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We have implemented and released the XSQ system for evaluating XPath queries on streaming
XML data. XSQ supports XPath features such as multiple predicates, closures, and aggregation,
which pose interesting challenges for streaming evaluation. Our implementation is based on using
a hierarchical arrangement of augmented finite state automata. A design goal of XSQ is buffering
data for the least amount of time possible. We present a detailed experimental study that character-
izes the performance of XSQ and related systems, and that illustrates the performance implications
of XPath features such as closures.
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1. INTRODUCTION

The XSQ system is an XPath engine for streaming XML. The Extensible Markup
Language (XML) has become a well-established data format and an increasing
amount of information is becoming available in XML form [Bray et al. 2000].
We focus in this article on XML data that are in streaming format. Streaming
data are available for reading only once and are provided in a fixed order deter-
mined by the data source. Applications that use such data cannot seek forward
or backward in the stream and cannot revisit a data item seen earlier unless
they buffer it on their own. Examples of streaming data include real-time news
feeds, stock market data, sensor data, surveillance feeds, and data from net-
work monitoring equipment. Some data are available in only streaming form
because they have a limited lifetime of interest to most consumers. For exam-
ple, articles in a topical news feed are not likely to retain their value for very
long. Moreover, the data source may lack resources to provide nonstreaming
access. For example, a network router that provides real-time packet counts,
error reports, and security alerts is typically unable to fulfill the processing or
storage requirements of providing non-streaming access to such data.
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Fig. 1. Input Fragment 1.

There have been a number of recent proposals for query languages for
XML and XML-like data models [Abiteboul et al. 1996; Fernández et al. 1997;
Buneman et al. 1996; Deutsch et al. 1998; Clark and DeRose 1999; Boag et al.
2003]. Of these proposals, XPath and XQuery have emerged as the standards
recommendations that are likely to receive broad support. In this article, we
focus on XPath. However, since XPath forms an important core of XQuery, the
methods we describe are also useful for XQuery engines. We now present two
examples that illustrate some of the challenges of XPath evaluation in a stream-
ing environment. (A brief description of XPath appears in Section 2.)

Example 1. Consider the following query on the input fragment depicted in
Figure 1: /pub[year > 2000]/book[price < 11]/author. Intuitively, it returns
the authors of the books that have been published after year 2000 and that have
a price less than 11.

When we encounter the first author element on line 6 in the stream, it is
easy to deduce that the sequence of its ancestor elements matches the pattern
/pub/book/author (since the pub and book elements have been encountered
earlier and are still open). The predicate [year > 2000] is not satisfied by the
pub element (line 2) because we have not encountered any year child elements.
However, qualifying child elements may occur later in the stream. Therefore,
we cannot yet conclude that the predicate is false. For the book element on
line 3, we have encountered the first price element (line 4), which does not
satisfy the predicate [price < 11]. Again, we cannot yet conclude that the
predicate is false for this book element because it may have additional price
child elements later in the stream. Thus, at line 6 in the stream, we cannot
determine whether the author element belongs to the result. The element must
therefore be buffered.

When we encounter the price element on line 7, we can check that it satisfies
the predicate for its parent book element. However, we still cannot determine
whether the pub element on line 2 satisfies the predicate [year > 2000].
Consequently, it is still unknown whether the author element on line 6 belongs
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to the result. Therefore, we must continue to buffer the author element and
record the fact that the second predicate has been satisfied but not the first
one. Similarly, the two author elements on lines 12 and 13, which belong to the
second book element, have to be buffered as well. At this point in the stream
(line 13), there are three author elements in the buffer: two with value A and
one with value B.

When we encounter the price element on line 14, we note that it does not
satisfy [price < 11]. Since its parent book element is still open, we cannot yet
conclude that the book element fails to satisfy the predicate. That conclusion
can only be made when we encounter </book> on line 15. At this point in the
stream (line 15), the two author child elements of this book element should
be removed from the buffer. The other author element (with value A) remains
in the buffer because its first predicate may be satisfied by data encountered
later in the stream.

When we encounter the year element on line 16, we may determine that
the pub element on line 2 satisfies the predicate [year > 2000]. Recalling that
this pub element is the ancestor of the author element remaining in the buffer,
which has already satisfied the other predicate, we determine that this author
should be sent to the output.

The above example, although quite simple, illustrates some of the intricacies
that we must handle. First, we may encounter items that are potentially in
the result before we encounter the items required to evaluate their predicates.
We need to buffer such potential result items. Second, buffered items have to
be distinguished so that, after the evaluation of a predicate, only the items that
are affected by that predicate are processed. Third, in order to buffer items for
the least amount of time possible, we need to check whether pending buffer
items can be output as soon as some predicate is satisfied. Finally, predicates
access different portions of the data. Some should be evaluated when the start-
tag is encountered, while others may only be evaluated upon encountering the
text content. (There are other forms of predicates, discussed later.)

Example 2. Consider the query //pub[year>2000]//book[author]//name
for the input fragment depicted in Figure 2. This example introduces some
problems not seen in Example 1. Since the closure axis // is used in this query,
an element and its descendants may match the same location step. For instance,
the pub elements in lines 1 and 9 match the node test in the first location step.
There are three ways in which the name in line 11 matches the pattern of the
query (ignoring predicates). Each matching yields a different result for the
predicates, as summarized in the following table.

pub book [year > 2000] [author] name
line 2 line 7 true false line 11
line 2 line 10 true true line 11
line 9 line 10 false true line 11

As indicated by the table, only the matching of the second row satisfies both
predicates. However, the predicate results of these different matchings may
arrive in different orders and need further consideration.
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Fig. 2. Input Fragment 2.

When we encounter </pub> on line 15, we know that this pub element (of
line 9) fails the predicate [year > 2000]. However, we cannot remove the name
element on line 11 from the buffer because it is still possible that this item
satisfies the query due to a subsequent year child of the other pub element on
line 2. A similar situation occurs when we encounter </book> on line 16. Only
when all the possible matchings have failed to satisfy the predicates can we
remove the item from the buffer.

When multiple matchings evaluate all predicates to true, we must remove
duplicate results. For example, if there were an additional author element be-
tween lines 8 and 9, the matching indicated by the first row of the above table
would also satisfy both predicates. The name element, however, should be out-
putted only once.

The XSQ system uses an automaton-based method to evaluate XPath queries
over XML streams. The automaton, called an HPDT (Section 3.1), is a finite
state automaton augmented with a buffer. For every input XPath query, we
construct an HPDT hierarchically using a template-based method. Using the
HPDT as a guide, a runtime engine (Section 4) responds to the incoming stream
and emits the query result. The multiple matching problem (Example 2) is
solved by associating with every buffer item its matching with the query and
a flag the indicates the current predicate results. We note that the HPDT is
used simply as convenient conceptual machinery to describe our methods. The
expressiveness and theoretical complexity of the automata are not our focus in
this article.1

Organization. Some preliminaries, including a brief description of XPath,
are covered in Section 2. Section 3 introduces how we compile an XPath query
into an HPDT. In Section 4, we describe how the runtime engine processes the

1A brief description of our methods and the results of a preliminary experimental study of XSQ
appear in Peng and Chawathe [2003].
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Fig. 3. EBNF for an XPath subset.

incoming stream using the HPDT as a guide. We also discuss the correctness
and complexity of the method, along with a few key implementation details.
Related work is discussed in Section 5. Section 6 presents our experimental
study of XSQ and related systems. We conclude in Section 7.

