
Pro
essing XPath Queries with Sele
tive Parsing using XHintsAkhil Gupta Sudarshan S. ChawatheDepartment of Computer S
ien
e, University of Maryland, College Park, MD-20742, USAfakhilg,
hawg�
s.umd.eduNovember 25, 2003Abstra
tWhen streaming semi-stru
tured data is pro
essed bya well-designed query pro
essor, parsing
onstitutesa signi�
ant portion of the running time. Furtherimprovements in performan
e therefore require somemethod to over
ome the high
ost of parsing. Wehave designed a general-purpose me
hanism by whi
ha produ
er of streaming data may augment the datastream with hints that permit a downstream pro-
essor to skip parsing parts of the stream. Insert-ing su
h hints requires additional pro
essing by theprodu
er of data; however, the resulting stream ismore valuable to
onsumers, making su
h pro
essingworthwhile. In this paper, we fo
us on hints that aredesigned to improve the throughput of a streamingXML query engine. We present a set of hint s
hemesand des
ribe how
an a query engine improve its per-forman
e by taking advantage of the hints. Finally,we demonstrate the bene�ts of our approa
h using anexperimental study.1. Introdu
tionStreaming semi-stru
tured data pro
essing has re-
ently gained immense importan
e, parti
ularly inthe area of publishing and subs
ription servi
es. Inmost of these appli
ations, the data is generated andsent by a server to a large number of subs
ribed
lients in form of a stream. The
lients may be inter-ested in di�erent portions of the data whi
h
an berepresented in form of a query (e.g. XPath expres-sion) and has to be evaluated on the data stream toobtain the relevant portions of data.A simple ar
hite
ture for su
h an appli
ation isa
entralized system where the
lients submit theirqueries to a
entral data server. The server performsthe ne
essary query evaluation and sends the appro-priate portions of the data to ea
h
lient. Althoughthis s
heme has a low overhead in terms of amount of

data sent a
ross network, it requires a large overlayof resour
es at the server side and is not s
alable.An alternative method is to send the data stream toea
h
lient using either uni
ast or multi
ast networkmethods and leave it to ea
h
lient to pi
k the data itneeds. The advantage of this approa
h is its simpli
-ity, low pro
essing
ost at the server and s
alabilityto a large number of
lients. However, it su�ers fromthe disadvantage of requiring ea
h
lient to performpotentially large amount of redundant work. Thisproblem is exa
erbated by the presen
e of low-power
lients su
h as PDAs and Web-enabled phones andrequires a me
hanism to redu
e the
omputationalload on the
lient query pro
essors.It has been observed that even well-implementedstream pro
essors [2, 18℄ spend a large fra
tion (typi-
ally well over 50%) of their CPU resour
es on simplyparsing the input stream. Clearly, this fa
t limits theamount of further improvement a
hievable by te
h-niques that operate post-parsing. Thus, there is aneed for methods that
an sidestep the
ost of pars-ing data that is irrelevant to a query. We de�ne irrel-evant data as the data whose presen
e in the inputstream does not a�e
t the results of the query in anyway.For example,
onsider the XPath query/book[dis
ount℄/title on the sample XML datashown in Figure 1. For this parti
ular query, a bookelement is relevant if and only if it
ontains bothtitle and dis
ount
hild elements. Thus, the se
ondbook element (lines 21-30 of Figure 1) is irrelevantand
an be skipped entirely by a query engine as itdoes not a�e
t the query result. Similarly, even inthe �rst book element, elements other than the titleelement do not a�e
t the query result and
an beskipped by the query engine redu
ing the parsing
ost.Indexes have been typi
ally used to avoid parsingirrelevant data by providing dire
t a

ess to the ele-ments. But traditional approa
hes for indexing semi-1

1.<root>2. <mag>3. <name>Times</name>4. </mag>5. <book>6. <title>7. Modern Information Retrieval8. </title>9. <dis
ount> 10 </dis
ount>10. <pri
e> 15 </pri
e>11. <year> 1972 </year>12. <edition> 3 </edition>13. <pub>14. <name>Addison Wesley</name>15. <address>16. 34 Broadway, N.Y. U.S.A17. </address>18. </pub>19. <author> Ri
ardo Baeza-Yates </author>20.</book>21.< book >22. <title>23. Database Systems:The Complete Book24. </title>25. <pri
e> 60 </pri
e>26. <edition> 2 </edition>27. <author> He
tor Gar
ia-Molina </author>28. <author> Jeffrey D. Ullman </author>29. <author> Jennifer Widom </author>30.</book>31.</root>Figure 1: Example XML datastru
tured data [6, 7, 10, 17℄
annot be applied instreaming environment sin
e the data is unbounded.Moreover, sin
e the data stream in many appli
ationsis generated and sent to
lients in real-time, the in-dexes have to be generated on the
y.An early example of an index for streaming datais the stream index (SIX) [11℄ for XPath queries onXML data. The index stores pointers to the begin-ning and end of ea
h element in a
ompa
t binaryform and is used by the query pro
essor to dire
tlyskip to the elements that mat
h the query.SIX has been shown to have a very low overheadand
an provide signi�
ant speedup to streamingXML query pro
essors for
ertain queries even withthese simple hints. But SIX has very limited util-ity for more
omplex queries
ontaining
losures andpredi
ates. Sin
e the index does not in
orporate anyan
estor-des
endant relation, hints with more infor-

mation are required to eÆ
iently pro
ess even mod-erately
omplex queries su
h as /book//address. Inaddition, as the index
ontains the start and the endo�sets for all elements, it
annot be generated forpartial streaming XML data.In this paper, we propose pla
ing strategi
ally de-signed annotations or hints in the stream. Thesehints,
alled XHints, may be viewed as a temporallydistributed index on the input stream. They storestru
tural information about the data whi
h
an beused by a query engine to identify the irrelevant por-tions and avoid parsing them. We also des
ribe awell-de�ned me
hanism that
an be used by a queryengine to pro
ess XHints in a transparent and mod-ular fashion.Sin
e XHints are inserted as part of the inputdata stream, the stru
ture of XHints depends on thedata representation s
heme. Various s
hemes su
has OEM and XML have been suggested to representsemistru
tured data[Add referen
es to this line℄. Most of these s
hemes model the data in form ofa tree with nodes representing elements or obje
tsand the edges de�ning the hierar
hi
al relationshipbetween di�erent elements.XHints
an be used with any su
h tree-basedrepresentation s
heme. The only requirement onthe s
heme for our approa
h to work is that thetree-stru
tured data is sent a
ross with
hild ele-ments
ompletely nested between the parent ele-ments. However, for
on
reteness, we dis
uss XHintsin
ontext of streaming XML data. XML is one ofthe most popular data representation s
heme and has
ome out as the de fa
to standard for representingsemi-stru
tured data in re
ent years. Moreover, XMLrepresents the data in a nested fashion making it anideal
hoi
e for XHints.[Reword this para. Alsonot sure of the exa
t pla
ement of these twoparas (this one and the one above it. Do I putit in the end or here? ℄The XHints
an be generated at the server end andsent along with the data stream to the
lients. Gen-erating XHints does not require a

ess to the entiredata stream. They are well adapted to being gener-ated in a windowed manner, where portions of dataare bu�ered and augmented with XHints, allowinggeneration of the XHints on-the-
y in real-time.Note, however, that XHints involve sending addi-tional data to
lients and thus do not save on networktransmission
osts in a uni
ast network. In a multi-
ast networks, savings may result from the fa
t that
lients that would otherwise re
eive distin
t streamsnow re
eive the same one. Further, XHints also im-ply some additional
omputation at the server (albeit2

simple, as des
ribed later). However, these additional
osts at the server may be worthwhile be
ause notonly do they improve the eÆ
ien
y of the system asa whole (server and many
lients), they also in
reasethe value of the data provided by the server to a
lient(be
ause it is easier for the
lient to use it).The main
ontributions of this paper are summa-rized below1. To the best of our knowledge, this work is the�rst whi
h attempts to make semistru
turedquery pro
essing more eÆ
ient in a streamingenvironment by allowing the parser to identifyand skip irrelevant data.2. We des
ribe a generi
 framework for XHints thatallows any query engine to pro
ess streamingsemistru
tured data more eÆ
iently. We de-s
ribe the appli
ation of XHints for an auto-mated XPath query pro
essor and an iteratorbased query engine.3. We present an experimental study of our meth-ods that illustrates the bene�ts of our approa
h.The rest of the paper is organized as follows. Se
-tion 2 des
ribes the ar
hite
ture of the XHint sys-tem and the API provided to the query engine. Adetailed des
ription of XHints is presented in se
-tion 3. The pro
essing and generation of XHints aredes
ribed in se
tion 4 and 5 respe
tively. The appli-
ation of XHints on two query engines is presented inse
tion 6. Se
tion 7 presents the performan
e eval-uation of XHints. The related work is des
ribed inse
tion 8. Finally, the
on
lusion and possible futurework is presented in se
tion 9.2. System Ar
hite
tureA normal streaming XML pro
essor uses an XMLparser whi
h generates SAX events for every elementin the data stream. Thus, the pro
essor has to parseand pro
ess SAX events for all data elements, eventhough a large portion of the data may not be part ofthe query result. This extra pro
essing of irrelevantelements results in a high overhead and subsequently,a lower query result throughput.XHints are designed to redu
e this overhead byallowing the parser to skip portions of data whi
hdo not
ontain any query result. The pro
essing ofXHints is
ompletely separated and hidden from thequery engine. They are handled by a XHint Managerthat provides a
ommon interfa
e to the query pro-
essor. As des
ribed later, the query pro
essor is only

