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Abstract

When streaming semi-structured data is processed by
a well-designed query processor, parsing constitutes
a significant portion of the running time. Further
improvements in performance therefore require some
method to overcome the high cost of parsing. We
have designed a general-purpose mechanism by which
a producer of streaming data may augment the data
stream with hints that permit a downstream pro-
cessor to skip parsing parts of the stream. Insert-
ing such hints requires additional processing by the
producer of data; however, the resulting stream is
more valuable to consumers, making such processing
worthwhile. In this paper, we focus on hints that are
designed to improve the throughput of a streaming
XML query engine. We present a set of hint schemes
and describe how can a query engine improve its per-
formance by taking advantage of the hints. Finally,
we demonstrate the benefits of our approach using an
experimental study.

1. Introduction

Streaming semi-structured data processing has re-
cently gained immense importance, particularly in
the area of publishing and subscription services. In
most of these applications, the data is generated and
sent by a server to a large number of subscribed
clients in form of a stream. The clients may be inter-
ested in different portions of the data which can be
represented in form of a query (e.g. XPath expres-
sion) and has to be evaluated on the data stream to
obtain the relevant portions of data.

A simple architecture for such an application is
a centralized system where the clients submit their
queries to a central data server. The server performs
the necessary query evaluation and sends the appro-
priate portions of the data to each client. Although
this scheme has a low overhead in terms of amount of

data sent across network, it requires a large overlay
of resources at the server side and is not scalable.

An alternative method is to send the data stream to
each client using either unicast or multicast network
methods and leave it to each client to pick the data it
needs. The advantage of this approach is its simplic-
ity, low processing cost at the server and scalability
to a large number of clients. However, it suffers from
the disadvantage of requiring each client to perform
potentially large amount of redundant work. This
problem is exacerbated by the presence of low-power
clients such as PDAs and Web-enabled phones and
requires a mechanism to reduce the computational
load on the client query processors.

It has been observed that even well-implemented
stream processors [2, 18] spend a large fraction (typi-
cally well over 50%) of their CPU resources on simply
parsing the input stream. Clearly, this fact limits the
amount of further improvement achievable by tech-
niques that operate post-parsing. Thus, there is a
need for methods that can sidestep the cost of pars-
ing data that is irrelevant to a query. We define irrel-
evant data as the data whose presence in the input
stream does not affect the results of the query in any

way.
For example, consider the XPath query
/book[discount]/title on the sample XML data

shown in Figure 1. For this particular query, a book
element is relevant if and only if it contains both
title and discount child elements. Thus, the second
book element (lines 21-30 of Figure 1) is irrelevant
and can be skipped entirely by a query engine as it
does not affect the query result. Similarly, even in
the first book element, elements other than the title
element do not affect the query result and can be
skipped by the query engine reducing the parsing
cost.

Indexes have been typically used to avoid parsing
irrelevant data by providing direct access to the ele-
ments. But traditional approaches for indexing semi-



1.<root>

2. <mag>

3. <name>Times</name>

4. </mag>

5. <book>

6. <title>

7. Modern Information Retrieval

8. </title>

9. <discount> 10 </discount>

10. <price> 15 </price>

11. <year> 1972 </year>

12. <edition> 3 </edition>

13. <pub>

14. <name>Addison Wesley</name>

15. <address>

16. 34 Broadway, N.Y. U.S.A

17. </address>

18. </pub>

19. <author> Ricardo Baeza-Yates </author>
20.</book>

21.< book >

22. <title>

23. Database Systems:The Complete Book
24. </title>

25. <price> 60 </price>

26. <edition> 2 </edition>

27. <author> Hector Garcia-Molina </author>
28. <author> Jeffrey D. Ullman </author>
29. <author> Jennifer Widom </author>
30.</book>

31</root>

Figure 1: Example XML data

structured data [6, 7, 10, 17] cannot be applied in
streaming environment since the data is unbounded.
Moreover, since the data stream in many applications
is generated and sent to clients in real-time, the in-
dexes have to be generated on the fly.

An early example of an index for streaming data
is the stream index (SIX) [11] for XPath queries on
XML data. The index stores pointers to the begin-
ning and end of each element in a compact binary
form and is used by the query processor to directly
skip to the elements that match the query.

SIX has been shown to have a very low overhead
and can provide significant speedup to streaming
XML query processors for certain queries even with
these simple hints. But SIX has very limited util-
ity for more complex queries containing closures and
predicates. Since the index does not incorporate any
ancestor-descendant relation, hints with more infor-

mation are required to efficiently process even mod-
erately complex queries such as /book//address. In
addition, as the index contains the start and the end
offsets for all elements, it cannot be generated for
partial streaming XML data.

In this paper, we propose placing strategically de-
signed annotations or hints in the stream. These
hints, called XHints, may be viewed as a temporally
distributed index on the input stream. They store
structural information about the data which can be
used by a query engine to identify the irrelevant por-
tions and avoid parsing them. We also describe a
well-defined mechanism that can be used by a query
engine to process XHints in a transparent and mod-
ular fashion.

Since XHints are inserted as part of the input
data stream, the structure of XHints depends on the
data representation scheme. Various schemes such
as OEM and XML have been suggested to represent
semistructured data] Add references to this line
]. Most of these schemes model the data in form of
a tree with nodes representing elements or objects
and the edges defining the hierarchical relationship
between different elements.

XHints can be used with any such tree-based
representation scheme. The only requirement on
the scheme for our approach to work is that the
tree-structured data is sent across with child ele-
ments completely nested between the parent ele-
ments. However, for concreteness, we discuss XHints
in context of streaming XML data. XML is one of
the most popular data representation scheme and has
come out as the de facto standard for representing
semi-structured data in recent years. Moreover, XML
represents the data in a nested fashion making it an
ideal choice for XHints.] Reword this para. Also
not sure of the exact placement of these two
paras (this one and the one above it. Do I put
it in the end or here? ]

The XHints can be generated at the server end and
sent along with the data stream to the clients. Gen-
erating XHints does not require access to the entire
data stream. They are well adapted to being gener-
ated in a windowed manner, where portions of data
are buffered and augmented with XHints, allowing
generation of the XHints on-the-fly in real-time.

Note, however, that XHints involve sending addi-
tional data to clients and thus do not save on network
transmission costs in a unicast network. In a multi-
cast networks, savings may result from the fact that
clients that would otherwise receive distinct streams
now receive the same one. Further, XHints also im-
ply some additional computation at the server (albeit



simple, as described later). However, these additional
costs at the server may be worthwhile because not
only do they improve the efficiency of the system as
a whole (server and many clients), they also increase
the value of the data provided by the server to a client
(because it is easier for the client to use it).

The main contributions of this paper are summa-
rized below

1. To the best of our knowledge, this work is the
first which attempts to make semistructured
query processing more efficient in a streaming
environment by allowing the parser to identify
and skip irrelevant data.