2. PRELIMINARIES

A static XML document is usually modeled as a tree (e.g., a DOM tree [Hors
et al. 2000]). We model the input XML stream as a sequence of events, modeled
after SAX [SAX Project Organization 2001] events. Each event e is a quadruple
of the form (n, al, t, d ): (1) The string n is the name of the element that generates
the SAX event. (2) The list al contains pairs of the form (a, v), indicating that
the element has attribute a with value v. Since elements are not permitted to
have multiple attributes with the same name, the attribute name a uniquely
identifies a pair in the list. We use the notation e.a to refer to the value of the a
attribute of element e; if e does not have an attribute a, e.a is null. (3) The type
t is B for a begin event, E for an end event, and T for a text event. Events of
type E have an empty attribute list, while events of type T have an attribute
list containing the single pair (text(), v), indicating that v is the text content
of the element. (4) Finally, the integer d is the depth of the element in the
document tree. The root of the document tree, also called document root, has
depth 0. The attr and text nodes have the same depth as their parent nodes.2

A SAX parser generates a start-document event (S-DOC) when it begins parsing
an XML document and an end-document event (E-DOC) when it finishes parsing
the document. It is convenient to regard the S-DOC and E-DOC events as the begin
and end events, respectively, of the document root.

A simplified grammar for XPath is depicted in Figure 3. An XPath query
is an expression of the form of N1N2 . . . Nk[/O], which consists of a location
path, N1N2 . . . Nk , and an optional output function O. Each location step
Ni is of the form /ai::ni[pi] where ai is an axis, ni is a node test that specifies
the name of elements Ni can match, and pi is an optional predicate that is
specified syntactically using square brackets.

An XPath query is interpreted as follows: Each location step selects a set
of nodes in the document tree. For every node x selected by Ni−1, Ni selects a
set of nodes using x as the context node. The set of nodes selected by the last
location step consists of the result set of the query. In more detail, there is an

2Strictly speaking, SAX events do not include this depth component. Instead, this information is
added by XSQ by wrapping SAX events and maintaining a depth counter internally.
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implicit zeroth location step N0 that always selects the document root. Thus,
N1 is always evaluated using the document root as the context node. The axis
in a location step Ni specifies the relation between a node y selected by Ni
and the context node x in which Ni is evaluated. In the simplified grammar,
/ is shorthand for the /child:: axis, which specifies that y must be x ’s child.
Similarly, // is shorthand for the /descendant-or-self::node()/ axis, which
specifies that y must be a descendant of x (not necessarily a proper descen-
dant). After Nk is evaluated, the output function O is applied to every node
in the result set to produce the final output. The output function may specify
an attribute or the text value of an element. It may also use an aggregation
function such as sum() or count(). If no output expression is specified in the
query, the elements in the result set are returned as the query result.

In a streaming environment where no DOM tree [Hors et al. 2000] is built,
the above interpretation is not convenient. Instead, we use the following equiv-
alent interpretation based on the SAX model [SAX Project Organization 2001].
A matching between an element em and a location path N1N2 · · · Nm is a se-
quence of elements (e0, e1, . . . , em) such that (1) e0 is always the document root
that matches the implicit location step N0 described above, (2) for all i ∈ [1, m],
ei ’s name matches ni, the node test of Ni, and (3) for all i ∈ [1, m − 1], ei is
the parent of ei+1 if ai+1, the axis of Ni+1, is / and the ancestor if ai+1 is //.
In this case, we can also say em matches location step Nm. If m is k, the size of
the query, we say ek matches the query. If pi tests the content or existence of
a child with name c, an element e matches predicate pi if and only if e’s name
is c and e’s parent has a matching with Ni. An element e is in the result set of
a query N1N2 · · · Nk if and only if there exists a matching between e and the
query that satisfies all the predicates. If there are multiple such matchings,
as illustrated in Example 2, the output function is applied to e only once. This
definition of the result set is equivalent to the traditional step-by-step evalu-
ation scheme, as can be verified easily by induction on the number of location
steps.

If a predicate contains no value comparison, it tests the existence of speci-
fied object. For example, book[price] tests whether a book element has a price
child. Predicates with value comparisons are evaluated as follows. First, when
an element’s attribute value or the text content a is compared with a literal
v, XPath semantics specify that, if v is a number, a must be coerced to a nu-
meric type. The comparison then proceeds with the usual numeric semantics.
If the coercion fails, the predicate returns false. Second, a predicate such as
[price=10] is interpreted as [price/string()=10], where price/string() re-
turns the aggregation of the text content within the price element. For ease
of presentation, we assume in this article that string() function be replaced
by the text() function and that there is at most one text event for any ele-
ment. (The text() function returns the set of text children of a node. For ex-
ample, string() on a price element <price>10<note>sale</note><price> re-
turns 10 sale, while text() returns 10.) However, our method easily supports
string() and multiple text events within an event by buffering all the text
events and delaying predicate-processing for an event to its end, after all text
events have been encountered.
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The XPath subset we study in this article does not include nonforward axes,
such as sibling and ancestor, Boolean connectives in predicates, or position
functions such as pos() and last(). These features pose additional challenges for
streaming evaluation and are the subject of continuing work. For example, the
value of the last() function cannot be determined until the entire result set is
available.

3. COMPILING XPATH QUERIES

In XSQ, an XPath query is first compiled into an HPDT, which is used by
the runtime engine (Section 4) to evaluate the query on a streaming XML in-
put. The HPDT is built in a layered manner with overlapping groups of states
called BPDTs. We begin by describing HPDTs in Section 3.1. In Section 3.2, we
describe the BPDT templates that form the basis of our method for building
HPDTs. This method is described in detail in Section 3.3. Finally, Section 3.4
describes how aggregation functions are implemented in XSQ.

3.1 HPDT

The HPDT is a nondeterministic finite-state automaton augmented with a
buffer. Its transitions are optionally associated with predicates and buffer oper-
ations. A transition is taken only if its predicate, if any, is satisfied. The buffer
operation, if any, on a transition is executed when that transition is taken.

Transitions. The input to an HPDT is a sequence of SAX events, each of
which takes the form (n, al, t, d ), where n is the name, al is the attribute list, t
is the type, and d is the depth. (See Section 2.) On transition arcs, we specify
events as (n, t), where n specifies an element name and t specifies a SAX event
type. Besides the three types (B, E, and T ) introduced in Section 2, t can also
be ∗̄, a catchall type that matches all three types of events. A transition x with
symbol (n, t) matches an input event e if n matches e.n and t matches e.t. The
attribute list al and depth d of an event are used in predicate evaluation and
output composition, as described later. When a transition x emerging from a
state matches the current event e in the input stream, we say this state accepts
e. However, if x has a predicate then x is taken only if e satisfies the predicate,
as described in Section 2. In the figures that depict state transition diagrams,
we use an XML-like notation: <n> for (n, B), </n> for (n, E), and <n.text()> for
(n, T ). In our description, we use Element(e) to denote the XML element that
generates event e. We use (ei, B) to denote the begin event of element ei, (ei, E)
to denote its end event, and (ei, T ) to denote its text event.

After an HPDT takes a transition x, the set of active states is determined not
only by x ’s target state, but also by the type of x. There are four types of tran-
sitions: (1) self-closure transitions, identified in state transition diagrams
using the symbol // next to arrows; (2) closure transitions, identified using =
or || on arrows; (3) catchall transitions, identified using ∗̄; and (4) regular
transitions, identified by the absence of special markings. These transitions
differ in their effects on the runtime engine, as described in Section 4.

BPDT. The states in an HPDT are organized in overlapping groups, each
of which is called a BPDT. In each BPDT, we specify a START state, a TRUE state,
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an optional NA state, and an optional FALSE state. Intuitively, a BPDT contains
a group of states that evaluate a location step of the XPath query. The START

state is the entry point into the BPDT. The TRUE (FALSE) state indicates the
predicate of this location step has evaluated to true (respectively, false). The
NA (not available) state indicates that the data required to determine the truth
value of a predicate has not yet been encountered in the stream. The BPDTs are
connected by overlapping the START state of one BPDT with the TRUE or NA state
of another. The TRUE, NA, and FALSE states are called P-VALUE states (because they
indicate the result of predicate evaluations). The other states, excluding START,
are called P-EVAL states (because they are used to evaluate a predicate).