expe
ted to perform minimal additional pro
essing toassist the XHint Manager. Figure 2 displays the sys-tem ar
hite
ture of a XHint-enabled query pro
essor.The XHint Manager a
ts as a proxy between thequery pro
essor and the XML parser. The parsergenerates the SAX events for the pro
essed data andsends them to the XHint Manager for pro
essing.The XHint Manager may handle the event internally(if it is a XHint) or forward it to be pro
essed by thequery engine (if it is a data element). It also main-tains a list of interesting SAX events referred as theEventList.An interesting SAX event is informally de�ned asan event whi
h the query pro
essor has to pro
ess inorder to evaluate the query
orre
tly. For example,a query engine with the query /book/dis
ount on theexample XML data (Figure 1) has to pro
ess everybook element with a dis
ount
hild element. Thus,the SAX event
orresponding to the book element atline 5 in Figure 1 is an interesting event for this par-ti
ular query.If the query
ontains a predi
ate as in /book[pri
e< 20℄/pub//name, the SAX event
orresponding tothe element with the predi
ate is interesting if andonly if the predi
ate is satis�ed by the element. Inthe
ase of example query, the book element is notinteresting if it does not
ontain a pri
e element withvalue less than 20.If the query expression has an element label follow-ing a
losure axes, the query engine is only interestedin elements
ontaining a des
endant with that par-ti
ular label. For example in the above query, any
hild element of the book element that may
ontaina des
endant with label name is an interesting SAXevent.The XHint Manager uses the EventList along withthe information provided by the XHints to identifythe irrelevant portions of data in the stream (as ex-plained later) and request the parser to skip them byproviding appropriate o�sets.The list of interesting events
hanges temporally asthe data is pro
essed by the query pro
essor and hasto be updated a

ordingly. For example in
ase of thequery mentioned above, when the query pro
essor isat the start of the do
ument shown in Figure 1, theSAX event
orresponding to the book element is aninteresting event. But when the XML parser parsesthe start tag of book element at line 5, the book SAXevent is repla
ed by the dis
ount SAX event as theinteresting event. The book element again be
omesthe interesting event when the end tag of the bookelement is pro
essed at line 20.The query engine is responsible for maintaining the3

SAX XML Parser

XHint Manager

XPath Query
 Engine

SAX EventHandler

Data Stream
XML

with
XHintsFigure 2: System Ar
hite
turelist of SAX events in the EventList. In order to doso, it should be
apable of identifying the interestingSAX events whi
h may
ontain the query result. Theexa
t me
hanism by whi
h it performs this identi�
a-tion depends on its design but we outline the generalidea by des
ribing how
an be done for two
ommonquery system ar
hite
tures.The query engine intera
ts with the XHint Man-ager using a simple well-de�ned API. The API
on-sists of two fun
tions whi
h may be used by the queryengine to update the EventList. These fun
tions are:1. int addSAXEvent(String uri, String lo
al-Name, String Predi
ateElementLabel, StringOperator, String ConstantValue, int Type)This fun
tion lets the query engine to register anevent with the XHint Manager that needs to bepro
essed by it. It returns an unique identi�erfor the registered event. The interesting SAXevent is identi�ed by its URI and the tag labelof the element
alled lo
alName. In addition tothese identi�ers, if there is a predi
ate asso
iatedwith the event, it is represented as a tuple
on-sisting of the element label in the predi
ate, theoperator su
h as < or = and the
onstant value.The integer Type is used to denote whether thequery engine is interested in the SAX event as ades
endant or an immediate
hild of the
urrentelement parsed.2. void removeSAXEvent(int EventID)This fun
tion removes the event
orrespondingto the EventID from the EventList.

Although the API des
ribed above
an be usedby any query engine to update the list of interestingevents, we illustrate the use of XHints for two queryengines based on di�erent ar
hite
tures. We fo
usprimarily on XSQ [18℄, an automaton based stream-ing XML pro
essor and provide a detailed des
riptionof how
an XHints improve pro
essing eÆ
ien
y fordi�erent types of XPath queries. Further, in order toillustrate the generality of the approa
h, we presentan insight on how XHints
an be used in Tukwila [13℄,an iterator based query engine.3. XHintsXHints are spe
ial XML elements that are used tostore stru
tural summary about the data in form ofdi�erent attribute values. The name of the attributedetermines the kind of stru
tural information storedin it. These XHints are inserted in the data itself and
an be used by a query pro
essor to pro
ess the datamore eÆ
iently.Although the attributes of a XHint
an store a va-riety of information, we only use four kinds of at-tributes or hints for XPath query pro
essing overstreaming XML data. These four types of hints are1) End Hint 2) Child Hint 3) Sibling Hint 4) Des
en-dant Hint. As explained later, these four types ofhints are suÆ
ient to store information useful for avariety of queries. An example XML dataset is shownin Figure 4 with the XHints highlighted in itali
s.The end hint of a node
ontains the o�set from theend of the XHint to the end of the node. It is storedas the value of attribute \end." This hint allows theparser to dire
tly skip to the end of an element if thenode or any of its part does not belong to the queryresult.The
hild hint stores the o�sets to di�erent
hildelements of a node. The o�sets to
hild elements withlabel l are stored as the value of an attribute with las the attribute name, in form of a list separated by
olon. The attribute author of the XHint at line 24in Figure 4 is an example of a
hild hint. It storesthe o�sets and the data digest (des
ribed later) ofthe three author
hild elements in a
olon-separatedlist. These o�sets
an be used by the query pro
es-sor to jump dire
tly to the
hild elements whi
h may
ontain the query result.Sin
e an element
an potentially
ontain an unlim-ited number of
hild elements with the same label,the size of the XHint
an be
ome very large if allthe o�sets are stored in it. Sibling Hints are used inorder to limit the maximum size of a XHint. A sib-ling hint of a node
ontains o�sets to sibling nodes4

with the same label and is stored as the value of at-tribute \sib." The XHint of a parent node is used tostore only the o�sets to �rst, say

hild node with aparti
ular label. The o�sets to the next, say n nodeare stored in the
th
hild node. The (
 + n)th node
ontains the o�set to the next n nodes and so on. Inthis manner, the sibling hints allow storing the o�setsto a large number of
hildren nodes without makingone parti
ular XHint very large. The XHint at line8 in Figure 4
ontains a sibling hint to the next bookelement.For example, if the root element in the datasetshown in Figure 1
ontained a large number, say10000 book elements instead of 2, storing the o�setsto all of the elements in the XHint of the root willresult in a large XHint. Additionally, storing all theo�sets in the memory is ineÆ
ient. Instead, we onlystore the o�sets to, say the �rst 500 elements, in theXHint of the root tag. The o�sets to the next 500 ele-ments are stored as a sibling hint of the XHint of the500th element. The 100th element stores the o�setsto the next 500 elements and so on.XHints
an also be used to store information aboutthe text
ontained in an element. We propose storinga summary of the text node in form of a des
endantdigest along with the o�set as part of the
hild andthe sibling hint. The query engine
an pro
ess querieswith predi
ates more eÆ
iently by using this datadigest in XHints to pre-evaluate predi
ates and skipelements that do not satisfy the predi
ates.If the text is an alpha-numeri
 string, we store the�rst s
hara
ters, typi
ally 3, of the string. If the
onstant spe
i�ed in the predi
ate does not mat
hthe �rst s
hara
ters of the element, the query pro-
essor
an skip the element sin
e it de�nitely doesnot satisfy the predi
ate. For example, the XHintfor the �rst book element at line 8
ontains the �rstthree
hara
ters of the text in the author element,whi
h
an be used to evaluate predi
ate beforehandas explained later in Example 3.If the text of the element in the predi
ate is nu-meri
, the predi
ate may
ontain inequality operatorand
omparing the �rst s
hara
ters is insuÆ
ient tomake inferen
es about it. We use a di�erent s
hemeto generate the des
endant digest for su
h text nodes.During the XHint generation phase, we obtain therange of numeri
al
onstants o

urring for ea
h la-bel and store them as an attribute
alled Hash ofthe spe
ial XML element META. The entire range isthen divided into a �xed number of equal-sized inter-vals and the interval index of the numeri
al text ofan element is stored as its des
endant digest.In
ase of an equality operator, if the interval index

of the
onstant of the predi
ate does not mat
h theindex index of the element text, it does not satisfythe predi
ate and
an be skipped. Similarly in
aseof inequality operator, the element
an be skippedif its index is less than or greater than the index ofthe
onstant depending on the type of the inequalityoperator. An example of the Hash attribute
an beseen at line 2 in Figure 4. The range of the numeri
alvalues o

