Describing and Manipulating XML Data

Sudarshan S. Chawathe
Department of Computer Science
University of Maryland
College Park, MD 20904
chaw@cs.umd.edu

Abstract

This paper presents a brief overview of data management using the Extensible Markup Language
(XML). It presentsthe basics of XML and the DTDs used to constrain XML data, and describesmetadata
management using RDF. It also discusseshow XML data is queried, referenced, and transformed using
stylesheet language XSLT and referencing mechanisms XPath and XPointer.

1 Describing XML Data

The Extensible Markup Language (XML) [BPSM 98] models data as a tree of elements that contain character
data and have attributes composed of name-value pairs. For example, hereisan XML representation of catalog
information for a book:

<book>
<title>The spy who cane in fromthe cold</title>
<aut hor >John <l ast nane>Le Carre</| ast name></ aut hor >
<price currency="USD'>5.59</price>
<r evi ew><aut hor >Ben</ aut hor >Per haps one of the finest...</review
<revi ew><aut hor>Jerry</author>An intriguing tale of...</review
<bestsell er authority="NY Tines"/>
</ book>
Text delimited by angle brackets (<...>) ismarkup, whiletherest ischaracter data. (Here, and intherest of this
paper, we introduce concepts informally as needed for our discussion; for formal specifications, see [W3C99].)
Elements may contain amix of character data and other elements; e.g., the book element containsthe text “Here
aresome...” inadditionto elementssuchastitl e andpri ce. Theeement namedti t | e containscharacter
data denoting the book title and is contained in the book element. Similarly, the element pri ce contains
character data denoting the book’s price. This element aso has an attribute named cur r ency with value USD,
represented using the syntax at t r i but e- name="at t ri but e- val ue" withinthe element’s start-tag. In
genera, element names are not unique; e.g., the book element in our example contains two review elements.
However, attribute names are unique within an element; e.g., the price el ement cannot have another attribute
named currency. The syntax permits an empty element <best sel | er ></ best sel | er > to be represented
more concisely as<best sel | er / >. XML documents are called well-formed if they satisfy simple syntactic

constraints, such as proper delimiting of element names and attributes and proper nesting of start and end tags.

Copyright 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to serversor lists, or to reuse any
copyrighted component of this work in other works must be obtained fromthe |EEE.

Bulletin of the |EEE Computer Society Technical Committee on Data Engineering

1.1 DTD

Asdescribed above, XML providesasimpleand general markup facility whichisuseful for datainterchange. The
simple tag-delimited structure of well-formed XML makes parsing extremely simple. However, applications
that operate on XML data often need additiona guarantees on the structure and content of such data. For
example, a program that calcul ates the tax on the sale of a book may need to assume that each book element in
its XML input includes a price subel ement with a currency attribute and a numeric content. Such constraintson
document structure can be expressed using a Document Type Definition (DTD). A DTD defines aclass of XML
documents using a language that is essentially a context-free grammar with several restrictions. For example,
one may usethe following DTD declaration to constrain XML documents such as thosein our book example:

<! ELEMENT book (title, author+, price, review', bestseller?)>
<IELEMENT title (#PCDATA) >
<! ELEMENT aut hor (#PCDATA| | ast nane|firstnane|ful |l nane)*>
<! ELEMENT price (#PCDATA) >
<! ATTLI ST price currency CDATA "USD'
source (list|regular|sale) Ilist
t axed CDATA #FI XED "yes">
<! ELEMENT best sel | er EMPTY>
<I ATTLI ST bestsel |l er authority CDATA #REQUI RED>

Thefirst line of thisdeclaration is an el ement type declaration that constrainsthe contents of the book element.
Following common convention, the declaration syntax uses commeas for sequencing, parentheses for grouping,
and the operators ?, *, and + to denote, respectively, zero or one, zero or more, and one or more occurrences
of the preceding construct. Note that the declaration requires every book element to have a price sub-element.
The second line declares the type for the tit| e element to be parsed character data (implying an XML
processor will parse the contentslooking for markup). Notethat the use of some element names(e.g., r evi ew,
| ast name) without a corresponding declaration is not an error; such elements are simply not constrained by
thisDTD. The last two lines declare best sel | er to be an entity that must be empty and that must have an
aut hori ty attribute of type char act er dat a. The declaration also indicates that the pri ce element
may have attributes cur r ency, of type character data and default value USD; sour ce, with one of the three
values shown (an enumerated type) and default value |l i st ; and t axed, with the fixed valueyes. The fixed
attribute type is a special case of the default attribute type; it mandates that the specified default value not be
changed by an XML document conforming to the DTD. Fixed-val ue attributes are convenient for ensuring that
datacritical to processing an el ement typeis available with the desired va ue without requiring it to be explicitly
specified for each element of that type. Our example DTD specifies that the book in our XML example must be
taxed.

