
Proessing XPath Queries with Seletive Parsing using XHintsAkhil Gupta Sudarshan S. ChawatheDepartment of Computer Siene, University of Maryland, College Park, MD-20742, USAfakhilg, hawg�s.umd.eduNovember 25, 2003AbstratWhen streaming semi-strutured data is proessed bya well-designed query proessor, parsing onstitutesa signi�ant portion of the running time. Furtherimprovements in performane therefore require somemethod to overome the high ost of parsing. Wehave designed a general-purpose mehanism by whiha produer of streaming data may augment the datastream with hints that permit a downstream pro-essor to skip parsing parts of the stream. Insert-ing suh hints requires additional proessing by theproduer of data; however, the resulting stream ismore valuable to onsumers, making suh proessingworthwhile. In this paper, we fous on hints that aredesigned to improve the throughput of a streamingXML query engine. We present a set of hint shemesand desribe how an a query engine improve its per-formane by taking advantage of the hints. Finally,we demonstrate the bene�ts of our approah using anexperimental study.1. IntrodutionStreaming semi-strutured data proessing has re-ently gained immense importane, partiularly inthe area of publishing and subsription servies. Inmost of these appliations, the data is generated andsent by a server to a large number of subsribedlients in form of a stream. The lients may be inter-ested in di�erent portions of the data whih an berepresented in form of a query (e.g. XPath expres-sion) and has to be evaluated on the data stream toobtain the relevant portions of data.A simple arhiteture for suh an appliation isa entralized system where the lients submit theirqueries to a entral data server. The server performsthe neessary query evaluation and sends the appro-priate portions of the data to eah lient. Althoughthis sheme has a low overhead in terms of amount of

data sent aross network, it requires a large overlayof resoures at the server side and is not salable.An alternative method is to send the data stream toeah lient using either uniast or multiast networkmethods and leave it to eah lient to pik the data itneeds. The advantage of this approah is its simpli-ity, low proessing ost at the server and salabilityto a large number of lients. However, it su�ers fromthe disadvantage of requiring eah lient to performpotentially large amount of redundant work. Thisproblem is exaerbated by the presene of low-powerlients suh as PDAs and Web-enabled phones andrequires a mehanism to redue the omputationalload on the lient query proessors.It has been observed that even well-implementedstream proessors [2, 18℄ spend a large fration (typi-ally well over 50%) of their CPU resoures on simplyparsing the input stream. Clearly, this fat limits theamount of further improvement ahievable by teh-niques that operate post-parsing. Thus, there is aneed for methods that an sidestep the ost of pars-ing data that is irrelevant to a query. We de�ne irrel-evant data as the data whose presene in the inputstream does not a�et the results of the query in anyway.For example, onsider the XPath query/book[disount℄/title on the sample XML datashown in Figure 1. For this partiular query, a bookelement is relevant if and only if it ontains bothtitle and disount hild elements. Thus, the seondbook element (lines 21-30 of Figure 1) is irrelevantand an be skipped entirely by a query engine as itdoes not a�et the query result. Similarly, even inthe �rst book element, elements other than the titleelement do not a�et the query result and an beskipped by the query engine reduing the parsingost.Indexes have been typially used to avoid parsingirrelevant data by providing diret aess to the ele-ments. But traditional approahes for indexing semi-1

1.<root>2. <mag>3. <name>Times</name>4. </mag>5. <book>6. <title>7. Modern Information Retrieval8. </title>9. <disount> 10 </disount>10. <prie> 15 </prie>11. <year> 1972 </year>12. <edition> 3 </edition>13. <pub>14. <name>Addison Wesley</name>15. <address>16. 34 Broadway, N.Y. U.S.A17. </address>18. </pub>19. <author> Riardo Baeza-Yates </author>20.</book>21.< book >22. <title>23. Database Systems:The Complete Book24. </title>25. <prie> 60 </prie>26. <edition> 2 </edition>27. <author> Hetor Garia-Molina </author>28. <author> Jeffrey D. Ullman </author>29. <author> Jennifer Widom </author>30.</book>31.</root>Figure 1: Example XML datastrutured data [6, 7, 10, 17℄ annot be applied instreaming environment sine the data is unbounded.Moreover, sine the data stream in many appliationsis generated and sent to lients in real-time, the in-dexes have to be generated on the y.An early example of an index for streaming datais the stream index (SIX) [11℄ for XPath queries onXML data. The index stores pointers to the begin-ning and end of eah element in a ompat binaryform and is used by the query proessor to diretlyskip to the elements that math the query.SIX has been shown to have a very low overheadand an provide signi�ant speedup to streamingXML query proessors for ertain queries even withthese simple hints. But SIX has very limited util-ity for more omplex queries ontaining losures andprediates. Sine the index does not inorporate anyanestor-desendant relation, hints with more infor-

mation are required to eÆiently proess even mod-erately omplex queries suh as /book//address. Inaddition, as the index ontains the start and the endo�sets for all elements, it annot be generated forpartial streaming XML data.In this paper, we propose plaing strategially de-signed annotations or hints in the stream. Thesehints, alled XHints, may be viewed as a temporallydistributed index on the input stream. They storestrutural information about the data whih an beused by a query engine to identify the irrelevant por-tions and avoid parsing them. We also desribe awell-de�ned mehanism that an be used by a queryengine to proess XHints in a transparent and mod-ular fashion.Sine XHints are inserted as part of the inputdata stream, the struture of XHints depends on thedata representation sheme. Various shemes suhas OEM and XML have been suggested to representsemistrutured data[Add referenes to this line℄. Most of these shemes model the data in form ofa tree with nodes representing elements or objetsand the edges de�ning the hierarhial relationshipbetween di�erent elements.XHints an be used with any suh tree-basedrepresentation sheme. The only requirement onthe sheme for our approah to work is that thetree-strutured data is sent aross with hild ele-ments ompletely nested between the parent ele-ments. However, for onreteness, we disuss XHintsin ontext of streaming XML data. XML is one ofthe most popular data representation sheme and hasome out as the de fato standard for representingsemi-strutured data in reent years. Moreover, XMLrepresents the data in a nested fashion making it anideal hoie for XHints.[Reword this para. Alsonot sure of the exat plaement of these twoparas (this one and the one above it. Do I putit in the end or here? ℄The XHints an be generated at the server end andsent along with the data stream to the lients. Gen-erating XHints does not require aess to the entiredata stream. They are well adapted to being gener-ated in a windowed manner, where portions of dataare bu�ered and augmented with XHints, allowinggeneration of the XHints on-the-y in real-time.Note, however, that XHints involve sending addi-tional data to lients and thus do not save on networktransmission osts in a uniast network. In a multi-ast networks, savings may result from the fat thatlients that would otherwise reeive distint streamsnow reeive the same one. Further, XHints also im-ply some additional omputation at the server (albeit2

simple, as desribed later). However, these additionalosts at the server may be worthwhile beause notonly do they improve the eÆieny of the system asa whole (server and many lients), they also inreasethe value of the data provided by the server to a lient(beause it is easier for the lient to use it).The main ontributions of this paper are summa-rized below1. To the best of our knowledge, this work is the�rst whih attempts to make semistruturedquery proessing more eÆient in a streamingenvironment by allowing the parser to identifyand skip irrelevant data.2. We desribe a generi framework for XHints thatallows any query engine to proess streamingsemistrutured data more eÆiently. We de-sribe the appliation of XHints for an auto-mated XPath query proessor and an iteratorbased query engine.3. We present an experimental study of our meth-ods that illustrates the bene�ts of our approah.The rest of the paper is organized as follows. Se-tion 2 desribes the arhiteture of the XHint sys-tem and the API provided to the query engine. Adetailed desription of XHints is presented in se-tion 3. The proessing and generation of XHints aredesribed in setion 4 and 5 respetively. The appli-ation of XHints on two query engines is presented insetion 6. Setion 7 presents the performane eval-uation of XHints. The related work is desribed insetion 8. Finally, the onlusion and possible futurework is presented in setion 9.2. System ArhitetureA normal streaming XML proessor uses an XMLparser whih generates SAX events for every elementin the data stream. Thus, the proessor has to parseand proess SAX events for all data elements, eventhough a large portion of the data may not be part ofthe query result. This extra proessing of irrelevantelements results in a high overhead and subsequently,a lower query result throughput.XHints are designed to redue this overhead byallowing the parser to skip portions of data whihdo not ontain any query result. The proessing ofXHints is ompletely separated and hidden from thequery engine. They are handled by a XHint Managerthat provides a ommon interfae to the query pro-essor. As desribed later, the query proessor is only