2. We describe a generic framework for XHints that
allows any query engine to process streaming
semistructured data more efficiently. We de-
scribe the application of XHints for an auto-
mated XPath query processor and an iterator
based query engine.

3. We present an experimental study of our meth-
ods that illustrates the benefits of our approach.

The rest of the paper is organized as follows. Sec-
tion 2 describes the architecture of the XHint sys-
tem and the API provided to the query engine. A
detailed description of XHints is presented in sec-
tion 3. The processing and generation of XHints are
described in section 4 and 5 respectively. The appli-
cation of XHints on two query engines is presented in
section 6. Section 7 presents the performance eval-
uation of XHints. The related work is described in
section 8. Finally, the conclusion and possible future
work is presented in section 9.

2. System Architecture

A normal streaming XML processor uses an XML
parser which generates SAX events for every element
in the data stream. Thus, the processor has to parse
and process SAX events for all data elements, even
though a large portion of the data may not be part of
the query result. This extra processing of irrelevant
elements results in a high overhead and subsequently,
a lower query result throughput.

XHints are designed to reduce this overhead by
allowing the parser to skip portions of data which
do not contain any query result. The processing of
XHints is completely separated and hidden from the
query engine. They are handled by a XHint Manager
that provides a common interface to the query pro-
cessor. As described later, the query processor is only

expected to perform minimal additional processing to
assist the XHint Manager. Figure 2 displays the sys-
tem architecture of a XHint-enabled query processor.

The XHint Manager acts as a proxy between the
query processor and the XML parser. The parser
generates the SAX events for the processed data and
sends them to the XHint Manager for processing.
The XHint Manager may handle the event internally
(if it is a XHint) or forward it to be processed by the
query engine (if it is a data element). It also main-
tains a list of interesting SAX events referred as the
EventList.

An interesting SAX event is informally defined as
an event which the query processor has to process in
order to evaluate the query correctly. For example,
a query engine with the query /book/discount on the
example XML data (Figure 1) has to process every
book element with a discount child element. Thus,
the SAX event corresponding to the book element at
line 5 in Figure 1 is an interesting event for this par-
ticular query.

If the query contains a predicate as in /book/[price
< 20]/pub//name, the SAX event corresponding to
the element with the predicate is interesting if and
only if the predicate is satisfied by the element. In
the case of example query, the book element is not
interesting if it does not contain a price element with
value less than 20.

If the query expression has an element label follow-
ing a closure axes, the query engine is only interested
in elements containing a descendant with that par-
ticular label. For example in the above query, any
child element of the book element that may contain
a descendant with label name is an interesting SAX
event.

The XHint Manager uses the EventList along with
the information provided by the XHints to identify
the irrelevant portions of data in the stream (as ex-
plained later) and request the parser to skip them by
providing appropriate offsets.

The list of interesting events changes temporally as
the data is processed by the query processor and has
to be updated accordingly. For example in case of the
query mentioned above, when the query processor is
at the start of the document shown in Figure 1, the
SAX event corresponding to the book element is an
interesting event. But when the XML parser parses
the start tag of book element at line 5, the book SAX
event is replaced by the discount SAX event as the
interesting event. The book element again becomes
the interesting event when the end tag of the book
element is processed at line 20.

The query engine is responsible for maintaining the
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Figure 2: System Architecture

list of SAX events in the EventList. In order to do
s0, it should be capable of identifying the interesting
SAX events which may contain the query result. The
exact mechanism by which it performs this identifica-
tion depends on its design but we outline the general
idea by describing how can be done for two common
query system architectures.

The query engine interacts with the XHint Man-
ager using a simple well-defined API. The API con-
sists of two functions which may be used by the query
engine to update the EventList. These functions are:

1. int addSAXEvent(String uri, String local-
Name, String PredicateElementLabel, String
Operator, String ConstantValue, int Type)

This function lets the query engine to register an
event with the XHint Manager that needs to be
processed by it. It returns an unique identifier
for the registered event. The interesting SAX
event is identified by its URI and the tag label
of the element called localName. In addition to
these identifiers, if there is a predicate associated
with the event, it is represented as a tuple con-
sisting of the element label in the predicate, the
operator such as < or = and the constant value.
The integer Type is used to denote whether the
query engine is interested in the SAX event as a
descendant or an immediate child of the current
element parsed.

2. void removeSAXEvent(int EventID)

This function removes the event corresponding
to the EventID from the EventList.

Although the API described above can be used
by any query engine to update the list of interesting
events, we illustrate the use of XHints for two query
engines based on different architectures. We focus
primarily on XSQ [18], an automaton based stream-
ing XML processor and provide a detailed description
of how can XHints improve processing efficiency for
different types of XPath queries. Further, in order to
illustrate the generality of the approach, we present
an insight on how XHints can be used in Tukwila [13],
an iterator based query engine.

3. XHints

XHints are special XML elements that are used to
store structural summary about the data in form of
different attribute values. The name of the attribute
determines the kind of structural information stored
in it. These XHints are inserted in the data itself and
can be used by a query processor to process the data
more efficiently.

Although the attributes of a XHint can store a va-
riety of information, we only use four kinds of at-
tributes or hints for XPath query processing over
streaming XML data. These four types of hints are
1) End Hint 2) Child Hint 3) Sibling Hint 4) Descen-
dant Hint. As explained later, these four types of
hints are sufficient to store information useful for a
variety of queries. An example XML dataset is shown
in Figure 4 with the XHints highlighted in italics.

The end hint of a node contains the offset from the
end of the XHint to the end of the node. It is stored
as the value of attribute “end.” This hint allows the
parser to directly skip to the end of an element if the
node or any of its part does not belong to the query
result.

The child hint stores the offsets to different child
elements of a node. The offsets to child elements with
label I are stored as the value of an attribute with [
as the attribute name, in form of a list separated by
colon. The attribute author of the XHint at line 24
in Figure 4 is an example of a child hint. It stores
the offsets and the data digest (described later) of
the three author child elements in a colon-separated
list. These offsets can be used by the query proces-
sor to jump directly to the child elements which may
contain the query result.

Since an element can potentially contain an unlim-
ited number of child elements with the same label,
the size of the XHint can become very large if all
the offsets are stored in it. Sibling Hints are used in
order to limit the maximum size of a XHint. A sib-
ling hint of a node contains offsets to sibling nodes



with the same label and is stored as the value of at-
tribute “sib.” The XHint of a parent node is used to
store only the offsets to first, say ¢ child node with a
particular label. The offsets to the next, say n node
are stored in the c'® child node. The (¢ + n)* node
contains the offset to the next n nodes and so on. In
this manner, the sibling hints allow storing the offsets
to a large number of children nodes without making
one particular XHint very large. The XHint at line
8 in Figure 4 contains a sibling hint to the next book
element,.

