
Comparing Hierarchical Data in External Memory

Sudarshan S. Chawathe
Department of Computer Science

University of Maryland
College Park, MD 20904

chaw@cs.umd.edu

Abstract

We present an external-memory algorithm for
computing a minimum-cost edit script between
two rooted, ordered, labeled trees. The I/O, RAM,
and CPU costs of our algorithm are, respectively,
4mn+7m+5n, 6S, andO(MN+(M+N)S1:5),
where M and N are the input tree sizes, S is the
block size, m = M=S, and n = N=S. This al-
gorithm can make effective use of surplus RAM
capacity to quadratically reduce I/O cost. We ex-
tend to trees the commonly used mapping from
sequence comparison problems to shortest-path
problems in edit graphs.

1 Introduction
We study the problem of comparing snapshots of data to
detect similarities and differences between them. Such
differencing of data has applications in version con-
trol, incremental view maintenance, data warehousing,
standing queries (subscriptions), and change management
[Tic85, LGM96, CAW98]. The RCS version control sys-
tem [Tic85] uses the diff program [MM85] to compute and
store only the differences between the new and old versions
of data that is checked in. As another version control ap-
plication, consider the process used to merge two divergent
versions of a program or document (e.g., the ediff/emerge
function in Emacs). The first step consists of comparing
the files containing the two versions to determine where
and how they differ. These differences are then presented
using a graphical interface that allows a user to determine
which variant to keep in the merged file.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

Differencing algorithms also play a key role in change
management systems such as C3 [CAW98]. Since many
databases, especially those on the Web, do not offer change
notification facilities, changes must be detected by com-
paring old and new results of a query. Once changes have
been detected in this manner, C3 uses them to implement
standing queries based on the current state as well as the
history of the databases being monitored.

We can also use differencing algorithms to reduce the
amount of data transmitted over a network in mirroring
applications. Popular Web and FTP servers often have
dozens of mirror sites around the world. Changes made to
the master server need to be propagated to the mirror sites.
Ideally, the persons or programs making changes would
keep a record of exactly what data was updated. However,
in practice, due to the autonomous and loosely organized
nature of such sites, there is no reliable record of changes.
Further, even if such a record is available, it may be based
on a version that is different from the version currently at
a certain mirror site. Due to such difficulties, efficient mir-
roring requires differencing algorithms that compute and
propagate only the difference between the version at the
master server and that at a mirror site. Similar ideas en-
able differencing algorithms to improve efficiency in a data
warehousing environment [LGM96].

Differencing algorithms are also used to find, mark-up,
and browse changes between two or more versions of a
document [CRGMW96, CGM97]. Suppose we receive an
updated version of an online manual. Again, in the ideal
case the new version would highlight the way it differs from
the old one. However, for reasons similar to those stated
above, in practice we often need to detect the differences
ourselves by comparing the two versions. For example,
[CAW98] describes experiences in detecting and brows-
ing differences between different versions of a restaurant
review database on the Web, while [Yan91] describes the
implementation of an application that highlightsdifferences
between program versions.

There is a substantial body of prior work on differencing
algorithms. The main distinguishing features of the work
in this paper are the following. (See Section 6 for a detailed
discussion.)

� We study algorithms for computing differences be-
tween snapshots of hierarchically structured data,
modeled using rooted, ordered, labeled trees. Our
model allows us to accurately capture the hierarchical
structure inherent in data such as source code, ob-
ject class hierarchies, structured documents, HTML,
XML, and SGML. For example, an online manual
typically has a well-defined hierarchical structure con-
sisting of chapters, sections, subsections, paragraphs,
and sentences. Algorithms that take this structure into
account produce results that are more meaningful than
those that treat their inputs as flat strings.

While the problem of differencing strings and se-
quences has been thoroughly studied and admits sev-
eral efficient solutions, the problem of differencing
trees remains challenging. Several formulations of
this problem are NP-hard [ZWS95]. In this paper, we
study a simple variation that admits efficient solutions.� We do not assume that the snapshots being differ-
enced are small enough to fit entirely in main mem-
ory (RAM); instead, they reside in external mem-
ory (disk). For example, online manuals for complex
machinery, aircrafts, and submarines are tens or hun-
dreds of gigabytes in size, making it impracticable to
use main-memory differencing algorithms to compare
their versions.

When data resides in external memory, the number
of input-output operations (I/Os), and not the number
of CPU cycles, is the primary determinant of running
time. Therefore, external-memory algorithms use
techniques that try to minimize the number of I/Os. A
secondary but important consideration is the amount
of buffer space required in RAM. See [Vit98] for an
overview of external memory algorithms. In this pa-
per, we analyze algorithms based on their I/O, RAM,
and CPU costs.

As an illustrationof the importance of using an algorithm
that is cognizant of the hierarchical structure of data, con-
sider the following example from [Yan91]. Figure 1 depicts
depicts fragments of two program versions that are being
compared. A sequence comparison program such as the one
in[MM85] compares the inputs line-by-line and may result
in matching program text as suggested by the solid lines
in the figure. Given the nested structure of the program
fragment, it is clearly more meaningful to match the inputs
as suggested by the dashed lines in the figure. However,
the definition of optimality used by most sequence compar-
ison algorithms (based on a longest common subsequence)
considers the solution depicted using solid lines more de-
sirable [Mye86]. By modeling the hierarchical structure of
programs, tree differencing algorithms are able to produce
more meaningful results.

We now present a brief, informal definition of the dif-
ferencing problem we study in this paper. (See Section 2
for details.) A rooted, ordered, labeled tree is a tree in
which each node has a label and in which the order amongst

while(p) {
 x = y + z;

}

 a = b + c;
}

while(p) {
 x = y + z;
}
while(p) {
 a = b + c;

Figure 1: Importance of hierarchical structure

siblings is significant. (The label of a node intuitively rep-
resents the data content at that node; it is not a unique key
or object identifier.) Trees can be transformed using three
edit operations: (1) We can insert a new leaf node at a
specified location in the tree. (2) We can delete an existing
leaf node. (3) We can update the label of a node. Note that
the restriction that (1) and (2) operate only on leaf nodes
means that to delete an interior node, we must first delete
all its descendants; similarly, we must insert a node before
inserting any of its descendants.

An edit script is a sequence of edit operations that are
applied in the order listed. We associate a cost with each
edit operation and define the cost of an edit script to be the
sum of the costs of its component operations.
Problem Statement (informal): Given two rooted, or-
dered, labeled trees A and B, find a minimum-cost edit
script that transforms A to B.