expeted to perform minimal additional proessing toassist the XHint Manager. Figure 2 displays the sys-tem arhiteture of a XHint-enabled query proessor.The XHint Manager ats as a proxy between thequery proessor and the XML parser. The parsergenerates the SAX events for the proessed data andsends them to the XHint Manager for proessing.The XHint Manager may handle the event internally(if it is a XHint) or forward it to be proessed by thequery engine (if it is a data element). It also main-tains a list of interesting SAX events referred as theEventList.An interesting SAX event is informally de�ned asan event whih the query proessor has to proess inorder to evaluate the query orretly. For example,a query engine with the query /book/disount on theexample XML data (Figure 1) has to proess everybook element with a disount hild element. Thus,the SAX event orresponding to the book element atline 5 in Figure 1 is an interesting event for this par-tiular query.If the query ontains a prediate as in /book[prie< 20℄/pub//name, the SAX event orresponding tothe element with the prediate is interesting if andonly if the prediate is satis�ed by the element. Inthe ase of example query, the book element is notinteresting if it does not ontain a prie element withvalue less than 20.If the query expression has an element label follow-ing a losure axes, the query engine is only interestedin elements ontaining a desendant with that par-tiular label. For example in the above query, anyhild element of the book element that may ontaina desendant with label name is an interesting SAXevent.The XHint Manager uses the EventList along withthe information provided by the XHints to identifythe irrelevant portions of data in the stream (as ex-plained later) and request the parser to skip them byproviding appropriate o�sets.The list of interesting events hanges temporally asthe data is proessed by the query proessor and hasto be updated aordingly. For example in ase of thequery mentioned above, when the query proessor isat the start of the doument shown in Figure 1, theSAX event orresponding to the book element is aninteresting event. But when the XML parser parsesthe start tag of book element at line 5, the book SAXevent is replaed by the disount SAX event as theinteresting event. The book element again beomesthe interesting event when the end tag of the bookelement is proessed at line 20.The query engine is responsible for maintaining the3

SAX XML Parser

XHint Manager

XPath Query
 Engine

SAX EventHandler

Data Stream
XML

with
XHintsFigure 2: System Arhiteturelist of SAX events in the EventList. In order to doso, it should be apable of identifying the interestingSAX events whih may ontain the query result. Theexat mehanism by whih it performs this identi�a-tion depends on its design but we outline the generalidea by desribing how an be done for two ommonquery system arhitetures.The query engine interats with the XHint Man-ager using a simple well-de�ned API. The API on-sists of two funtions whih may be used by the queryengine to update the EventList. These funtions are:1. int addSAXEvent(String uri, String loal-Name, String PrediateElementLabel, StringOperator, String ConstantValue, int Type)This funtion lets the query engine to register anevent with the XHint Manager that needs to beproessed by it. It returns an unique identi�erfor the registered event. The interesting SAXevent is identi�ed by its URI and the tag labelof the element alled loalName. In addition tothese identi�ers, if there is a prediate assoiatedwith the event, it is represented as a tuple on-sisting of the element label in the prediate, theoperator suh as < or = and the onstant value.The integer Type is used to denote whether thequery engine is interested in the SAX event as adesendant or an immediate hild of the urrentelement parsed.2. void removeSAXEvent(int EventID)This funtion removes the event orrespondingto the EventID from the EventList.

Although the API desribed above an be usedby any query engine to update the list of interestingevents, we illustrate the use of XHints for two queryengines based on di�erent arhitetures. We fousprimarily on XSQ [18℄, an automaton based stream-ing XML proessor and provide a detailed desriptionof how an XHints improve proessing eÆieny fordi�erent types of XPath queries. Further, in order toillustrate the generality of the approah, we presentan insight on how XHints an be used in Tukwila [13℄,an iterator based query engine.3. XHintsXHints are speial XML elements that are used tostore strutural summary about the data in form ofdi�erent attribute values. The name of the attributedetermines the kind of strutural information storedin it. These XHints are inserted in the data itself andan be used by a query proessor to proess the datamore eÆiently.Although the attributes of a XHint an store a va-riety of information, we only use four kinds of at-tributes or hints for XPath query proessing overstreaming XML data. These four types of hints are1) End Hint 2) Child Hint 3) Sibling Hint 4) Desen-dant Hint. As explained later, these four types ofhints are suÆient to store information useful for avariety of queries. An example XML dataset is shownin Figure 4 with the XHints highlighted in italis.The end hint of a node ontains the o�set from theend of the XHint to the end of the node. It is storedas the value of attribute \end." This hint allows theparser to diretly skip to the end of an element if thenode or any of its part does not belong to the queryresult.The hild hint stores the o�sets to di�erent hildelements of a node. The o�sets to hild elements withlabel l are stored as the value of an attribute with las the attribute name, in form of a list separated byolon. The attribute author of the XHint at line 24in Figure 4 is an example of a hild hint. It storesthe o�sets and the data digest (desribed later) ofthe three author hild elements in a olon-separatedlist. These o�sets an be used by the query proes-sor to jump diretly to the hild elements whih mayontain the query result.Sine an element an potentially ontain an unlim-ited number of hild elements with the same label,the size of the XHint an beome very large if allthe o�sets are stored in it. Sibling Hints are used inorder to limit the maximum size of a XHint. A sib-ling hint of a node ontains o�sets to sibling nodes4

with the same label and is stored as the value of at-tribute \sib." The XHint of a parent node is used tostore only the o�sets to �rst, say hild node with apartiular label. The o�sets to the next, say n nodeare stored in the th hild node. The (+ n)th nodeontains the o�set to the next n nodes and so on. Inthis manner, the sibling hints allow storing the o�setsto a large number of hildren nodes without makingone partiular XHint very large. The XHint at line8 in Figure 4 ontains a sibling hint to the next bookelement.For example, if the root element in the datasetshown in Figure 1 ontained a large number, say10000 book elements instead of 2, storing the o�setsto all of the elements in the XHint of the root willresult in a large XHint. Additionally, storing all theo�sets in the memory is ineÆient. Instead, we onlystore the o�sets to, say the �rst 500 elements, in theXHint of the root tag. The o�sets to the next 500 ele-ments are stored as a sibling hint of the XHint of the500th element. The 100th element stores the o�setsto the next 500 elements and so on.XHints an also be used to store information aboutthe text ontained in an element. We propose storinga summary of the text node in form of a desendantdigest along with the o�set as part of the hild andthe sibling hint. The query engine an proess querieswith prediates more eÆiently by using this datadigest in XHints to pre-evaluate prediates and skipelements that do not satisfy the prediates.If the text is an alpha-numeri string, we store the�rst s haraters, typially 3, of the string. If theonstant spei�ed in the prediate does not maththe �rst s haraters of the element, the query pro-essor an skip the element sine it de�nitely doesnot satisfy the prediate. For example, the XHintfor the �rst book element at line 8 ontains the �rstthree haraters of the text in the author element,whih an be used to evaluate prediate beforehandas explained later in Example 3.If the text of the element in the prediate is nu-meri, the prediate may ontain inequality operatorand omparing the �rst s haraters is insuÆient tomake inferenes about it. We use a di�erent shemeto generate the desendant digest for suh text nodes.During the XHint generation phase, we obtain therange of numerial onstants ourring for eah la-bel and store them as an attribute alled Hash ofthe speial XML element META. The entire range isthen divided into a �xed number of equal-sized inter-vals and the interval index of the numerial text ofan element is stored as its desendant digest.In ase of an equality operator, if the interval index