urring at ea
h label is stored as a list alongwith the label tag.For queries with des
endant axes, the XHint Man-ager requires additional information about the de-s
endants of elements in order to identify irrelevantdata. If the system knows the labels of the des
en-dants of ea
h element, it
an avoid parsing the ele-ments that do not
ontain the des
endant label of thequery.XHints provide this information about the des
en-dant in a
on
ise form using a bitmap. Ea
h labelo

urring in the data is assigned a unique index. If aparti
ular label o

urs as a des
endant of the node,the bit at the index
orresponding to the label is seton. The bitmap is stored as an integer value of the at-tribute des
 of the XHint element. The mapping fromlabel to index is stored as the value of attribute LIn-dex of a separate XML element
alled META used tostore meta-information about XHints. It is a simplelist of label and the bitmap index stored as a stringas shown in line 2 in Figure 4.4. XHint Pro
essingWe now des
ribe how are XHints used by the XHintManager to make pro
essing more eÆ
ient. Theparser generates SAX events for the data and sendsthem to the XHint Manager for pro
essing. TheXHint Manager handles these events in two possi-ble ways. If the SAX event
orresponds to a dataelement, it is forwarded to the query engine other-wise, if the event is generated by a XHint, it is pro-
essed by the manager itself. The pseudo
ode forthe SAX fun
tions of XHint Manager are shown inAlgorithm 1.The XHint Manager use the list of interesting SAXevents
alled EventList to pro
ess XHints. An inter-esting SAX event is informally de�ned as an eventwhi
h may
ontain or determine the query result andhas to be pro
essed by the query engine. The XHintManager assumes that these events are identi�ed apriori and updated in the EventList by the queryengine as the data is pro
essed.Every event in the EventList is asso
iated with atag label of an element the query engine is interested5

in. Further, it also stores whether the element
ano

ur as a des
endant or an immediate
hild of the
urrent element being parsed by the system, depend-ing on
losure axis in the query expression. It mayalso
ontain an predi
ate asso
iated with it whi
h hasto be satis�ed.If the query
ontains only
hild axes without anypredi
ates, the interesting events for the query engine
orrespond to
hild element labels. Thus, the relevantelements whi
h need to be pro
essed by the queryengine are
hild elements with the label of the eventpresent in the EventList. During the pro
essing ofa XHint, XHint Manager
an use the
hild hint toobtain these relevant o�sets. The o�sets allow theparser to jump dire
tly to these elements skippingthe remaining elements. In addition to the o�sets tothe
hild elements, the XHint manager uses the endhint of the XHint to provide the o�set from the lastrelevant
hild element to the end of
urrent element.Example 1 Consider the query /book/title on theexample data shown in Figure 4. The result of thequery
onsists of the title elements at lines 6� 8 and22� 24 of the original XML data (Figure 1). A nor-mal XPath query engine has to parse and pro
ess theentire data before obtaining the query result. A largeportion of the
omputational resour
es used by it isspent on generating and handling SAX event for theelements that are not part of the output leading to alow throughput.Fig 4
ontains the same example dataset withXHints inserted in it. A query engine
an use theseXHints to redu
e the query pro
essing
ost in the fol-lowing manner. At the start of the data, the queryengine registers the SAX event
orresponding to abook
hild element with the XHint Manager. Whenthe XHint Manager pro
esses the XHint at line 3,the o�sets related to the book
hild is used by XHintManager to dire
tly skip to the �rst book element atline 7.The handling of the SAX event for the book elementis delegated to the query engine. Sin
e the interestingelement inside an book element is an title element, thequery engine on pro
essing the book element removesbook from the event list of the XHint Manager andadds title to it.The next XML element to be parsed is the XHintat line 8, whi
h is handled by the XHint Managerinternally. As the event list now
ontains the titleevent, the manager uses the
hild hint for title to skipdire
tly to line 9. After the query pro
essor outputsthe title element, XHint Manager requests the parserto jump to the end of the book element at line 22sin
e there are no more interesting SAX events i.e.

title elements). The o�set to the end of the book tagis
al
ulated using the end hint of the XHint at line8. When the query engine parses the end tag of bookelement, it again updates the XHint Manager's eventlist by removing title and adding the book event toit. The XHint Manger then pro
esses the se
ond bookelement in a similar fashion.This s
heme allows the parser to pro
ess only 6 el-ements
ompared to 20 elements pro
essed by a nor-mal query engine. Note that although XHints do notprovide dire
t o�sets to the result elements, they pro-vide o�set information for all
hildren nodes insteadof just one parti
ular type and
an be used to skipdata for other similar queries like /book/author and/book/dis
ount without requiring any additional in-dexes.In
ase of queries with predi
ates, an element isonly relevant if the predi
ate asso
iated with it issatis�ed. The query engine stores the predi
atealong with the other details about the SAX event inthe EventList. XHint Manager uses the informationabout the predi
ate along with the data digest to se-le
t the relevant o�sets. If a parti
ular element doesnot satisfy an asso
iated predi
ate, XHint Manager
an avoid parsing the remaining element.If the predi
ate is an existential predi
ate su
h asin /book[dis
ount℄/title/text(), the presen
e of a
hildhint with the label of the predi
ate is suÆ
ient topre-evaluate the predi
ate. An element
an satisfyan existential predi
ate for an element with parti
ularlabel l if and only if the XHint of the element
ontainsa
hild hint with label l. In
ase the XHint does not
ontain the
hild hint, XHint Manager
an infer thatthe element is not relevant and skip it.Example 2 Consider the query /book[dis
ount ℄/ti-tle/text() on the data in Figure 4. The �rst book ele-ment satis�es the predi
ate and its title element be-longs to the result. However, the se
ond book elementdoes not satisfy the predi
ate and
an be skipped bythe query pro
essor.However, a normal query pro
essor is not awareof this fa
t and will parse all the 20 elements. Notethat an XHint
ontains
hild hints for all the
hild el-ements of a parent element. This fa
t
an be used bya query engine to pre-evaluate the existential predi-
ate. If the XHint of a book element does not
ontaina
hild hint for dis
ount element, the parser
an skipparsing the remaining element.The query engine
an register an \interesting"events with the XHint Manager with the element tag6

label as title and a existential predi
ate with labeldis
ount on rea
hing the start of the �rst book ele-ment. When the parser rea
hes line 8 of the exampledata, the XHint Manager pro
esses the
hild hintspresent in the XHint of the �rst book element. Sin
eit
ontains the
hild hint for the SAX event in thepredi
ate (dis
ount), XHint Manager
an infer thatthis element satis�es the predi
ate and thus, use theo�sets from the
hild hint for title element to skipparsing other elements. On the other hand, on pro-
essing the XHint of the se
ond book element at line24, the absen
e of a
hild hint for an element dis-
ount allows the XHint Manager to ignore the title
hild hint and skip dire
tly to end of the book elementsin
e it does not satisfy the existential predi
ate.The query pro
essor only parses 8 elements to pro-
ess the entire data by using XHints saving more than50% in terms of number of SAX events generated.If the predi
ate is
omplex and involves an
om-parison operator, the XHint Manager uses the datadigest stored in the
hild hint to redu
e the numberof elements parsed in order to evaluate the predi
ate.The XHint Manager
omputes the data digest of the
onstant value in the predi
ate and
ompares it withthe data digest from appropriate
hild hints to iden-tify the elements whi
h
annot satisfy the predi
ate.It avoids parsing su
h elements by skipping dire
tlyto the remaining elements.Note that although a mismat
h in the data digestguarantees that the element does not satisfy the pred-i
ate, a mat
h does not ne
essarily mean that the ele-ment will satisfy the predi
ate. The pro
essor has toparse the element in order to
orre
tly evaluate thepredi
ate.Example 3 Consider the query /book[author="R.Bazea-Yates"℄/title/text() on the example data inFigure 4. The query
ontains a predi
ate with astring
omparison operator. If the query engine doesnot have prior information about the text of the au-thor elements, it has to parse the entire book elementin order to evaluate the predi
ate.The XHint Manager helps avoid the overhead ofparsing elements that do not satisfy the predi
ate byusing the des
endant digest present in the XHints. Atthe start of the se
ond book element on line 23, thequery engine registers the predi
ate with the XHintManager. The XHint of the element
ontains the �rstthree
hara
ters of the text in addition to the o�setsto the three author elements. The XHint Manageruses this digest to evaluate the predi
ate a priori. Inthis
ase, sin
e the des
endant digest of any of the