An XML document that satisfies the constraintsof aDTD is said to be valid with respect to that DTD. The
DTD associated with an XML document may be specified using several methods, one of which istheinclusion
of adocument type declaration <! DOCTYPE BOOKCATALOG SYSTEM "http://tt.com bookcat al og. dt d">. in aspecia
section near the beginning of a document, called its prolog. This declaration indicates that the XML document
claims vaidity with respect to the BOOKCATALOG DTD which may be found at the indicated location.

The data modeling facilities provided by DTDs are insufficient for many applications. For example, we
cannot use DTDsto require that the value of the element pri ce be afixed-precision real number in the range
zero through 10000 with two digits after the point. Thus our tax-calculation application cannot rely on XML
vaidity with respect to its DTD for such simpleerror-checking. The XML Schema proposal [BLM 199, BM99]
defines facilities that address these needs.

1.2 RDF

The Resource Description Framework (RDF) [LS99, BG99] provides a general method to describe metadata
for XML documents. More specifically, RDF describes resources, which are objects (not necessarily Web-
accessible) identified using Uniform Resource Identifiers (URIS) [BLFM98]. The attributes that are used to
describe resources are called properties. RDF statements associate a property-val ue pair with a resource; they
are thus triples composed of a subject (resource), a predicate (property), and an object (property value).

2

For example, suppose we associate the URI htt p: //tt. com books with the XML document in our
book exampleabove. We may indicatethat the XML document isowned by “Jane Doe” using an RDF statement
with the following triple: (Subject: http://tt.com books; Predicate: Omer; Cbject: "Jane Doe")

Such RDF statements are graphically represented using ovals for resources, rectangles for literal values, and
directed arcs for properties:

http://tt.com/books Owner Jane Doe

The value of a property is not required to be aliteral such as the string “Jane Doe” above; it may be another
resource. For example, the following RDF graph indicates that the owner of the books data is the resource
identified by URI ht t p: / / ssn. gov/ 12345, which has the name Jane Doe and title Editor.

http://tt.com/books Owner http://ssn.gov/12345 name

subjects
Jane Doe

rdf:type title

rdf:Bag

espionage © rdf:_1 rd& mystery Editor

The above example also illustrates the RDF container facility. The subjects property of the books resource has
thebag { espi onage, nystery} asitsvaue. RDF aso provides container types sequence and aternative.
Note that, like all RDF properties, the subjects property in our example has a single vaue (the bag). To make
a statement about each member of a container, one must use a distributive referent attribute that intuitively
modifies the meaning of the description e ement from a single statement to a container of statements (one for

each element of the referenced container) [L S99]. _ _
RDF a so specifies a concrete syntax based on XML for expressing RDF statements. For example, hereisa
complete XML document representing the above RDF graph:
<?xm version="1.0"?>
<rdf: RDF xm ns: rdf ="http://w3. org/ TR/ 1999/ PR- r df - synt ax#"
xm ns: bs="http://myschemas. or g/ books- schema#" >
<rdf: Description about="http://tt.conl books">
<bs: Omner rdf:resource="http://ssn.gov/12345"/>
</ rdf: Description>
<rdf: Description about="http://ssn.gov/12345">
<bs: Name>Jane Doe</ bs: Nane>
<bs: Title>Editor</bs: Title>
</rdf: Description>
<rdf: Description about="http://tt.conl books">
<bs: Subj ect s>
<rdf: Bag><rdf:|i>espi onage</rdf:li><rdf:li>nystery</rdf:|i></rdf:Bag>
</ bs: Subj ect s>
</rdf: Description>
</ rdf : RDF>

