
VQBD: Visualizing, Querying, and Browsing Semistructured Data�

Sudarshan S. Chawathe Thomas Baby Jihwang Yeo

Computer Science Department, University of Maryland, College Park, Maryland 20742

fchaw,thomas,jyeog@cs.umd.edu

Introduction

The VQBD project addresses the following problem: What is the best way to explore an XML

document of unknown structure and content? We focus on XML documents that are too large to

browse in their entirety, even with the assistance of pretty-printing software (e.g., multi-megabyte

or larger XML documents). In this context, we use the term data exploration to refer to the

process by which a user gathers the information needed to use the data for a speci�c purpose (e.g.,

generating a report, writing queries, building user interfaces, writing applications). In a relational

or object database, the schema (e.g., table de�nitions, class de�nitions, integrity constraints, and

stored procedures) provides some of the information necessary for writing queries and applications.

However, the schema is rarely su�cient for these tasks. Typically, one must probe and browse

the database to discover data coverage, typical and exceptional values, and other information

required to gain a better understanding of the database. In an XML environment, the need for

such data exploration is much greater because it is quite likely that the XML data of interest is

not accompanied by a schema. Indeed, much XML data is semistructured, meaning its structure

is irregular, incomplete, and frequently changing. The rapid adoption of XML as a data exchange

standard makes this semistructured data exploration problem increasingly important.

The VQBD system allows the structured exploration of arbitrary XML data. Although it

focuses on XML data, an ancillary bene�t is that VQBD is also a convenient tool for exploring

relational or object databases (using trivial a mapping of relations and classes to XML elements).

It's key features are summarized below:

� The subtasks of data exploration, viz., visualization, querying, and browsing, are comple-

mentary. For example, when a visualization module (e.g., one that plots cities on a map)

has been applied to some query results (e.g., cities with no Starbucks stores), it is possible

to re�ne the query through the visualization interface (e.g., by clicking points on the map).

VQBD has a modular design with plug-in APIs that allow easy incorporation of additional

visualization and querying modules.

� The level of detail presented to the user scales smoothly over a wide range. More precisely,

the system is able to convey a useful summary of the data in a user-speci�ed number of

(graphical) objects. For example, if the display (or user) can only accommodate 20 objects,

the system displays 20 objects that e�ectively summarize the database of, say, 50 thousand

objects. These summary objects are only rarely simple reections of database objects. At a

low resolution, VQBD uses summary objects from graphical schemas similar to Data Guides

in Lore [MAG+97].

�

We pronounce VQBD as \vee cubed." The VQBD team would like to thank Bongwon Suh for work on an early

prototype. This work was supported by NSF grants in the CAREER (IIS-9984296) and ITR (IIS-0081860) programs.

1

� There is no required structure. The system provides acceptable results for any well-formed

XML document. While it is reasonable to expect usability and performance to deteriorate

as structure weakens, such deterioration is graceful, not catastrophic. As in semistructured

databases, structure is descriptive, not prescriptive.

� Any available explicit structure is e�ectively used. For example, if the XML document is

accompanied by DTD or RDF de�nitions to which it conforms, these de�nitions are used to

provide an appropriate structured browsing interface.

� Implicit structure is detected and used. In addition to the explicit structure described by

DTD, RDF, and similar methods, a given instance of XML data is likely to contain addi-

tional (implicit) structure and patterns. For example, although the DTD governing an XML

document may permit address elements that are either strings (#PCDATA) or structured

(line1, line2, city, state, zip), all addresses in the current instance may be in the latter for-

mat. This fact is used to simplify browsing and printing by always presenting addresses in the

structured form. Further, the query-by-example interface is modi�ed to signal that accurate

searches of the form address.zip = 12345 are possible since there is no danger of the ZIP

code matching, say, a street number (as would be the case if searches were performed on

string-valued address elements).

� It is easy to impose and use structure at run time. For example, an XML document may

contain string-valued name elements. A user may notice (or know, from out-of-band sources)

that all the name strings have a speci�c format (e.g., last name, �rst name, initials). The

system permits such run-time structure to be speci�ed at any time during the exploration

process and, once speci�ed, this structure is used in a manner analogous to implicit and

explicit structure.

In addition to the above, the VQBD system embodies the Perl tenet of making simple tasks simple

without making the more di�cult tasks impossible. The system is designed for exploration, meaning

the value it provides to a user scales well (both up and down) with user e�ort.