1.<root>2. <META LIndex=''address 0 name 1 pub 2edition 3 dis
ount 4 pri
e 5 year 6title 7 author 8 mag 9 book 10''Hash=''pri
e:15-60 dis
ount:10-10''/>3. <Hint end=''768'' des
=''255'' mag=''2''book=''67''/>4. <mag>5. <title> Times </times>6. </mag>7. <book>8. <Hint end=''320'' des
=''3'' sib=''329''title=''2'' dis
ount=''46-0''pri
e''92-0'' edition=''129-thi''pub=''149'' author=''235-Ri
''/>9. <title>10. Modern Information Retrieval11. </title>12. <dis
ount> 10 </dis
ount>13. <pri
e> 15 </pri
e>14. <edition> third </edition>15. <pub>16. <name>Addison Wesely</name>17. <address>18. 34 Broadway, N.Y. U.S.A19. </address>20. </pub>21. <author> Ri
ardo Baeza-Yates </author>22.</book>23.< book >24. <Hint end=''213'' des
=''0'' title=''2''pri
e=''34-1'' edition=''96-se
''author=''123-He
:165-Jef:198-Jen''>25. <title>26. Database Systems: The Complete Book27. </title>28. <pri
e> 60 </pri
e>29. <edition>se
ond </edition>30. <author> He
tor Gar
ia-Molina </author>31. <author> Jeffrey D. Ullman </author>32. <author> Jennifer Widom </author>33.</book>34.</root>Figure 3: XML data with XHints
7

three elements does not mat
h the �rst three
hara
-ter of the
onstant in the predi
ate, XHint Managerrequests the parser to skip all the
hild elements anddire
tly go to the end tag of book element at line 33.But note that mat
hing of the two des
endant di-gest does not guarantee that the predi
ate will be sat-is�ed by the element. For example, if the
onstant inthe predi
ate was \Je� Ullman" instead of \R. Bazea-Yates," the des
endant digest for the se
ond authorelement at line 31 mat
hes with the des
endant digestof the
onstant though the predi
ate is not satis�ed.The des
endant hint present in the XHint is usedfor queries with des
endant axis. For su
h queries,an interesting event
an
orrespond to either a de-s
endant or a
hild. In this
ase, XHint Manageruses the des
endant hint of the XHint to determineif the parti
ular tag label o

urs as the des
endantof the
urrent element. If it does, the element
ano

ur as a
hild of any of the
omplex
hild elements(ones with their own
hild elements) and the XHintManager stores o�set to all su
h
hild elements.Example 4 Consider the query //address on thedata shown in Figure 4. The address label is mappedto index 0 by the LIndex attribute of the META el-ement at line 2. Thus, if an element
ontains a de-s
endant with label address, the 0th bit of the bitmapin the des
endant hint is set on.The �rst bit in the des
endant bitmap is set for theXHint of the root tag indi
ating that it
ontains atleast one address label as its des
endant. As a result,the query engine leaves all atomi

hild nodes (sin
ethey
annot have an address element as their
hildor des
endant) and pro
ess the
omplex
hild nodes(with non-text
hild nodes). In this
ase, all the three
hild elements of root are
omplex.When the pro
essor rea
hes the �rst book elementat line 7, it again
he
ks the des
endant bitmap ofthe XHint at line 8 and skips all the
hild elementsof the �rst book element ex
ept pub that
ontains theaddress element.In
ase of the se
ond book element at line 23, thedes
endant hint of the se
ond book element has thevalue 0 indi
ating that it does not
ontain any de-s
endant. As it also does not have a
hild hint for aaddress label, the query pro
essor
an jumps dire
tlyto the end of the element at line 33.The total number of elements parse by the queryengine are 11
ompared to 20 elements parsed by anormal query pro
essor.

[Ignore the pseudo-
ode right now. It isin
omplete ℄Algorithm 1 XHint Pro
essingpro
edure startElement(SAXEvent e)1: if e is a XHint then2: pro
essXHint(e);3: else4: QueryEngine.startElement(e);5: end ifpro
edure endElement (SAXEvent e)1: if SAXEvent E in EventList then2: pro
essXHint(e);3: else4: QueryEngine.endElement(e);5: end if6: parser.skipData(O�setSta
k.pop());pro
edure pro
essXHint(e)1: for all Events E in EventList do2: if E is a
hild Event with label L then3: if E has an existential predi
ate with label L0 then4: if XHint has a
hild hint for label L0 then5: O�setSta
k.add(e.getChildHint(L);6: end if7: else if E has an
omparison predi
ate with label L0then8:9: end if10: else if E is a des
endant Event with label L then11: O�setSta
k.add(e.getComplexChild());12: else if E is a predi
ate event with value v then13: if v is null then14:15: end if16: end if17: end forFigure 1 provides the pseudo-
ode for the XHintpro
essing algorithm.5. XHint Generation[Probably a subse
tion ℄Sin
e XHints
ontain o�set information about the
hild and des
endant nodes of an element, the
hildelements have to be pro
essed before the parent ele-ment. Typi
ally, a DOM tree of the XML data
an begenerated in the memory and pro
essed in a bottom-up fashion to generate the XHints. However, DOMtrees require the entire data and are not suitable forunbounded streaming data. Moreover, this s
hemerequires pre-pro
essing of the data and is not appli-
able apply in s
enarios whi
h require real-time gen-eration of XHints.The alternative is to parse the stream and gener-ate the hints on-the-
y. The XHint Generator uses a�xed-size bu�er to parse and store information about8

the XML elements in memory. When the parserrea
hes the end of an element, the generator uses theinformation about the
hild and des
endant nodes togenerate XHint for the element. These XHints arestored in the memory along with the element. Whenthe generator rea
hes its bu�er limit, it inserts theXHints at appropriate pla
es in the data and outputsit.Note that sin
e we use �xed sized bu�er, the XHintgenerator may not read
omplete elements before thebu�er size limit is rea
hed. In this
ase, a XHint foran in
omplete element
an only
ontain informationabout the portion of element pro
essed until now.Thus, instead of the o�set to the end of the node,the end hint
ontains the o�set to the last pro
essed
hild node of the in
omplete element. When the nextdata
hunk is pro
essed, the XHint generator insertsa XHint at the end of the in
omplete data node. ThisXHint is used to store information about the remain-ing portion of the parent element. We also inserta new META element
ontaining meta-informationabout the XHints at the start of the data
hunk.For ea
h data
hunk, a bottom to up approa
h isfollowed to generate the various o�sets stored in theXHints. The o�sets and des
endant digest of
hildelements are generated after ea
h
hild node is pro-
essed. On
e the entire parent element is parsed,these o�sets and des
endant digest are inserted in theXHint. The length of the element is also
omputed,whi
h in
ludes the length of the
hild elements alongwith their XHints.However, XHints of all elements are not useful forthe query pro
essor. For example, XHint does notsave on any SAX event for elements with no
hildelement. Instead, pro
essing of XHints for su
h ele-ments results in an overhead. In order to avoid thisoverhead, we only insert XHints for elements
ontain-ing more than one
hild element in the stream.6. Appli
ation of XHintsXHints require the query engine to identify the in-teresting SAX events for the query and update theEventList as the data is pro
essed. Although the ex-a
t me
hanism the query engine performs this updatedepends on the ar
hite
ture of the engine, we use twoquery systems, XSQ and Tukwila, based on di�erentar
hite
tures to outline the pro
ess and demonstratethe generi
 applia
ability of XHints.

BPDT 0.0

BPDT 1.1

BPDT 2.2

BPDT 2.3

</price>

<book> </book>
{CLEAR}

<author:text()]
{OUTPUT value text}

000

201

202

203

{UPLOAD}
</author>

<author>

<price>

</price>

<//>

<price:text()>
! [text<20]

{FLUSH}
[text<20]

<price:text()>

{FLUSH}

<author>

</author>

{FLUSH}

</book>
{FLUSH}

{FLUSH}

</root>

<root>
001

204

205 603

501

<//>

</price>

{ENQUEUE value text}
<author:text()]<//>

Figure 4: HPDT for /book[pri
e < 20℄//author6.1 XHints and XSQ[Have to work on this se
tion ℄ XSQ is anautomaton based streaming XML query pro
essorwhi
h
an evaluate a broad range of XPath ex-pressions. It
onstru
ts a hierar
hi
al automaton
alled HPDT from smaller �nite state ma
hines
alledBPDTs. Ea
h BPDT
orresponds to a lo
ation stepin the XPath query expression and has a bu�er whi
his used to store potential query results.The ar
s between the states of HPDT are asso
i-ated with element labels and a
tions. If a SAX eventmat
hes the label asso
iated with an ar
, the HPDTmakes a transition along the ar
 and exe
utes the
or-responding a
tion. Figure 6.1 shows the HPDT forthe query /book[pri
e<20℄//author.Note that if a SAX event does not mat
h any ar
from the set of
urrent states, the HPDT does notperform any transition or a
tion and maintains thesame
on�guration it was in before pro
essing theevent. In other words, the absen
e of su
h SAX eventwould not a�e
t the query pro
essing and thus,
anbe ignored safely by the XML parser.This observation provides a simple me
hanism toidentify the interesting events using the
urrent statesof HPDT. The interesting events are only thoseevents whi
h result in any transition in the HPDT.They are easily identi�ed using the labels of the ar
sfrom the set of
urrent states.XSQ-H is a modi�ed version of XSQ whi
h usesthe HPDT to identify the interesting SAX events andupdates them in the EventList of the XHint Manager.9