For example, if the root element in the dataset
shown in Figure 1 contained a large number, say
10000 book elements instead of 2, storing the offsets
to all of the elements in the XHint of the root will
result in a large XHint. Additionally, storing all the
offsets in the memory is inefficient. Instead, we only
store the offsets to, say the first 500 elements, in the
XHint of the root tag. The offsets to the next 500 ele-
ments are stored as a sibling hint of the XHint of the
500" element. The 100*" element stores the offsets
to the next 500 elements and so on.

XHints can also be used to store information about
the text contained in an element. We propose storing
a summary of the text node in form of a descendant
digest along with the offset as part of the child and
the sibling hint. The query engine can process queries
with predicates more efficiently by using this data
digest in XHints to pre-evaluate predicates and skip
elements that do not satisfy the predicates.

If the text is an alpha-numeric string, we store the
first s characters, typically 3, of the string. If the
constant specified in the predicate does not match
the first s characters of the element, the query pro-
cessor can skip the element since it definitely does
not satisfy the predicate. For example, the XHint
for the first book element at line 8 contains the first
three characters of the text in the author element,
which can be used to evaluate predicate beforehand
as explained later in Example 3.

If the text of the element in the predicate is nu-
meric, the predicate may contain inequality operator
and comparing the first s characters is insufficient to
make inferences about it. We use a different scheme
to generate the descendant digest for such text nodes.
During the XHint generation phase, we obtain the
range of numerical constants occurring for each la-
bel and store them as an attribute called Hash of
the special XML element META. The entire range is
then divided into a fixed number of equal-sized inter-
vals and the interval index of the numerical text of
an element is stored as its descendant digest.

In case of an equality operator, if the interval index

of the constant of the predicate does not match the
index index of the element text, it does not satisfy
the predicate and can be skipped. Similarly in case
of inequality operator, the element can be skipped
if its index is less than or greater than the index of
the constant depending on the type of the inequality
operator. An example of the Hash attribute can be
seen at line 2 in Figure 4. The range of the numerical
values occurring at each label is stored as a list along
with the label tag.

For queries with descendant axes, the XHint Man-
ager requires additional information about the de-
scendants of elements in order to identify irrelevant
data. If the system knows the labels of the descen-
dants of each element, it can avoid parsing the ele-
ments that do not contain the descendant label of the
query.

XHints provide this information about the descen-
dant in a concise form using a bitmap. Each label
occurring in the data is assigned a unique index. If a
particular label occurs as a descendant of the node,
the bit at the index corresponding to the label is set
on. The bitmap is stored as an integer value of the at-
tribute desc of the XHint element. The mapping from
label to index is stored as the value of attribute LIn-
dex of a separate XML element called META used to
store meta-information about XHints. It is a simple
list of label and the bitmap index stored as a string
as shown in line 2 in Figure 4.

4. XHint Processing

We now describe how are XHints used by the XHint
Manager to make processing more efficient. The
parser generates SAX events for the data and sends
them to the XHint Manager for processing. The
XHint Manager handles these events in two possi-
ble ways. If the SAX event corresponds to a data
element, it is forwarded to the query engine other-
wise, if the event is generated by a XHint, it is pro-
cessed by the manager itself. The pseudo code for
the SAX functions of XHint Manager are shown in
Algorithm 1.

The XHint Manager use the list of interesting SAX
events called EventList to process XHints. An inter-
esting SAX event is informally defined as an event
which may contain or determine the query result and
has to be processed by the query engine. The XHint
Manager assumes that these events are identified a
priori and updated in the EventList by the query
engine as the data is processed.

Every event in the EventList is associated with a
tag label of an element the query engine is interested



in. Further, it also stores whether the element can
occur as a descendant or an immediate child of the
current element being parsed by the system, depend-
ing on closure axis in the query expression. It may
also contain an predicate associated with it which has
to be satisfied.

If the query contains only child axes without any
predicates, the interesting events for the query engine
correspond to child element labels. Thus, the relevant
elements which need to be processed by the query
engine are child elements with the label of the event
present in the EventList. During the processing of
a XHint, XHint Manager can use the child hint to
obtain these relevant offsets. The offsets allow the
parser to jump directly to these elements skipping
the remaining elements. In addition to the offsets to
the child elements, the XHint manager uses the end
hint of the XHint to provide the offset from the last
relevant child element to the end of current element.

Example 1 Consider the query /book/title on the
example data shown in Figure 4. The result of the
query consists of the fitle elements at lines 6 — 8 and
22 — 24 of the original XML data (Figure 1). A nor-
mal XPath query engine has to parse and process the
entire data before obtaining the query result. A large
portion of the computational resources used by it is
spent on generating and handling SAX event for the
elements that are not part of the output leading to a
low throughput.

Fig 4 contains the same example dataset with
XHints inserted in it. A query engine can use these
XHints to reduce the query processing cost in the fol-
lowing manner. At the start of the data, the query
engine registers the SAX event corresponding to a
book child element with the XHint Manager. When
the XHint Manager processes the XHint at line 3,
the offsets related to the book child is used by XHint
Manager to directly skip to the first book element at
line 7.

The handling of the SAX event for the book element
is delegated to the query engine. Since the interesting
element inside an book element is an title element, the
query engine on processing the book element removes
book from the event list of the XHint Manager and
adds title to it.

The next XML element to be parsed is the XHint
at line 8, which is handled by the XHint Manager
internally. As the event list now contains the title
event, the manager uses the child hint for title to skip
directly to line 9. After the query processor outputs
the title element, XHint Manager requests the parser
to jump to the end of the book element at line 22
since there are no more interesting SAX events i.e.

title elements). The offset to the end of the book tag
is calculated using the end hint of the XHint at line
8.

When the query engine parses the end tag of book
element, it again updates the XHint Manager’s event
list by removing title and adding the book event to
it. The XHint Manger then processes the second book
element in a similar fashion.

This scheme allows the parser to process only 6 el-
ements compared to 20 elements processed by a nor-
mal query engine. Note that although XHints do not
provide direct offsets to the result elements, they pro-
vide offset information for all children nodes instead
of just one particular type and can be used to skip
data for other similar queries like /book/author and
/book/discount without requiring any additional in-
dexes.

n

In case of queries with predicates, an element is
only relevant if the predicate associated with it is
satisfied. The query engine stores the predicate
along with the other details about the SAX event in
the EventList. XHint Manager uses the information
about the predicate along with the data digest to se-
lect the relevant offsets. If a particular element does
not satisfy an associated predicate, XHint Manager
can avoid parsing the remaining element.

If the predicate is an existential predicate such as
in /book[discount]/title/text(), the presence of a child
hint with the label of the predicate is sufficient to
pre-evaluate the predicate. An element can satisfy
an existential predicate for an element with particular
label [ if and only if the XHint of the element contains
a child hint with label /. In case the XHint does not
contain the child hint, XHint Manager can infer that
the element is not relevant and skip it.

Example 2 Consider the query /book[ discount ]/ti-
tle/text() on the data in Figure 4. The first book ele-
ment satisfies the predicate and its title element be-
longs to the result. However, the second book element
does not satisfy the predicate and can be skipped by
the query processor.