Given trees A and B, we can transform one to the other
using any of an infinite number of edit scripts. (For exam-
ple, given any edit script that transforms A to B, we can
append to it operations that insert and immediately delete
a node, thus generating an infinite number of edit scripts.)
This fact motivates the minimum-cost requirement in the
problem definition. Another motivation for the minimum-
cost requirement is the following: Given two trees that dif-
fer only in one node label, the intuitively desirable edit script
is one that contains a single update operation. We need to
weed out edit scripts that unnecessarily insert, delete, and
update nodes. An edit script of minimum cost cannot con-
tain such redundant or wasteful edit operations (since we
can obtain another edit script with lower cost by getting rid
of the redundancies and inefficiencies).

The two main contributions of this paper may be sum-
marized as follows:� We present an efficient external-memory algorithm for

computing the difference (minimum-cost edit script)
between two snapshots of hierarchical data (trees).
The I/O, RAM, and CPU costs of our algorithm are,
respectively, 4mn + 7m + 5n, 6S, and O(MNpS),
where M and N are the input tree sizes, S is the block
size, m = M=S, and n = N=S. To our knowledge,
this algorithm is the first external-memory differenc-
ing algorithm (for sequences or trees). The O(mn)
I/O complexity of our algorithm is optimal over a wide
class of computation models due to the O(mn) lower
bound for the sequence comparison problem (which

is a simple special case of our tree comparison prob-
lem) [AHU76, WC76].� We reduce our tree comparison problem to a short-
est path problem in a well-studied graph called the
edit graph. This reduction opens the door for gen-
eralizing to trees several efficient sequence compar-
ison algorithms that are based on edit graphs (e.g.,
[MM85, Mye86, WMG90]).

Outline of the paper: In Section 2, we describe our model
of trees, edit operations, and edit scripts, followed by the
formal problem statement. Section 3 briefly describes edit
graphs as they are used for sequence comparison and then
presents our modifications that allow them to be used for
tree comparison. In Section 4, we present a simple main-
memory algorithm for our tree comparison problem. This
algorithm illustrates the use of our edit graphs and serves as
a basis for our external-memory algorithm. Section 5 first
explores a naive extension of our main-memory algorithm
for external memory and then presents our main algorithm,
xmdiff. Related work is discussed in Section 6, followed by
the conclusion in Section 7.

2 Model and Problem Statement

Hierarchical data is naturally modeled by trees. In this
paper, we focus on rooted, ordered, labeled trees. Each
node in such a tree has a label associated with it. Informally,
we can think of the label of a node as its data value. The
children of a node are totally ordered; thus, if a node hask children, we can uniquely identify the ith child, for i =
1 : : :k. There is a distinguished node called the root of the
tree. (This feature distinguishes these trees from acyclic
graphs, which are also called free trees.)

Formally, a rooted, ordered, labeled tree consists of a
finite, nonempty set of nodes T and a labeling function l
such that: (1) The set T contains a distinguished node r,
called the root of the tree; (2) The set V �frg is partitioned
into kdisjoint setsT1; : : : ; Tk, where eachTi is a tree (called
the ith subtree of T or r); and (3) the label of a noden 2 T
is l(n) [Sel77]. The root ci of Ti is called the ith child of
the node r, and r is called the parent of ci. Nodes in T that
do not have any children are called leaf nodes; the rest of
the nodes are called interior nodes.

In the rest of this paper, we use the term trees to mean
rooted, ordered, labeled trees. Figure 2 depicts several such
trees. The letter next to a node suggests its label. The num-
ber next to a node is a node identifier. Note that when
we are given two trees to compare, there is, in general, no
correspondence between the node identifiers. (In fact, com-
puting such a correspondence is equivalent to computing a
minimum-cost edit script for our formulation of the prob-
lem.) For example, when we are comparing two versions
of a manual, the node identifiers in Figure 2 may repre-
sent offsets within the SGML source files for the manuals.
Since the source files for the manuals are separate, there is
no correspondence between these offsets.

aa cb

a

a

a7

2

1

3

4 5 6 9

11

10
b

c
d

12

b

aa cb

a

a

a
d

7

2

1

3

4 5 6 8
9

11

10
b

c
d

12

b

del(7)

del(8)

ins(8,1,7,d)

del(9)

ins(9,1,7,a)

a cb

a

a

a7

2

1

3

4 5 6

11

10
b

a
d

12

b

a cb

a

a

a7

2

1

3

4 5 6

11

10
b

c
d

12

b

upd(7,a) upd(7,c)

ins(7,2,2,c)

a cb

a

a

a

2

1

3

4 5 6

11

10
b d

12

b

Figure 2: Edit operations on trees

We model changes to trees using the following tree edit
operations:

Insertion Let p be a node in a tree T , and let T1; : : : ; Tk
be the subtrees of p. Let n be a node not in T , let l
be an arbitrary label, and let i 2 [1 : : :k + 1]. The
insertion operation ins(n; i; p; l) inserts the node n as
the ith child of p. In the transformed tree, n is a leaf
node with label l.

Deletion Let n be a leaf node in T . The deletion operation
del(n) results in removing the node n from T . That
is, if n is the ith child of a node p 2 T with childrenc1; : : : ; ck, then in the transformed tree, p has childrenc1; : : : ; ci�1; ci+1; : : : ; ck.

Update If n is a node in T and v is a label then the label
update operation upd(n; v) results in a tree T 0 that is
identical to T except that in T 0, l(n) = v.

We assume, without loss of generality, that the root of a tree
cannot be deleted or inserted.

An edit script is a sequence of edit operations. The result
of applying an edit script to a tree T is the tree obtained by
applying the component edit operations to T , in the order
they appear in the script. Consider Figure 2. The downward
arrows illustrate the application of the following edit script:
del(8), del(9), upd(7; a), del(7). Similarly, the upward
arrows illustrate the application of another edit script.

As discussed in Section 1, we formalize the desirability
of edit scripts that perform as few and as small changes
as possible by defining a cost model for edit scripts. Letci(x) and cd(x) be arbitrary functions return a positive
number representing the costs of, respectively, inserting
and deleting a node x. Similarly, the cost of updating a
label l1 to l2 is given by cu(l1; l2). The cost of an edit script
is the sum of the costs of its component operations. We can
now formally define the problem of differencing trees as
follows:
Problem Statement: Given two rooted, labeled, ordered
trees A and B, find a minimum-cost edit script that trans-
forms A to a tree that is isomorphic to B.

3 Edit Graphs
In this section, we introduce an auxiliary structure, called
an edit graph, that we later use in our differencing algo-
rithms. Edit graphs have been used by several efficient
algorithms for comparing sequences (equivalently, strings)
[Mye86, MM85, WMG90]. In effect, the problem of find-
ing a minimum-cost edit script between two sequences is
reduced to the problem of finding a shortest path from one
end of the edit graph to the other. Since an edit graph has
a very simple and regular structure, this shortest path prob-
lem can typically be solved very efficiently. Below, we first
explain how edit graphs are used for sequence comparison
and then introduce our modifications that permit them to be
used for comparing trees.