Example 5 Consider the query/book[pri
e<20℄//author on the XML data ofFigure 4. The HPDT for the query is shown inFigure 6.1. Initially, the set of
urrent state isf001g. The ar
s from this set of states
orrespondto the end tag of root tag and the start tag of bookelement. Thus, the interesting events are the endof the root element and the start of book element.The XHint Manager pro
esses the XHint at line 2to obtain the o�sets to these two SAX events. Theo�set to the �rst book element is used to skip dire
tlyto line 7. When XSQ-H pro
esses the start tag of thebook element, the HPDT makes a transition fromstate 001 to 201. The state 201 has ar
s with labelauthor and pri
e. The
losure axes of the authorlabel is identi�ed by the ar
 with // label in theHPDT from the state 201. The predi
ate
onstantand the operator asso
iated with pri
e element arestored in the ar
s from state 202.XSQ-H
an use this information to provide theXHint Manager with
orre
t interesting events. Sin
ethe6.2 XHints and TukwilaTukwila [13℄ is an iterator-based query engine
apa-ble of evaluating XQuery expressions on streamingXML data. The Tukwila engine pro
esses XQueryexpressions in a manner very similar to how queriesare handled in relational databases. The query opti-mizer uses basi
 operators to
onstru
t and optimizea plan for the query whi
h is passed to the exe
utionengine. Figure 6.2 shows an example XQuery and the
orresponding query plan.The exe
ution plan uses a spe
ial operator
alledX-s
an whi
h is responsible for reading, parsing andmat
hing the XML data with the regular expressionsin the query. It assigns appropriate binding values toea
h XQuery variable and forwards them to remain-ing operators where they are
ombined and restru
-tured. The predi
ates de
lared in the WHERE
lauseare evaluated using a sele
tion operator.The X-s
an operator
onsists of a series of �nitestate ma
hines (FSMs) whi
h are mat
hed againstthe XML data to produ
e the bindings for theXQuery variables. It
onverts all the XPath expres-sions (whi
h are a restri
ted form of regular expres-sions) in the XQuery into state ma
hines. Figure 6.2shows the state ma
hines for XPath expressions inthe example XQuery. Initially, the ma
hine
orre-sponding to the do
ument root (M0) is in the a
tivemode. Whenever a ma
hine rea
hes its a

ept state,it produ
es a binding of the variable asso
iated with

FOR $b IN datastream/root/book,$p IN b/pubd IN $b/dis
$a IN $b//author$n IN $p/nameWHERE $d < 20RETURN <publisher><name> f $n g </name><author> f $a g </name></publisher>Figure 5: Example XQueryit. The ma
hine then a
tivates the dependent ma-
hines, whi
h remain a
tive while X-s
an is s
anningthe value of binding.In absen
e of any prior information of the XMLdata, X-s
an operator has to parse every element inthe stream. XHints
an be used to avoid this extraoverhead
ost by repla
ing X-s
an operator with anXHint
ompatible operator
alled XH-s
an.The XH-s
an operator uses the state of the FSMsto identify the interesting SAX events while parsingthe data. These events are identi�ed using the labelsof the ar
s from the
urrent states of the a
tive statema
hines. When an a
tive ma
hine makes a transi-tion to a new state, the label on the ar
 from the newstate
orresponds to an interesting SAX event.Some of the transitions de�ned in the state ma-
hines may
orrespond to an predi
ate evaluationwhi
h is done by a sele
tion operator in the queryplan. In order to allow the XHint Manager pre-evaluate the predi
ate, XH-s
an
an obtain the in-formation about the predi
ates from the sele
tionoperators using simple query plan rewriting rules.Theinteresting SAX events are registered with theXHint Manager whi
h uses XHints to skip other ir-relevant elements.Example 6 Consider the exe
ution of the sampleXQuery shown in Figure 6.2 on the streaming XMLdata of Figure 4. The state ma
hines representing theXPath expression are shown in Figure 6.2. The pro-
essing of XHints by these state ma
hines is very sim-ilar to the pro
essing done by XSQ-H. Sin
e both areessentially automatons, the interesting SAX eventsare de�ned by the labels on the ar
s from the
urrentstate. Additional information about these SAX eventssu
h as the type of axes (
hild or des
endant), predi-
ates
an be stored along with the label on the ar
s asin XSQ-H.10

b p d n a

b p d n a

b p d n a

X−Scan

$d < 20

XML Data Stream

$n
Output

Element
<name>,1

Output

Element

Output $a

<author>,1

Element <book>, 2

Result

name

name author

Figure 6: Query Plan for the Example XQuery
1 2 3

4 5

6 7

8 9

10 11

M0

M1

M2

M3

M4

bookroot

pub

discount

author

name

Figure 7: State Ma
hines for the Example XQueryInitially, the state ma
hine M0
orresponding tothe /root/book is a
tivated. At the start of the do
u-ment pro
essing, the ma
hine M0 is in state 1. Afterparsing the top most root element, it rea
hes state2. This state has an ar
 with the label book whi
halso
orresponds to the interesting SAX event. TheXHint at line 2 provide the o�sets to the two bookelements in the data whi
h
an be used to avoid pars-ing the mag element. When the �rst book element isparsed, the ma
hine M0 rea
hes its a

ept state 3. Atthis stage, it binds the variable $b with the book ele-ment and a
tivates the three dependent ma
hines M1,M2 and M3 for the expressions $b/pub, $b/dis
ountand $b//author respe
tively. Now, the interestingevents
orrespond to the labels on the ar
s from the
urrent states of the a
tivated ma
hines. The ar
 ofM2 also
ontains the information (due to query planrewriting) that this SAX event is required for a predi-
ate evaluation and XH-s
an a

ordingly registers theevent by using the XHint Manager API fun
tion withappropriate parameters.7. Experimental ResultsWe implemented a prototype of XSQ-H using Java1.4 and used it to
ondu
t an experimental study to

evaluate the performan
e of XHints. Xer
es 2.4.0 wasused as the XML parser for XSQ-H. It was modi�edto support data skipping.We measured the throughput of XSQ-H for dif-ferent kinds of XHints and
ompared it with othersystems whi
h do not use XHints for query pro
ess-ing. We also
ondu
ted experiments to study the ef-fe
t of query
hara
teristi
s on the throughput gain.Furthermore, we investigated the e�e
t of the bu�er
apa
ity in XHint generation phase on the through-put gain of the system. Finally, the overhead
ostof generating XHints for streaming XML data wasmeasured.7.1 Experimental SetupWe
ondu
ted the experiments on a PC-
lass ma-
hine with an Intel Pentium III pro
essor with 1 GBof main memory running the Red Hat 7.2 distribu-tion of GNU/Linux (kernel 2.4.9-34). The maximumamount of memory available to Java Virtual Ma
hinewas set to 512 MB.We used three real test datasets for our experi-ments. The
hara
teristi
s of the datasets are pro-vided in Table 1.7.2 ThroughputIn the �rst set of experiments, we investigated thethroughput of the query system for sample querieson the test datasets. We measured the performan
egain a
hieved by XSQ-H on data with di�erent typesof XHints. Four kinds of XHints were used to evalu-ate the performan
e of the system; 1) XHints gener-ated o�ine without des
endant hint (XHint-NS), 2)XHints generated in a streaming fashion with end,
hild and sibling hints (XHint-S), 3) XHints gen-erated o�ine with des
endant hints (XHint-NSB)and, 4) XHints with des
endant hints generated ina streaming fashion (XHint-SB).In order to ben
hmark the performan
e of the var-ious type of XHints, we
ompared the performan
eof XSQ-H with systems pro
essing data withoutXHints. In addition to XSQ, we
hose XMLTK [2℄, astreaming query engine implemented in C++ for theperforman
e
omparison. However as XMLTK doesnot support query with predi
ates, we only presentresults for XSQ and XSQ-H for su
h queries.We measured the throughput of the systems for14 sample queries on ea
h of the three test datasets.The results for the SwissProt dataset are shown inFigures 8 and 9.For simple queries su
h as Q2 and Q5 in Figure 8,XSQ-H performs better than XSQ for all four types11

Database Size Text Number of Average Max. Average Xer
es ExpatName (MB) Size Elements Depth Depth Tag Parsing Parsing(MB) (K) Length Time (s) Time (s)SwissProt 109 37.1 2,977 3.56 5 6.58 23.7 5.81DBLP 119 56.7 3,332 2.90 6 5.81 27.6 7.53PSD 716 105.2 21,305 5.15 7 6.33 170.2 66.40Table 1: Test Datasetsof XHints. However, XHint-NS and XHint-S performmarginally better than their
ounterpart
ontainingthe des
endant hint. It is expe
ted sin
e XSQ-Hdoes not use the des
endant hint for pro
essing su
hqueries and the additional data overhead in
ase ofXHint-NSB and XHint-SB result in a slight perfor-man
e degradation.But the bene�t of the des
endant bitmap
an beobserved for
losure
ontaining queries su
h as Q1and Q6 in Figure 8. For su
h queries, XHint-NSand XHint-S do not provide suÆ
ient information forXSQ-H to skip substantial amount of data and theadditional
ost of parsing XHints lowers its through-put. This information is provided in form of the de-s
endant bitmap by XHint-NSB and XHint-SB whi
hallow the query pro
essor to redu
e the parsing
ostby a large margin. The bene�t of the des
endantbitmap is parti
ularly large for Q7 in Figure 9. In
ase of XHint-NSB and XSQ-SB, the des
endant hintat the top level is used by XSQ-H to infer that thetag label NoResult does not o

ur at all in the datastream and skip the entire data resulting in a veryhigh throughput not possible in
ase of XHint-NS,XHint-S or XSQ with no XHints.The data digest present in XHint-SB and XHint-NSB improve the throughput of XSQ-H for queriespredi
ates su
h as Q3 in Figure 8 and Q2 in Figure 9.The pre-evaluation of the predi
ate allows parser toskip more data in
ase of XHint-NSB and XHint-SBand provide an higher throughput.XSQ-H performs better than XMLTK for most ofthe queries su
h as Q5, Q6 and Q7 in Figure 8 but hasa lower throughput than XMLTK for queries su
h asQ1 in Figure 9. This query has a very low throughputin
ase of XSQ-H be
ause the query result
ontainsthe entire data stream. As a result, the XHints donot provide any bene�t and are instead an overheadon the system.The throughput for the systems for the samplequeries on the DBLP dataset are shown in Figures 10and 11. As with the SwissProt dataset, XSQ-H out-performs XSQ by a signi�
ant margin for the samplequeries. However, we
an observe small di�eren
e