of the onstant of the prediate does not math theindex index of the element text, it does not satisfythe prediate and an be skipped. Similarly in aseof inequality operator, the element an be skippedif its index is less than or greater than the index ofthe onstant depending on the type of the inequalityoperator. An example of the Hash attribute an beseen at line 2 in Figure 4. The range of the numerialvalues ourring at eah label is stored as a list alongwith the label tag.For queries with desendant axes, the XHint Man-ager requires additional information about the de-sendants of elements in order to identify irrelevantdata. If the system knows the labels of the desen-dants of eah element, it an avoid parsing the ele-ments that do not ontain the desendant label of thequery.XHints provide this information about the desen-dant in a onise form using a bitmap. Eah labelourring in the data is assigned a unique index. If apartiular label ours as a desendant of the node,the bit at the index orresponding to the label is seton. The bitmap is stored as an integer value of the at-tribute des of the XHint element. The mapping fromlabel to index is stored as the value of attribute LIn-dex of a separate XML element alled META used tostore meta-information about XHints. It is a simplelist of label and the bitmap index stored as a stringas shown in line 2 in Figure 4.4. XHint ProessingWe now desribe how are XHints used by the XHintManager to make proessing more eÆient. Theparser generates SAX events for the data and sendsthem to the XHint Manager for proessing. TheXHint Manager handles these events in two possi-ble ways. If the SAX event orresponds to a dataelement, it is forwarded to the query engine other-wise, if the event is generated by a XHint, it is pro-essed by the manager itself. The pseudo ode forthe SAX funtions of XHint Manager are shown inAlgorithm 1.The XHint Manager use the list of interesting SAXevents alled EventList to proess XHints. An inter-esting SAX event is informally de�ned as an eventwhih may ontain or determine the query result andhas to be proessed by the query engine. The XHintManager assumes that these events are identi�ed apriori and updated in the EventList by the queryengine as the data is proessed.Every event in the EventList is assoiated with atag label of an element the query engine is interested5

in. Further, it also stores whether the element anour as a desendant or an immediate hild of theurrent element being parsed by the system, depend-ing on losure axis in the query expression. It mayalso ontain an prediate assoiated with it whih hasto be satis�ed.If the query ontains only hild axes without anyprediates, the interesting events for the query engineorrespond to hild element labels. Thus, the relevantelements whih need to be proessed by the queryengine are hild elements with the label of the eventpresent in the EventList. During the proessing ofa XHint, XHint Manager an use the hild hint toobtain these relevant o�sets. The o�sets allow theparser to jump diretly to these elements skippingthe remaining elements. In addition to the o�sets tothe hild elements, the XHint manager uses the endhint of the XHint to provide the o�set from the lastrelevant hild element to the end of urrent element.Example 1 Consider the query /book/title on theexample data shown in Figure 4. The result of thequery onsists of the title elements at lines 6� 8 and22� 24 of the original XML data (Figure 1). A nor-mal XPath query engine has to parse and proess theentire data before obtaining the query result. A largeportion of the omputational resoures used by it isspent on generating and handling SAX event for theelements that are not part of the output leading to alow throughput.Fig 4 ontains the same example dataset withXHints inserted in it. A query engine an use theseXHints to redue the query proessing ost in the fol-lowing manner. At the start of the data, the queryengine registers the SAX event orresponding to abook hild element with the XHint Manager. Whenthe XHint Manager proesses the XHint at line 3,the o�sets related to the book hild is used by XHintManager to diretly skip to the �rst book element atline 7.The handling of the SAX event for the book elementis delegated to the query engine. Sine the interestingelement inside an book element is an title element, thequery engine on proessing the book element removesbook from the event list of the XHint Manager andadds title to it.The next XML element to be parsed is the XHintat line 8, whih is handled by the XHint Managerinternally. As the event list now ontains the titleevent, the manager uses the hild hint for title to skipdiretly to line 9. After the query proessor outputsthe title element, XHint Manager requests the parserto jump to the end of the book element at line 22sine there are no more interesting SAX events i.e.

title elements). The o�set to the end of the book tagis alulated using the end hint of the XHint at line8. When the query engine parses the end tag of bookelement, it again updates the XHint Manager's eventlist by removing title and adding the book event toit. The XHint Manger then proesses the seond bookelement in a similar fashion.This sheme allows the parser to proess only 6 el-ements ompared to 20 elements proessed by a nor-mal query engine. Note that although XHints do notprovide diret o�sets to the result elements, they pro-vide o�set information for all hildren nodes insteadof just one partiular type and an be used to skipdata for other similar queries like /book/author and/book/disount without requiring any additional in-dexes.In ase of queries with prediates, an element isonly relevant if the prediate assoiated with it issatis�ed. The query engine stores the prediatealong with the other details about the SAX event inthe EventList. XHint Manager uses the informationabout the prediate along with the data digest to se-let the relevant o�sets. If a partiular element doesnot satisfy an assoiated prediate, XHint Manageran avoid parsing the remaining element.If the prediate is an existential prediate suh asin /book[disount℄/title/text(), the presene of a hildhint with the label of the prediate is suÆient topre-evaluate the prediate. An element an satisfyan existential prediate for an element with partiularlabel l if and only if the XHint of the element ontainsa hild hint with label l. In ase the XHint does notontain the hild hint, XHint Manager an infer thatthe element is not relevant and skip it.Example 2 Consider the query /book[disount ℄/ti-tle/text() on the data in Figure 4. The �rst book ele-ment satis�es the prediate and its title element be-longs to the result. However, the seond book elementdoes not satisfy the prediate and an be skipped bythe query proessor.However, a normal query proessor is not awareof this fat and will parse all the 20 elements. Notethat an XHint ontains hild hints for all the hild el-ements of a parent element. This fat an be used bya query engine to pre-evaluate the existential predi-ate. If the XHint of a book element does not ontaina hild hint for disount element, the parser an skipparsing the remaining element.The query engine an register an \interesting"events with the XHint Manager with the element tag6

label as title and a existential prediate with labeldisount on reahing the start of the �rst book ele-ment. When the parser reahes line 8 of the exampledata, the XHint Manager proesses the hild hintspresent in the XHint of the �rst book element. Sineit ontains the hild hint for the SAX event in theprediate (disount), XHint Manager an infer thatthis element satis�es the prediate and thus, use theo�sets from the hild hint for title element to skipparsing other elements. On the other hand, on pro-essing the XHint of the seond book element at line24, the absene of a hild hint for an element dis-ount allows the XHint Manager to ignore the titlehild hint and skip diretly to end of the book elementsine it does not satisfy the existential prediate.The query proessor only parses 8 elements to pro-ess the entire data by using XHints saving more than50% in terms of number of SAX events generated.If the prediate is omplex and involves an om-parison operator, the XHint Manager uses the datadigest stored in the hild hint to redue the numberof elements parsed in order to evaluate the prediate.The XHint Manager omputes the data digest of theonstant value in the prediate and ompares it withthe data digest from appropriate hild hints to iden-tify the elements whih annot satisfy the prediate.It avoids parsing suh elements by skipping diretlyto the remaining elements.Note that although a mismath in the data digestguarantees that the element does not satisfy the pred-iate, a math does not neessarily mean that the ele-ment will satisfy the prediate. The proessor has toparse the element in order to orretly evaluate theprediate.Example 3 Consider the query /book[author="R.Bazea-Yates"℄/title/text() on the example data inFigure 4. The query ontains a prediate with astring omparison operator. If the query engine doesnot have prior information about the text of the au-thor elements, it has to parse the entire book elementin order to evaluate the prediate.The XHint Manager helps avoid the overhead ofparsing elements that do not satisfy the prediate byusing the desendant digest present in the XHints. Atthe start of the seond book element on line 23, thequery engine registers the prediate with the XHintManager. The XHint of the element ontains the �rstthree haraters of the text in addition to the o�setsto the three author elements. The XHint Manageruses this digest to evaluate the prediate a priori. Inthis ase, sine the desendant digest of any of the