The edit graph of two sequences A = (A[1] A[2] : : :A[m]) andB =(B[1]B[2] : : :B[n]) is the (m+1)�(n+1)

grid suggested by Figure 3. (Each point where two lines
touch or cross is a node in the edit graph.) A point (x; y)
intuitively corresponds to the pair (A[x]; B[y]), for x 2[1;m] and y 2 [1; n]. In our edit graphs, the origin (0; 0)
is the node in the top left corner; the x-axis extends to the
right of (0; 0) and the y-axis extends down from (0; 0).
There is a directed edge from each node to the node, if
any, to its right. Similarly, there is a directed edge from
each node to the node, if any, below it. For clarity, these
directed edges are shown without arrowheads in the figure.
All horizontal edges are directed to the right and all vertical
edges are directed down. In addition, there is a diagonal
edge from (x � 1; y � 1) to (x; y) for all x; y > 0. For
clarity, these edges are omitted in the figure. The edit graph
depicted in Figure 3 corresponds to the sequences (strings)A = ababaccdadab and B = acabbdbbabc.

1

2

3

5

6

9

1 2 3 4 5

b

6 7 8 9 10 11 12

8

7

4

10

11

a b a b a c c d a d a b

a
c
a
b
b
d
b

b
c

a

Figure 3: Edit graph for sequence comparison

Traversing a horizontal edge ((x � 1; y); (x; y)) in the
edit graph corresponds to deleting A[x]. Similarly, travers-
ing a vertical edge ((x; y�1); (x; y)) corresponds to insert-
ingB[y]. Traversing a diagonal edge ((x�1; y�1); (x; y))
corresponds to matchingA[x] toB[y]; ifA[x] andB[y] dif-
fer, such matching corresponds to an update operation.

Edges in the edit graph have weights equal to the costs
of the edit operations they represent. Thus, a horizontal
edge ((x� 1; y); (x; y)) has weight cd(ax), a vertical edge((x; y � 1); (x; y)) has weight ci(by), and a diagonal edge((x� 1; y � 1); (x; y)) has weight cu(ax; by).

It is easy to show that any min-cost edit script that trans-
formsA toB can be mapped to a path from (0; 0) to (M;N)
in the edit graph. Conversely, every path from (0; 0) to(M;N) corresponds to an edit script that transforms A toB. For details, see [Mye86].

For the example suggested in Figure 3, the highlighted
path corresponds to the following edit script:

del(A[2]); ins(B[2]); del(A[5]); del(A[6]);

upd(A[7]; b); del(A[7]); del(A[8]); del(A[10]);
ins(B[10]); del(A[11]); del(A[12]); ins(B[11])

It is easy to verify that applying the above script to A
produces B.

In order to use edit graphs to compare trees, we need
to modify their definition to incorporate the constraints im-
posed by the structure of the trees being compared. For
example, we must model the constraint that if an interior
node is deleted then all its descendants must also be deleted.
Before we proceed, we need to define the ld-pair represen-
tation of a tree.

We define the ld-pair of a tree node to be the pair (l; d),
where l is the node’s label and d is its depth in the tree. We
use p:l and p:d to refer to, respectively, the label and depth
of an ld-pair p. The ld-pair representation of a tree is the
list, in preorder, of the ld-pairs of its nodes. In the rest of this
paper, we assume that trees are in the ld-pair representation.
(A tree can be converted to this representation using a single
preorder traversal.)

a
b

a cb

a

a

a
d

7

2

1

3

4 5 6 8
9

11

10
b

c
d

12

Figure 4: Input tree A
2

6

1

3

a
c

a

b b
54 7

b b
8

d 10

a9

11

cb

Figure 5: Input tree B
Consider the trees A and B depicted in Figures 4 and 5.

The letter next to each node suggests its label and the num-
ber next to a node is its preorder rank, which also serves as
its identifier. The ld-pair representations of A and B are as
follows:A = ((a; 0); (b; 1); (a; 2); (b;3); (a;3); (c;3); (c;2);(d; 3); (a; 3); (d; 1); (a; 2); (b; 2))B = ((a; 0); (c; 1); (a; 2); (b; 3); (b;3); (d; 1); (b; 2);(b; 2); (a; 1); (b; 2); (c;2))

Given a tree (in ld-pair representation) A = (a1 a2 : : :aM), we use the notation A[i] to refer to the ith node ai
of tree A. Thus, A[i]:l and A[i]:d denote, respectively, the
label and the depth of the ith node of A.

We define the edit graph of two trees A and B to
consist of a (M + 1)� (N + 1) grid of nodes as suggested

by Figure 6. There is a node at each (x; y) location forx 2 [0 : : : (M + 1)] and y 2 [0 : : :(N + 1)]. These nodes
are connected by directed edges as follows:� For x 2 [0;M � 1] and y 2 [0; N � 1], there is a

diagonal edge ((x; y); (x + 1; y + 1)) if and only ifA[x+ 1]:d = B[y+ 1]:d. (For clarity, these edges are
omitted in Figure 6.)� Forx 2 [0;M�1] and y 2 [0; N], there is a horizontal
edge ((x; y); (x + 1; y)) unless y < N and B[y +
1]:d > A[x+ 1]:d.� For x 2 [0;M] and y 2 [0; N � 1], there is a vertical
edge ((x; y); (x; y + 1)) unless x < M and A[x +
1]:d > B[y + 1]:d.

1

2

3

3

1

2

2

1

2

2

1

2

3

5

6

9

1 2

0

3d 4 5 6 7 8 9 10 11 12

8

7

4

10

11

a b a b a c c d a d a b

a
c
a
b
b
d
b

b
c

a
b

0 1 2 3 3 3 2 3 3 1 2 2

l
d

l

Figure 6: Edit graph for tree comparison

As was the case for sequence edit graphs, horizontal
edges represent deletions, vertical edges represent inser-
tions, and diagonal edges represent matching of nodes (with
an update operation required if the labels of the matched
nodes differ). Similarly, each edge has an edge weight
equal to the cost of the corresponding edit operation. How-
ever, in contrast to sequence edit graphs, several horizontal
and vertical edges are missing from tree edit graphs. Intu-
itively, the missing vertical edges ensure that once a path in
the edit graph traverses an edge signifying the deletion of a
noden, that path can only continue by traversing edges that
signify the deletion of all the nodes in n’s subtree. Simi-
larly, the missing horizontal edges ensure that any path that
traverses an edge signifying the insertion of a node n can
only continue by traversing the edges signifying insertion
of all nodes in n’s subtree.

