrees
[3] have also been studied. In general, such work comple-
ments the general method presented in this paper by provid-
ing more nuanced descriptions of changes in documents.
However, such improvements often come with substantial
increases in running time.

6 Conclusion
We motivated the need for tools that enable healthcare

professionals, as well as patients, to monitor a large, di-
verse, and evolving collection of documents on the Web.
Of the many challenges presented by the Web environment
in this context, we focused on two in this paper: How to ex-
plicate changes in Web documents and how best to present
these changes to users.

Our solution to the first problem is based on comparing
each document viewed by a user with the version of that
document when the user last viewed it. These documents
are stored and managed on the user’s computer, provid-
ing each user with a customized “what’s new” feature that
does not depend on the document-provider. Our document
comparison method is based on formalizing the problem as
that of computing a minimum-cost edit script between two
rooted, ordered, labeled trees representing the documents.

Our solution to the second problem is based on (1) em-
bedding changes (edit scripts) in documents using special
XML markup and (2) an adaptive method for selective dis-
play of nodes in tree-structured data, as implemented in
FuzzyTree. A notable feature of FuzzyTree is that it pro-
vides a meaningful summary of its input at a user-specified
level of detail. In order to determine the nodes best suited
for this purpose, it uses a combination of subtree isomor-
phism, changes, and runtime history of browsing. The level
of detail can be smoothly modified using a slider, with in-
teractive response times.

In continuing work, we are extending FuzzyTree to
improve its efficiency on extremely large disk-resident
datasets, such as outputs of simulation experiments. We are
also extending it to streaming data, in which case the dis-
play represents highlights of data seen so far. In addition,
we are investigating alternate, domain-specific methods of

explicating differences between document versions in order
to produce better descriptions of changes.

Acknowledgment Major parts of the FuzzyTree system
were implemented by Donna Malayeri, with subsequent
modifications by Nicholas Kleinschmidt.

References

[1] S. S. Chawathe. Comparing hierarchical data in external
memory. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 90–101, Edinburgh,
Scotland, Sept. 1999.

[2] S. S. Chawathe. Differencing data streams. In Proceed-
ings of the 9th International Database Engineering and Ap-
plications Symposium (IDEAS), pages 273–284, Montreal,
Canada, July 2005.

[3] S. S. Chawathe and H. Garcia-Molina. Meaningful change
detection in structured data. In Proceedings of the ACM
SIGMOD International Conference on Management of Data
(SIGMOD), pages 26–37, Tuscon, Arizona, May 1997.

[4] B. Cheek. The gp-training.net project.
http://gp-training.net/, Mar. 2005.

[5] A. Ciampolini, P. Mello, M. Montali, and S. Storari. Using
social integrity constraints for on-the-fly compliance veri-
fication of medical protocols. In Proceedings of the IEEE
Symposium on Computer-Based Medical Systems (CBMS),
pages 503–505, Dublin, Ireland, June 2005.

[6] O. Curé. Ontology interaction with a patient electronic
health record. In Proceedings of the IEEE Symposium on
Computer-Based Medical Systems (CBMS), Dublin, Ireland,
June 2005. 185–190.

[7] M. Haertel, D. Hayes, R. Stallman, L. Tower, P. Eggert.,
and W. Davison. The GNU diff program. Texinfo system
documentation, 1998. Available through anonymous FTP at
prep.ai.mit.edu.

[8] A. L. Hors, P. L. Hgaret, L. Wood, G. Nicol, J. Ro-
bie, M. Champion, and S. Byrne. Document Ob-
ject Model Level 2 Core Specification. W3C Recom-
mendation, W3C, http://www.w3.org/TR/2000/
REC-DOM-Level-2-Core-20001113, Nov. 2000.

[9] Java 2 platform, standard edition, v 1.4.2 API specification.
Sun Microsystems. http://java.sun.com/, 2003.

[10] G. T. Lau, K. H. Law, and G. Wiederhold. Analyzing gov-
ernment regulations using structural and domain informa-
tion. IEEE Computer, 38(12):70–76, Dec. 2005.

[11] E. Myers. An O(ND) difference algorithm and its variations.
Algorithmica, 1(2):251–266, 1986.

[12] Northumberland Health Authority. Telephone triage for
flu-like illness. http://www.gp-training.net/
protocol/infections/flutriage.htm,
Feb. 2006.

[13] S. Selkow. The tree-to-tree editing problem. Information
Processing Letters, 6(6):184–186, Dec. 1977.

[14] E. Vasilyeva, M. Pechenizkiy, and S. Puuronen. Towards the
frameworkof adaptive user interfaces for eHealth. In Pro-
ceedings of the IEEE Symposium on Computer-Based Med-
ical Systems (CBMS), pages 139–144, Dublin, Ireland, June
2005.

6