Buffer. The buffer of an HPDT is used to hold potential result items. We
associate with each buffer item a (k + 1)-bit flag, where k is the query length
(number of location steps). The ith bit of the flag (counting from the left, start-
ing with 0) denotes the current state of the predicate (perhaps trivial) of the
ith location step: 1 for true and 0 for pending. Recall the zeroth location step
always matches the document root and has no predicate. Thus, the zeroth bit of
the flag is always 1 (We use (k+1)-bit flags instead of k-bit flags for better corre-
spondence with BPDT identifiers, described in Section 3.3.) We use fi to denote
the ith bit of a flag f . If all bits in a flag are 1, we say the flag is a true flag.

An HPDT uses buffer operations set, remove, and add. We describe these
operations only informally here, deferring the details to our discussion of the
runtime engine in Section 4. In that section, we also describe how the runtime
engine applies set and remove operations selectively to only a subset of buffer
items. However, for ease of presentation in the rest of this section, we assume
that these operations apply to all items in the buffer. The set(i) operation sets
(to 1) fi for every buffer item. The remove(i) operation removes all buffer items
having fi = 0. The add(f, a) operation creates a buffer item with flag f using
the feature a of the event e. The feature a may be an attribute name (including
“text()”), in which case e.a is added. It may also be the catchall symbol ∗̄, in
which case the serialized (string) representation of e is appended, including
all its attributes. For example, for the begin event (book, {(id,"1")}, B, 1), the
operation add(∗̄, f ) creates a buffer item that contains the string <book id="1">
and has flag f . We do not use an explicit output operation. Rather, when the
flag of a buffer item becomes a true flag (all 1s), the item is ready for output. The
document order among the output items is preserved (as required by XPath) by
using a global queue, as described in Section 4.4.

The following example illustrates how an HPDT can be used to evaluate an
XPath query. A special BPDT, called the root BPDT, is used in the HPDT to
process the start-document (S-DOC) and end-document (E-DOC) events, which are
generated for the document root.

Example 3. We can use the HPDT H depicted in Figure 4 to evaluate the
query: /pub/book[author]/price/text(). We use rounded boxes to enclose the
BPDTs, which are numbered using the scheme described in Section 3.3. All the
transitions in H are regular transitions. Note that the START states of BPDTs
b(2, 3), b(3, 6), and b(3, 7) are TRUE or NA states of other BPDTs (TRUE state of
b(1, 1), NA state of b(2, 3), and TRUE state of b(2, 3), respectively). Such a shared
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Fig. 4. An HPDT for query /pub/book[author]/price/text().

state belongs to both the BPDT suggested by its enclosing box and the BPDT
below it. Let us consider the first a few actions of H on the input fragment
of Figure 1. After processing the begin event of the price element on line
4, state $7 is active. The transition on the text event adds the text content,
12.00, of this price element to the buffer, with flag 1101. When H encounters
the begin event of the author element on line 6, it sets f2 to 1 for the buffer
items and transits to state $5 (and state $6 at the end event of this author
element). Since the buffer item with value 12.00 now has its flag set to all 1’s,
it is emitted as output. When H encounters the next price element (line 7 of
Figure 1), it transits to state $8. The transition from $8 on the text event re-
sults in the addition of 10.00 to the buffer, with flag 1111, which in turn causes
10.00 to be sent immediately to the output. (Since this price element’s book
parent has already satisfied the predicate [author], it should be immediately
output.)

3.2 Templates for BPDT

We generalize the BPDT b(2, 3) of Example 3 to the template depicted in
Figure 5. We instantiate BPDTs from this template to evaluate location steps
of the form of /n[c]. In general, we classify location steps into five categories
for the purpose of template-based generation of BPDTs. In the following
descriptions, we consider only the / axis. The modifications needed for the //
axis are made separately after the templates are instantiated. During the
instantiation of a template for a location step Ni, the parameter l used by
the buffer operations in the template is replaced by i. The instantiation proce-
dure is described further in Section 3.3. The design of these templates is guided
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Fig. 5. Template BPDT for: /n[c].

Fig. 6. Template BPDT for: /n[c@a = v].

by the existential semantics of XPath predicates. Once a predicate’s result has
been determined as true or false, the automata transit to states in which further
data that could be used to evaluate the predicate is skipped. Buffered items are
always processed, using the set or remove operations, at the earliest time that
a predicate’s result can be determined.

Template 1. Location steps of the form /n, /n[@a], and /n[@a op v], where
n is an element name, a is an attribute name, op is one of the comparison
operators (Figure 3), and v is a literal: Figure 6 illustrates the template for
/n[@a = v]. For /n[@a], the test of the attribute value is replaced by a test for
the existence of the attribute. For /n, state $3 and the transitions connected
to it are not used and there is no test for the attribute. This template does not
include an NA state because the result of the predicate is always known for each
element as it is encountered. If the result is false, the BPDT enters state $3
that accepts nothing but the end event of the same element. Otherwise, the
BPDT enters the TRUE state $2, which indicates that the predicate has been
satisfied.

Template 2. Location steps of form /n[text() op v], which include a predi-
cate on the text content of matching elements: Figure 7 illustrates the template
for /n[text() = v]. Since we assume that there is only one text event in each
element, we compare the text event with the literal v only once. If the element n
has no text contents (which can be determined only at the end of the element),
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Fig. 7. Template BPDT for: /n[text() = v].

Fig. 8. Template BPDT for: /n[c = v].

the BPDT returns to the START state removing the buffer items that are waiting
for this predicate. If the element n contains some text content, the BPDT tran-
sits from state $2 to $4 if the content satisfies the condition, otherwise it transits
from state $2 to $3. Once state $3 is active, it remains active until the end of
this n element. State $2 is the NA state since the predicate is pending when it
is active.

Template 3. Location steps of form /n[c], which test the existence of
c-children: Figure 5 illustrates the template for /n[c]. The template encodes
the existential semantics of XPath predicates: After one c-child element of n
satisfies the predicate, state $4 becomes active and no other c-child is tested.
Only when the end of n is encountered and no c-child is encountered do we
conclude that the predicate is false.

Template 4. Location steps of the form /n[c@a] and /n[c@a op v], which
include predicates that reference attributes of children. Figure 8 illustrates
the template for /n[c@a = v]. For /n[c@a], the test of the attribute value is
replaced by a test for the existence of that attribute: This template encodes the
existential semantics of predicates in a manner similar to that of the template
for /n[c]. However, here a c-child may not satisfy the predicate, in which case
state $3 becomes active and this c-child is ignored.

Template 5. Location steps of the form /n[c op v], which include predi-
cates that test the values of the child elements. Figure 9 illustrates the template
for /n[c = v]. Recall, from Section 2, that the predicate [c op v] is interpreted
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Fig. 9. Template BPDT for: /n [c = v].

as [c/text() op v]: This template is similar to that in Figure 5, but includes
transitions to process the text events of c-children.

3.3 Building HPDTs from XPath Queries

Consider a query Q = N1N2 · · · Nk , where Ni = /ai :: ni[pi]. The HPDT H
for Q is is generated in a layered manner. Every BPDT is assigned a two-
dimensional identifier (l , m) and is denoted as b(l , m), where l is the layer
and m is its position in the lth layer. We use the notation b(x, y). START to
denote the START state of BPDT b(x, y) (and similarly for the TRUE and NA states).
We first create the root BPDT b(0, 0) (Figure 10 as the only BPDT in the
zeroth layer. This BPDT does not depend on the XPath query and corresponds
to the implicit zeroth location step of a query, which matches the document
root. Its START state, denoted as s0, is also the START state of the HPDT. Layer
l , for l ∈ [1, k] is generated as follows: For every BPDT b(l − 1, m) in the
(l −1)th layer, we create a child BPDT b(l , 2m+1), by instantiating the BPDT
template that matches Nl . The TRUE state of b(l − 1, m) is merged with the
START state of b(l , 2m + 1). If b(l − 1, m) has an NA state, we create another
child BPDT, b(l , 2m), by instantiating the template for Nl (again). The start
STATE of b(l , 2m) is merged with the NA state of b(l − 1, m). When instantiating
a template, we set the parameter of the set and remove operations to the layer
number, l .