1.<root>2. <META LIndex=''address 0 name 1 pub 2edition 3 disount 4 prie 5 year 6title 7 author 8 mag 9 book 10''Hash=''prie:15-60 disount:10-10''/>3. <Hint end=''768'' des=''255'' mag=''2''book=''67''/>4. <mag>5. <title> Times </times>6. </mag>7. <book>8. <Hint end=''320'' des=''3'' sib=''329''title=''2'' disount=''46-0''prie''92-0'' edition=''129-thi''pub=''149'' author=''235-Ri''/>9. <title>10. Modern Information Retrieval11. </title>12. <disount> 10 </disount>13. <prie> 15 </prie>14. <edition> third </edition>15. <pub>16. <name>Addison Wesely</name>17. <address>18. 34 Broadway, N.Y. U.S.A19. </address>20. </pub>21. <author> Riardo Baeza-Yates </author>22.</book>23.< book >24. <Hint end=''213'' des=''0'' title=''2''prie=''34-1'' edition=''96-se''author=''123-He:165-Jef:198-Jen''>25. <title>26. Database Systems: The Complete Book27. </title>28. <prie> 60 </prie>29. <edition>seond </edition>30. <author> Hetor Garia-Molina </author>31. <author> Jeffrey D. Ullman </author>32. <author> Jennifer Widom </author>33.</book>34.</root>Figure 3: XML data with XHints
7

three elements does not math the �rst three hara-ter of the onstant in the prediate, XHint Managerrequests the parser to skip all the hild elements anddiretly go to the end tag of book element at line 33.But note that mathing of the two desendant di-gest does not guarantee that the prediate will be sat-is�ed by the element. For example, if the onstant inthe prediate was \Je� Ullman" instead of \R. Bazea-Yates," the desendant digest for the seond authorelement at line 31 mathes with the desendant digestof the onstant though the prediate is not satis�ed.The desendant hint present in the XHint is usedfor queries with desendant axis. For suh queries,an interesting event an orrespond to either a de-sendant or a hild. In this ase, XHint Manageruses the desendant hint of the XHint to determineif the partiular tag label ours as the desendantof the urrent element. If it does, the element anour as a hild of any of the omplex hild elements(ones with their own hild elements) and the XHintManager stores o�set to all suh hild elements.Example 4 Consider the query //address on thedata shown in Figure 4. The address label is mappedto index 0 by the LIndex attribute of the META el-ement at line 2. Thus, if an element ontains a de-sendant with label address, the 0th bit of the bitmapin the desendant hint is set on.The �rst bit in the desendant bitmap is set for theXHint of the root tag indiating that it ontains atleast one address label as its desendant. As a result,the query engine leaves all atomi hild nodes (sinethey annot have an address element as their hildor desendant) and proess the omplex hild nodes(with non-text hild nodes). In this ase, all the threehild elements of root are omplex.When the proessor reahes the �rst book elementat line 7, it again heks the desendant bitmap ofthe XHint at line 8 and skips all the hild elementsof the �rst book element exept pub that ontains theaddress element.In ase of the seond book element at line 23, thedesendant hint of the seond book element has thevalue 0 indiating that it does not ontain any de-sendant. As it also does not have a hild hint for aaddress label, the query proessor an jumps diretlyto the end of the element at line 33.The total number of elements parse by the queryengine are 11 ompared to 20 elements parsed by anormal query proessor.

[Ignore the pseudo-ode right now. It isinomplete ℄Algorithm 1 XHint Proessingproedure startElement(SAXEvent e)1: if e is a XHint then2: proessXHint(e);3: else4: QueryEngine.startElement(e);5: end ifproedure endElement (SAXEvent e)1: if SAXEvent E in EventList then2: proessXHint(e);3: else4: QueryEngine.endElement(e);5: end if6: parser.skipData(O�setStak.pop());proedure proessXHint(e)1: for all Events E in EventList do2: if E is a hild Event with label L then3: if E has an existential prediate with label L0 then4: if XHint has a hild hint for label L0 then5: O�setStak.add(e.getChildHint(L);6: end if7: else if E has an omparison prediate with label L0then8:9: end if10: else if E is a desendant Event with label L then11: O�setStak.add(e.getComplexChild());12: else if E is a prediate event with value v then13: if v is null then14:15: end if16: end if17: end forFigure 1 provides the pseudo-ode for the XHintproessing algorithm.5. XHint Generation[Probably a subsetion ℄Sine XHints ontain o�set information about thehild and desendant nodes of an element, the hildelements have to be proessed before the parent ele-ment. Typially, a DOM tree of the XML data an begenerated in the memory and proessed in a bottom-up fashion to generate the XHints. However, DOMtrees require the entire data and are not suitable forunbounded streaming data. Moreover, this shemerequires pre-proessing of the data and is not appli-able apply in senarios whih require real-time gen-eration of XHints.The alternative is to parse the stream and gener-ate the hints on-the-y. The XHint Generator uses a�xed-size bu�er to parse and store information about8

the XML elements in memory. When the parserreahes the end of an element, the generator uses theinformation about the hild and desendant nodes togenerate XHint for the element. These XHints arestored in the memory along with the element. Whenthe generator reahes its bu�er limit, it inserts theXHints at appropriate plaes in the data and outputsit.Note that sine we use �xed sized bu�er, the XHintgenerator may not read omplete elements before thebu�er size limit is reahed. In this ase, a XHint foran inomplete element an only ontain informationabout the portion of element proessed until now.Thus, instead of the o�set to the end of the node,the end hint ontains the o�set to the last proessedhild node of the inomplete element. When the nextdata hunk is proessed, the XHint generator insertsa XHint at the end of the inomplete data node. ThisXHint is used to store information about the remain-ing portion of the parent element. We also inserta new META element ontaining meta-informationabout the XHints at the start of the data hunk.For eah data hunk, a bottom to up approah isfollowed to generate the various o�sets stored in theXHints. The o�sets and desendant digest of hildelements are generated after eah hild node is pro-essed. One the entire parent element is parsed,these o�sets and desendant digest are inserted in theXHint. The length of the element is also omputed,whih inludes the length of the hild elements alongwith their XHints.However, XHints of all elements are not useful forthe query proessor. For example, XHint does notsave on any SAX event for elements with no hildelement. Instead, proessing of XHints for suh ele-ments results in an overhead. In order to avoid thisoverhead, we only insert XHints for elements ontain-ing more than one hild element in the stream.6. Appliation of XHintsXHints require the query engine to identify the in-teresting SAX events for the query and update theEventList as the data is proessed. Although the ex-at mehanism the query engine performs this updatedepends on the arhiteture of the engine, we use twoquery systems, XSQ and Tukwila, based on di�erentarhitetures to outline the proess and demonstratethe generi appliaability of XHints.

BPDT 0.0

BPDT 1.1

BPDT 2.2

BPDT 2.3

</price>

<book> </book>
{CLEAR}

<author:text()]
{OUTPUT value text}

000

201

202

203

{UPLOAD}
</author>

<author>

<price>

</price>

<//>

<price:text()>
! [text<20]

{FLUSH}
[text<20]

<price:text()>

{FLUSH}

<author>

</author>

{FLUSH}

</book>
{FLUSH}

{FLUSH}

</root>

<root>
001

204

205 603

501

<//>

</price>

{ENQUEUE value text}
<author:text()]<//>

Figure 4: HPDT for /book[prie < 20℄//author6.1 XHints and XSQ[Have to work on this setion ℄ XSQ is anautomaton based streaming XML query proessorwhih an evaluate a broad range of XPath ex-pressions. It onstruts a hierarhial automatonalled HPDT from smaller �nite state mahines alledBPDTs. Eah BPDT orresponds to a loation stepin the XPath query expression and has a bu�er whihis used to store potential query results.The ars between the states of HPDT are assoi-ated with element labels and ations. If a SAX eventmathes the label assoiated with an ar, the HPDTmakes a transition along the ar and exeutes the or-responding ation. Figure 6.1 shows the HPDT forthe query /book[prie<20℄//author.Note that if a SAX event does not math any arfrom the set of urrent states, the HPDT does notperform any transition or ation and maintains thesame on�guration it was in before proessing theevent. In other words, the absene of suh SAX eventwould not a�et the query proessing and thus, anbe ignored safely by the XML parser.This observation provides a simple mehanism toidentify the interesting events using the urrent statesof HPDT. The interesting events are only thoseevents whih result in any transition in the HPDT.They are easily identi�ed using the labels of the arsfrom the set of urrent states.XSQ-H is a modi�ed version of XSQ whih usesthe HPDT to identify the interesting SAX events andupdates them in the EventList of the XHint Manager.9