Many of VQBD's features have been separately considered by earlier systems. For example,

Lore [MAG+97] is built on the no-required-structure tenet, Jazz [BGM00] permits smooth zooming

into graphical details, while NoDoSE [Ade98] facilitates run-time structure de�nition.) However,

we believe VQBD is the �rst system to integrate and apply these ideas for the purpose of data

exploration in XML. For example, VQBD combines the graphical zooming and panning provided

by Jazz with a unique method for logical zooming (multiresolution data summarizing) and panning.

Although the project is at an early stage, we have a fully functioning prototype that we believe is

already the best way to explore XML data about which little or nothing is known. We now present

the VQBD system in more detail, following it with a description of a sample demonstration session.

The VQBD System

Although VQBD is extensible and incorporates many advanced features for the power user, it is

designed to be accessible to a casual user. To this end, the basic modes of interacting with the

system are very simple. At all times, the VQBD display consists of a single window with a graphical

representation of the XML data. Although, as we shall see below, this representation may be the

result of some complex operations, the user interface is always the same: There are nodes (boxes)

representing data elements (often summarized) and arcs (lines) representing relationships among

2

them. There are no tool-bars, scroll-bars, sliders, or other widgets. We believe this simplicity

is key to usability by a casual user. The basic modes of controlling VQBD are also simple and

unchanging. The �rst three are meant for the novice user, while the next two are for users who

have gained more experience with the system.

Panning The displayed objects can be moved in any direction relative to the canvas by a dragging

motion with the left button of the mouse.

Zooming The display may be zoomed in (or out) by a right- (respectively, left-) dragging motion

with the right mouse button. VQBD uses the position of the pointer to determine the type

of zooming. If the pointer is outside all graphical object then the result is simple graphical

zooming (e.g., larger objects, bigger fonts). If the pointer is inside a graphical object then

the data resolution of that object, and any others of a similar type, is increased. For exam-

ple, consider the screenshot in Figure . The lower part represents speech and line objects

and includes sample values from the input document. Zooming in with the pointer inside

the larger box (representing the collection of line objects) results in the display of a larger

number of sample speech objects. Zooming in with the pointer inside one of the smaller boxes

representing an individual line object displays that object in more detail (more text). In the

case of other visualization modules (e.g., histograms), zooming results in actions appropriate

to that module (e.g., histogram re�nement).

Link Navigation Clicking on a link causes the display to recenter itself around the target of the

link at an appropriate zoom level. Following the design method of the Jazz toolkit, such link

navigation is not instantaneous; instead it occurs at a speed that allows the viewer to discern

the relative positions of the referencing and referenced objects. In addition to selecting an

appropriate graphical zoom level, VQBD automatically picks a suitable logical zoom level. For

example, a collection of numbers that is too large to display in its entirety is often presented

as a histogram.

View Change While VQBD automatically selects an appropriate method for visualizing data at

the available resolution, the user may override this selection a pop-up menu bound to the

middle mouse button. For example, a user interested in the highest values in a collection of

numbers may force VQBD to change the view from histogram to sorted list.

Querying The XML document may be queried using a query-by-example interface. This interface

permits users to specify selection conditions as annotations on displayed objects. In addition,

the user may mark objects as distinguished objects for use in queries. Intuitively, these

objects can be used as the starting points for query-based exploration. VQBD has built-in

query modules for regular expressions and XPath. Additional query modules can be easily

added using the plug-in interface.

VQBD is implemented using Java (JDK 1.2.2). For its display routines, VQBD uses the Java

Swing graphics library and the Jazz zoomable user interface library, version 1.0 [BGM00]. It uses

IBM's XML4J parser, version 3.0.1, to extract and manipulate a DOM representation of XML.

VQBD has a modular design and runs on any platform that supports the Java run-time environ-

ment. We have tested it on Solaris, Linux, and NT, with di�erent Java runtime environments, and

di�erent parsers (e.g., Jaxp, version 1.1).