0

0.5

1

1.5

2

2.5

3

3.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Queries on SwissProt

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XSQ

XMLTK

Q1://AuthorQ2:/Entry/FeaturesQ3:/Entry[Org=Muridae℄/Ref[Medline=9225337℄/Cite/text()Q4:/Entry/Ref[MedlineID=9225337℄/Cite/text()Q5:/Entry/Ref/Cite/text()Q6://Entry/Features//DOMAIN//Des
r/text()Q7:/Entry/ModFigure 8: Normalized Throughput for di�erentqueries on SwissProtin the performan
e of XSQ-H for di�erent kinds ofXHints in
ase of simple queries su
h as Q6 and Q7in Figure 11. XSQ-NS has the highest throughputout of all the systems followed by XSQ-S, XSQ-NSBand XSQ-SB in that order. The o�ine generation ofXHints allow faster pro
essing of XHints
omparedto the on-the-
y generation of XHints in a streamingfashion. This di�eren
e in the throughput is expe
tedas o�ine generation of XHints allow XHint to storeinformation about the
omplete data instead of onlya part of it. However, the degradation in the perfor-man
e in
ase of on-the-
y generation of XHints isvery small and is an a

eptable trade-o� for a purestreaming system.The des
endant hint in XHint-NSB and XHint-SB are responsible for extra
omputation for XSQ-H,but do not provide any additional bene�t for simplequeries. However the slight degradation in the perfor-man
e of XSQ-H in
ase of XHint-NSB and XHint-SB
an be justi�ed by the performan
e gain provided by12

0

0.5

1

1.5

2

2.5

3

3.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Queries on SwissProt

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XSQ

XMLTK

Q1:/EntryQ2:/Entry[Org℄/Ref[MedlineID℄/Cite/text()Q3:/Entry/Ref[MedlineID℄/Cite/text()Q4://CARBOHYD/text()Q5://Entry[Org=Eukaryota℄//MUTAGENQ6:/Entry[Org=DISULFID℄//Author/text()Q7://NoresultFigure 9: Normalized Throughput for di�erentqueries on SwissProtthe des
endant bitmap in
ase of queries
ontaining
losure as
an be seen in
ase of Q1 and Q4 in Fig-ure 10.We
ompared the throughput of XHints with dif-ferent systems. But, in some sense, it is not fair to
ompare the performan
e gain a
hieved by BPDTbased systems like XSQ by using XHints with sim-pler XPath query engines su
h as XMLTK due to ar-
hite
tural and implementation di�eren
es. XMLTKuses a simple DFA without any bu�ering to evaluatethe query. On the other hand, sin
e XSQ support awider range of XPath queries, they use bu�ering andadditional
omputational
he
ks whi
h may not beuseful for simpler queries but redu
e the pro
essingspeed.An alternative metri
 that
an be used to
omparethe performan
e of di�erent systems is the number ofSAX events pro
essed. It is reasonable to assume thatif two systems have same ar
hite
ture and ba
kendpro
essing power, the system pro
essing the lessernumber of SAX events will perform better.We measured the number of SAX events gener-ated by the di�erent systems on the three datasets.As both XSQ and XMLTK do not skip any data,they pro
ess the same number of SAX events for allqueries. XSQ-H used the XHints to skip di�erentnumber of SAX events depending on the query andthe type of XHints available in the data stream.The number of SAX events for the sample querieson the SwissProt database are shown in Figures 12and 13. XHints result in a signi�
ant redu
tion in the

0

0.5

1

1.5

2

2.5

3

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Queries on dblp

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XSQ

XMLTK

Q1://ee/text()Q2://editor/text()Q3:/inpro
eedings[author℄/title/text()Q4://arti
le[year=1997℄//
drom/text()Q5:/arti
le/title/text()Q6:/phdthesis/s
hool/text()Q7:/mastersthesis[url℄/title/text()Figure 10: Normalized Throughput for di�erentqueries on DBLP

0

0.5

1

1.5

2

2.5

3

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Queries on dblp

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XSQ

XMLTK

Q1://url/text()Q2:/inpro
eedings[url℄/title/text()Q3:/inpro
eedings/booktitle/text()Q4:/pro
eedings/title/text()Q5:/phdthesis[year=1993℄/title/text()Q6:/phdthesis/title/text()Q7:/mastersthesis/title/text()Figure 11: Normalized Throughput for di�erentqueries on DBLP
13

number of SAX events generated by the parser. Asexpe
ted, XHint-SB and XHint-NSB provide a largerredu
tion in the number of SAX events for querieswith
losures than XHint-NS and XHint-S due to thedes
endant hint.The data digest also redu
es the number of SAXevents generated by the parser as it
an be seen forQ3 in Figure 12. The redu
tion in the number of SAXevents is re
e
ted in the in
rease in the throughput ofthe system supporting our thesis that SAX event gen-eration and pro
essing
onstitutes a major portion ofquery pro
essing.
0

5

10

15

20

25

30

35

40

45

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
u
m

b
e
r

o
f
S

A
X

 E
v
e
n
ts

 (
0
0
0
0
0
’s

)

Queries on SwissProt

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XMLTK and XSQ

Q1://AuthorQ2:/Entry/FeaturesQ3:/Entry[Org=Muridae℄/Ref[Medline=9225337℄/Cite/text()Q4:/Entry/Ref[MedlineID=9225337℄/Cite/text()Q5:/Entry/Ref/Cite/text()Q6://Entry/Features//DOMAIN//Des
r/text()Q7:/Entry/ModFigure 12: SAX Events Pro
essed for di�erent querieson SwissProtFigures 14 and 15 show the number of SAX eventspro
essed by the query engine on the DBLP dataset.The redu
tion in the number of SAX events is more7.3 Query Chara
tersti
As it
an be seen from the throughput results for var-ious sample queries on the test datasets, XSQ-H pro-vides a better throughput than XSQ and XMLTK inmost
ases. However, the a
tual gain in the through-put varies signi�
antly and depends on the query. We
ondu
ted experiments to observe the e�e
t of thevarious query
hara
tersti
s on the throughput gaina
hieved by XSQ-H.The length of a query is de�ned as the numberof lo
ation steps in the expresions and is an impor-tant
hara
tersti
. We ran four queries with di�erentlength on the SwissProt dataset. It
an be observed

0

5

10

15

20

25

30

35

40

45

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
u
m

b
e
r

o
f
S

A
X

 E
v
e
n
ts

 (
0
0
0
0
0
’s

)

Queries on SwissProt

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XMLTK and XSQ

Q1:/EntryQ2:/Entry[Org℄/Ref[MedlineID℄/Cite/text()Q3:/Entry/Ref[MedlineID℄/Cite/text()Q4://CARBOHYD/text()Q5://Entry[Org=Eukaryota℄//MUTAGENQ6:/Entry[Org=DISULFID℄//Author/text()Q7://NoresultFigure 13: SAX Events Pro
essed for di�erent querieson SwissProt

0

5

10

15

20

25

30

35

40

45

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
u
m

b
e
r

o
f
S

A
X

 E
v
e
n
ts

 (
0
0
0
0
0
’s

)

Queries on dblp

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XMLTK and XSQ

Q1://ee/text()Q2://editor/text()Q3:/inpro
eedings[author℄/title/text()Q4://arti
le[year=1997℄//
drom/text()Q5:/arti
le/title/text()Q6:/phdthesis/s
hool/text()Q7:/mastersthesis[url℄/title/text()Figure 14: SAX Events generated for di�erent querieson DBLP
14

0

5

10

15

20

25

30

35

40

45

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
u
m

b
e
r

o
f
S

A
X

 E
v
e
n
ts

 (
0
0
0
0
0
’s

)

Queries on dblp

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XMLTK and XSQ

Q1://url/text()Q2:/inpro
eedings[url℄/title/text()Q3:/inpro
eedings/booktitle/text()Q4:/pro
eedings/title/text()Q5:/phdthesis[year=1993℄/title/text()Q6:/phdthesis/title/text()Q7:/mastersthesis/title/text()Figure 15: SAX Events generated for di�erent querieson DBLPfrom Figure 16 that the throughput of XSQ-H in-
reases with the length of the query. Longer queriesusually have smaller query results and allow XSQ-H skip larger amount of data resulting in a higherthroughput.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q1 Q2 Q3 Q4 Q5 Q6