Example 5 Consider the query/book[prie<20℄//author on the XML data ofFigure 4. The HPDT for the query is shown inFigure 6.1. Initially, the set of urrent state isf001g. The ars from this set of states orrespondto the end tag of root tag and the start tag of bookelement. Thus, the interesting events are the endof the root element and the start of book element.The XHint Manager proesses the XHint at line 2to obtain the o�sets to these two SAX events. Theo�set to the �rst book element is used to skip diretlyto line 7. When XSQ-H proesses the start tag of thebook element, the HPDT makes a transition fromstate 001 to 201. The state 201 has ars with labelauthor and prie. The losure axes of the authorlabel is identi�ed by the ar with // label in theHPDT from the state 201. The prediate onstantand the operator assoiated with prie element arestored in the ars from state 202.XSQ-H an use this information to provide theXHint Manager with orret interesting events. Sinethe6.2 XHints and TukwilaTukwila [13℄ is an iterator-based query engine apa-ble of evaluating XQuery expressions on streamingXML data. The Tukwila engine proesses XQueryexpressions in a manner very similar to how queriesare handled in relational databases. The query opti-mizer uses basi operators to onstrut and optimizea plan for the query whih is passed to the exeutionengine. Figure 6.2 shows an example XQuery and theorresponding query plan.The exeution plan uses a speial operator alledX-san whih is responsible for reading, parsing andmathing the XML data with the regular expressionsin the query. It assigns appropriate binding values toeah XQuery variable and forwards them to remain-ing operators where they are ombined and restru-tured. The prediates delared in the WHERE lauseare evaluated using a seletion operator.The X-san operator onsists of a series of �nitestate mahines (FSMs) whih are mathed againstthe XML data to produe the bindings for theXQuery variables. It onverts all the XPath expres-sions (whih are a restrited form of regular expres-sions) in the XQuery into state mahines. Figure 6.2shows the state mahines for XPath expressions inthe example XQuery. Initially, the mahine orre-sponding to the doument root (M0) is in the ativemode. Whenever a mahine reahes its aept state,it produes a binding of the variable assoiated with

FOR $b IN datastream/root/book,$p IN b/pubd IN b/disa IN $b//author$n IN $p/nameWHERE $d < 20RETURN <publisher><name> f $n g </name><author> f $a g </name></publisher>Figure 5: Example XQueryit. The mahine then ativates the dependent ma-hines, whih remain ative while X-san is sanningthe value of binding.In absene of any prior information of the XMLdata, X-san operator has to parse every element inthe stream. XHints an be used to avoid this extraoverhead ost by replaing X-san operator with anXHint ompatible operator alled XH-san.The XH-san operator uses the state of the FSMsto identify the interesting SAX events while parsingthe data. These events are identi�ed using the labelsof the ars from the urrent states of the ative statemahines. When an ative mahine makes a transi-tion to a new state, the label on the ar from the newstate orresponds to an interesting SAX event.Some of the transitions de�ned in the state ma-hines may orrespond to an prediate evaluationwhih is done by a seletion operator in the queryplan. In order to allow the XHint Manager pre-evaluate the prediate, XH-san an obtain the in-formation about the prediates from the seletionoperators using simple query plan rewriting rules.Theinteresting SAX events are registered with theXHint Manager whih uses XHints to skip other ir-relevant elements.Example 6 Consider the exeution of the sampleXQuery shown in Figure 6.2 on the streaming XMLdata of Figure 4. The state mahines representing theXPath expression are shown in Figure 6.2. The pro-essing of XHints by these state mahines is very sim-ilar to the proessing done by XSQ-H. Sine both areessentially automatons, the interesting SAX eventsare de�ned by the labels on the ars from the urrentstate. Additional information about these SAX eventssuh as the type of axes (hild or desendant), predi-ates an be stored along with the label on the ars asin XSQ-H.10

b p d n a

b p d n a

b p d n a

X−Scan

$d < 20

XML Data Stream

$n
Output

Element
<name>,1

Output

Element

Output $a

<author>,1

Element <book>, 2

Result

name

name author

Figure 6: Query Plan for the Example XQuery
1 2 3

4 5

6 7

8 9

10 11

M0

M1

M2

M3

M4

bookroot

pub

discount

author

name

Figure 7: State Mahines for the Example XQueryInitially, the state mahine M0 orresponding tothe /root/book is ativated. At the start of the dou-ment proessing, the mahine M0 is in state 1. Afterparsing the top most root element, it reahes state2. This state has an ar with the label book whihalso orresponds to the interesting SAX event. TheXHint at line 2 provide the o�sets to the two bookelements in the data whih an be used to avoid pars-ing the mag element. When the �rst book element isparsed, the mahine M0 reahes its aept state 3. Atthis stage, it binds the variable $b with the book ele-ment and ativates the three dependent mahines M1,M2 and M3 for the expressions $b/pub, $b/disountand $b//author respetively. Now, the interestingevents orrespond to the labels on the ars from theurrent states of the ativated mahines. The ar ofM2 also ontains the information (due to query planrewriting) that this SAX event is required for a predi-ate evaluation and XH-san aordingly registers theevent by using the XHint Manager API funtion withappropriate parameters.7. Experimental ResultsWe implemented a prototype of XSQ-H using Java1.4 and used it to ondut an experimental study to

evaluate the performane of XHints. Xeres 2.4.0 wasused as the XML parser for XSQ-H. It was modi�edto support data skipping.We measured the throughput of XSQ-H for dif-ferent kinds of XHints and ompared it with othersystems whih do not use XHints for query proess-ing. We also onduted experiments to study the ef-fet of query harateristis on the throughput gain.Furthermore, we investigated the e�et of the bu�erapaity in XHint generation phase on the through-put gain of the system. Finally, the overhead ostof generating XHints for streaming XML data wasmeasured.7.1 Experimental SetupWe onduted the experiments on a PC-lass ma-hine with an Intel Pentium III proessor with 1 GBof main memory running the Red Hat 7.2 distribu-tion of GNU/Linux (kernel 2.4.9-34). The maximumamount of memory available to Java Virtual Mahinewas set to 512 MB.We used three real test datasets for our experi-ments. The harateristis of the datasets are pro-vided in Table 1.7.2 ThroughputIn the �rst set of experiments, we investigated thethroughput of the query system for sample querieson the test datasets. We measured the performanegain ahieved by XSQ-H on data with di�erent typesof XHints. Four kinds of XHints were used to evalu-ate the performane of the system; 1) XHints gener-ated o�ine without desendant hint (XHint-NS), 2)XHints generated in a streaming fashion with end,hild and sibling hints (XHint-S), 3) XHints gen-erated o�ine with desendant hints (XHint-NSB)and, 4) XHints with desendant hints generated ina streaming fashion (XHint-SB).In order to benhmark the performane of the var-ious type of XHints, we ompared the performaneof XSQ-H with systems proessing data withoutXHints. In addition to XSQ, we hose XMLTK [2℄, astreaming query engine implemented in C++ for theperformane omparison. However as XMLTK doesnot support query with prediates, we only presentresults for XSQ and XSQ-H for suh queries.We measured the throughput of the systems for14 sample queries on eah of the three test datasets.The results for the SwissProt dataset are shown inFigures 8 and 9.For simple queries suh as Q2 and Q5 in Figure 8,XSQ-H performs better than XSQ for all four types11

Database Size Text Number of Average Max. Average Xeres ExpatName (MB) Size Elements Depth Depth Tag Parsing Parsing(MB) (K) Length Time (s) Time (s)SwissProt 109 37.1 2,977 3.56 5 6.58 23.7 5.81DBLP 119 56.7 3,332 2.90 6 5.81 27.6 7.53PSD 716 105.2 21,305 5.15 7 6.33 170.2 66.40Table 1: Test Datasetsof XHints. However, XHint-NS and XHint-S performmarginally better than their ounterpart ontainingthe desendant hint. It is expeted sine XSQ-Hdoes not use the desendant hint for proessing suhqueries and the additional data overhead in ase ofXHint-NSB and XHint-SB result in a slight perfor-mane degradation.But the bene�t of the desendant bitmap an beobserved for losure ontaining queries suh as Q1and Q6 in Figure 8. For suh queries, XHint-NSand XHint-S do not provide suÆient information forXSQ-H to skip substantial amount of data and theadditional ost of parsing XHints lowers its through-put. This information is provided in form of the de-sendant bitmap by XHint-NSB and XHint-SB whihallow the query proessor to redue the parsing ostby a large margin. The bene�t of the desendantbitmap is partiularly large for Q7 in Figure 9. Inase of XHint-NSB and XSQ-SB, the desendant hintat the top level is used by XSQ-H to infer that thetag label NoResult does not our at all in the datastream and skip the entire data resulting in a veryhigh throughput not possible in ase of XHint-NS,XHint-S or XSQ with no XHints.The data digest present in XHint-SB and XHint-NSB improve the throughput of XSQ-H for queriesprediates suh as Q3 in Figure 8 and Q2 in Figure 9.The pre-evaluation of the prediate allows parser toskip more data in ase of XHint-NSB and XHint-SBand provide an higher throughput.XSQ-H performs better than XMLTK for most ofthe queries suh as Q5, Q6 and Q7 in Figure 8 but hasa lower throughput than XMLTK for queries suh asQ1 in Figure 9. This query has a very low throughputin ase of XSQ-H beause the query result ontainsthe entire data stream. As a result, the XHints donot provide any bene�t and are instead an overheadon the system.The throughput for the systems for the samplequeries on the DBLP dataset are shown in Figures 10and 11. As with the SwissProt dataset, XSQ-H out-performs XSQ by a signi�ant margin for the samplequeries. However, we an observe small di�erene