We summarize in Listing 1 the procedure for creating an HPDT. The
AddBPDT(b,N,s) procedure instantiates a BPDT using the template that
matches location step N and sets the s state (either START or NA) of b as the
START state of the new BPDT. After BPDT b(l , m) is created, the PostProcess
procedure as depicted in Listing 2, is applied to it to perform the following three
modifications. First, if al (the axis of location step Nl ) is //, the procedure adds
a self-closure transition from b(l , m).START to itself, labeled //. We then use the
LocateTrans function to locate all the transitions that emerge from the START

state and match the begin event with name nl (the node test of Nl ). We mark
them as closure transitions. (As discussed in Section 4, these newly marked
transitions cause the HPDT to remain in b(l , m).START in order to accept any
descendants that also match Nl .)
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Fig. 10. An HPDT example.

Listing 1: GenerateHPDT(Q)

/* Build an HPDT from a query Q = N1 N2 · · · Nk/O, where Ni = /ai :: ni[pi]. */
1 b(0, 0) = CreateRootBPDT()
2 For l ← 1 to k do
3 For m ← 0 to 2l−1 − 1 do
4 b ← b(l − 1, m);
5 If b �= NULL then
6 b(l , 2m + 1) ← AddBPDT(b, Nl , TRUE);
7 PostProcess(b(l , 2m + 1), Q);
8 If b. NA �= NULL then
9 b(l , 2m) ← AddBPDT(b, Nl , NA);

10 PostProcess(b(l , 2m), Q);
end

end
end

end

Second, when al+1 is // and pl (the predicate of Nl ) tests a child element,
an extra set operation is added in b(l , m) by the AddExtraSet procedure. This
extra set operation is used to process descendants that are nested inside the
child elements tested by pl . This modification is needed only for BPDTs
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Listing 2: PostProcess(BPDT b, Query Q)

/*Modify b according to Q = N1 N2 . . . Nk/O, where Ni = /ai :: ni[pi] .*/
1 l ← b.layer;
2 If al = // then
3 NewTrans(b. START, b. START, “B”, //, NULL, SELF-CLOSURE);
4 X ← LocateTrans(b. START, “B”, nl );
5 ForEach x ∈ X do x.type ← CLOSURE

end
/* Add an extra set operation if needed. */

6 If al+1 = // then AddExtraSet(b);
/* Add output to the lowest layer BPDTs. */;

7 If l = k then AddOutput(b, Nk , O);

Listing 3: AddOutput(BPDT b, Location Step Nk , Output Function O)

/*Translate O to operations in BPDT b, which is created from Nk = /ak :: nk[pk].*/
1 m ← b.position;
2 switchO.feature do
3 case ATTRIBUTE:
4 X ← LocateTrans(b. START, ‘B’, nk);
5 if pk = NULL then
6 foreach x ∈ X do AddOp(x, add(2m, @attrname));
7 else foreach x ∈ X do AddOp(x, add(2m + 1, @attrname));
8 case TEXT:

/* Add self-transitions to NA and TRUE states for TEXT events of nk. */
9 if pk = NULL then

10 NewTrans(b. NA, b. NA, ‘T’, nk , add(2m, text()), REGULAR);
11 NewTrans(b. TRUE, b. TRUE, ‘T’, nk , add(2m + 1, text()), REGULAR);
12 case CATCHALL:
13 X ← LocateTrans(b. START, ‘B’, nk);
14 if pk = NULL then
15 foreach x ∈ X do AddOp(x, add(2m, ∗̄));
16 else foreach x ∈ X do AddOp(x, add(2m + 1, ∗̄));
17 if b. NA �= NULL then
18 NewTrans(b. NA, b. NA, ‘∗̄’, ‘∗̄’, add(2m, ∗̄), CATCHALL);

end
19 NewTrans(b. TRUE, b. TRUE, ‘∗̄’, ‘∗̄’, add(2m + 1, ∗̄), CATCHALL);
20 X ← LocateTrans(b. TRUE, ‘E’, nk);
21 foreach x ∈ X do AddOp(t, add(2m + 1, ∗̄));

/* add extra flush operations in the BPDT if needed*/
22 AddExtraSet(b);

end

generated using the templates in the following Figures (with the affected tran-
sitions in parentheses): Figure 8 ($4 → $5), Figure 5 ($3 → $4), and Figure 9
($5 → $6).

Third, for every BPDT b(k, m) in the last (k’th) layer, the AddOutput(b, m)
procedure translates the output function O into operations in BPDT b(k, m).
This procedure is summarized in Listing 3, in which the NewTrans(s1, s2, e, n,
o, t) function is used to create a new transition of type t, from state s1 to state
s2, on event e of element n, with buffer operation o.
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If the query’s output function O specifies outputting an attribute of the
element that matches Nl , an add operation is added to every transition
emerging from the START state that processes the begin event of that el-
ement. If O specifies outputting the text content of the element, a self-
transition with an add operation is added to the TRUE state (and NA state
if there is any) in b. If O specifies outputting the whole element, we add
a catchall transition labeled with ∗̄ from the TRUE state (and NA state if
there is any) to itself together with the add operation. These two transitions
match the descendant elements and text contents of the current element.
The operation add is also added to both the transition that emerges from the
START state that processes the begin event of the element and the transition
from the TRUE state to the START state that processes the end event of the
element.

The initial flag of the add operation in b(k, m) is determined as follows.
If pk , the predicate of the nth step Nk , is empty or pk tests an attribute,
the initial flag is always 2m + 1. If pk tests a child element or the text
content, then the initial flag is 2m + 1 if the operation is on a transition
whose source or target state is the TRUE state, and 2m otherwise. We will
see in Section 4.3 that such an initial flag correctly encodes the current state
of every predicate for the matching between the current element and the
query.

3.4 Aggregations

In order to support aggregates in XPath queries, XSQ uses a statistics buffer
called stat. This buffer is organized as a map and contains one entry for each
aggregation function. The entry’s key is the name of the aggregation func-
tion and its initial value is null . There are two operations on this buffer:
The first, update(aggr), updates the entry for aggregation function aggr in
stat. For example, update(COUNT) counts the number of buffer items with true
flags and adds that number to stat entry for count; update(SUM) adds the
numerical value of every buffer item with a true flag to the entry for sum.
The second operation, print(aggr), outputs the value of the stat entry for
aggr.

For example, consider the following query, which differs from the query of
Example 2 only in its use of output function count():

//pub[year > 2000]//book[author]//name/count().

To evaluate this query, we use an HPDT that is almost identical to the one
depicted in Figure 10. We replace all occurrences of set(l) with update(COUNT).
The add( f , a) operation performs the update operation automatically if f is a
true flag. We also place a print(COUNT) operation on the transition from $2 to
$1 in the root BPDT.

We may also modify the semantics of the update() operation so that it
emits a new value whenever the number in the buffer is updated. This change
makes preliminary results of aggregation queries available in an online man-
ner. This feature is especially useful when we process aggregation queries over
unbounded streams.
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Listing 4: EventHandler(Event e, Matching Record Set R)

/* R is the set of matching records, each of the form (s, M).*/
1 for r ∈ R do
2 T ← LocateTrans(r.s, e.t, e.n);
3 for x ∈ T do
4 M ′ ← MatchDepth(r.M , e, x);
5 if M ′ �= NULL∧ Evaluate(x.predicate, e) = true then
6 R ← R + {(x.target, M ′)};
7 if x.type = REGULAR then R ← R − {r} ;
8 if x.op �= NULL then Execute(x.op, e, r.M );

end
end

end

4. RUNTIME ENGINE

The runtime engine maintains a set of matching records, which are described
in Section 4.1 below. These records encode matching information and predicate
results for buffered items. Using the HPDT as a guide, the runtime engine
responds to every input SAX event, updates the set of matching records, and
executes the buffer operations. Buffer operations are described in Section 4.2.
We discuss correctness in Section 4.3. We describe some implementation tech-
niques in Section 4.4 and analyze our method’s complexity in Section 4.5.