We can show that any min-cost edit script that transformsA to B can be mapped to a path from (0; 0) to (M;N) in
the tree edit graph; conversely, every path from (0; 0) to(M;N) corresponds to an edit script that transforms A toB.

For example, the path indicated using bold lines in
Figure 6 corresponds to the following edit script, wheren1; : : : ; n4 are arbitrary identifiers for the newly inserted
nodes:

upd(2; c); upd(5; b); del(6); del(7); del(8); del(9)
del(11); ins(n1; 1; 10; b); ins(n2; 3; 1; a)
ins(n3; 1; n2; b); ins(n4; 2; n2; c)

4 Differencing in Main Memory
In Section 3, we reduced the problem of computing a min-
cost edit script between two trees to the problem of finding
a shortest path in the edit graph of those trees. We now
use that reduction to present a main-memory algorithm for
differencing trees. Given a (M + 1)� (N + 1) edit graphG, let D be a (M + 1)� (N + 1) matrix such that D[x; y]
is the length of a shortest path from (0; 0) to (x; y) in the
edit graph. We call D the distance matrix for G.

For notational convenience, let us define the weight of
an edge that is missing from the edit graph to be infinity.
Consider any path that connects the origin (0; 0) to n =(x; y) in the edit graph. Given the graph’s structure, the
previous node on this path is either the node to the left
of n, the node above n or the node diagonally to the left
and above n. Therefore, the distance of n from the origin
cannot be greater than that distance for the node to its left
plus the weight of the edge connecting the left neighbor ton. Similar relations hold for the top and diagonal neighbors
of n, yielding the following recurrence for D[x; y], where
0 < x �M and 0 < y � N :D[x; y] = minfm1;m2;m3g wherem1 = D[x� 1; y � 1] + cu(A[x]; B[y]);

if ((x� 1; y � 1); (x; y)) 2 G1; otherwisem2 = D[x� 1; y] + cd(A[x]);
if ((x� 1; y); (x; y)) 2 G1; otherwisem2 = D[x� 1; y] + ci(B[x]);
if ((x; y � 1); (x; y)) 2 G1; otherwise

This recurrence leads to the following dynamic-program-
ming algorithm for computing the distance matrix D. We
call this algorithm mmdiff, for main-memory differencing.

Algorithm mmdiff

Input: ArraysA andB, which represent two trees in ld-pair
representation. Thus A[i]:l and A[i]:d denote, respectively,
the label and depth of the ith node (in preorder) of A (and
analogously for B). The number of elements in A and B isM and N , respectively.
Output: The distance matrix D where D[i; j] equals the
length of the shortest path from (0; 0) to (i; j) in the edit

graph of A and B.
Method: Figure 7 presents the pseudocode for a Algorithm
mmdiff. All the pseudocode in this paper assumes short-
circuit evaluation of Boolean expressions. We initializeD
at the origin (0; 0), followed by computation of distances
along the top and left edge of the matrix. The nested for
loop is a direct implementation of the recurrence forD[i; j].
If we assume that the functions cu, cd, and ci execute in
constant times �, �, and
, respectively, the running time of
mmdiff is proportional to 1+�M+�N+(�+�+
)MN ,
or O(MN).D[0; 0] := 0;
for i := 1 to M doD[i; 0] := D[i� 1; 0] + cd(A[i]);
for j := 1 to N doD[0; j] := D[0; j � 1] + ci(B[j]);
for i := 1 to M do

for j := 1 to N do beginm1 := 1; m2 :=1; m3 :=1;
if (A[i]:d = B[j]:d) thenm1 := D[i� 1; j � 1] + cu(A[i]; B[j]);
if (j = N or B[j + 1]:d � A[i]:d) thenm2 := D[i� 1; j] + cd(A[i]);
if (i = M or A[i+ 1]:d � B[j]:d) thenm3 := D[i; j � 1] + ci(B[j]);D[i; j] := min(m1;m2;m3);

end;

Figure 7: Algorithm mmdiff

Once we have computed the distance matrixD, it is easy
to recover from it a shortest path from (0; 0) to (M;N).
We start at (M;N) and trace the recurrence relation forD backwards. As we traverse horizontal, vertical, and
diagonal edges, we emit the appropriate deletion, inser-
tion, and update operation, respectively. Thus, we have
the following algorithm for recovering an edit script from
the distance matrix. We call this algorithm mmdiff-r (for
mmdiff-recovery).

Algorithm mmdiff-r

Input: Arrays A and B representing the input trees (as in
Algorithm mmdiff) and the distance matrixD computed by
mmdiff.
Output: A min-cost edit script that transformsA toB. (For
simplicity of presentation, the insertion and deletion oper-
ations only identify the nodes being inserted and deleted.
Using the information from the original trees, it is easy to
generate an edit script in the syntax of Section 2. Further,
insertions of interior nodes are printed after the insertions
of their descendants; this ordering is easily fixed.)
Method: Figure 8 presents the pseudocode for Algorithm
mmdiff-r. At each iteration of the while loop i and/or j is
decremented by one. Thus there are between max(M;N)
and M +N iterations of the while loop, with each iteration
performing a constant amount of work. Thus, the running
time of mmdiff-r is O(M + N).

i :=M ; j := N ;
while (i > 0 and j > 0) do

if (D[i; j] = D[i� 1; j] + cd(A[i]) and
(j = N or B[j + 1]:d � A[i]:d)) then begin

print(“del” i);i := i� 1;
end;
else if (D[i; j] = D[i; j � 1] + ci(B[j]) and

(i = M or A[i+ 1]:d � B[j]:d)) then begin
print(“ins” j);j := j � 1;

end;
else begin

if(A[i]:l 6= B[j]:l) then print(“upd” i B[j]:l);i := i� 1; j := j � 1;
end;

while (i > 0) do begin
print(“del” i);i := i � 1;

end;
while (j > 0) do begin

print(“ins” j);j := j � 1;
end;

Figure 8: Algorithm mmdiff-r

5 Differencing in External Memory

In Section 4, we presented algorithms mmdiff and mmdiff-r
to compute a minimum-cost edit distance between two trees
in main memory. These algorithms require RAM space for
not only the input trees A and B, but also for the distance
matrix D. If A and B have sizes M and N , respectively,
then the distance matrix D is of size MN , which can be
prohibitively large for even modestly sized inputs that fit
in RAM. In situations where A and B themselves are too
large to fit in RAM, the problem is much worse.