0

0.5

1

1.5

2

2.5

3

3.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Queries on SwissProt

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XSQ

XMLTK

Q1://AuthorQ2:/Entry/FeaturesQ3:/Entry[Org=Muridae℄/Ref[Medline=9225337℄/Cite/text()Q4:/Entry/Ref[MedlineID=9225337℄/Cite/text()Q5:/Entry/Ref/Cite/text()Q6://Entry/Features//DOMAIN//Desr/text()Q7:/Entry/ModFigure 8: Normalized Throughput for di�erentqueries on SwissProtin the performane of XSQ-H for di�erent kinds ofXHints in ase of simple queries suh as Q6 and Q7in Figure 11. XSQ-NS has the highest throughputout of all the systems followed by XSQ-S, XSQ-NSBand XSQ-SB in that order. The o�ine generation ofXHints allow faster proessing of XHints omparedto the on-the-y generation of XHints in a streamingfashion. This di�erene in the throughput is expetedas o�ine generation of XHints allow XHint to storeinformation about the omplete data instead of onlya part of it. However, the degradation in the perfor-mane in ase of on-the-y generation of XHints isvery small and is an aeptable trade-o� for a purestreaming system.The desendant hint in XHint-NSB and XHint-SB are responsible for extra omputation for XSQ-H,but do not provide any additional bene�t for simplequeries. However the slight degradation in the perfor-mane of XSQ-H in ase of XHint-NSB and XHint-SBan be justi�ed by the performane gain provided by12

0

0.5

1

1.5

2

2.5

3

3.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Queries on SwissProt

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XSQ

XMLTK

Q1:/EntryQ2:/Entry[Org℄/Ref[MedlineID℄/Cite/text()Q3:/Entry/Ref[MedlineID℄/Cite/text()Q4://CARBOHYD/text()Q5://Entry[Org=Eukaryota℄//MUTAGENQ6:/Entry[Org=DISULFID℄//Author/text()Q7://NoresultFigure 9: Normalized Throughput for di�erentqueries on SwissProtthe desendant bitmap in ase of queries ontaininglosure as an be seen in ase of Q1 and Q4 in Fig-ure 10.We ompared the throughput of XHints with dif-ferent systems. But, in some sense, it is not fair toompare the performane gain ahieved by BPDTbased systems like XSQ by using XHints with sim-pler XPath query engines suh as XMLTK due to ar-hitetural and implementation di�erenes. XMLTKuses a simple DFA without any bu�ering to evaluatethe query. On the other hand, sine XSQ support awider range of XPath queries, they use bu�ering andadditional omputational heks whih may not beuseful for simpler queries but redue the proessingspeed.An alternative metri that an be used to omparethe performane of di�erent systems is the number ofSAX events proessed. It is reasonable to assume thatif two systems have same arhiteture and bakendproessing power, the system proessing the lessernumber of SAX events will perform better.We measured the number of SAX events gener-ated by the di�erent systems on the three datasets.As both XSQ and XMLTK do not skip any data,they proess the same number of SAX events for allqueries. XSQ-H used the XHints to skip di�erentnumber of SAX events depending on the query andthe type of XHints available in the data stream.The number of SAX events for the sample querieson the SwissProt database are shown in Figures 12and 13. XHints result in a signi�ant redution in the

0

0.5

1

1.5

2

2.5

3

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Queries on dblp

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XSQ

XMLTK

Q1://ee/text()Q2://editor/text()Q3:/inproeedings[author℄/title/text()Q4://artile[year=1997℄//drom/text()Q5:/artile/title/text()Q6:/phdthesis/shool/text()Q7:/mastersthesis[url℄/title/text()Figure 10: Normalized Throughput for di�erentqueries on DBLP

0

0.5

1

1.5

2

2.5

3

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Queries on dblp

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XSQ

XMLTK

Q1://url/text()Q2:/inproeedings[url℄/title/text()Q3:/inproeedings/booktitle/text()Q4:/proeedings/title/text()Q5:/phdthesis[year=1993℄/title/text()Q6:/phdthesis/title/text()Q7:/mastersthesis/title/text()Figure 11: Normalized Throughput for di�erentqueries on DBLP
13

number of SAX events generated by the parser. Asexpeted, XHint-SB and XHint-NSB provide a largerredution in the number of SAX events for querieswith losures than XHint-NS and XHint-S due to thedesendant hint.The data digest also redues the number of SAXevents generated by the parser as it an be seen forQ3 in Figure 12. The redution in the number of SAXevents is reeted in the inrease in the throughput ofthe system supporting our thesis that SAX event gen-eration and proessing onstitutes a major portion ofquery proessing.
0

5

10

15

20

25

30

35

40

45

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
u
m

b
e
r

o
f
S

A
X

 E
v
e
n
ts

 (
0
0
0
0
0
’s

)

Queries on SwissProt

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XMLTK and XSQ

Q1://AuthorQ2:/Entry/FeaturesQ3:/Entry[Org=Muridae℄/Ref[Medline=9225337℄/Cite/text()Q4:/Entry/Ref[MedlineID=9225337℄/Cite/text()Q5:/Entry/Ref/Cite/text()Q6://Entry/Features//DOMAIN//Desr/text()Q7:/Entry/ModFigure 12: SAX Events Proessed for di�erent querieson SwissProtFigures 14 and 15 show the number of SAX eventsproessed by the query engine on the DBLP dataset.The redution in the number of SAX events is more7.3 Query CharaterstiAs it an be seen from the throughput results for var-ious sample queries on the test datasets, XSQ-H pro-vides a better throughput than XSQ and XMLTK inmost ases. However, the atual gain in the through-put varies signi�antly and depends on the query. Weonduted experiments to observe the e�et of thevarious query haraterstis on the throughput gainahieved by XSQ-H.The length of a query is de�ned as the numberof loation steps in the expresions and is an impor-tant haratersti. We ran four queries with di�erentlength on the SwissProt dataset. It an be observed

0

5

10

15

20

25

30

35

40

45

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
u
m

b
e
r

o
f
S

A
X

 E
v
e
n
ts

 (
0
0
0
0
0
’s

)

Queries on SwissProt

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XMLTK and XSQ

Q1:/EntryQ2:/Entry[Org℄/Ref[MedlineID℄/Cite/text()Q3:/Entry/Ref[MedlineID℄/Cite/text()Q4://CARBOHYD/text()Q5://Entry[Org=Eukaryota℄//MUTAGENQ6:/Entry[Org=DISULFID℄//Author/text()Q7://NoresultFigure 13: SAX Events Proessed for di�erent querieson SwissProt

0

5

10

15

20

25

30

35

40

45

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
u
m

b
e
r

o
f
S

A
X

 E
v
e
n
ts

 (
0
0
0
0
0
’s

)

Queries on dblp

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XMLTK and XSQ

Q1://ee/text()Q2://editor/text()Q3:/inproeedings[author℄/title/text()Q4://artile[year=1997℄//drom/text()Q5:/artile/title/text()Q6:/phdthesis/shool/text()Q7:/mastersthesis[url℄/title/text()Figure 14: SAX Events generated for di�erent querieson DBLP
14

0

5

10

15

20

25

30

35

40

45

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
u
m

b
e
r

o
f
S

A
X

 E
v
e
n
ts

 (
0
0
0
0
0
’s

)

Queries on dblp

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS
XMLTK and XSQ

Q1://url/text()Q2:/inproeedings[url℄/title/text()Q3:/inproeedings/booktitle/text()Q4:/proeedings/title/text()Q5:/phdthesis[year=1993℄/title/text()Q6:/phdthesis/title/text()Q7:/mastersthesis/title/text()Figure 15: SAX Events generated for di�erent querieson DBLPfrom Figure 16 that the throughput of XSQ-H in-reases with the length of the query. Longer queriesusually have smaller query results and allow XSQ-H skip larger amount of data resulting in a higherthroughput.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q1 Q2 Q3 Q4 Q5 Q6