However, a normal query processor is not aware
of this fact and will parse all the 20 elements. Note
that an XHint contains child hints for all the child el-
ements of a parent element. This fact can be used by
a query engine to pre-evaluate the existential predi-
cate. If the XHint of a book element does not contain
a child hint for discount element, the parser can skip
parsing the remaining element.

The query engine can register an “interesting”
events with the XHint Manager with the element tag



label as title and a existential predicate with label
discount on reaching the start of the first book ele-
ment. When the parser reaches line 8 of the example
data, the XHint Manager processes the child hints
present in the XHint of the first book element. Since
it contains the child hint for the SAX event in the
predicate (discount), XHint Manager can infer that
this element satisfies the predicate and thus, use the
offsets from the child hint for title element to skip
parsing other elements. On the other hand, on pro-
cessing the XHint of the second book element at line
24, the absence of a child hint for an element dis-
count allows the XHint Manager to ignore the title
child hint and skip directly to end of the book element
since it does not satisfy the existential predicate.
The query processor only parses 8 elements to pro-
cess the entire data by using XHints saving more than
50% in terms of number of SAX events generated.
n

If the predicate is complex and involves an com-
parison operator, the XHint Manager uses the data
digest, stored in the child hint to reduce the number
of elements parsed in order to evaluate the predicate.
The XHint Manager computes the data digest of the
constant value in the predicate and compares it with
the data digest from appropriate child hints to iden-
tify the elements which cannot satisfy the predicate.
It avoids parsing such elements by skipping directly
to the remaining elements.

Note that although a mismatch in the data digest
guarantees that the element does not satisfy the pred-
icate, a match does not necessarily mean that the ele-
ment will satisfy the predicate. The processor has to
parse the element in order to correctly evaluate the
predicate.

Example 3 Consider the query /book[author="R.
Bazea-Yates”]/title/text() on the example data in
Figure 4. The query contains a predicate with a
string comparison operator. If the query engine does
not have prior information about the text of the au-
thor elements, it has to parse the entire book element
in order to evaluate the predicate.

The XHint Manager helps avoid the overhead of
parsing elements that do not satisfy the predicate by
using the descendant digest present in the XHints. At
the start of the second book element on line 23, the
query engine registers the predicate with the XHint
Manager. The XHint of the element contains the first
three characters of the text in addition to the offsets
to the three author elements. The XHint Manager
uses this digest to evaluate the predicate a priori. In
this case, since the descendant digest of any of the

1.<root>

2. <META LIndexz=’’address 0 name 1 pub 2
edition 3 discount 4 price 5 year 6
title 7 author 8 mag 9 book 10°’
Hash=’’price:15-60 discount:10-10°’/>

3. <Hint end=’’768’’ desc=’’2556"’ mag=’’2""
book=""67"/>

. <mag>

<title> Times </times>

. </mag>

. <book>

<Hint end=’’320’’ desc=’’3’’ sib=""329""

title=’’2’’ discount=’’46-0""

price’’92-0’’ edition="’129-thi’’

pub=’’149’’ author=’"’235-Ric’’/>

9. <title>

10. Modern Information Retrieval

11. </title>

12. <discount> 10 </discount>

13. <price> 15 </price>

14. <edition> third </edition>

15. <pub>

16. <name>Addison Wesely</name>

17. <address>

18. 34 Broadway, N.Y. U.S.A

19. </address>

0~ o o

20. </pub>
21. <author> Ricardo Baeza-Yates </author>
22.</book>
23.< book >
24 . <Hint end=’’213°’ desc=’’0’’ title="’2""

price=’’34-1’’ edition="’96-sec’’
author=’’123-Hec:165-Jef:198-Jen’’>
25. <title>
26. Database Systems:
27. </title>
28. <price> 60 </price>
29. <edition>second </edition>
30. <author> Hector Garcia-Molina </author>
31. <author> Jeffrey D. Ullman < /author>
32. <author> Jennifer Widom </author>
33.</book>
34</root>

The Complete Book

Figure 3: XML data with XHints



three elements does not match the first three charac-
ter of the constant in the predicate, XHint Manager
requests the parser to skip all the child elements and
directly go to the end tag of book element at line 33.
But note that matching of the two descendant di-
gest does not guarantee that the predicate will be sat-
isfied by the element. For example, if the constant in
the predicate was “Jeff Ullman” instead of “R. Bazea-
Yates,” the descendant digest for the second author
element at line 31 matches with the descendant digest
of the constant though the predicate is not satisfied.
n

The descendant hint present in the XHint is used
for queries with descendant axis. For such queries,
an interesting event can correspond to either a de-
scendant or a child. In this case, XHint Manager
uses the descendant hint of the XHint to determine
if the particular tag label occurs as the descendant
of the current element. If it does, the element can
occur as a child of any of the complex child elements
(ones with their own child elements) and the XHint
Manager stores offset to all such child elements.

Example 4 Consider the query //address on the
data shown in Figure 4. The address label is mapped
to index 0 by the LIndex attribute of the META el-
ement at line 2. Thus, if an element contains a de-
scendant with label address, the 0" bit of the bitmap
in the descendant hint is set on.

The first bit in the descendant bitmap is set for the
XHint of the root tag indicating that it contains at
least one address label as its descendant. As a result,
the query engine leaves all atomic child nodes (since
they cannot have an address element as their child
or descendant) and process the complex child nodes
(with non-text child nodes). In this case, all the three
child elements of root are complex.

When the processor reaches the first book element
at line 7, it again checks the descendant bitmap of
the XHint at line 8 and skips all the child elements
of the first book element except pub that contains the
address element.

In case of the second book element at line 23, the
descendant hint of the second book element has the
value 0 indicating that it does not contain any de-
scendant. As it also does not have a child hint for a
address label, the query processor can jumps directly
to the end of the element at line 33.

The total number of elements parse by the query
engine are 11 compared to 20 elements parsed by a
normal query processor.

[ Ignore the pseudo-code right now. It is

incomplete ]

Algorithm 1 XHint Processing

procedure startElement(SAXEvent e)
1: if e is a XHint then

2:  processXHint(e);

3: else

4:  QueryEngine.startElement(e);
5: end if

procedure endElement (SAXEvent e)
1: if SAXEvent E in EventList then

2:  processXHint(e);

3: else

4:  QueryEngine.endElement(e);

5: end if

6: parser.skipData(OffsetStack.pop());

procedure processXHint(e)

1: for all Events E in EventList do

2 if E is a child Event with label L then

3 if F has an existential predicate with label 7. then

4: if XHint has a child hint for label ' then

5: OffsetStack.add(e.getChildHint(L);

6 end if

7 else if E has an comparison predicate with label L
then

8:

9: end if

10: else if F is a descendant Event with label . then

11: OffsetStack.add(e.getComplexChild());

12: else if E is a predicate event with value v then
13: if v is null then

14:

15: end if
16: end if
17: end for

Figure 1 provides the pseudo-code for the XHint
processing algorithm.