Let us first consider a naive extension of Algorithm
mmdiff for external memory. We use two buffers, B1 andB2, to read, as needed, the trees A and B, respectively,
from disk into RAM. The buffers are exactly large enough
to hold one disk block (of size S). As the distance matrixD is computed, we write the distances to a third buffer B3,
also of size S. When B3 is completely filled, we write it
out to disk and overwrite it in RAM. Using a similar buffer-
ing scheme, we can adapt the algorithm mmdiff-r, used for
recovering the edit script, for external memory. Let us call
these buffered version of mmdiff and mmdiff-r Algorithm
bmdiff and Algorithm bmdiff-r, respectively.

Since Algorithm bmdiff computes the distance matrixD
in column-major order, each of the dN=Se = n blocks ofB
is read once for each of the M nodes in A, incurring an I/O
cost of Mn. On the other hand, each of the dM=Se = m
blocks of A is read exactly once, for an I/O cost of m.
Algorithm bmdiff also stores the entire distance matrix, of
size MN to disk, incurring an I/O cost of MN=S. Thus

the total I/O cost of algorithm bmdiff isMn+m+MN=S,
or approximately 2Smn+m. In addition to space for tem-
porary variables Algorithm bmdiff needs space for only the
three buffers B1, B2, and B3, of size S each. Thus the
RAM cost of Algorithm bmdiff is 3S. Other than oper-
ations required to read and write disk blocks, Algorithm
bmdiff performs the same operations as Algorithm mmdiff.
Thus its CPU cost is O(MN). Thus, we may summarize
Algorithm bmdiff’s performance as follows:

I/O RAM CPU
2Smn +m 3S O(MN)

By using techniques similar to those used for computing
nested-loop joins in relational databases, it is easy to reduce
the I/O cost of readingA andB fromMn tomn. Intuitively,
instead of computing the distance matrix in column-major
order, we compute it in a blocked manner: When we read in
the Ith block of A and the J th block of B, we compute the
entire S�S submatrix fD[i; j] : i 2 [SI; (I + 1)� 1]; j 2[SJ; S(J + 1)� 1]g.

However, it is not obvious how we can improve on the
I/O cost of storing the distance submatrix itself, which is of
sizeMN=S blocks. As described below, our approach is to
avoid storing all of the distance matrix, storing instead only
a coarse grid from which the rest of the distance matrix can
be quickly computed.

5.1 Computing the Distance Matrix

Consider the (M+1)�(N+1) distance matrixD suggested
by the arrangement of dots in Figure 9, corrsponding to
input trees A and B of sizes M and N , respectively. As
suggested in the figure, we divideD into a set of overlapping
tiles. For clarity, the figure alternates the use of solid and
dashed lines for marking the tiles. The overlap between
neighboring tiles is one item wide.

Figure 9: Tiling the distance matrix

More precisely, let S0 = S � 1. For simplicity in
presentation, we shall henceforth assume that M and N
are both integral multiples of S0, with M = mS0 andN = nS0. The distance matrix D is then divided into

mn tiles laid out in m columns and n rows. We number
these rows and columns of tiles starting with 0, and use
the notation (ib; jb) to denote the tile in the ibth column
(of tiles) and jbth row(of tiles). Thus, the tile (ib; jb) con-
sists of the following submatrix of the distance matrix D:fD[x; y] : x 2 [Sib::S(ib+1)�1]; y 2 [Sjb::S(jb+1)�1].

Our external memory algorithm, called xmdiff (for ex-
ternal memory differencing), is based on the followingthree
key ideas: First, instead of storing the entire distance ma-
trix D, we store only the top and left edges of each of the
tiles described above. We call this grid consisting of the tile
edges the distance grid. Each tile edge is of size S, and
there are mn tiles in all. Thus the entire distance grid can
be stored using only 2Smn=S = 2mn blocks of storage.
Referring back to Figure 9, only those entries in the the
matrix that are crossed by a dotted line are stored on disk.
(Note that for clarity, Figure 9 assumes that the dimension
of each tile is only 4 � 4 items, corresponding to S = 4.
For such low values of S, our technique does not appear to
yield much savings. However, for typical values of S that
lie in the hundreds, the savings are substantial.)

Second, given the top and left edges of a tile, we can
compute the distance submatrix for the rest of the tile by
using the recurrence for D in Section 3. Further, using a
few temporary variables, this recurrence allows us to update
in-place an array that initially contains the distances for the
top (left) edge of a tile to one containing the distances for
the bottom (respectively, right) edge.

Third, given the distance grid stored on disk, a shortest
path in the edit graph from (0; 0) to (M;N) (and thus
the corresponding min-cost edit script that transforms treeA to tree B) can be computed in linear time by working
backwards from (M;N), as done in Algorithm mmdiff-
r. A straightforward algorithm based on this idea requiresO(S2) RAM as working store. However, we also describe
an enhanced version of the algorithm that requires onlyO(S) RAM.

We assume that the first block of A has a dummy first
node, (0; 0). Each successive block has as its first node a
copy of the last node from the previous block. The blocks
of B are also assumed to be in this format. We also assume
that the input sizes M and N are both integral multiples ofS0 = (S�1), where S is the block size. These assumptions
are not necessary for our algorithm; we make them only to
simplify the following presentation of the algorithm.

Recall, from Section 3, that we represent a tree using the
preorder listing of the ld-pairs of its nodes. These ld-pair
sequences are packed densely into disk blocks when the
trees are represented on disk. Nodes within a block are
arranged at fixed offsets beginning with 0.

Disk blocks are read and written using the function Rd-
Blk and the procedure WrBlk, respectively. RdBlk takes
as arguments a file name (which we use to group related
blocks) and a block number. Block numbers for each file
are separate, and are numbered sequentially beginning with
0. For example, the ith block of a file called A is denoted
by A(i) and is read using RdBlk(A; i). The notation for

WrBlk is analogous to that used for RdBlk: WrBlk(A,i)
writes the buffer A to the ith block of file A. In addition
to one dimensional indexing of disk blocks, we also use
two-dimensional indexing of the form D(i; j) where the
ranges of i and j are fixed and known in advance. Such
double indexing of blocks is only a notational convenience.
Using a standard row-major encoding of two-dimensional
matrices, D(i; j) is equivalent toD(iN +j) whereN is the
number of different j values. Thus each RdBlk and WrBlk
operation requires only a single I/O.

Algorithm xmdiff

Input: Arrays A and B representing the input trees, con-
taining M and N elements, respectively (as in Algorithm
mmdiff).
Output: The distance grid (defined above), giving the
length of the shortest path from (0; 0) to (x; y) in the edit
graph of A and B for all edit graph nodes (x; y) that lie on
the edges of tiles of dimension S � S.
Method: Figure 10 lists the pseudocode for Algorithm
xmdiff. The first part of the algorithm consists of two for
loops which correspond to the first two for loops of Algo-
rithm mmdiff in Figure 7. The first for loop in Figure 10
computes and writes to disk the top row of the distance
matrix. Similarly, the second for loop computes and writes
to disk the leftmost column of the distance matrix.