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Queries on SwissProt

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS

Figure 16: Normalized Throughput for queries withdi�erent lengthQ1:/EntryQ2:/Entry/text()Q3:/Entry/FeaturesQ4:/Entry/Features/DOMAINQ5:/Entry/Features/DOMAIN/Desr/text()The throughput of XSQ-H also greatly depends onthe presene of desendant axis in the query expres-sion. We used a set of queries di�erent in the num-ber and position of desendant axis on the SwissProtdataset to study this e�et. The queries and the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Queries on SwissProt

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS

Figure 17: Normalized Throughput for queries withlosures on SwissProtQ1://Entry/Features/DOMAIN/Desr/text()Q2:/Entry//Features/DOMAIN/Desr/text()Q3:/Entry/Features/DOMAIN//Desr/text()Q4:/Entry/Features//DOMAIN/Desr/text()Q5://Entry//Features//DOMAIN//Desr/text()Q6://Entry/Features//DOMAIN//Desr/text()Q7://Entry/Features/DOMAIN//Desr/text()throughput of XSQ-H on the queries are shown inFigure 17.As expeted, XHint-S and XHint-NS perform verypoorly on all queries exept Q3 and Q4. In aseof these two queries, the desendant axis is presentdeep in the query expression reduing the overheadinurred due to absene of information about desen-dants. On the other hand, the throughput of XHint-SB and XHint-NSB is onsistently high. It is slightlyhigher for queries with losure axis deeper in the ex-pression suh as Q4. A deeper desendant axis allowsXSQ-H to ignore a larger number of elements as om-pared to queries ontaining the desendant axis loserto the �rst loation step as in Q1 and Q5.We also studied how presene of multiple predi-ates in the query e�et the throughput of XSQ-H. Figure 18 presents the throughput of the sys-tem for the four type of XHint shemes on samplequeries with prediates. The data digest present inthe XHint-SB and XHint-NSB allow XSQ-H to pre-evaluate the prediates and redue the number ofSAX events. As a result, these two XHint shemeshave a higher throughput ompared to XHint-S andXHint-NS. However, XHint-SB and XHint-NSB donot outperform the other two shemes in ase of Q1.In ase of this query, the number of SAX eventsskipped using the data digest is relatively very smallsine the label in the prediate does not our fre-quently in the dataset. Instead, the overhead due toextra data proessing in XHint-NSB and XHint-SB15

result in performane degradation.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q1 Q2 Q3 Q4 Q5 Q6

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Queries on SwissProt

XSQ-H
XSQ-HS
XSQ-HB

XSQ-HBS

Figure 18: Normalized Throughput for queries withprediatesQ1:/Entry[DISULFID℄/Referene/Author/text()Q2:/Entry[Org=Eurkaryota℄/Referene/MUTAGENQ3:/Entry[REPEAT℄/PROPEPQ4:/Entry[Org℄/Ref[MedlineID℄/Cite/text()Q5:/Entry[Org=Muridae℄/Ref[MedlineID=9225337℄/Cite/text()Q6:/Entry/Ref[MedlineID=9225337℄/Cite/text()Q7:/Entry/Ref[MedlineID℄/Cite/text()The information ontained in a XHint depends onthe size of the bu�er used to store the data during theXHint generation phase. A larger bu�er an allow theXHint to store additional information about the dataallowing the XHint Manager to skip more data. Wegenerated XHints for SwissProt dataset with di�erentbu�er size and measured the throughput of four dif-ferent queries to study how does the eÆay of XHintvary with the bu�er size. As Figure 19 shows, thethroughput of XSQ-H remains drops sharply whenwe redue the bu�er size below approximately 10KB.The throughput only inreases marginally if we in-rease the data size beyond 20-30 KB indiating thatXHints generated using smaller bu�er size of a fewKBs are almost as eÆient as large bu�er size. [In the atual experiments, we used bu�er sizeranging from 1KB to 6MB of raw data. I haveonly plotted from 0K to 100K in order to showthe knee point more learly sine the through-put is almost onstant for any bu�er size be-yond a few KBs ℄As we observqed before, there is a orrelation be-tween the throughput ahieved by XSQ-HB and theportion of data it proesses in number of SAX events.We use a metri alled seletivity de�ned as the ratioof the number of SAX events in the query result tothe total number of SAX events to study the orrela-tion.

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

G
a
in

Buffer Size (KB)

Q1
Q2
Q3
Q4

Figure 19: Normalized Query Throughput for di�er-ent bu�er sizeQ1:/Entry/Features/DOMAIN/Desr/text()Q2:/Entry[Org℄/Ref[MedlineID℄/Cite/text()Q3:/Entry//Desr/text()Q4://Entry[Org℄/Desr//text()Q1 //redQ2 /sheme/olor/redQ3 /sheme[ode=2℄/olor/redQ4 /sheme[ode=2℄//olor/redTable 2: Queries used on Syntheti DatasetsIn order to measure the e�et of seletivity of thequeries on the throughput of the system, we gener-ated ten syntheti datasets ontaining elements withred and blue as labels. All the datasets were similarin their harateristis exept in the proportion of theelements with the label red. We ran four queries (Ta-ble 2) of varying omplexity on eah of the datasetsand measured the throughput for di�erent values ofthe seletivity.Figure 20 displays the throughput gain of XSQ-HBompared to XSQ and XMTLK for di�erent values ofseletivity. Throughput gain of XSQ-HB omparedto other system is de�ned as the ratio of the through-put of XSQ-HB and the throughput of the system.As XMLTK does not support prediates, XSQ-HB isompared with XMLTK for only the �rst two queries.It an be observed that XSQ-HB provides aspeedup in proessing of the data for a wide rangeof seletivity. As expeted, XSQ-HB provides a highthroughput gain for low seletivity ompared to XSQand XMLTK. The performane worsens for high se-letivity as the proessor annot skip suÆient ele-ments.16

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h
ro

u
g
h
p
u
t
G

a
in

Selectivity (SAX Events)

Q1-XSQ
Q2-XSQ
Q3-XSQ
Q4-XSQ

Q1-XMLTK
Q2-XMLTK

Figure 20: E�et of Query Seletivity7.4 XHint GenerationWe onduted experiments to evaluate the salabilityand feasibility of the streaming XHint generation al-gorithm. One of the important parameters in XHintgeneration is the size of the bu�er allotted to the sys-tem. We generated XHints for the test datasets fordi�erent values of bu�er size and measured the timetaken to proess the entire dataset. The result is dis-played as throughput of the XHint generation systemin Figure 21. The XHint generator has to omputeand handle greater amount of data if its bu�er sizeis large. If we use smaller amount of bu�er size, theomputation of the o�sets in the XHints are donefaster. As a result the throughput falls with inreasein the bu�ersize. We also show the atual time takento generate hints for two of the test datasets in Fig-ure 22 to provide a di�erent perspetive.The insertion of XHints in the XML data resultsin an inrease in the data size that has to be sentto the query proessor. We measured this overheadin terms of the perentage inrease in the data dueto addition of XHints for datasets of di�erent sizes.As Figure 23 indiates, the perentage overhead inthe data dereases with inrease in the dataset size.Small sized datasets have a low number of elementsand the XHint onstitute a signi�ant portion of thedata in terms of size. As the size of the data inreases,the number of XHints needed to store o�set summaryof the data does not inrease in the same proportionas the data elements sine the atomi and text nodesof the data do not ontain XHints. As a result, theperentage overhead of inserting XHints dereases asthe data size inreases.