5. XHint Generation

[ Probably a subsection ]

Since XHints contain offset information about the
child and descendant nodes of an element, the child
elements have to be processed before the parent ele-
ment. Typically, a DOM tree of the XML data can be
generated in the memory and processed in a bottom-
up fashion to generate the XHints. However, DOM
trees require the entire data and are not suitable for
unbounded streaming data. Moreover, this scheme
requires pre-processing of the data and is not appli-
cable apply in scenarios which require real-time gen-
eration of XHints.

The alternative is to parse the stream and gener-
ate the hints on-the-fly. The XHint Generator uses a
fixed-size buffer to parse and store information about



the XML elements in memory. When the parser
reaches the end of an element, the generator uses the
information about the child and descendant nodes to
generate XHint for the element. These XHints are
stored in the memory along with the element. When
the generator reaches its buffer limit, it inserts the
XHints at appropriate places in the data and outputs
it.

Note that since we use fixed sized buffer, the XHint
generator may not read complete elements before the
buffer size limit is reached. In this case, a XHint for
an incomplete element can only contain information
about the portion of element processed until now.
Thus, instead of the offset to the end of the node,
the end hint contains the offset to the last processed
child node of the incomplete element. When the next
data chunk is processed, the XHint generator inserts
a XHint at the end of the incomplete data node. This
XHint is used to store information about the remain-
ing portion of the parent element. We also insert
a new META element containing meta-information
about the XHints at the start of the data chunk.

For each data chunk, a bottom to up approach is
followed to generate the various offsets stored in the
XHints. The offsets and descendant digest of child
elements are generated after each child node is pro-
cessed. Once the entire parent element is parsed,
these offsets and descendant digest are inserted in the
XHint. The length of the element is also computed,
which includes the length of the child elements along
with their XHints.

However, XHints of all elements are not useful for
the query processor. For example, XHint does not
save on any SAX event for elements with no child
element. Instead, processing of XHints for such ele-
ments results in an overhead. In order to avoid this
overhead, we only insert XHints for elements contain-
ing more than one child element in the stream.

6. Application of XHints

XHints require the query engine to identify the in-
teresting SAX events for the query and update the
EventList as the data is processed. Although the ex-
act mechanism the query engine performs this update
depends on the architecture of the engine, we use two
query systems, XSQ and Tukwila, based on different
architectures to outline the process and demonstrate
the generic appliacability of XHints.
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Figure 4: HPDT for /book]price j 20]//author

6.1 XHints and XSQ

[ Have to work on this section | XSQ is an
automaton based streaming XML query processor
which can evaluate a broad range of XPath ex-
pressions. It constructs a hierarchical automaton
called HPDT from smaller finite state machines called
BPDTs. Each BPDT corresponds to a location step
in the XPath query expression and has a buffer which
is used to store potential query results.

The arcs between the states of HPDT are associ-
ated with element labels and actions. If a SAX event
matches the label associated with an arc, the HPDT
makes a transition along the arc and executes the cor-
responding action. Figure 6.1 shows the HPDT for
the query /book[pricej20]//author.

Note that if a SAX event does not match any arc
from the set of current states, the HPDT does not
perform any transition or action and maintains the
same configuration it was in before processing the
event. In other words, the absence of such SAX event
would not affect the query processing and thus, can
be ignored safely by the XML parser.

This observation provides a simple mechanism to
identify the interesting events using the current states
of HPDT. The interesting events are only those
events which result in any transition in the HPDT.
They are easily identified using the labels of the arcs
from the set of current states.

XSQ-H is a modified version of XSQ which uses
the HPDT to identify the interesting SAX events and
updates them in the EventList of the XHint Manager.

<author:text()]
<author> {QUTPUT value text}



Example 5 Consider the query
/book|pricej20]//author on the XML data of
Figure 4. The HPDT for the query is shown in
Figure 6.1. Initially, the set of current state is
{001}. The arcs from this set of states correspond
to the end tag of root tag and the start tag of book
element. Thus, the interesting events are the end
of the root element and the start of book element.
The XHint Manager processes the XHint at line 2
to obtain the offsets to these two SAX events. The
offset to the first book element is used to skip directly
to line 7. When XSQ-H processes the start tag of the
book element, the HPDT makes a transition from
state 001 to 201. The state 201 has arcs with label
author and price. The closure axes of the author
label is identified by the arc with // label in the
HPDT from the state 201. The predicate constant
and the operator associated with price element are
stored in the arcs from state 202.

XSQ-H can use this information to provide the
XHint Manager with correct interesting events. Since
the

6.2 XHints and Tukwila

Tukwila [13] is an iterator-based query engine capa-
ble of evaluating XQuery expressions on streaming
XML data. The Tukwila engine processes XQuery
expressions in a manner very similar to how queries
are handled in relational databases. The query opti-
mizer uses basic operators to construct and optimize
a plan for the query which is passed to the execution
engine. Figure 6.2 shows an example XQuery and the
corresponding query plan.

The execution plan uses a special operator called
X-scan which is responsible for reading, parsing and
matching the XML data with the regular expressions
in the query. It assigns appropriate binding values to
each XQuery variable and forwards them to remain-
ing operators where they are combined and restruc-
tured. The predicates declared in the WHERE clause
are evaluated using a selection operator.

The X-scan operator consists of a series of finite
state machines (FSMs) which are matched against
the XML data to produce the bindings for the
XQuery variables. It converts all the XPath expres-
sions (which are a restricted form of regular expres-
sions) in the XQuery into state machines. Figure 6.2
shows the state machines for XPath expressions in
the example XQuery. Initially, the machine corre-
sponding to the document root (My) is in the active
mode. Whenever a machine reaches its accept state,
it produces a binding of the variable associated with
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FOR $b IN datastream/root/book,

$p IN $b/pub

$d IN $b/disc

$a IN $b//author

$n IN $p/name

WHERE $d4 < 20

RETURN <publisher>
<name> { $n } </name>
<author> { $a } </name>

</publisher>

Figure 5: Example XQuery

it. The machine then activates the dependent ma-
chines, which remain active while X-scan is scanning
the value of binding.

In absence of any prior information of the XML
data, X-scan operator has to parse every element in
the stream. XHints can be used to avoid this extra
overhead cost by replacing X-scan operator with an
XHint compatible operator called XH-scan.

The XH-scan operator uses the state of the FSMs
to identify the interesting SAX events while parsing
the data. These events are identified using the labels
of the arcs from the current states of the active state
machines. When an active machine makes a transi-
tion to a new state, the label on the arc from the new
state corresponds to an interesting SAX event.

Some of the transitions defined in the state ma-
chines may correspond to an predicate evaluation
which is done by a selection operator in the query
plan. In order to allow the XHint Manager pre-
evaluate the predicate, XH-scan can obtain the in-
formation about the predicates from the selection
operators using simple query plan rewriting rules.
Theinteresting SAX events are registered with the
XHint Manager which uses XHints to skip other ir-
relevant elements.