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Queries on SwissProt

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS

Figure 16: Normalized Throughput for queries withdi�erent lengthQ1:/EntryQ2:/Entry/text()Q3:/Entry/FeaturesQ4:/Entry/Features/DOMAINQ5:/Entry/Features/DOMAIN/Des
r/text()The throughput of XSQ-H also greatly depends onthe presen
e of des
endant axis in the query expres-sion. We used a set of queries di�erent in the num-ber and position of des
endant axis on the SwissProtdataset to study this e�e
t. The queries and the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Queries on SwissProt

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS

Figure 17: Normalized Throughput for queries with
losures on SwissProtQ1://Entry/Features/DOMAIN/Des
r/text()Q2:/Entry//Features/DOMAIN/Des
r/text()Q3:/Entry/Features/DOMAIN//Des
r/text()Q4:/Entry/Features//DOMAIN/Des
r/text()Q5://Entry//Features//DOMAIN//Des
r/text()Q6://Entry/Features//DOMAIN//Des
r/text()Q7://Entry/Features/DOMAIN//Des
r/text()throughput of XSQ-H on the queries are shown inFigure 17.As expe
ted, XHint-S and XHint-NS perform verypoorly on all queries ex
ept Q3 and Q4. In
aseof these two queries, the des
endant axis is presentdeep in the query expression redu
ing the overheadin
urred due to absen
e of information about des
en-dants. On the other hand, the throughput of XHint-SB and XHint-NSB is
onsistently high. It is slightlyhigher for queries with
losure axis deeper in the ex-pression su
h as Q4. A deeper des
endant axis allowsXSQ-H to ignore a larger number of elements as
om-pared to queries
ontaining the des
endant axis
loserto the �rst lo
ation step as in Q1 and Q5.We also studied how presen
e of multiple predi-
ates in the query e�e
t the throughput of XSQ-H. Figure 18 presents the throughput of the sys-tem for the four type of XHint s
hemes on samplequeries with predi
ates. The data digest present inthe XHint-SB and XHint-NSB allow XSQ-H to pre-evaluate the predi
ates and redu
e the number ofSAX events. As a result, these two XHint s
hemeshave a higher throughput
ompared to XHint-S andXHint-NS. However, XHint-SB and XHint-NSB donot outperform the other two s
hemes in
ase of Q1.In
ase of this query, the number of SAX eventsskipped using the data digest is relatively very smallsin
e the label in the predi
ate does not o

ur fre-quently in the dataset. Instead, the overhead due toextra data pro
essing in XHint-NSB and XHint-SB15

result in performan
e degradation.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q1 Q2 Q3 Q4 Q5 Q6

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Queries on SwissProt

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS

Figure 18: Normalized Throughput for queries withpredi
atesQ1:/Entry[DISULFID℄/Referen
e/Author/text()Q2:/Entry[Org=Eurkaryota℄/Referen
e/MUTAGENQ3:/Entry[REPEAT℄/PROPEPQ4:/Entry[Org℄/Ref[MedlineID℄/Cite/text()Q5:/Entry[Org=Muridae℄/Ref[MedlineID=9225337℄/Cite/text()Q6:/Entry/Ref[MedlineID=9225337℄/Cite/text()Q7:/Entry/Ref[MedlineID℄/Cite/text()The information
ontained in a XHint depends onthe size of the bu�er used to store the data during theXHint generation phase. A larger bu�er
an allow theXHint to store additional information about the dataallowing the XHint Manager to skip more data. Wegenerated XHints for SwissProt dataset with di�erentbu�er size and measured the throughput of four dif-ferent queries to study how does the eÆ
a
y of XHintvary with the bu�er size. As Figure 19 shows, thethroughput of XSQ-H remains drops sharply whenwe redu
e the bu�er size below approximately 10KB.The throughput only in
reases marginally if we in-
rease the data size beyond 20-30 KB indi
ating thatXHints generated using smaller bu�er size of a fewKBs are almost as eÆ
ient as large bu�er size. [In the a
tual experiments, we used bu�er sizeranging from 1KB to 6MB of raw data. I haveonly plotted from 0K to 100K in order to showthe knee point more
learly sin
e the through-put is almost
onstant for any bu�er size be-yond a few KBs ℄As we observqed before, there is a
orrelation be-tween the throughput a
hieved by XSQ-HB and theportion of data it pro
esses in number of SAX events.We use a metri

alled sele
tivity de�ned as the ratioof the number of SAX events in the query result tothe total number of SAX events to study the
orrela-tion.

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

G
a
in

Buffer Size (KB)

Q1
Q2
Q3
Q4

Figure 19: Normalized Query Throughput for di�er-ent bu�er sizeQ1:/Entry/Features/DOMAIN/Des
r/text()Q2:/Entry[Org℄/Ref[MedlineID℄/Cite/text()Q3:/Entry//Des
r/text()Q4://Entry[Org℄/Des
r//text()Q1 //redQ2 /s
heme/
olor/redQ3 /s
heme[
ode=2℄/
olor/redQ4 /s
heme[
ode=2℄//
olor/redTable 2: Queries used on Syntheti
 DatasetsIn order to measure the e�e
t of sele
tivity of thequeries on the throughput of the system, we gener-ated ten syntheti
 datasets
ontaining elements withred and blue as labels. All the datasets were similarin their
hara
teristi
s ex
ept in the proportion of theelements with the label red. We ran four queries (Ta-ble 2) of varying
omplexity on ea
h of the datasetsand measured the throughput for di�erent values ofthe sele
tivity.Figure 20 displays the throughput gain of XSQ-HB
ompared to XSQ and XMTLK for di�erent values ofsele
tivity. Throughput gain of XSQ-HB
omparedto other system is de�ned as the ratio of the through-put of XSQ-HB and the throughput of the system.As XMLTK does not support predi
ates, XSQ-HB is
ompared with XMLTK for only the �rst two queries.It
an be observed that XSQ-HB provides aspeedup in pro
essing of the data for a wide rangeof sele
tivity. As expe
ted, XSQ-HB provides a highthroughput gain for low sele
tivity
ompared to XSQand XMLTK. The performan
e worsens for high se-le
tivity as the pro
essor
annot skip suÆ
ient ele-ments.16

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h
ro

u
g
h
p
u
t
G

a
in

Selectivity (SAX Events)

Q1-XSQ
Q2-XSQ
Q3-XSQ
Q4-XSQ

Q1-XMLTK
Q2-XMLTK

Figure 20: E�e
t of Query Sele
tivity7.4 XHint GenerationWe
ondu
ted experiments to evaluate the s
alabilityand feasibility of the streaming XHint generation al-gorithm. One of the important parameters in XHintgeneration is the size of the bu�er allotted to the sys-tem. We generated XHints for the test datasets fordi�erent values of bu�er size and measured the timetaken to pro
ess the entire dataset. The result is dis-played as throughput of the XHint generation systemin Figure 21. The XHint generator has to
omputeand handle greater amount of data if its bu�er sizeis large. If we use smaller amount of bu�er size, the
omputation of the o�sets in the XHints are donefaster. As a result the throughput falls with in
reasein the bu�ersize. We also show the a
tual time takento generate hints for two of the test datasets in Fig-ure 22 to provide a di�erent perspe
tive.The insertion of XHints in the XML data resultsin an in
rease in the data size that has to be sentto the query pro
essor. We measured this overheadin terms of the per
entage in
rease in the data dueto addition of XHints for datasets of di�erent sizes.As Figure 23 indi
ates, the per
entage overhead inthe data de
reases with in
rease in the dataset size.Small sized datasets have a low number of elementsand the XHint
onstitute a signi�
ant portion of thedata in terms of size. As the size of the data in
reases,the number of XHints needed to store o�set summaryof the data does not in
rease in the same proportionas the data elements sin
e the atomi
 and text nodesof the data do not
ontain XHints. As a result, theper
entage overhead of inserting XHints de
reases asthe data size in
reases.