0.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

0 200 400 600 800 1000

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Buffer Size (MB)

SwissProt
DBLP
PSD

Figure 21: Throughput of XHint Generation

520

540

560

580

600

620

640

660

680

700

720

0 200 400 600 800 1000

T
im

e
 (

s
)

Buffer Size (MB)

SwissProt
DBLP

Figure 22: Time taken for XHint Generation

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 100 200 300 400 500 600 700 800 900

P
er

ce
nt

ag
e

In
cr

ea
se

Database Size (MB)Figure 23: Perentage inrease in the data size forbu�er size of 50 MB17

8. Related WorkA large number of tehniques have been proposedin reent years to make query proessing eÆient onstreaming semistrutured data. The idea of insertingpuntuations in a data stream to assist query proess-ing was �rst introdued in [19℄. The puntuation werein the form of prediates and allowed the query pro-essor to infer the absene of ertain elements in thedata following the puntuation. A binary enodedindex alled SIX has been used to make proessingfaster for simple queries in [11℄. SIX stores the o�-sets to the start and end of the elements in the datastream. The query proessor an use the o�sets toskip proessing data in muh the same way as XSQ-HB. The MathMaker system [14℄ addresses a similarproblem of mathing an inoming data stream to alarge number of queries by using indexes on the querypatterns. This problem is dual to the onventionalquery proessing problem in that the size of the datais small ompared to the number of queries.Several query engines have been presented forstreaming XML data. The XML Streaming Ma-hine (XSM) [16℄ deomposes the queries into sim-pler subexpressions and uses a haining method toproess the subexpressions individually. XSQ [18℄and XPush [12℄ use an automaton based approahto proess streaming XML data. XSQ onstruts anhierarihal automaton alled HPDT from the queries.On the other hand, XPush uses a lazy deterministi�nite automaton to proess the queries.A lot of work has been done for non-streamingdatabases. Dataguides [10℄ were one of earliestframework designed to provide a strutural summaryof semistrutured data. Template Indexes or T-Indexes [17℄ and Index Fabri [7℄ are based upon gen-erating indexes on data paths, whih are mathed tothe query to obtain the o�sets to relevant elements.The XML Indexing and Storage System (XISS) [15℄employs a numbering sheme to index elements andattributes.An adaptive indexing sheme for non-streamingXML data is presented in APEX [6℄. APEX storesindexes for only the most frequently used paths whihan be updated inrementally depending on hangesin the query workload. It would be interesting touse this idea and study how query workload an beused to estimate the utility of a XHint in terms ofthe speedup it provides and insert only the most use-ful XHints based on this estimate. More reently,another dynami index alled ViST was proposedin [20℄. It represents XML database and the query asstruture-enoded sequenes reduing the problem to

that of mathing subsequenes. Unlike other indexes,it proesses the query as whole without deomposingit into sub-queries saving on expensive join operationsrequired to merge the sub-query results. An adap-tive version of the T-Indexes [17℄ alled D(k)-Indexesis proposed in [5℄. D(k)-indexes provide an updatingmehanism storing only the most useful path indexesdepending on the query workload.A number of systems have been developed to ad-dress a losely related problem of �ltering XML do-uments based on XPath queries. Index-�lters [3℄ usean idea very similar to XHints to skip irrelevant datato proess data eÆiently. It onstruts indexes overthe tags of the doument in order to identify the por-tions of the data that are guaranteed not to maththe query and does not parse them. XFilter [1℄ andYFilter [9, 8℄ onstrut �nite automaton mahinesfrom multiple queries to perform the �ltering opera-tion.XTrie was proposed in [4℄ to index the XPathqueries based on ommon subexpressions.9. ConlusionXML parsing is responsible for a substantial portionof query proessing time. A query engine an signi�-antly improve its throughput if it an skip elementswhih do not belong to the query result. We proposedan indexing sheme that allows the query engine toskip large portions of irrelevant data improving itsproessing speed. The index uses speial XML el-ements alled XHints, interleaved with the data, tostore strutural information about the data elements.This information is used by the query engine to iden-tify the elements that an be safely skipped and re-due the overhead of parsing.We illustrated how four types of o�set informationor hints an be used by an query proessor to improvethe throughput for a large variety of simple and om-plex queries.We desribed XSQ-H, a XHint-enabled version ofXSQ, a streaming XML query engine as an onreteappliation of XHints. In order to demonstrate thegeneriity of the approah, we gave a brief outlineof how XHints an also be used in an iterator-basedmodel suh as Tukwila to proess queries more eÆ-iently.Finally, we evaluated the bene�ts of XHints by run-ning several experiments on a prototype of XSQ-H us-ing test datasets. We also onduted omprehensiveexpriments to measure the overhead ost of generat-ing and inserting XHints in di�erent datasets.18

Referenes[1℄ Mehmet Altinel and Mihael J. Franklin. EÆ-ient �ltering of XML douments for seletivedissemination of information. In Proeedingsof the International Conferene on Very LargeData Bases (VLDB), pages 53{64, September2000.[2℄ Iliana Avila-Campillo, Todd J. Green, AshishGupta, Makoto Onizuka, Demian Raven, andDan Suiu. XMLTK: An XML toolkit for sal-able XML stream proessing. In Proeedings ofProgramming Language Tehnologies for XML(PLAN-X), Otober 2002.[3℄ Niolas Bruno, Luis Gravano, Nik Koudas, andDivesh Srivastava. Navigation vs. index-basedXML multi-query proessing. In Proeedings ofthe International Conferene on Data Engineer-ing, Marh 2003. To appear.[4℄ Chee Yong Chan, Pasal Felber, Minos N. Garo-falakis, and Rajeev Rastogi. EÆient �lter-ing of XML douments with XPath expressions.In Proeedings of the International Confereneon Data Engineering, pages 235{244, February2002.[5℄ Qun Chen, Andrew Lim, and Kian Win Ong.D(k)-index: An adaptive strutural summaryfor the graph-strutured data. In Proeedingsof the ACM SIGMOD International Confereneon Management of Data (SIGMOD), pages 134{144, June 2003.[6℄ Chin-Wan Chung, Jun-Ki Min, and KyuseokShim. APEX: An adaptive path index for XMLdata. In Proeedings of the ACM SIGMOD In-ternational Conferene on Management of Data(SIGMOD), pages 121{132, June 2002.[7℄ Brian Cooper, Neal Sample, Mihael J. Franklin,G��sli R. Hjaltason, and Moshe Shadmon. Afast index for semistrutured data. In Proeed-ings of the International Conferene on VeryLarge Data Bases (VLDB), pages 341{350, Au-gust 2001.[8℄ Yanlei Diao, Mehmet Altinel, Mihael J.Franklin, Hao Zang, and Peter Fisher. Pathsharing and prediate evaluation for high-performane XML �ltering. ACM Transationson Database Systems (TODS), 28(4), Deember2003. To appear.

[9℄ Yanlei Diao, Peter Fisher, and Mihael J.Franklin. YFilter: EÆient and salable �lteringof XML douments. In Proeedings of the Inter-national Conferene on Data Engineering, pages341{344, February 2002.[10℄ Roy Goldman and Jennifer Widom. Dataguides:Enabling query formulation and optimization insemistrutured databases. In Proeedings of theInternational Conferene on Very Large DataBases (VLDB), pages 436{445, August 1997.[11℄ Todd J. Green, Gerome Miklau, MakotoOnizuka, and Dan Suiu. Proessing XMLstreams with deterministi automata. In Pro-eedings of the International Conferene onDatabase Theory, pages 173{189, January 2003.[12℄ Ashish Gupta and Dan Suiu. Stream proessingof XPath queries with prediates. In Proeedingsof the ACM SIGMOD International Confereneon Management of Data (SIGMOD), pages 419{430, June 2003.[13℄ Zahary Ives, Alon Halevy, and Dan Weld. AnXML query engine for network-bound data. InThe VLDB Journal, 2003.[14℄ Laks V.S. Lakshmanan and SailajaParthasarathy. On eÆient mathing ofstreaming XML douments and queries. InProeedings of the International Conferene onExtending Database Tehnology, pages 142{160,Marh 2002.[15℄ Quanzhong Li and Bongki Moon. Indexing andquerying XML data for regular path expressions.In The VLDB Journal, pages 361{370, 2001.[16℄ Bertram Ludasher, Pratik Mukhopadhayn, andYannis Papakonstantinou. A transduer-basedXML query proessor. In Proeedings of theInternational Conferene on Very Large DataBases (VLDB), pages 227{238, August 2002.[17℄ Tova Milo and Dan Suiu. Index strutures forpath expression. In Proeedings of the Inter-national Conferene on Database Theory, pages277{295, January 1999.[18℄ Feng Peng and Sudarshan S. Chawathe. XPathqueries on streaming data. In Proeedings ofthe ACM SIGMOD International Conferene onManagement of Data (SIGMOD), pages 431{442, June 2003.19

[19℄ Pete Tuker, David Maier, Tim Sheard, andLeonidas Fegaras. Puntuating ontinous datastreams. Tehnial report, OGI Shool of Si-ene and Engineering at OHSU, 1999.[20℄ Haxiun Wang, Shaghyun Park, Wei Fan, andPhilip S. Yu. ViST: A dynami index methodfor querying XML data strutures. In Proeed-ings of the ACM SIGMOD International Confer-ene on Management of Data (SIGMOD), pages110{121, June 2003.

20