This example aso introduces some more XML concepts. Although technically not required, XML documents
should beginwith an XML declaration, similar to the one on thefirst line of our example, identifying the version
of XML used. Element and attribute names appearing in an XML document may be qualified using XML
namespace declarations [BHL99] such as those on lines 34 above. Our exampl e introduces two hamespaces.
The first is identified using the URI http://w3.0rg/TR/1999/PR-rdf-syntax# and is assigned a shorthand r df .
This namespace contains the elements and attributes defined in [LS99]. The second is an imaginary books
schema namespace containing properties that describe books (e.g., Owner); it is assigned the shorthand bs.
Namespaces are an important addition to the base XML recommendation because they permit distributed,
autonomous development of XML schemas without fear of name clashes. URIs are used in namespaces only
for convenience in generating unique names and are not required to identify any Web resource.

3

RDF permits an intensional definition of bags using URIs. Such a definition is implicit in the use of a
distributive referent of type f or EachPr ef i x. For example, the f or EachPr ef i x attribute below inten-
sionally defines a bag containing all resources whose URIs have the specified prefix and establishesthe Creator
and Publisher of each resourcein the bag.

<rdf: RDF xm ns: rdf ="http://w3. org/ TR/ 1999/ PR-r df - synt ax#"
xm ns: DC="http://purl. org/ DC#" >
<rdf: Descripti on about EachPrefix="http://cs. und. edu/~ chaw'>
<DC: Cr eat or >Sudar shan S. Chawat he</ DC: Cr eat or >
<DC: Publ i sher >Dept . Conputer Science, Univ. of Maryl and</DC: Publi sher>
</rdf: Description>
<r df : RDF/ >
The above example uses terms from the Dublin Core content description model which is described at the URI

shown. Thismodel predates RDF and the RDF Schema recommendation [BG99] includes a schemafor it.

One often needs to make statements about other statements (e.g., “Foo believes that the creator of Bar is
Baz"). For this purpose, RDF allows a statement to be reified: It can be transformed into a resource of type
st at ement , with properties subj ect, predi cat e, and obj ect, to which additiona properties (e.g.,
aut hori ty and PGP- si gnat ur e below) may be attached:

<rdf: Descri pti on>
<rdf : subj ect >Bar </ r df : subj ect >
<rdf: predi cate resource="http://purl.org/ DC#Creator"/>
<rdf : obj ect >Baz</ r df : obj ect >
<rdf:type resource="http://w3. org/ TR/ 1999/ PR-r df - synt ax#St at enent "/ >
<aut hori t y>Foo</ aut hority>
<PGP- si gnat ur e>XndkA093cDks. . . </ PGP- si gnat ur e>
</rdf: Description>

2 Manipulating XML Data

Given an XML document, one often needsto transform it to better suit the needs of an application. For instance,
we may wish to generate a printed catal og containing information about all the books in our running example.
In one printed catalog, we may wish to include only the title, authors, and price of each book, skipping other
details such as reviews. We may also wish to generate a smaller catalog containing only bestsellers. Further,
we may wish to automatically generate a table of contents for these catalogs. Of course, one can implement
such applications by writing procedural programs that access the required parts of the source XML document,
perhaps using a convenient object interface such as the Document Object Model (DOM) [AT98]. However,
XML applications, like database applications, stand to benefit from a declarative languages. Note that the
languages described in this section, like RDF in the previous section, operate on the logical tree structure of an
XML document (e.g., as supported by DOM), not on its serialization syntax.

21 XSL

The Extensible Stylesheet Language (XSL) is a language for transforming and formatting XML. Recently, the
transformation and formatting parts of XSL were separated. In this paper, we focus on the XSL transformation
language, called XSLT [Cla99], and the related XPath [CD99] and XPointer proposas [DJ99].

An XSLT stylesheet isacollection of transformationrulesthat operate (non-destructively) on asource XML
document (source tree) to produce a new XML document (result tree). Each rule consists of a pattern and a
template. During rule processing, patterns are matched against the nodes of the source tree, and the template
isinstantiated (typically using references to the matched nodes) to produce part of the result tree. Templates
may contain, in addition to literals and references to matched nodes, explicit instructions for creating result
tree fragments. Rule processing starts by instantiating the template of the rule that matches the root element
of the source tree. (XSLT uses a conflict resolution mechanism when several rules match a node and default
rules when no rules match anode.) Additiona elements are processed only when they have been selected for
processing by the template of some previously processed element.