0.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

0 200 400 600 800 1000

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Buffer Size (MB)

SwissProt
DBLP
PSD

Figure 21: Throughput of XHint Generation

520

540

560

580

600

620

640

660

680

700

720

0 200 400 600 800 1000

T
im

e
 (

s
)

Buffer Size (MB)

SwissProt
DBLP

Figure 22: Time taken for XHint Generation

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 100 200 300 400 500 600 700 800 900

P
er

ce
nt

ag
e

In
cr

ea
se

Database Size (MB)Figure 23: Per
entage in
rease in the data size forbu�er size of 50 MB17

8. Related WorkA large number of te
hniques have been proposedin re
ent years to make query pro
essing eÆ
ient onstreaming semistru
tured data. The idea of insertingpun
tuations in a data stream to assist query pro
ess-ing was �rst introdu
ed in [19℄. The pun
tuation werein the form of predi
ates and allowed the query pro-
essor to infer the absen
e of
ertain elements in thedata following the pun
tuation. A binary en
odedindex
alled SIX has been used to make pro
essingfaster for simple queries in [11℄. SIX stores the o�-sets to the start and end of the elements in the datastream. The query pro
essor
an use the o�sets toskip pro
essing data in mu
h the same way as XSQ-HB. The Mat
hMaker system [14℄ addresses a similarproblem of mat
hing an in
oming data stream to alarge number of queries by using indexes on the querypatterns. This problem is dual to the
onventionalquery pro
essing problem in that the size of the datais small
ompared to the number of queries.Several query engines have been presented forstreaming XML data. The XML Streaming Ma-
hine (XSM) [16℄ de
omposes the queries into sim-pler subexpressions and uses a
haining method topro
ess the subexpressions individually. XSQ [18℄and XPush [12℄ use an automaton based approa
hto pro
ess streaming XML data. XSQ
onstru
ts anhierari
hal automaton
alled HPDT from the queries.On the other hand, XPush uses a lazy deterministi
�nite automaton to pro
ess the queries.A lot of work has been done for non-streamingdatabases. Dataguides [10℄ were one of earliestframework designed to provide a stru
tural summaryof semistru
tured data. Template Indexes or T-Indexes [17℄ and Index Fabri
 [7℄ are based upon gen-erating indexes on data paths, whi
h are mat
hed tothe query to obtain the o�sets to relevant elements.The XML Indexing and Storage System (XISS) [15℄employs a numbering s
heme to index elements andattributes.An adaptive indexing s
heme for non-streamingXML data is presented in APEX [6℄. APEX storesindexes for only the most frequently used paths whi
h
an be updated in
rementally depending on
hangesin the query workload. It would be interesting touse this idea and study how query workload
an beused to estimate the utility of a XHint in terms ofthe speedup it provides and insert only the most use-ful XHints based on this estimate. More re
ently,another dynami
 index
alled ViST was proposedin [20℄. It represents XML database and the query asstru
ture-en
oded sequen
es redu
ing the problem to

that of mat
hing subsequen
es. Unlike other indexes,it pro
esses the query as whole without de
omposingit into sub-queries saving on expensive join operationsrequired to merge the sub-query results. An adap-tive version of the T-Indexes [17℄
alled D(k)-Indexesis proposed in [5℄. D(k)-indexes provide an updatingme
hanism storing only the most useful path indexesdepending on the query workload.A number of systems have been developed to ad-dress a
losely related problem of �ltering XML do
-uments based on XPath queries. Index-�lters [3℄ usean idea very similar to XHints to skip irrelevant datato pro
ess data eÆ
iently. It
onstru
ts indexes overthe tags of the do
ument in order to identify the por-tions of the data that are guaranteed not to mat
hthe query and does not parse them. XFilter [1℄ andYFilter [9, 8℄
onstru
t �nite automaton ma
hinesfrom multiple queries to perform the �ltering opera-tion.XTrie was proposed in [4℄ to index the XPathqueries based on
ommon subexpressions.9. Con
lusionXML parsing is responsible for a substantial portionof query pro
essing time. A query engine
an signi�-
antly improve its throughput if it
an skip elementswhi
h do not belong to the query result. We proposedan indexing s
heme that allows the query engine toskip large portions of irrelevant data improving itspro
essing speed. The index uses spe
ial XML el-ements
alled XHints, interleaved with the data, tostore stru
tural information about the data elements.This information is used by the query engine to iden-tify the elements that
an be safely skipped and re-du
e the overhead of parsing.We illustrated how four types of o�set informationor hints
an be used by an query pro
essor to improvethe throughput for a large variety of simple and
om-plex queries.We des
ribed XSQ-H, a XHint-enabled version ofXSQ, a streaming XML query engine as an
on
reteappli
ation of XHints. In order to demonstrate thegeneri
ity of the approa
h, we gave a brief outlineof how XHints
an also be used in an iterator-basedmodel su
h as Tukwila to pro
ess queries more eÆ-
iently.Finally, we evaluated the bene�ts of XHints by run-ning several experiments on a prototype of XSQ-H us-ing test datasets. We also
ondu
ted
omprehensiveexpriments to measure the overhead
ost of generat-ing and inserting XHints in di�erent datasets.18

Referen
es[1℄ Mehmet Altinel and Mi
hael J. Franklin. EÆ-
ient �ltering of XML do
uments for sele
tivedissemination of information. In Pro
eedingsof the International Conferen
e on Very LargeData Bases (VLDB), pages 53{64, September2000.[2℄ Iliana Avila-Campillo, Todd J. Green, AshishGupta, Makoto Onizuka, Demian Raven, andDan Su
iu. XMLTK: An XML toolkit for s
al-able XML stream pro
essing. In Pro
eedings ofProgramming Language Te
hnologies for XML(PLAN-X), O
tober 2002.[3℄ Ni
olas Bruno, Luis Gravano, Ni
k Koudas, andDivesh Srivastava. Navigation vs. index-basedXML multi-query pro
essing. In Pro
eedings ofthe International Conferen
e on Data Engineer-ing, Mar
h 2003. To appear.[4℄ Chee Yong Chan, Pas
al Felber, Minos N. Garo-falakis, and Rajeev Rastogi. EÆ
ient �lter-ing of XML do
uments with XPath expressions.In Pro
eedings of the International Conferen
eon Data Engineering, pages 235{244, February2002.[5℄ Qun Chen, Andrew Lim, and Kian Win Ong.D(k)-index: An adaptive stru
tural summaryfor the graph-stru
tured data. In Pro
eedingsof the ACM SIGMOD International Conferen
eon Management of Data (SIGMOD), pages 134{144, June 2003.[6℄ Chin-Wan Chung, Jun-Ki Min, and KyuseokShim. APEX: An adaptive path index for XMLdata. In Pro
eedings of the ACM SIGMOD In-ternational Conferen
e on Management of Data(SIGMOD), pages 121{132, June 2002.[7℄ Brian Cooper, Neal Sample, Mi
hael J. Franklin,G��sli R. Hjaltason, and Moshe Shadmon. Afast index for semistru
tured data. In Pro
eed-ings of the International Conferen
e on VeryLarge Data Bases (VLDB), pages 341{350, Au-gust 2001.[8℄ Yanlei Diao, Mehmet Altinel, Mi
hael J.Franklin, Hao Zang, and Peter Fis
her. Pathsharing and predi
ate evaluation for high-performan
e XML �ltering. ACM Transa
tionson Database Systems (TODS), 28(4), De
ember2003. To appear.

[9℄ Yanlei Diao, Peter Fis
her, and Mi
hael J.Franklin. YFilter: EÆ
ient and s
alable �lteringof XML do
uments. In Pro
eedings of the Inter-national Conferen
e on Data Engineering, pages341{344, February 2002.[10℄ Roy Goldman and Jennifer Widom. Dataguides:Enabling query formulation and optimization insemistru
tured databases. In Pro
eedings of theInternational Conferen
e on Very Large DataBases (VLDB), pages 436{445, August 1997.[11℄ Todd J. Green, Gerome Miklau, MakotoOnizuka, and Dan Su
iu. Pro
essing XMLstreams with deterministi
 automata. In Pro-
eedings of the International Conferen
e onDatabase Theory, pages 173{189, January 2003.[12℄ Ashish Gupta and Dan Su
iu. Stream pro
essingof XPath queries with predi
ates. In Pro
eedingsof the ACM SIGMOD International Conferen
eon Management of Data (SIGMOD), pages 419{430, June 2003.[13℄ Za
hary Ives, Alon Halevy, and Dan Weld. AnXML query engine for network-bound data. InThe VLDB Journal, 2003.[14℄ Laks V.S. Lakshmanan and SailajaParthasarathy. On eÆ
ient mat
hing ofstreaming XML do
uments and queries. InPro
eedings of the International Conferen
e onExtending Database Te
hnology, pages 142{160,Mar
h 2002.[15℄ Quanzhong Li and Bongki Moon. Indexing andquerying XML data for regular path expressions.In The VLDB Journal, pages 361{370, 2001.[16℄ Bertram Ludas
her, Pratik Mukhopadhayn, andYannis Papakonstantinou. A transdu
er-basedXML query pro
essor. In Pro
eedings of theInternational Conferen
e on Very Large DataBases (VLDB), pages 227{238, August 2002.[17℄ Tova Milo and Dan Su
iu. Index stru
tures forpath expression. In Pro
eedings of the Inter-national Conferen
e on Database Theory, pages277{295, January 1999.[18℄ Feng Peng and Sudarshan S. Chawathe. XPathqueries on streaming data. In Pro
eedings ofthe ACM SIGMOD International Conferen
e onManagement of Data (SIGMOD), pages 431{442, June 2003.19

[19℄ Pete Tu
ker, David Maier, Tim Sheard, andLeonidas Fegaras. Pun
tuating
ontinous datastreams. Te
hni
al report, OGI S
hool of S
i-en
e and Engineering at OHSU, 1999.[20℄ Haxiun Wang, Shaghyun Park, Wei Fan, andPhilip S. Yu. ViST: A dynami
 index methodfor querying XML data stru
tures. In Pro
eed-ings of the ACM SIGMOD International Confer-en
e on Management of Data (SIGMOD), pages110{121, June 2003.

20