3

(a) Zoomed out|structural summary (b) Zoomed in|instances

Figure 1: Two screenshots of VQBD in action

Sample Demonstration Session

We outline here some of the key points in our demonstration of VQBD. For concreteness, we describe

a session based using Jon Bosak's XML rendition of Shakespeare's A Midsummer Night's Dream,

available at http://www.ibiblio.org/xml/examples/shakespeare/. The system parses the �le

and graphically and presents a summary of the �le's implicit structure with objects representing

the play, acts, scenes, and lines. This structural summary is the �rst view presented by VQBD. A

screenshot appears as Figure . Note that the screenshots in Figure 1 are based on a rather small

VQBD display (approximately 350x350 pixels). While we picked this size primarily to �t the space

constraints of this report, it also illustrates how VQBD's zooming interface allows it to function

e�ectively at this size.

We then zoom in on the speech object using a dragging motion with the right mouse button.

Initially, the zooming results in standard graphical results (larger objects, higher resolution text,

etc.). However, as soon as the object becomes large enough to display graphical elements within it,

the graphical zooming is accompanied by a logical zooming: a few sample elements are displayed.

VQBD displays randomly sampled elements, with the number of displayed elements increasing as

the available space increases as a result of the zooming in operation. Figure is a screenshot at

this stage of exploration. In addition to details of the speech and line elements, details of scene

elements (appearing above the speech elements in this �gure as in Figure) are partial visible,

providing a useful context. These �gures do not convey the colors used by VQBD for indicating

many relationships, including grouping elements based on parents (enclosing elements). When a

sample element is displayed in this manner, VQBD reads its attributes and sub-elements to pick a

short string that distinguishes the element from others with the same tag. This string is displayed

within the object representing the element on screen. In our example, VQBD uses the scene titles

4

to identify scene elements on screen. At this stage, the user also has the option of single-clicking

on any of the displayed objects, causing VQBD to display all details of the selected object. For

example, clicking on the scene object labeled A hall in the castle results in displaying the scene in

greater detail (as much as will �t in the VQBD window). Note that this clicking action is simply an

accelerated form of zooming; the same result could be achieved by zooming in to the scene object.

Subelements of the scene element are displayed as active links that can be activated in order to

smoothly transport the display to the referenced object. This link-based navigation can be freely

interleaved with zooming. Zooming out, we observe VQBD retracing its steps, displaying data in

progressively less detail until we are back at the original structural summary view.

We demonstrate the query features by selecting the scene object and searching for sub-objects

matching the string Lysander. VQBD executes the query and highlights objects in the query result.

In our sample data, the query string matches elements of di�erent types (two persona elements, one

stagedir element, and several speaker and line elements). Since the current resolution is insu�cient

to display individual objects, only the structural summary objects corresponding to the individual

objects are highlighted. To view the query results in detail, we zoom in as before. Unlike the earlier

zooming action, which displayed a random sample of all elements corresponding to the summary

object, VQBD now displays a sample chosen only from the elements in the query result. When

all elements in the query result have been displayed, further zooming results in a random selection

from the remaining elements (as before). (Colors are used to distinguish the elements in the query

result from the rest of the elements.) This exploration of query results may be interleaved with

zooming, panning, query re�nement, and other VQBD operations.

The above description is a simple run of VQBD that displays only some of its features. As

described above, our fully functional implementation supports many other features that will also

be demonstrated. For example, we will demonstrate visualization modules such as histograms (for

numeric data) and pie charts (to display the relative number of subelements by tag). We will also

demonstrate VQBD on other XML documents culled from diverse sources (e.g., XML-ized Web

pages, an XML document describing an ontology, and search engine results). In addition, since

our system works with any XML document, we will invite participants to try VQBD on their own

documents.

Our VQBD demonstration will introduce the audience to the interesting and important problem

of semistructured data exploration and should help spur further work in this area. The VQBD

system is a unique synthesis of diverse techniques from the data management and information

visualization �elds. Although it is in an early stage, we believe VQBD is already the best tool for

exploring XML data of unknown structure and content.

References

[Ade98] B. Adelberg. NoDoSE|a tool for semi-automatically extracting semi-structured data

from text. In Proceedings of the ACM SIGMOD International Conference on Manage-

ment of Data, Seattle, Washington, June 1998.

[BGM00] B.B. Bederson, L. Good, and J. Meyer. Jazz: An extensible zoomable user interface

graphics toolkit in Java. In Proceedings of User Interface and Software Technology,

2000. To appear.

[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database

management system for semistructured data. SIGMOD Record, 26(3):54{66, September

1997.

5