The second part of Algorithm xmdiff (the third for loop
in Figure 10) corresponds to the nested for loops of Al-
gorithm mmdiff in Figure 7. Each iteration of the inner
loop computes the distances in one tile (submatrix) of the
distance matrix. Recall that we identify a tile by its tile
column and tile row numbers, with numbering starting at
0. The innermost loop computes distances in tile (ib; jb).
This computation uses, in addition to the appropriate blocks
of the input trees A and B, the distances for nodes on the
top and left edges of the tile. Due to the overlap of tiles,
these edges are the bottom and right edges of some other
(previously computed) tiles. The distances for nodes on the
bottom and right edges of the tile are then written to disk.
By carefully ordering the distance calculations and by using
temporary variables (ta and tb), we are able to update in
place the array Da, which initially contains the distances
for nodes on the top edge, to the distances for nodes in the
bottom edge. Similarly, the array Db initially containing
the distances of nodes in the left edge is updated in place to
the distances of nodes in the right edge. The tests in the if
statements are analogous to those in Algorithm mmdiff.

Analysis

Algorithm xmdiff uses only four buffers in RAM:A,B,Da,
and Db, each of size S. Thus, the RAM storage require-
ments are only 4S (in addition to the small, constant amount
of storage needed for program code and scalar variables).

Let S0 = S � 1, m = M=S0, and n = N=S0. The first
two for loops of the algorithm make a total of m + n calls
to the each of the procedures RdBlk and WrBlk, giving
2(m + n) as the I/O cost. In the nested for loops, the first

S0 := S � 1;
for ib := 0 to (M=S0 � 1) do beginA := RdBlk(A; ib);

if(ib > 0) then Da[0] := Da[S0];
else Da[0] := 0;
for i := 1 to S0 doDa[i] := Da[i� 1] + cd(A[i]);
WrBlk(Da; ib; 0);

end;
for jb := 0 to (N=S0 � 1) do beginB := RdBlk(B; jb);

if(jb > 0) then Db[0] := Db[S0];
else Db[0] := 0;
for j := 1 to S0 doDb[j] := Db[j � 1] + ci(B[j]);
WrBlk(Db; 0; jb);

end;
for ib := 0 to (M=S0 � 1) do beginA := RdBlk(A; ib);Da := RdBlk(Da; ib; 0);

for jb := 0 to (N=S0 � 1) do beginB := RdBlk(B; jb);Db := RdBlk(Db; ib; jb);Da[0] := Db[S0];
for i := 1 to S0 do begintb := Db[0];Db[0] := Da[i];

for j := 1 to S0 do beginm1 :=1; m2 :=1; m3 :=1;
if (A[i]:d = B[j]:d) thenm1 := tb + cu(A[i]; B[j]);
if (j = S0 or B[j + 1]:d � A[i]:d) thenm2 := Db[j] + cd(A[i]);
if (i = S0 or A[i+ 1]:d � B[j]:d) thenm3 := Db[j � 1] + ci(B[j]);tb := Db[j];Db[j] := min(m1;m2;m3);

end;Da[i] := Db[S0];
end;
WrBlk(Da; ib + 1; jb);
WrBlk(Db; ib; jb + 1);

end;
end;

Figure 10: Algorithm xmdiff

two RdBlkstatements (forA andDa) are executedm times.
The next two RdBlkstatements (forB andDb) are executedmn times. Finally, the WrBlk statements are executed mn
times. Thus, the total number of I/Os in the nested loops
of xmdiff is 2m + 4mn. Combining this number with that
for the first two for loops, we conclude that xmdiff makes
4mn+ 4m+ 2n I/Os.

Finally, it is easy to observe that the CPU time isO(MN). Thus, we can summarize Algorithm xmdiff’s
performance as follows, where M and N are the sizes of
the input trees, S is the block size, m = M=(S � 1), andn = N=(S � 1):

I/O RAM CPU
4mn + 4m + 2n 4S O(MN)

5.2 Recovering the Edit Script

Recall, from Figure 8, the Algorithm mmdiff used to recover
a minimum-cost edit script in RAM. Using the distance ma-
trixD as a guide, Algorithm mmdiff-r traverses the shortest
path from (0; 0) to (M;N) backwards, emitting appropriate
edit operations along the way. Unlike mmdiff, algorithm
xmdiff does not store the entire distance matrixD, making a
direct application of the path-recovery algorithm mmdiff-r
impossible. However, for each tile (i; j) of the edit graph,
xmdiff stores the distances for nodes on its top and left
edges in the disk blocksDa(i; j) andDb(i; j), respectively.
By reading in these blocks and using algorithm mmdiff, the
distance matrix for a tile (i; j) can easily be computed atO(S2) CPU cost (where S is the block-size). Based on
these ideas, we have the following:

Algorithm xmdiff-r

Input: Arrays A and B representing the input trees (as
in Algorithm mmdiff) and the distance grid computed by
xmdiff, stored on disk as Da and Db.
Output: A min-cost edit script that transforms A to B (as
in Algorithm mmdiff-r).
Method: Figure 11 presents the pseudocode for xmdiff-r.
As in algorithm mmdiff-r, we begin at the node (M;N)
of the edit graph and move backwards along the shortest
path from (0; 0) to (M;N). At each iteration of the outer
while loop, the current position (i; j) in the edit graph is
moved back to either (i� 1; j), (i; j � 1), or (i� 1; j � 1)
using the if-then-else statement that is very similar to that
in algorithm mmdiff-r. Using the boolean variables na andnb, we detect the situation when the current position (i; j)
first moves into a new tile in the horizontal and vertical
direction, respectively. When na is nonzero, (i; j) has just
moved to a new tile to the left of the old tile. In this case,
we read in the corresponding block of the input file A.
Similarly, when nb is nonzero, we read in the appropriate
block of the input file B. In both cases, we read in the
top and left edges of the distance matrix for the new tile,(ib; jb), into the arrays T and L, respectively. We use T
and L to initialize the top and left edges of the complete
distance matrix D for the new tile. Recomputation of the

distances in the rest of the matrix D is done in a manner
completely analogous to algorithm mmdiff.

Analysis

Each iteration of the outer while loop decrements at least
one of i and j; thus, there are at most M + N iterations of
that loop. Since i ranges from M down to 1, it follows thatna is set to 1 for M=S0 = m iterations. Similarly, nb is set
to 1 for N=S0 = n iterations. Blocks from Da and Db are
read in whenever one of na and nb is nonzero. In the worst
case, this situationcan occurm+n times. Thus the I/O cost
due to reading Da and Db is at most 2(m + n). It is easy
to observe that each of the m blocks of the input A is read
exactly once, for an I/O cost of m. Similarly, the I/O cost
incurred in reading the inputB is n. Thus, the total I/O cost
of algorithm xmdiff-r is 2(m + n) +m + n = 3(m + n).