Hereisan XSL stylesheet for transforming an XML document containing book e ements (from our running
example) to an XHTML [XHT99] document that pretty-printsthe title, author, and price of each book, and that

includes only the first review for each book. (XHTML isareformulation of HTML 4.0in XML.)
<xsl : styl esheet xm ns:xsl="http://w3. org/ XSL/ Transform 1. 0"
xm ns="http://w3.org/ TR xhtm 1"
indent-result="yes">

<l-- Rule 1 --> <xsl:tenplate match="/">
<ht m ><head><titl e>Qur New Catal og</titl e></head>
<body>
<xsl : appl y-tenpl at es/ >
</ body>
</htm >
</ xsl : tenpl at e>
<l-- Rule 2 --> <xsl:tenplate match="book/title">

<hl><xsl : appl y-t enpl at es/ ></ h1>
</ xsl : tenpl at e>
<l-- Rule 3 --> <xsl:tenpl ate mat ch="book/ aut hor">
<xsl : appl y-t enpl at es/ ></ b>
</ xsl : tenpl at e>
<l-- Rule 4 --> <xsl:tenplate match="book/price">
<xsl : appl y-tenpl at es/ > <xsl : appl y-tenpl ates select="@">
</ xsl : tenpl at e>
<!-- Rule 5 --> <xsl:tenplate match="book/review 1]" priority="1.0">
<xsl : appl y-tenpl at es/ >
</ xsl : tenpl at e>
<I-- Rule 6 --> <xsl:tenplate match="book/revi ew' priority="0.5">
</ xsl : tenpl at e>
</ xsl : styl esheet >

Thefirst three lines declare the XSL and XHTML namespaces used by the stylesheet. The XHTML namespace
is made the default namespace (by skipping the local shorthand in the declaration); thus, unqualified element
and attribute names (e.g., head) areimplicitly in the XHTML namespace. (In XML, text between the comment
delimiters<: -- and - - > isignored by processors.) Eacht enpl at e element describes one transformation rule.
The mat ch attribute of a template e ement specifies the rule pattern while its content is the template used to
producethe corresponding portion of theresult tree. Thepattern®/ " of thefirst rule denotestheroot of the source
tree. The template contains some standard XHTML header and trailer constructs. The appl y-t enpl at es
element isarule-processing instruction that denotes recursive processing of the contents of the matched element.
(XSLT includes severa other instructionswhich permit templates with constructs such as for-loops, conditional
sections, and sorting.) The second rul€’s pattern, “book/ ti t| e” matchesati t| e elementif itsparentisa
book eement. Thetemplate callsfor recursive processing of the contents, enclosed in XHTML literalsfor bold
display (. . . </ b>). XSL processing includesimplicit rules that match elements, attributes, and character
data (text) not matched by any explicit rules; these rules simply copy data from source to result tree. In our
example, al character data (such as the the text “The spy...” in thetitle) is copied to the result tree. Rule 4,
for processing pri ce elements, is similar but includes an additional apply-template instruction to extract the
cur r ency atributeusingthesyntax @ . Rule5 matchesonly thefirstr evi ewelement in each book element
due to the “[1] " specification. The template simply copies the contents to the result tree (using recursive
processing with appl y-t enpl at es combined with the default rules). We ensure that the first review for
each book is processed using Rule 5 instead of Rule 6 by assigning Rule 5 ahigher pri ority.

2.2 XPath

XSLT rules contain patterns that are matched against nodes (el ements, attributes, etc.) in the XML source tree.
The language for specifying these patterns is XML Path Language (XPath) [CD99]. Principaly, XPath defines
the syntax and semantics of path expressions such as the following, which matches thelast r epor t child (in
document order) of theweat her descendants of the node with uniqueidentifier “f avori t es”:
id("favorites")/descendant:: weather/child::report[position()=last()]
Path expressions are eval uated in acontext consisting of anode called the context node, aset of nodes called
the context node list, a set of variable bindings, a function library, and the set of nhamespaces in scope. Path

5

expressions may berelative, selecting nodes by navigating from the current context node, or absolute, selecting
nodes by navigating from the document root. A path expression consists of a sequence of / -separated steps,
where a step is a basis followed by an optiona list of predicates. Informally, a basis indicates a navigationa
selection of nodes based on the current context, while the predicate list narrows the list of selected nodes using
properties such as position and value. A basisis of the form AxisName::NodeTest, where AxisName refers to
one of several inter-node rel ationship types and NodeTest is a sel ection condition based on this rel ationship.