4.1 Matching Records

The runtime engine for HPDT H maintains a set R of matching records. Each
matching record has the form (s, M ), where s is a state identifier from H and
M is a matching between an element and a location step. (Recall the definition
of a matching from Section 2.) Listing 4 summarizes the method for updating
R in response to an event e in the input. Initially, R contains a single matching
record with the start state of H and an empty matching. For every incoming
event e, the engine performs the following operations on every matching record
r = (s, M ).

First, the engine uses the LocateTrans function to locate the set of transitions
that emerge from state s and match event e. The engine performs no further
operation for r if no such transitions exist. Next, for every matched transition x,
the engine compares e with r.M based on the type of the transition, x.type. The
rules of the comparison are summarized in Listing 5. The MatchDepth function
returns a new matching M ′. If M ′ is empty, no further operation is performed
for this transition, otherwise, the engine uses e to evaluate the predicate, if
any, on transition x. If the predicate evaluates to false, no further operation
is performed for x. Finally, a new matching record r ′ = (s′, M ′) is added to R,
where s′ is x ’s target state. If x is a regular transition, r is removed from R. If
there is a buffer operation associated with transion x, it is executed as described
in Section 4.2.

In the above scenario, when r ′ is added to R, we say that r takes the tran-
sition x on event e and activates r ′. We also say that event e triggers the
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Listing 5: MatchDepth(Matching M , Event e, Transition x)

/* Returns the matching sequence M ′ of the target state. */
1 M ′ ← null;
2 switch x.type do
3 case SELF-CLOSURE: if e.t = B ∧ e.d > last(M ).d then M ′ ← M ;
4 case CLOSURE:
5 if e.t = B ∧ e.d > last(M ).d then M ′ ← append(M , Element(e));
6 case CATCHALL:
7 if e.d > last(M ).d then M ′ ← M ;
8 if e.t = T ∧ e.d = last(M ).d then M ′ ← M ;
9 case REGULAR:

10 switch e.t do
11 case B: if e.d = last(M ).d + 1 then M ′ ← append(M , Element(e));
12 caseE: if e.d = last(M ).d then M ′ ← removelast(M );
13 case T : if e.d = last(M ).d then M ′ ← M ;

end
end

14 returm M ′;

transition x and the runtime engine reaches state s′. We call a matching M
viable if there is no element ei in M such that pi is false before the (ei, B) event.
The method described in EventHandler and MatchDepth is motivated by the
following two properties, which establish the relationship between matching
records and matchings.

Property 1. If an element ei has a viable matching M = (e0, e1, . . . , ei) with
the ith location step Ni, then, immediately after the runtime engine has pro-
cessed the begin event of ei, R contains a matching record r = (s, M ), where s
is the NA or TRUE state of a BPDT in the ith layer.

Consider the event sequence Se = (e0, B), (e1, B), . . . , (ei, B). For every j ∈
[0, i], (e j , B) triggers a transition that goes down to a NA or TRUE state in a
lower-layer BPDT. When that transition occurs, e j is appended to the matching
by MatchDepth. Let (s′, M ′) be the matching that is activated when (e j−1, B)
is processed. Consider a begin event that occur between (e j−1, B) and (e j , B).
If its matching end event also occurs before (e j , B) then this pair of events
either leads back to s′ or, if s′s is an NA state of BPDT b, leads from s′ to the
TRUE state of b. Thus, every element appended to M ′ between (e j−1, B) and
(e j , B) by such begin events is removed from M ′ by its matching end event.
If there are unmatched begin events between (e j−1, B) and (e j , B), then the
query must specify e j to be e j−1’s descendant. In this case, every unmatched
begin event is processed by the self-closure transition on s′. Such a transition
always leads back to s′ and appends nothing to the matching. (Recall that, if the
j th axis is //, then the START state of every j th layer BPDT has a self-closure
transition.)

Property 2. For every r = (s, M ) in R with M = (e0, e1, . . . , ei) (i > 0), either
(1) s is a P-VALUE state of a BPDT in the ith layer and M is a matching between
ei and Ni or (2) s is a P-EVAL state of a BPDT in the (i − 1)th layer and M is a
matching between ei and pi−1.
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Suppose s is a P-VALUE state. If s is the START state of a BPDT b, s must also
be a P-VALUE state in b’s parent b′. Suppose the START state of b′ is s′. Consider
the transition sequence from s′ to s. According to the templates, there is a
unique transition in the sequence that accepts an unmatched begin event: the
one going out from s′. Since ei must be appended when that transition is taken,
the matching record that accepts (ei, B) must be r ′ = (s′, M ′), where M ′ =
(e0, e1, . . . , ei−1). If i = 1, the property holds since s must be the TRUE state of the
root BPDT and M contains the document root (e0) that matches the implicit
N0. If i > 1, using induction we can assume that M ′ is a matching between
ei−1 and Ni−1 and s′ is a P-VALUE state in the (i − 1)the layer. Since s′ is also
the START state of b′, b′ is in the ith layer and thus s is a P-VALUE state in the
ith layer. Moreover, since b′ is instantiated from Ni, the transition going out
from s′ accepts only the begin events of elements matching Ni. Since (ei, B) is
accepted by that transition, ei must match Ni. Therefore, the property holds for
r as well.

Now suppose s is a P-EVAL state. We can trace back from r to the matching
record whose state is a P-VALUE state of the same BPDT. For example, if s is in-
stantiated from state $3 in Template 5, we can infer that it must be r ′ = (s′, M ′)
that activates r, where s′ is instantiated from $1 in Template 5. Moreover, M ′

must be (e0, e1, . . . , ei−1) and ei must be a child of ei−1 that evaluates pi−1. If
Property 2 holds for r ′, then it must also hold for r.

4.2 Buffer Operations

Recall that an element may have multiple matchings with a query; the el-
ement belongs to the result if at least one matching satisfies all predicates.
When the runtime engine buffers an element (or its text content or attributes,
as indicated by the query’s output function), it stores one copy of the el-
ement for each matching. Each copy is associated with a (matching, flag)
pair.

We now describe in more detail the buffer operations introduced in
Section 3.1. Consider a buffer operation that is invoked when matching record
r = (s, M ) activates matching record r ′ = (s′, M ′) on event e. Let max(M , M ′)
denote the longer one of M and M ′. As before, the last(M) operation returns
the last element in a matching M , while the removelast(M) function returns a
new matching containing all but the last element of M .

—Operation add(f, a) creates a new buffer item whose content is the fea-
ture a of event e. The matching-flag pair associated with this item is
(max(M , M ′), f ).

—Operation set(i) sets fi (the ith bit of the flag) for every buffer item whose
matching contains the target element ex . If s is an NA state, ex is last(M);
otherwise, ex is last(removelast(M)).

—Operation remove(i) removes all buffer items with fi = 0 and a matching
that contains the target element last(M).

The target element is determined by using Property 1 and considering all tran-
sitions on which the operation could reside. We use the set(i) operation as an
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example. Suppose the set(i) operation is executed when r = (s, M ) activates
r ′ = (s′, M ′) on event e. According to BuildHPDT, every set(i) operation is on
a transition x in the ith layer. According to the templates, the source state of
x, s, could be the NA state. Also, s could be a P-EVAL state that is reached from
the NA state via the begin (and optionally an additional text) event of the child
c. In the first case, according to Property 2, M must be a matching between
last(M) and Ni. Since the transition x can only accept the begin event of a
child of last(M), it must be last(M) that satisfies pi on this event e. There-
fore, we should operate on last(M). In the second case, according to Property
2, M must be a matching between last(M) and pi. Since last(M) can only
evaluate the predicate pi for its parent, we should operate on the parent of
last(M), which is last(removelast(M)). Thus, the target element ex for an
operation set(i) is the element that has just safisfied its predicate.