The significant RAM storage requirements of xmdiff-r
are due to the arraysA,B, T , andL, and the distance matrixD. The arrays A, B, T , and L are all of size S, the block
size. Unfortunately, the distance matrix D is of size S2 .
Thus, the total RAM cost is 4S + S2.

It is easy to observe that the CPU cost of algorithm
xmdiff-r is O((M + N)S). Thus, Algorithm xmdiff-r’s
performance may be summarized as follows:

I/O RAM CPU
3(m+ n) 4S + S2 O((M +N)S)

Reducing the RAM cost of xmdiff-r

We can reduce the S2 RAM space needed to store the dis-
tance matrix D as follows. We divide the S � S distance
matrix D into S subtiles of size

pS � pS as suggested
by Figure 12. Consider the process of tracing the shortest
path backwards through D. We divide this task into stages
corresponding to traversing the subtiles. We begin with the
subtile in the lower right corner. At the end of each stage,
we move to a subtile that is above and/or to the left of the
current subtile. At the beginning of the stage correspond-
ing to a subtile, we compute (as before) the distance matrixD, but store distances for only those points that lie in this
subtile. Using a technique similar to that used by algorithm
mmdiff, this computation can be performed using only a
buffer of size S as working storage. Since the size of a
subtile is

pS �pS = S, the total storage required for the
subtile computation is 2S. Combined with the 4S space
required to storeA, B, T , and L, we have a total RAM cost
of 6S.

The subtile-based enhancement described above results
in the distance matrix for each tile being recomputed several
times, thus increasing the CPU cost. After each recompu-
tation, the current subtile moves one position to the left
and/or up. Thus, the number of subtile computation stages
is between

pS and 2
pS (since there are

pS subtiles along
each dimension of the distance matrix). It follows that the
total CPU cost is therefore increased by a factor of at most
2
pS, to O((M +N)S1:5).

i :=M ; j := N ; S0 := S � 1;na := 1; nb := 1;
while (i > 0 and j > 0) do beginib := di=S0e � 1; jb := dj=S0e � 1;ii := i mod S0; ji := j mod S0;

if (na > 0) then A := RdBlk(A; ib);
if (nb > 0) then B := RdBlk(B; jb);
if (na > 0 or nb > 0) then beginT := RdBlk(Da; ib; jb); L := RdBlk(Db; ib; jb);na := 0; nb := 0;D[0::S0; 0] := T ; D[0; 0::S0] := L;

for x := 1 to S0 do
for y := 1 to S0 do beginm1 :=1; m2 :=1; m3 :=1;

if (A[x]:d = B[y]:d) thenm1 := D[x� 1; y � 1] + cu(A[x]; B[y]);
if (y = S0 or B[y + 1]:d � A[x]:d) thenm2 := D[x� 1; y] + ci(B[y]);
if (x = S0 or A[x+ 1]:d � B[y]:d) thenm3 := D[x; y � 1] + cd(A[x]);D[i; j] := min(m1;m2;m3);

end;
end;
if (D[ii; ji] = D[ii � 1; ji] + cd(A[ii]) and

(ji = S0 or B[ji + 1]:d � A[ii]:d)) then begini := i� 1;
if (i mod S0 = 0) then na := 1;
print(“del” i);

end;
else if (D[ii; ji] = D[ii; ji � 1] + ci(B[ji]) and

(ii = S0 or A[ii + 1]:d � B[ji]:d)) then beginj := j � 1;
if (j mod S0 = 0) then nb := 1;
print(“ins” j);

end;
else begini := i� 1; j := j � 1;

if (i mod S0 = 0) then na := 1;
if (j mod S0 = 0) then nb := 1;
if(A[ii]:l 6= B[ji]:l) then print(“upd” i B[j]:l);

end;
end;
while (i > 0) do begin

print(“del” i);
if(i mod S0 = 0) then A := RdBlk(A; di=S0e � 1);i := i � 1;

end;
while (j > 0) do begin

print(“ins” j);
if(j mod S0 = 0) then B := RdBlk(B; dj=S0e � 1);j := j � 1;

end;

Figure 11: Algorithm xmdiff-r

S

S1/2

S1/2

S

Figure 12: Reducing mmdiff-r’s RAM cost

Thus, the performance of the modified Algorithm
xmdiff-r may be summarized as follows:

I/O RAM CPU
3(m + n) 6S O((M + N)S1:5)

Thus, the costs of executing Algorithm xmdiff followed
by Algorithm xmdiff-r are as follows:

I/O RAM CPU
4mn+ 7m+ 5n 6S O(MN + (M +N)S1:5)
Although we have described S to be the block size, our

algorithm does not depend on S being equal to the block
transfer unit. Another way to interpret the above result is
the following: Suppose we have R units of RAM that we
can use for our algorithm’s buffers. We set R = 6S; that is,S = R=6. SubstitutingR for S in our performance results
tells us that by increasing the amount of RAM buffer space,
we can achieve a quadratic reduction in the significant 4mn
part of the I/O cost.

6 Related Work
Differencing algorithms have received considerable atten-
tion in the research literature, with the problem of compar-
ing sequences receiving the most attention [SK83]. Early
sequence comparison algorithmsinclude the classicO(mn)
Wagner-Fischer algorithm [WF74], which was shown to
be optimal for a wide class of computation models in
[AHU76, WC76]. Using the so-called “four Russians”
technique, a more efficient O(nm= logn) algorithm for fi-
nite alphabets is presented in [MP80].

More recent work on sequence comparison has focused
on improving the expected case running time using output-
sensitive algorithms. For example, Myers presents anO(ND) algorithm, where N and D are the sizes of the in-
put and edit script, respectively [Mye86]. (This algorithm
forms the basis of the widely used diff utility [MM85].)
Further improvements are reported in [WMG90]. These
algorithms are based on using the special structure of an
edit graph.

Our technique for mapping the tree differencing prob-
lem to edit graphs, as described in Section 3, allows us to
apply the above sequence comparison results to trees. For

example, it is relatively straightforward to extend these al-
gorithms in [Mye86] for differencing trees in main memory
without any significant increase in running time. However,
extending these results to external memory appears more
complicated and is part of our continuing work.

Several formulations of the tree comparison problem
have also been studied. Early work includes Selkow’s re-
cursive algorithm for a simple formulation similar to the one
in this paper [Sel77]. More recent work includes [ZS89],
which studies ordered trees, and [ZWS95], which studies
unordered trees. Most formulations of the tree differencing
problem for unordered trees are NP-hard.