Our path expression example above has three steps: (i)a predefined function that selects the (unique) node
that has an | D attribute of value “f avori t es”; (ii) a basis descendant and node test weat her that
returns a list, in document order, of al weat her descendants of the context node; and (iii) navigation from
theseweat her nodes, giving alist of their r epor t children, which are filtered using the predicate in square
brackets to yield only the last r eport child for each weat her node (in document order). The function
posi ti on returnsthe position of the current context node (at evaluation time) in the context node list, while
| ast returnsthe number of nodesin thislist. These functions are from the XPath core function library, which
includes other functions that return properties of the context node and list as well as common utility functions
on numbers, strings, and booleans. Note that the result of performing a basis step isalist of context nodes, not
aset. Thelist order depends on the axis. Intuitively, the basis nodes are in ascending order of distance from the
context node.

In additionto chi | d and descendant , XPath provides the following axes. The par ent axis contains
the parent, if any, of the context node; the parent of an attribute or namespace node is defined to be the element
it modifies. The f ol | owi ng- si bl i hg axis contains siblings of the context node that precede it in the
document. The f ol | owi ng axis contains only element nodes that strictly follow the context node in the
document. Descendants of the context node are excluded. The pr ecedi ng axis is analogous; it contains
element nodes that strictly precede the context node. The ancest or axis contains the proper ancestors of
the context node (based on the par ent axis). Theattri but e (namespace) axis contains the attribute
(respectively, namespace) nodes attached to the context node if it is an element node, and is empty otherwise.
Finally, theancest or - or - sel f and descendant - or - sel f axes are defined as their names suggest.

Node tests may also use constraints on attribute nodes. For our books example, the following X Path sel ects
book nodes whose price child has attribute currency equa to USD and attribute source equal to

list: root()/descendant: : book/child:price[attribute::currency="USD"
and attribute::source="list"]/parent::node()
This syntax for path expressions is verbose. XPath also defines an abbreviated syntax by mapping it to this
syntax. For example, . / foo and. / / f oo select al f oo children and descendants, respectively, of the context
node; . / f 00[3] selectsthethird f oo child of the context node. Further, “. ” and“. . " are abbreviations for
sel f::node() andparent:: node(), respectively. Thus, we may rewrite our two examples as:
id("favorites")//weather/report[last()] and /7 book/ price[@urrency="USD' and @ource="list"]/..

2.3 XPointer

Applications may need to address precise portions within XML documents that cannot be modified, e.g., an
XML tutorial may wish to annotate specific sections, paragraphs, or sentences of the XML recommendation
[BPSM98] without modifying it. (This application is described in [Bra98].) Addressing parts of XML
documentsis also important when transforming XML using XSLT and X Path as described above. However, the
addressing capabilities of XPath are not sufficient. For example, the above application may wish to highlight
aregion of the XML recommendation that is not awell-formed XML fragment. The XML Pointer Language
(XPointer) [DJ99] extends X Path to support such applications by adding two new axesto specify basis stepsin

XPeth.

The range axis addresses the XML region bounded by the locations addressed by its two arguments. For
example, thefollowing X Pointer sel ects the document region between thefirst and fifth book reviews (inclusive)
for our running example:

/ /' book/ range: :review 1], f ol | owi ng-si bling: :revi ew 4]
The range axis s extremely useful for denoting all regionsthat are marked using a pair of empty elements such

aer/ edi t s- begi n/- end in thefollowing example:
M. fragnent: ...<Observations>

<Tenp> 98 99 101 92 <ny-edits-begin/> 76 32 99 </ Tenp>
<Pressure> 30 31 33 32 </Pressure>
</ Cbservati ons>
<Concl usi on>I nterestingly, <ny-edits-end/>...
XPoi nt er: [/ range: : descendant: : ny-edits-begin, foll owi ng::ny-edits-end[1]
This XPointer specifies a range beginning a each ny-edi t s- begi n element and ending at the next
ny- edi t s- begi n element. It illustrates two restrictions on the range axis: (i) athough its first argu-
ment may reference multiplelocations, each such location must be followed by exactly one location referenced
by the second argument; (ii) unlike other axes, a range axis may denote regions that cannot be mapped to well-
formed context node lists (e.g., the region between the edit markers above). Hence, range axis results cannot be
processed further using the X Pointer mechanism. (They are intended for use by application programs.)