Another important feature of the buffer operations is that the flags are al-
ways set at the earliest possible moment. First, from the templates we can
see that the remove operation is always invoked when a predicate evaluates to
false. Next, a set(i) operation is always invoked when an element ei satisfies
its predicate if ei has a matching with Ni. Let us consider the event e that eval-
uates the predicate to true for ei. This event e could be (ei, B), (ei, T), (ci, B), or
(ci, T), where ci is the child of ei that satisfies its predicate. In accordance with
Property 1, (ei, B) must be processed by the engine. In all four cases, since there
are no unmatched begin events between (ei, B) and e, e must be processed as
well and thus the set(i) operation is executed.

Example 4. Consider the runtime engine, with the HPDT in Figure 10 for
the query //pub[year > 2000]//book[author]//name/text(), operating on the
stream of Figure 2. When the begin event of the name element on line 11 is
encountered, there are three matching records with the state $8, which accepts
this begin event, and different matchings:

M1: document root, pub on line 2, book on line 7
M2: document root, pub on line 2, book on line 10
M3: document root, pub on line 9, book on line 10.

We use M−
i to denote the prefix of Mi without the last book element and M+

i to
denote the longer matching obtained by appending to Mi the name element on
line 11. When the text content of the name element is buffered, three copies of
it are created with three different matching-flag pairs: (M+

1 ,1001), (M+
2 ,1001),

and (M+
3 ,1001), which are also used below to refer to the buffer items.

On encountering the begin event of the author element on line 12, both
matching records ($8, M2) and ($8, M3) process this event and execute the
set(2) operation on the copy whose matching contains the book element on
line 10 (the tail element of M2 and M3) . Therefore, the three copies are
now (M+

1 ,1001), (M+
2 ,1011), and (M+

3 ,1011). Two new matching record, ($10,
M2) and ($10, M3) are activated after the end event of the author element is
processed.

On encountering the end event of the book element on line 13, ($10, M2) and
($10, M3) both take the transition from $10 to $3. The two matching records
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($3, M−
2 ) and ($3, M−

3 ) are already in R, since they activated ($8, M2) and
($8, M3) at the begin event of the book element on line 10. They stayed in R
because of the self-closure transition on $3.

On encountering the end event of the pub element on line 15, only matching
record ($3, M−

3 ) takes the transition from $3 to $2 and the remove(1) operation
is executed. Since the buffer item (M+

3 ,1011)’s matching contains the pub ele-
ment on line 9 (the tail element of M−

3 ) and its f1 is 0, it is removed from the
buffer. The other two copies stay in the buffer.

On encountering the end event of the book element on line 16, only matching
record ($8, M1) takes the transition from $8 to $3 and the remove(2) opera-
tion is executed. Since the buffer item (M+

1 ,1001)’s matching contains the book
element on line 10 (the tail element of M1) and its f2 is 0, it is removed from
the buffer. However, the buffer item (M+

2 ,1011) is not removed since neither
does its matching contain the book element on line 10 nor is f2 0. The item is
updated to (M+

2 ,1111) on encountering the text event of the year element on
line 17 and consequently sent to output.

4.3 Correctness

We now outline the correctness of the above method. To simplify the description,
we assume the buffer items are created for whole elements instead of their
features (such as attributes). We wish to show that an element ek has a matching
M that satisfies all the predicates if and only if there exists a buffer item that
is created for ek and is associated with the pair (M , 1∗) (where 1∗ denotes the
true flag). The following property is useful for this purpose.

Property 3. Suppose element ek has a matching M = (e0, e1, . . . , ek) with
Nk . A matching record (b(k, m).START, f ) is active upon encountering (ek , B) if
and only if ei has satisfied pi for all i ∈ [0, k − 1] such that mi = 1.

Consider a BPDT b(i, j ) in the ith layer. Its position, j , has i bits since
j ∈ [0, 2i −1]. Consider now the two child BPDTs b(i+1, 2 j ) and b(i+1, 2 j +1).
The first i bits of their positions are copied from j and the last bits are deter-
mined by the state by which they overlap with b(i, j ). (If j = ( j0 j1 · · · ji−1)2,
2 j = ( j0 j1 · · · ji−10)2 and 2 j +1 = ( j0 j1 · · · ji−11)2.) It is easy to see that b(k, m)
copies the ith bit in its position (m) from the ancestor b in the (i + 1)th layer:
If b.START is its parent’s TRUE state, mi = 1; otherwise, mi = 0. In other words,
mi = 1 if and only if a TRUE state in the ith layer is reached during the tran-
sition sequence from the START state of the HPDT to the START state of b(k, m).
Therefore, when the b(k, m).START is reached and associated with a matching
M ′ = (e0, e1, . . . , ek−1), we know that, for every mi = 1, a TRUE state in the
ith layer has been reached. Moreover, since only the elements in M ′ and their
children (used for predicate evaluation) may trigger the transitions, we know
mi = 1 only if ei has satisfied pi.

Suppose ei satisfies pi before (ek , B). Let e be the event that satisfies pi for ei.
An examination of the templates reveals that if the transition that accepts e is
not connected directly to the TRUE state in the BPDT the the TRUE state must be
reached later. Thus, for every ei that satisfies pi before (ek , B), a TRUE state in
the ith layer must be reached before (ek , B). Therefore, upon encountering

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.



XSQ: A Streaming XPath Engine • 597

(ek , B), the engine reaches the state b(k, m).START, where mi = 1 if ei has
satisfied pi.

Output ⇒ Result. Suppose a buffered element ek is associated with a true
flag and a matching M = (e0, e1, . . . , ek). We wish to show that (1) M is a match-
ing between ek and Nk and (2) ei (i ∈ [0, k]) satisfies pi, the predicate of Ni.
Result (1) follows directly from Property 2 and an enumeration of the possible
output functions and the corresponding translated operations. If the ith bit of
the flag of ek , fi, is 1, either the ith bit of initial flag of the buffer item is already 1
or fi is set by a set(i) operation. We have shown in Section 4.2 that set(i) set fi
for ek (with matching M ) only if M contains ex and ex has just satisfied pi. There-
fore, we only need to show that the ith bit of the initial flag for ek (with matching
M ) is 1 only if ei satisfies pi. In accordance with the definition of add operation,
in BPDT b(k, m), the initial flag is 2m+1 if the transition on which the operation
reside is connected to a TRUE state, or 2m otherwise. For the kth bit of the initial
flag, it is 1 only if pk evaluates to true for last(M) (otherwise, the TRUE state
would not be reached). For any other bit fi, it is 1 if only if mi = 1. In accordance
with Property 3, since the START state of b(k, m) has been reached, mi is 1 only if ei
satisfies pi.

Result ⇒ Output. Suppose an element ek has a matching M =
(e0, e1, . . . , ek), ei (i ∈ [0, k]) that satisfies pi. We wish to show that there ex-
ists a buffer item created form ek with matching M and a true flag. By Property
1, ek will be processed by the engine using (the transitions in) a kth layer BPDT
and be added to the buffer. Let us consider the event e that evaluates pi to true
for ei. If ek is buffered before e, fi for e will be set for ek when e is processed. If
ek is buffered after e, there are two cases. First, ek is buffered before the TRUE

state in the ith layer is reached (but ei has satisfied pi). This case could happen
only if ek is a descendant that is nested in ci. The fi is set for ek by the extra set
operation added by the AddExtraSet procedure. Second, ek is buffered after the
TRUE state in the ith layer is reached. By Property 3, upon encountering (ek , B),
the engine has a matching record with the START state of a BPDT b(k, m), where
mi = 1. Therefore, eK must be buffered by an add operation with an initial flag
2m or 2m + 1, both of which have fi = 1.

4.4 Implementation

4.4.1 Depth Stack. Instead of storing a matching as a sequence of the ele-
ments, we use a depth stack: a stack consisting of the depths of the matching’s
elements. In Listing 5, when an element is to be appended to the matching, we
push its depth onto the depth stack. When the rightmost element of a matching
is to be removed, we pop the top item off the stack. In MatchDepth(), we only
need to compare the depth of the rightmost element in a matching with the
depth of the current event. Thus, using a depth stack is equivalent to using a
matching for this function. Recall that when the engine executes a buffer opera-
tion set(i) or remove(i), it operates only on the buffer items whose matchings
have a specified element ei that matches Ni. Every element after ei in the match-
ing must be closed because no event from ei ’s descendant can invoke set(i).
Further ei is always the element that is being processed so that every element
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before ei in the matching is currently open. Since no two open elements can
have the same depth, the depth stack uniquely specifies the useful prefix of the
matching. Thus, all the necessary operations on matchings can be performed
on their depth-stack representations instead.