Example 6 Consider the execution of the sample
XQuery shown in Figure 6.2 on the streaming XML
data of Figure 4. The state machines representing the
XPath expression are shown in Figure 6.2. The pro-
cessing of XHints by these state machines is very sim-
ilar to the processing done by XSQ-H. Since both are
essentially automatons, the interesting SAX events
are defined by the labels on the arcs from the current
state. Additional information about these SAX events
such as the type of azxes (child or descendant), predi-
cates can be stored along with the label on the arcs as

in XSQ-H.
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Initially, the state machine My corresponding to
the /root/book is activated. At the start of the docu-
ment processing, the machine My is in state 1. After
parsing the top most root element, it reaches state
2. This state has an arc with the label book which
also corresponds to the interesting SAX event. The
XHint at line 2 provide the offsets to the two book
elements in the data which can be used to avoid pars-
ing the mag element. When the first book element is
parsed, the machine My reaches its accept state 3. At
this stage, it binds the variable $b with the book ele-
ment and activates the three dependent machines M,
My and Ms for the expressions $b/pub, $b/discount
and $b//author respectively. Now, the interesting
events correspond to the labels on the arcs from the
current states of the activated machines. The arc of
My also contains the information (due to query plan
rewriting) that this SAX event is required for a predi-
cate evaluation and XH-scan accordingly registers the
event by using the XHint Manager API function with
appropriate parameters.

7. Experimental Results

We implemented a prototype of XSQ-H using Java
1.4 and used it to conduct an experimental study to
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evaluate the performance of XHints. Xerces 2.4.0 was
used as the XML parser for XSQ-H. It was modified
to support data skipping.

We measured the throughput of XSQ-H for dif-
ferent kinds of XHints and compared it with other
systems which do not use XHints for query process-
ing. We also conducted experiments to study the ef-
fect of query characteristics on the throughput gain.
Furthermore, we investigated the effect of the buffer
capacity in XHint generation phase on the through-
put gain of the system. Finally, the overhead cost
of generating XHints for streaming XML data was
measured.

7.1 Experimental Setup

We conducted the experiments on a PC-class ma-
chine with an Intel Pentium IIT processor with 1 GB
of main memory running the Red Hat 7.2 distribu-
tion of GNU/Linux (kernel 2.4.9-34). The maximum
amount of memory available to Java Virtual Machine
was set to 512 MB.

We used three real test datasets for our experi-
ments. The characteristics of the datasets are pro-
vided in Table 1.

7.2 Throughput

In the first set of experiments, we investigated the
throughput of the query system for sample queries
on the test datasets. We measured the performance
gain achieved by XSQ-H on data with different types
of XHints. Four kinds of XHints were used to evalu-
ate the performance of the system; 1) XHints gener-
ated offline without descendant hint (XHint-NS), 2)
XHints generated in a streaming fashion with end,
child and sibling hints (XHint-S), 3) XHints gen-
erated offline with descendant hints (XHint-NSB)
and, 4) XHints with descendant hints generated in
a streaming fashion (XHint-SB).

In order to benchmark the performance of the var-
ious type of XHints, we compared the performance
of XSQ-H with systems processing data without
XHints. In addition to XSQ, we chose XMLTK [2], a
streaming query engine implemented in C++ for the
performance comparison. However as XMLTK does
not support query with predicates, we only present
results for XSQ and XSQ-H for such queries.

We measured the throughput of the systems for
14 sample queries on each of the three test datasets.
The results for the SwissProt dataset are shown in
Figures 8 and 9.

For simple queries such as Q2 and Q5 in Figure 8,
XSQ-H performs better than XSQ for all four types



Database | Size Text | Number of | Average | Max. | Average | Xerces Expat
Name (MB) | Size Elements Depth | Depth Tag Parsing | Parsing
(MB) (K) Length | Time (s) | Time (s)
SwissProt | 109 37.1 2,977 3.56 5 6.58 23.7 5.81
DBLP 119 56.7 | 3,332 2.90 6 5.81 27.6 7.53
PSD 716 105.2 | 21,305 5.15 7 6.33 170.2 66.40
Table 1: Test Datasets

of XHints. However, XHint-NS and XHint-S perform 35 XSQH ——

marginally better than their counterpart containing st nggHEE """""

the descendant hint. Tt is expected since XSQ-H o —

does not use the descendant hint for processing such
queries and the additional data overhead in case of
XHint-NSB and XHint-SB result in a slight perfor-
mance degradation.

But the benefit of the descendant bitmap can be
observed for closure containing queries such as Q1
and Q6 in Figure 8. For such queries, XHint-NS
and XHint-S do not provide sufficient information for
XSQ-H to skip substantial amount of data and the
additional cost of parsing XHints lowers its through-
put. This information is provided in form of the de-
scendant bitmap by XHint-NSB and XHint-SB which
allow the query processor to reduce the parsing cost
by a large margin. The benefit of the descendant
bitmap is particularly large for Q7 in Figure 9. In
case of XHint-NSB and XSQ-SB, the descendant hint
at the top level is used by XSQ-H to infer that the
tag label NoResult does not occur at all in the data
stream and skip the entire data resulting in a very
high throughput not possible in case of XHint-N§S,
XHint-S or XSQ with no XHints.

The data digest present in XHint-SB and XHint-
NSB improve the throughput of XSQ-H for queries
predicates such as Q3 in Figure 8 and Q2 in Figure 9.
The pre-evaluation of the predicate allows parser to
skip more data in case of XHint-NSB and XHint-SB
and provide an higher throughput.

XSQ-H performs better than XMLTK for most of
the queries such as Q5, Q6 and Q7 in Figure 8 but has
a lower throughput than XMLTK for queries such as
Q1 in Figure 9. This query has a very low throughput
in case of XSQ-H because the query result contains
the entire data stream. As a result, the XHints do
not provide any benefit and are instead an overhead
on the system.

The throughput for the systems for the sample
queries on the DBLP dataset are shown in Figures 10
and 11. As with the SwissProt dataset, XSQ-H out-
performs XSQ by a significant margin for the sample
queries. However, we can observe small difference
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Figure 8: Normalized Throughput for different
queries on SwissProt

in the performance of XSQ-H for different kinds of
XHints in case of simple queries such as Q6 and Q7
in Figure 11. XSQ-NS has the highest throughput
out of all the systems followed by XSQ-S, XSQ-NSB
and XSQ-SB in that order. The offline generation of
XHints allow faster processing of XHints compared
to the on-the-fly generation of XHints in a streaming
fashion. This difference in the throughput is expected
as offline generation of XHints allow XHint to store
information about the complete data instead of only
a part of it. However, the degradation in the perfor-
mance in case of on-the-fly generation of XHints is
very small and is an acceptable trade-off for a pure
streaming system.