The string axis sel ects regions using character-based matches (in contrast with the node-based matches used
by other axes). Theexpression“stri ng: : n,M,p,l,” wheren, p, and | areintegersand M isastring, selectsthe
sequence of | characters starting at the p’th positionfollowing the last character of the n’th occurrence of the pat-
tern M. For our running exampl e, thefoll owing sel ectsthetenth occurrence of “ spy” within abook review element
or its descendants, a ong with 20 characters before and after the word: / book/ revi ew / stri ng: : 10, "spy", 23, 43.

XPointer &l so adds two functions that specify absolutelocation paths (smilartothe/ andi d() expressions
used by XPath). The her e() function locates the element that directly contains (as content or attribute) the
XPointer itself (instead of anodein the sourcetree). The absence of such anelementisan error. Theor i gi n()
function isintended for link-traversal and refers to the resource from which the traversal in context began, the
absence of such atraversal signaling an error.

References

[AT98] V. Apparao et a. Document Object Model (DOM) level 1 specification version 1.0. W3C Recommendation,
October 1998. Availableat htt p: / / www. wW3. or g/ TR/ REC- DOM Level - 1-19981001.

[BG99] D. Brickley and R. Guha. Resource Description Framework (RDF) schema specification. W3C Proposed
Recommendation, March 1999. Availableat htt p: / / www. W3. or g/ TR/ PR- r df - schema.

[BHL99] T.Bray, D.Hollander, and A. Layman. Namespaces in XML. World Wide Web Consortium Recommendation.
Avalableat ht t p: / / waww. w3. or g/ TR/ REC- xmi - nanes, January 1999.

[BLFM98] T. Berners-Lee, R. Fielding, and L. Masinter. |1ETF (Internet Engineering Task Force) RFC 2396: Uniform
Resource Identifiers (URI): Generic syntax, August 1998. Availableat htt p: // www. i et f. org/ .

[BLM*99] D. Beech, S. Lawrence, M. Maloney, N. Mendelsohn, and H. Thompson. XML schema part 1: Structures.
W3C Working Draft, May 1999. Availableat ht t p: / / www. w3. or g/ TR/ 1999/ xm schena- 1/ .

[BM99] P. Biron and A. Mahotra. XML schema part 2: Datatypes. W3C Working Draft, May 1999. Available at
http://ww. w3. org/ TR/ 1999/ xm schenma- 2/ .

[BPSM98] T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible markup language (XML) 1.0. World Wide Web
Consortium Recommendation. Availableat ht t p: / / waww. W3. or g/ TR/ REC- xm , February 1998.

[Braos] T. Bray. Using XML to build the annotated XML specification, September 1998. Available at
http://ww. xm . com pub/ 98/ 09/ exexegesi s-0. htm .

[CD99] J. Clark and S. DeRose. XML path language (XPath) version 1.0. W3C Working Draft, July 1999. Available
ahttp://ww w3. org/ TR VD xpat h- 19990709.

[Cla99] J. Clark. XSL transformations (XSLT) version 1.0. W3C Working Draft, July 1999. Available at
http://ww. w3. org/ TR WD- xsl t - 19990709.

[DJ99] S. DeRose and R. Janiel J. XML pointer language (XPointer). W3C Working Draft, July 1999. Available at
http://ww. w3. org/ TR/ \D- xpt r - 19990709.

[LS99] O. Lassilaand R. Swick. Resource Description Framework (RDF) model and syntax specification. W3C
Proposed Recommendation, January 1999. Availableat ht t p: / / www. w3. or g/ TR/ PR-r df - synt ax.

[W3C99] TheWorld-WideWeb Consortium. htt p: / / www. w3. or g/ , 1999.

[XHT99] XHTML 1.0: The extensible hypertext markup language. W3C Working Draft, May 1999. Available at
http: //ww. w3. or g/ TR/ 1999/ xht m 1- 19990505/ .

