VQBD: Exploring Semistructured Data

Sudarshan S. Chawathe
Computer Science
Department
University of Maryland

Thomas Baby
Computer Science
Department
University of Maryland

Jihwang Yeo
Computer Science
Department
University of Maryland

College Park, Maryland 20742 College Park, Maryland 20742 College Park, Maryland 20742

chaw@cs.umd.edu

The VQBD (“vee-cubed”) project addresses the following
problem: What is the best way to explore an XML document
of unknown structure and content? We use data exploration
to denote the interactive task of gathering the information
needed to use data for purposes such as generating a re-
port, writing queries, building user interfaces, and writing
applications. We focus on XML documents that are too
large to browse in their entirety, even with the assistance
of pretty-printing software (e.g., multi-megabyte or larger
XML documents). In a relational or object database, the
schema (e.g., table definitions, class definitions, integrity
constraints, and stored procedures) provides some of the
information necessary for writing queries and applications.
However, the schema is rarely sufficient for these tasks. Typ-
ically, one must probe and browse the database to discover
data coverage, typical and exceptional values, and other in-
formation required to gain a better understanding of the
database. In an XML environment, the need for such data
exploration is much greater because it is quite likely that the
XML data of interest is not accompanied by a schema. In-
deed, much XML data is semistructured, meaning its struc-
ture is irregular, incomplete, and frequently changing. The
rapid adoption of XML as a data exchange standard makes
this semistructured data exploration problem increasingly
important. The VQBD system allows the structured ex-
ploration of arbitrary XML data. We describe some key
features very briefly below; a detailed description appears
at http://www.cs.und.edu/projects/vgbd/.

e The subtasks of data exploration, viz., visualization,
querying, and browsing, are complementary. For example,
when a visualization module (e.g., one that plots cities on
a map) has been applied to some query results (e.g., cities
with no Starbucks stores), it is possible to refine the query
through the visualization interface (e.g., by clicking points
on the map). VQBD has a modular design with plug-in APIs
that allow easy incorporation of additional visualization and
querying modules.

o The level of detail presented to the user scales smoothly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and thefull citation on thefirst page. To copy otherwise, to
republish, to post on serversor to redistribute to lists, requires prior specific
permission and/or afee.

ACM SIGMOD 2001 May 21-24, Santa Barbara, California, USA
Copyright 2001 ACM 1-58113-332-4/01/05 ...$5.00.

thomas@cs.umd.edu

jyeo@cs.umd.edu

over a wide range. More precisely, the system is able to con-
vey a useful summary of the data in a user-specified number
of (graphical) objects. For example, if the display (or user)
can only accommodate 20 objects, the system displays 20
objects that effectively summarize the database of, say, 50
thousand objects. These summary objects are only rarely
simple reflections of database objects. At a low resolution,
VQBD uses summary objects from graphical schemas simi-
lar to Data Guides and Graph Schemas.

e There is no required structure. The system provides ac-
ceptable results for any well-formed XML document. While
it is reasonable to expect effectiveness and performance to
deteriorate as structure weakens, such deterioration is grace-
ful, not catastrophic. As in semistructured databases, struc-
ture is descriptive, not prescriptive.

e Any available explicit structure is effectively used. For
example, if the XML document is accompanied by DTD or
RDF definitions to which it conforms, these definitions are
used to provide an appropriate structured browsing inter-
face.

o Implicit structure is detected and used. In addition to
the explicit structure described by DTD, RDF, and similar
methods, a given instance of XML data is likely to contain
additional (implicit) structure and patterns. For example,
although the DTD governing an XML document may per-
mit address elements that are either strings (#PCDATA)
or structured (linel, line2, city, state, zip), all addresses
in the current instance may be in the latter format. This
fact is used to simplify browsing and printing by always
presenting addresses in the structured form. Further, the
query-by-example interface is modified to signal that accu-
rate searches of the form address.zip = 12345 are possible
since there is no danger of the ZIP code matching, say, a
street number (as would be the case if searches were per-
formed on string-valued address elements).

e [t is easy to impose and use structure at run time. For

example, an XML document may contain string-valued name
elements. A user may notice (or know, from out-of-band
sources) that all the name strings have a specific format
(e.g., last name, first name, initials). The system permits
such run-time structure to be specified at any time during
the exploration process and, once specified, this structure is
used in a manner analogous to implicit and explicit struc-
ture.
Acknowledgments: Bongwon Suh worked on a prelimi-
nary version of VQBD. This work was supported by National
Science Foundation grants in the CAREER (I11S-9984296)
and ITR (IIS-0081860) programs.