The descendant hint in XHint-NSB and XHint-
SB are responsible for extra computation for XSQ-H,
but do not provide any additional benefit for simple
queries. However the slight degradation in the perfor-
mance of XSQ-H in case of XHint-NSB and XHint-SB
can be justified by the performance gain provided by
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the descendant bitmap in case of queries containing
closure as can be seen in case of Q1 and Q4 in Fig-
ure 10.

We compared the throughput of XHints with dif-
ferent systems. But, in some sense, it is not fair to
compare the performance gain achieved by BPDT
based systems like XSQ by using XHints with sim-
pler XPath query engines such as XMLTK due to ar-
chitectural and implementation differences. XMLTK
uses a simple DFA without any buffering to evaluate
the query. On the other hand, since XSQ support a
wider range of XPath queries, they use buffering and
additional computational checks which may not be
useful for simpler queries but reduce the processing
speed.

An alternative metric that can be used to compare
the performance of different systems is the number of
SAX events processed. It is reasonable to assume that
if two systems have same architecture and backend
processing power, the system processing the lesser
number of SAX events will perform better.

We measured the number of SAX events gener-
ated by the different systems on the three datasets.
As both XSQ and XMLTK do not skip any data,
they process the same number of SAX events for all
queries. XSQ-H used the XHints to skip different
number of SAX events depending on the query and
the type of XHints available in the data stream.

The number of SAX events for the sample queries
on the SwissProt database are shown in Figures 12
and 13. XHints result in a significant reduction in the
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number of SAX events generated by the parser. As
expected, XHint-SB and XHint-NSB provide a larger
reduction in the number of SAX events for queries
with closures than XHint-NS and XHint-S due to the
descendant hint.

The data digest also reduces the number of SAX
events generated by the parser as it can be seen for
Q3 in Figure 12. The reduction in the number of SAX
events is reflected in the increase in the throughput of
the system supporting our thesis that SAX event gen-
eration and processing constitutes a major portion of
query processing.
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Figure 12: SAX Events Processed for different queries
on SwissProt

Figures 14 and 15 show the number of SAX events
processed by the query engine on the DBLP dataset.
The reduction in the number of SAX events is more

7.3 Query Characterstic

As it can be seen from the throughput results for var-
ious sample queries on the test datasets, XSQ-H pro-
vides a better throughput than XSQ and XMLTK in
most cases. However, the actual gain in the through-
put varies significantly and depends on the query. We
conducted experiments to observe the effect of the
various query characterstics on the throughput gain
achieved by XSQ-H.

The length of a query is defined as the number
of location steps in the expresions and is an impor-
tant characterstic. We ran four queries with different
length on the SwissProt dataset. It can be observed
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Figure 13: SAX Events Processed for different queries
on SwissProt

I
o

XSQ-H ——
XSQ-HS -
40 XSQ-HB -
P - - XSQ-HBS
235t XMLTK and XSQ -----
g . !
S 30t
2
S 25
w
Z o0t
(2]
215 F
5
3
E 1ol
z |
51 [l
0 L T T
at @ 3 a4 o5 @ Q7

Queries on dblp
Q1://ee/text ()
Q2://editor/text ()
Q3:/inproceedings [author]/title/text ()
Q4://article[year=1997]//cdrom/text ()
Qb:/article/title/text ()
Q6:/phdthesis/school/text ()
Q7:/mastersthesis[url]/title/text ()

Figure 14: SAX Events generated for different queries
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from Figure 16 that the throughput of XSQ-H in-
creases with the length of the query. Longer queries
usually have smaller query results and allow XSQ-
H skip larger amount of data resulting in a higher
throughput.
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Figure 16: Normalized Throughput for queries with
different length
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The throughput of XSQ-H also greatly depends on
the presence of descendant axis in the query expres-
sion. We used a set of queries different in the num-
ber and position of descendant axis on the SwissProt
dataset to study this effect. The queries and the
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throughput of XSQ-H on the queries are shown in
Figure 17.

As expected, XHint-S and XHint-NS perform very
poorly on all queries except Q3 and Q4. In case
of these two queries, the descendant axis is present
deep in the query expression reducing the overhead
incurred due to absence of information about descen-
dants. On the other hand, the throughput of XHint-
SB and XHint-NSB is consistently high. It is slightly
higher for queries with closure axis deeper in the ex-
pression such as Q4. A deeper descendant axis allows
XSQ-H to ignore a larger number of elements as com-
pared to queries containing the descendant axis closer
to the first location step as in Q1 and Q5.

We also studied how presence of multiple predi-
cates in the query effect the throughput of XSQ-
H. Figure 18 presents the throughput of the sys-
tem for the four type of XHint schemes on sample
queries with predicates. The data digest present in
the XHint-SB and XHint-NSB allow XSQ-H to pre-
evaluate the predicates and reduce the number of
SAX events. As a result, these two XHint schemes
have a higher throughput compared to XHint-S and
XHint-NS. However, XHint-SB and XHint-NSB do
not outperform the other two schemes in case of Q1.
In case of this query, the number of SAX events
skipped using the data digest is relatively very small
since the label in the predicate does not occur fre-
quently in the dataset. Instead, the overhead due to
extra data processing in XHint-NSB and XHint-SB



result in performance degradation.
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Figure 18: Normalized Throughput for queries with

predicates

Q1:/Entry [DISULFID] /Reference/Author/text ()

Q2:/Entry [0rg=Eurkaryotal] /Reference/MUTAGEN

Q3:/Entry [REPEAT] /PROPEP

Q4:/Entry [0rgl /Ref [MedlineID]/Cite/text ()

Qb5:/Entry[0rg=Muridae] /Ref [Med1ineID=9225337] /Cite/

text()

Q6:/Entry/Ref [Med1ineID=9225337]/Cite/text ()

Q7:/Entry/Ref [MedlineID]/Cite/text ()

The information contained in a XHint depends on
the size of the buffer used to store the data during the
XHint generation phase. A larger buffer can allow the
XHint to store additional information about the data
allowing the XHint Manager to skip more data. We
generated XHints for SwissProt dataset with different
buffer size and measured the throughput of four dif-
ferent queries to study how does the efficacy of XHint
vary with the buffer size. As Figure 19 shows, the
throughput of XSQ-H remains drops sharply when
we reduce the buffer size below approximately 10KB.
The throughput only increases marginally if we in-
crease the data size beyond 20-30 KB indicating that
XHints generated using smaller buffer size of a few
KBs are almost as efficient as large buffer size. |
In the actual experiments, we used buffer size
ranging from 1KB to 6MB of raw data. I have
only plotted from 0K to 100K in order to show
the knee point more clearly since the through-
put is almost constant for any buffer size be-
yond a few KBs |

As we observqged before, there is a correlation be-
tween the throughput achieved by XSQ-HB and the
portion of data it processes in number of SAX events.
We use a metric called selectivity defined as the ratio
of the number of SAX events in the query result to
the total number of SAX events to study the correla-
tion.
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Figure 19: Normalized Query Throughput for differ-
ent, buffer size

Q1:/Entry/Features/DOMAIN/Descr/text ()

Q2:/Entry[0rg] /Ref [MedlineID]/Cite/text ()
Q3:/Entry//Descr/text ()

Q4://Entry[0rgl /Descr//text ()

Q1 | //red

Q2 | /scheme/color/red

Q3 | /scheme[code=2]/color/red
Q4 | /scheme[code=2]//color/red

Table 2: Queries used on Synthetic Datasets

In order to measure the effect of selectivity of the
queries on the throughput of the system, we gener-
ated ten synthetic datasets containing elements with
red and blue as labels. All the datasets were similar
in their characteristics except in the proportion of the
elements with the label red. We ran four queries (Ta-
ble 2) of varying complexity on each of the datasets
and measured the throughput for different values of
the selectivity.