There are significant advantages to describing tree dif-
ferences using not only the three basic edit operations (in-
sert, delete, and update), but also subtree operations such
as move, copy, and uncopy. In [CRGMW96], we stud-
ied a variation that includes a subtree move operation and
described an efficient algorithm that uses simplifying as-
sumptions based on domain characteristics. In [CGM97],
we studied a variation that includes subtree copy and un-
copy operations in addition to moves. These algorithms are
used in the implementation of the C3 system for managing
change in autonomous databases [CAW98].

All the above algorithms are main-memory algorithms;
that is, they assume that all input data and working storage
resides in RAM. To our knowledge, ours is the first external-
memory differencing algorithm. The design of external-
memory algorithms based on the problem formulations and
ideas in the work described above is a topic for continuing
work.

The Unix program bdiff implements a sequence com-
parison algorithm for files that are too large to fit in RAM
using a simple wrapper around the standard diff algorithm
[Mye86]. The bdiff program works by first dividing the
input files into segments that fit in RAM, and then running
diff on each pair of corresponding (by position in the re-
spective file) segments. This strategy does not guarantee
a minimum-cost edit script. In fact, a single inserted line
can mislead bdiff into mismatching a large number of other
lines.

The problem of computing differences is closely re-
lated to the problem of pattern matching (e.g., [WZJS94,
WCM+94, WSC+97]). While there are important differ-
ences between the two problems, it may be possible to share
some of the techniques used by their solutions.

7 Conclusion

We described several applications that are based on compar-
ing two snapshots of data in order to detect the differences
between them. We explained the need for external-memory
differencing algorithms for both flat (sequence) and hier-
archical (tree) data. We modeled hierarchical data using
rooted, ordered, labeled trees, and formalized the hierarchi-
cal data comparison problem using the idea of a minimum-
cost edit script between two trees. We described a method
to map this tree comparison problem to a shortest-path prob-
lem in a special graph called the tree edit graph. We first

presented a main-memory tree differencing algorithmbased
on the edit graph reduction. Next we discussed its extension
to external memory and described problems with a naive
extension. We then presented our main algorithm (xmdiff)
for efficiently differencing trees in external memory.

As continuing work, we are exploring the use of our edit
graph reduction to transfer results from sequence compar-
ison to trees. Preliminary results indicate that while this
strategy is relatively easy to use for main-memory algo-
rithms, extending it to external-memory algorithms is more
challenging. We are also working on incorporating the al-
gorithm xmdiff into theC3 change management system and
on releasing a public version of the implementation. We
also plan to explore the application of our techniques to
related problems such as pattern matching and data mining
in semistructured data (which is often modeled using trees
and graphs).

References
[AHU76] A. Aho, D. Hirschberg, and J. Ullman. Bounds

on the complexity of the longest common subse-
quence problem. Journal of the Association for
Computing Machinery, 23(1):1–12, January 1976.

[CAW98] S. Chawathe, S. Abiteboul, and J. Widom. Rep-
resenting and querying changes in semistructured
data. In Proceedings of the International Confer-
ence on Data Engineering, pages 4–13, Orlando,
Florida, February 1998.

[CGM97] S. Chawathe and H. Garcia-Molina. Meaningful
change detection in structured data. In Proceedings
of the ACM SIGMOD International Conference on
Management of Data, pages 26–37, Tuscon, Ari-
zona, May 1997.

[CRGMW96] S. Chawathe, A. Rajaraman, H. Garcia-
Molina, and J. Widom. Change detection in hier-
archically structured information. In Proceedings
of the ACM SIGMOD International Conference on
Management of Data, pages 493–504, Montréal,
Québec, June 1996.

[LGM96] W. Labio and H. Garcia-Molina. Efficient snap-
shot differential algorithms for data warehousing.
In Proceedings of the International Conference on
Very Large Data Bases, Bombay, India, September
1996.

[MM85] W. Miller and E. Myers. A file compari-
son program. Software–Practice and Experience,
15(11):1025–1040, 1985.

[MP80] W. Masek and M. Paterson. A faster algorithm
computing string edit distances. Journal of Com-
puter and System Sciences, 20:18–31, 1980.

[Mye86] E. Myers. An O(ND) difference algorithm and
its variations. Algorithmica, 1(2):251–266, 1986.

[Sel77] S. Selkow. The tree-to-tree editing problem. Infor-
mation Processing Letters, 6(6):184–186, Decem-
ber 1977.

[SK83] D. Sankoff and J. Kruskal. Time Warps, String Ed-
its, and Macromolecules: The Theory and Practice
of Sequence Comparison. Addison-Wesley, 1983.

[Tic85] W. Tichy. RCS—A system for version control.
Software—Practice and Experience, 15(7):637–
654, July 1985.

[Vit98] J. Vitter. External memory algorithms. In Pro-
ceedings of the ACM Symposium on Principles of
Database Systems, Seattle, Washington, June 1998.

[WC76] C. Wong and A. Chandra. Bounds for the
string editing problem. Journal of the Association
for Computing Machinery, 23(1):13–16, January
1976.

[WCM+94] J. Wang, G. Chirn, T. Marr, B. Shapiro,
D. Shasha, and K. Zhang. Combinatorial pattern
discovery for scientific data: some preliminary re-
sults. In Proceedings of the ACM SIGMOD Con-
ference, pages 115–125, May 1994.

[WF74] R. Wagner and M. Fischer. The string-to-string
correction problem. Journal of the Association
of Computing Machinery, 21(1):168–173, January
1974.

[WMG90] S. Wu, U. Manber, and G.Myers. An O(NP)
sequence comparison algorithm. Information Pro-
cessing Letters, 35:317–323, September 1990.

[WSC+97] J. Wang, D. Shasha, G. Chang, L. Relihan,
K. Zhang, and G. Patel. Structural matching and
discovery in document databases. In Proceedings
of the ACM SIGMOD International Conference on
Management of Data, pages 560–563, 1997.

[WZJS94] J. Wang, K. Zhang, K. Jeong, and D. Shasha.
A system for approximate tree matching. IEEE
Transactions on Knowledge and Data Engineering,
6(4):559–571, August 1994.

[Yan91] W. Yang. Identifying syntactic differences be-
tween two programs. Software—Practice and Ex-
perience, 21(7):739–755, July 1991.

[ZS89] K. Zhang and D. Shasha. Simple fast algorithms for
the editing distance between trees and related prob-
lems. SIAM Journal of Computing, 18(6):1245–
1262, 1989.

[ZWS95] K. Zhang, J. Wang, and D. Shasha. On the editing
distance between undirected acyclic graphs. In-
ternational Journal of Foundations of Computer
Science, 1995.