Depth stacks are stored as integers and operations on the depth stacks
are implemented as bitwise operations on the integer representations. For
example, if the depth stack is (0, 1, 2, 5), the integer representation is 111001.
That is, the ith (i ≥ 0) bit is set if and only if the depth stack contains i. This rep-
resentation is unambiguous because the depth stack consists of monotonically
strictly increasing numbers (reading the stack bottom to top). Thus, the
depth stacks use very little memory and operations on them incur very little
overhead. We use long integers (64 bits) for this purpose. In order to support
data with depth greater than 64, we can switch to using a pair of long integers.

4.4.2 Global Queue. XSQ maintains a global queue that contains a single
copy of each buffered data item, irrespective of the number of times the item
has been buffered. Recall that an item may be buffered multiple times, with
different (matching,flag) pairs. In such buffer entries, XSQ stores a pointer to
the corresponding items in the global queue. When the flag of any such buffer
entry becomes a true flag, the corresponding data item in the global queue is
marked for output and no further operations are performed on it. The document
order of result items is preserved (as required by XPath) by outputting data
items only when they are at the head of the global queue. That is, even if an
item is marked for output, it is not emitted as output until the items ahead of
it in the global queue are either removed or emitted.

4.4.3 Buffer Segmentation. Consider buffer item b1 with matching (e0,
e1, . . . , ei, ei+1, . . . , ek) and flag f = ( f0 f1 · · · fi fi+1 · · · fk)2 and, similarly, b2
with matching (e0, e1, . . . , ei, e′

i+1, . . . , e′
k) and flag f = ( f0 f1 · · · fi f ′

i+1 · · · f ′
k)2. If

fi = 0 and f j = f ′
j = 1 for j > i, then any future set(x) or remove(x) opera-

tions will be always applied to b1 and b2 at the same time. To take advantage of
this feature, we group buffer items (pointers) based on the longest prefixes of
their matchings that have the last element’s predicate pending. Since we store
depth stacks instead of matchings, we use function remain(ds, f ) to return
the prefix of ds of length i + 1 where i is the largest value such that fi = 0. If a
pointer is associated with the pair (ds, f ), the pointer belongs to a group with
key remain(ds, f ). The group is also associated with a single flag f , called the
group flag. When a buffer item is first created with depth stack ds and initial
flag f , it is added to a group with the key remain(ds, f ). When a set(i) oper-
ation is executed on the buffer items whose matchings have an element ei that,
in turn, has a matching ds with Ni, we simply set fi for the group flag f of the
groups with ds. Since the result flag f ′ has a new right-most zero-bit, the whole
group is appended to anther group with key remain(ds, f ′). For a remove(i)
operation, we simply delete the group with key ds. In our implementation, all
the groups are organized as a hash table. The key is the depth stack and the
pointers in the group is organized as linked list. All the marking operations are
executed on groups of pointers.
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4.5 Complexity

A detailed experimental study of the time and space efficiency of XSQ appears in
Section 6. Below, we provide a very simple analysis of the construction-time and
runtime complexity. For the construction-time complexity, we assume that the
input query is in a parsed form and that string operations take unit time. The
dominant factor in the construction is the number of BPDTs in the HPDT. For
the runtime complexity, we assume that each depth-stack operation takes unit
time. (See Section 4.4.) The function remain(ds, f ) can be computed in constant
time as follows. Since the rightmost nonzero bit of every flag f can be computed
in advance, given the depth stack ds stored as an integer, the remain(ds, f )
function is a simple bitwise operation. Target groups in the buffer can be located
using the hash table in constant expected time. Thus, buffer operations, such as
appending an item, deleting a group, and appending a group to another group,
can be performed in constant expected time. Strictly speaking, some depth-
stack operations, which are implemented using bitwise operations, and some
buffer operations, which operate on only pointers in groups, may require non-
constant time given arbitrary inputs. (For example, XSQ’s implementation of
depth stacks using constant-size integers does not work if the input XML has
truly unbounded depth.)

4.5.1 Construction-Time. Recall the construction of HPDTs summarized
in Listing 1. The worst case occurs when every location step has a predicate.
In this case, the construction creates 2k−1 BPDTs for an XPath query with k
location steps. Creating a BPDT requires constant time for the tasks of finding
the matching template, initializing a constant number of states and transitions,
and adding and changing a constant number of operations. (The number of
templates, states, transitions, and the number of items to check for template
matching, are all bounded by a small constant.) Therefore, the space and time
cost of construction is bounded by O(2k). Although the exponential dependence
on query length may seem problematic at first, the space cost of the HPDT is
typically completely dwarfed by the space cost of buffering data at runtime.

4.5.2 Runtime. Recall the runtime actions summarized in Listing 3.4.
First, by examining the templates, we note that given a source state and an
event, the LocateTrans function returns at most two transitions. Listing 5 sug-
gests that the MatchDepth function also requires only constant time. The main
determinant of the complexity is the number of matching records that need to
be processed in the outer for-loop of Listing 3.4. If the query contains no // axis,
the HPDT is free of closure and self-closure transitions. In this case, there is
only one matching between a location path and an element. There can be only
one or two (in the case of catchall transitions) matching records at any time.
Therefore, each event can be processed in constant time. If the query contains
// axes, there will be multiple matching records because of the closure and self-
closure transitions. Since there are at most 2i−1 BPDTs generated to process the
ith location step Ni, we have at most 2i states (2 states in each BPDT) associated
with a matching of length i + 1. The number of ways that an element at depth
d can match Ni is bounded by

(d
i

)
. Therefore, the number of matching records
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(and thus the processing time per event) is bounded by
∑k

i=1 2i
(d

i

)
, where k is

the query length and d is the maximum depth of an element. However, typi-
cal query-data combinations do not permit all the combinations for matchings
assumed by the above calculation; thus the bound is not likely to be reached in
practice. (See Section 6.)

5. RELATED WORK

Several papers have addressed the problem of filtering a stream of XML
documents [Altinel and Franklin 2000; Green et al. 2003; Diao et al. 2002;
Lakshmanan and Sailaja 2002; Chan et al. 2002; Gupta and Suciu 2003]. This
problem has been referred to variously as selective dissemination of informa-
tion (SDI), publish-subscribe (pub-sub), and query labeling. Briefly, filtering
assumes that the input is a stream of documents that are to be matched with a
given set of queries. A query is said to match a document if the result of evalu-
ating the query on the document is non-empty. The XFilter system [Altinel and
Franklin 2000] uses an indexed automaton-based method for filtering a stream
of documents by a large number of XPath filter expressions. The YFilter sys-
tem [Diao et al. 2002] addresses a similar problem and uses a single, combined
automaton to evaluate all submitted filter expressions. The XTrie data struc-
ture indexes XPath queries based on common substrings [Chan et al. 2002]. To
support predicates and boolean operators in XPath filters, the XPush machine
[Gupta and Suciu 2003] uses alternating automata [Chandra et al. 1981], in
which each state has a flag indicating the acceptance or rejection. The flag of
a state is computed from its offspring states based on the type of the states:
universal, existential, or negating.

Green et al. [2003] introduce a lazy deterministic finite-state automaton that
may be used to obtain the speed benefits of deterministic automata (fast match-
ing of input events) without incurring high memory costs. The main idea is to
add states at runtime to the finite state automaton obtained directly from the
XPath filters. Their method provides an upper bound on the size of the runtime
automaton. Although our method may also be characterized as a lazy method,
there are some important differences in the manner of lazy instantiation. In the
lazy automaton approach, when an unknown tag is encountered in the stream,
the automaton forks a new state that is used to process the new element. In our
method, when an unknown tag is encountered, it is ignored and no operation is
performed (unless it is accepted by a self-closure transition or a catchall tran-
sition). In other words, the closure transition is implemented using dynamic
states in the lazy automaton, while is enforced by the new types of transitions
in XSQ.