Figure 20 displays the throughput gain of XSQ-HB
compared to XSQ and XMTLK for different values of
selectivity. Throughput gain of XSQ-HB compared
to other system is defined as the ratio of the through-
put of XSQ-HB and the throughput of the system.
As XMLTK does not support predicates, XSQ-HB is
compared with XMLTK for only the first two queries.

It can be observed that XSQ-HB provides a
speedup in processing of the data for a wide range
of selectivity. As expected, XSQ-HB provides a high
throughput gain for low selectivity compared to XSQ
and XMLTK. The performance worsens for high se-
lectivity as the processor cannot skip sufficient ele-
ments.
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Figure 20: Effect of Query Selectivity

7.4 XHint Generation

We conducted experiments to evaluate the scalability
and feasibility of the streaming XHint generation al-
gorithm. One of the important parameters in XHint
generation is the size of the buffer allotted to the sys-
tem. We generated XHints for the test datasets for
different values of buffer size and measured the time
taken to process the entire dataset. The result is dis-
played as throughput of the XHint generation system
in Figure 21. The XHint generator has to compute
and handle greater amount of data if its buffer size
is large. If we use smaller amount of buffer size, the
computation of the offsets in the XHints are done
faster. As a result the throughput falls with increase
in the buffersize. We also show the actual time taken
to generate hints for two of the test datasets in Fig-
ure 22 to provide a different perspective.

The insertion of XHints in the XML data results
in an increase in the data size that has to be sent
to the query processor. We measured this overhead
in terms of the percentage increase in the data due
to addition of XHints for datasets of different sizes.
As Figure 23 indicates, the percentage overhead in
the data decreases with increase in the dataset size.
Small sized datasets have a low number of elements
and the XHint constitute a significant portion of the
data in terms of size. As the size of the data increases,
the number of XHints needed to store offset summary
of the data does not increase in the same proportion
as the data elements since the atomic and text nodes
of the data do not contain XHints. As a result, the
percentage overhead of inserting XHints decreases as
the data size increases.
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8. Related Work

A large number of techniques have been proposed
in recent years to make query processing efficient on
streaming semistructured data. The idea of inserting
punctuations in a data stream to assist query process-
ing was first introduced in [19]. The punctuation were
in the form of predicates and allowed the query pro-
cessor to infer the absence of certain elements in the
data following the punctuation. A binary encoded
index called SIX has been used to make processing
faster for simple queries in [11]. SIX stores the off-
sets to the start and end of the elements in the data
stream. The query processor can use the offsets to
skip processing data in much the same way as XSQ-
HB. The MatchMaker system [14] addresses a similar
problem of matching an incoming data stream to a
large number of queries by using indexes on the query
patterns. This problem is dual to the conventional
query processing problem in that the size of the data
is small compared to the number of queries.

Several query engines have been presented for
streaming XML data. The XML Streaming Ma-
chine (XSM) [16] decomposes the queries into sim-
pler subexpressions and uses a chaining method to
process the subexpressions individually. XSQ [18]
and XPush [12] use an automaton based approach
to process streaming XML data. XSQ constructs an
hierarichal automaton called HPDT from the queries.
On the other hand, XPush uses a lazy deterministic
finite automaton to process the queries.

A lot of work has been done for non-streaming
databases. Dataguides [10] were one of earliest
framework designed to provide a structural summary
of semistructured data. Template Indexes or T-
Indexes [17] and Index Fabric [7] are based upon gen-
erating indexes on data paths, which are matched to
the query to obtain the offsets to relevant elements.
The XML Indexing and Storage System (XISS) [15]
employs a numbering scheme to index elements and
attributes.

An adaptive indexing scheme for non-streaming
XML data is presented in APEX [6]. APEX stores
indexes for only the most frequently used paths which
can be updated incrementally depending on changes
in the query workload. It would be interesting to
use this idea and study how query workload can be
used to estimate the utility of a XHint in terms of
the speedup it provides and insert only the most use-
ful XHints based on this estimate. More recently,
another dynamic index called ViST was proposed
in [20]. It represents XML database and the query as
structure-encoded sequences reducing the problem to
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that of matching subsequences. Unlike other indexes,
it processes the query as whole without decomposing
it into sub-queries saving on expensive join operations
required to merge the sub-query results. An adap-
tive version of the T-Indexes [17] called D(k)-Indexes
is proposed in [5]. D(k)-indexes provide an updating
mechanism storing only the most useful path indexes
depending on the query workload.

A number of systems have been developed to ad-
dress a closely related problem of filtering XML doc-
uments based on XPath queries. Indez-filters [3] use
an idea very similar to XHints to skip irrelevant data
to process data efficiently. It constructs indexes over
the tags of the document in order to identify the por-
tions of the data that are guaranteed not to match
the query and does not parse them. XFilter [1] and
YFilter [9, 8] construct finite automaton machines
from multiple queries to perform the filtering opera-
tion. X Trie was proposed in [4] to index the XPath
queries based on common subexpressions.

9. Conclusion

XML parsing is responsible for a substantial portion
of query processing time. A query engine can signifi-
cantly improve its throughput if it can skip elements
which do not belong to the query result. We proposed
an indexing scheme that allows the query engine to
skip large portions of irrelevant data improving its
processing speed. The index uses special XML el-
ements called XHints, interleaved with the data, to
store structural information about the data elements.
This information is used by the query engine to iden-
tify the elements that can be safely skipped and re-
duce the overhead of parsing.

We illustrated how four types of offset information
or hints can be used by an query processor to improve
the throughput for a large variety of simple and com-
plex queries.

We described XSQ-H, a XHint-enabled version of
XSQ, a streaming XML query engine as an concrete
application of XHints. In order to demonstrate the
genericity of the approach, we gave a brief outline
of how XHints can also be used in an iterator-based
model such as Tukwila to process queries more effi-
ciently.

Finally, we evaluated the benefits of XHints by run-
ning several experiments on a prototype of XSQ-H us-
ing test datasets. We also conducted comprehensive
expriments to measure the overhead cost of generat-
ing and inserting XHints in different datasets.
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