The problem of query labeling can be also viewed as a type of filtering problem
because it labels the data in the stream with query identifiers. The requirements
index and a framework for efficiently organizing it have been proposed for this
task [Lakshmanan and Sailaja 2002]. The problem of validating XML streams
using pushdown automata [Segoufin and Vianu 2002] is also relevant because
validation may be thought of as filtering for documents that match a given
Document Type Definition (DTD) [Bray et al. 2000].
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The above methods address the problem of filtering using XPath and are
not directly applicable to querying. However, it may be possible to extend
some of the filtering ideas to querying. (For example, the XMLTK system
[Avila-Campillo et al. 2002] uses lazy DFAs to evaluate XPath queries.) There
are some similarities between the methods for filtering and querying. For exam-
ple, both XPush and XSQ encode predicate results in automaton states. XPush
uses the flags associated with states while XSQ uses the hierarchical arrange-
ment of BPDTs to encode this information in the states themselves. However,
an important distinction, which stems from their different design goals, is that
filtering systems keep track of the matching status of every document, while
querying systems keep track of the matching status of every element. Thus,
a filtering system does not need to buffer different elements of a document,
as a querying system must do. Further, problems due to multiple matchings,
such as those highlighted in Example 2, so not arise in filtering systems. Our
work in this article, therefore, may provide a method to support features such
as closures and multiple predicates when applying the filtering methods to a
querying system.

The XML Stream Machine (XSM) [Ludascher et al. 2002] is a transducer-
based approach to evaluating XQuery queries on XML streams. A network of
XSMs, each generated from a subexpression of a decomposed query, is merged
into a single XSM that can be optimized if the DTD for the input is available.
The transducer network model called SPEX [Olteanu et al. 2002] follows a sim-
ilar approach: each transducer in the network is generated from a regular path
expression construct. XSM supports XQuery constructors while XSQ supports
only XPath (no constructors). On the other hand, XSM does not support XPath
features such as aggregations, closures, and multiple predicates. DTD-based
optimizations could be applied in XSQ. For example, if the DTD suggests that
the author is the child of the book while a query contains book//author, we
can rewrite the query into book/author to reduce the number of closure tran-
sitions in the HPDT. Currently, we do not have a systematic method for such
optimizations.

The XAOS system [Barton et al. 2002, 2003] for streaming XML supports
XPath’s reverse axes, such as parent and ancestor. To to reduce the amount
of streaming data buffered in a matching structure, XAOS uses two data struc-
tures: a X-tree, which is the parse tree of the XPath expression with reverse
axes permitted, and a X-dag, which is the equivalent XPath representation
with reverse axes removed. The X-dag is used as a pattern to filter the in-
coming stream to remove irrelevant nodes. The relevant nodes are stored in
the matching structure based on their relations in the X-tree. When the stream
ends, results are produced by traversing the matching structure. Unlike XAOS,
XSQ buffers only potential result items and outputs a result item as soon as
its membership in the result is determined. (At the time of writing, XSM and
XAOS were not available for testing and they are therefore omitted from our
study in Section 6.)

A recent study of the query complexity of XPath includes a main-memory al-
gorithm (nonstreaming) with polynomial combined complexity (query and data)
[Gottlob et al. 2002]. The paper identifies a subset of XPath, called Core XPath,
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that can be evaluated in linear time. Core XPath has boolean operators and axes
other than / and //, which are not in the subset used in XSQ, but has no value
comparisons and aggregates, which are used in XSQ. The algorithm is based on
reducing every axis to two primitive axes: first-child and next-sibling. Although
the polynomial complexity of this method is attractive (compared to the expo-
nential complexity of XSQ), the algorithm requires several passes over the data
as it evaluates nodes in the XPath parse tree in a bottom-up manner. Thus, it
is not clear how it could be extended to a streaming environment. In general,
it is not straightforward to compare streaming and nonstreaming algorithms
because streaming systems are typically limited to an smaller subset of XPath.

A follow-up paper [Gottlob et al. 2003] further shows that the combined com-
plexity of Core XPath, and therefore of XPath, is P-hard. It also analyzes the
complexity of various subsets of XPath and shows that negations and scalars
(numerical and string functions) in the query are the sources of difficulty in
evaluation. Without these features, and without some other complex XPath con-
structs, such as nested predicates of the form of [p1]...[pn], XPath queries are
highly parallelizable. Another paper [Benedikt et al. 2003] addresses the ex-
pressiveness of different subsets of XPath and the containment relations among
them. It also provides rules for different subsets to simplify XPath queries into
a normal form defined by that paper. These papers suggest that most of XPath
can be evaluated very efficiently. Nonetheless, streaming evaluation requires
further study, especially if result items are to be emitted as early as possible
and if only potential result items are to be buffered.

The features of queries and data in a streaming environment have been in-
vestigated in a general setting [Babcock et al. 2002]. Some of the more general
issues are also applicable to semistructured data and XML. For example, we
may wish to consider different semantics for streaming XPath queries with
aggregations (up-to-date result, a window-based result, or an approximation).
Some ideas suitable for relational data streams may not be directly applicable
to XML streams. For example, the dispatching of incoming data to multiple
applications based on selections is easy in relational data. However, since eval-
uating XPath queries usually requires information about the document tree (to
get the context of an element), the dispatching task is more complex for XML
streams. For example, we may need to add the ancestors of a target element to
it when it is dispatched.

Most work on streaming data, including XSQ, assumes that the input con-
sists of only the raw data. In this environment, certain limitations are unavoid-
able. For example, it is easy to devise XPath queries and sample inputs for which
an unbounded amount of buffering is required for any XPath processor that
produces exact results. An interesting alternative is when the provided input
includes constraints on forthcoming data. For relational data, there are meth-
ods for embedding punctuations in streaming data, facilitating the streaming
evaluation of queries that include blocking operators such as group by [Tucker
et al. 2003]. It should be interesting to use similar ideas for streaming XML to
support XPath queries that include axes such as following.

Several systems provide methods for querying non-streaming XML data.
Galax [Fernández and Siméon 2002] is a full-fledged XQuery query engine. It
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implements almost all of the XML Query Data Model along with the type sys-
tem and dynamic semantics of the XML Query Algebra. XQEngine [Katz 2002]
is a full-text search engine for XML documents that uses XQuery and XPath as
its query language. XPath expressions and boolean combinations of keywords
are used to query collections of XML documents. The engine creates a full-text
index for every document before the document can be queried. Another topic
closely related to XPath query processing is XML transformation. XSLT is a
standard template-based language for transforming XML [Kay 2003]. Since
XSLT uses XPath to specify patterns in its rules, XSQ and other methods for
XPath processing have applications in XSLT processors. It is difficult to adapt
these systems for streaming data because they usually require an in-memory
materialization of the entire XML document. However, they provide some base-
lines for our experimental study in Section 6.

The STX system takes a different, more procedural, approach to transform-
ing streaming XML [Becker et al. 2002]. It uses templates to specify the op-
erations that should be performed when data matching the template pattern
is encountered. We may think of STX as a general-purpose event-driven pro-
gramming environment that is not tailored to a specific query language. How-
ever, it may be used for XPath processing if we design a method for generating
efficient STX templates from XPath queries. A method that generate STX tem-
plates equivalent to an XPath queries that require buffering is not immediately
apparent. However, this approach is an alternative to our automaton-based ap-
proach and deserves further attention.

Prior work [Miklau and Suciu 2002] has noted that there are important
differences between XPath evaluation and the classical problems of tree pattern
matching [Hoffmann and O’Donnell 1982; Chen et al. 2001] and unordered tree
inclusion [Kilpel 1992]. In particular, the problem of unordered tree inclusion is
NP-hard (by direct reduction from SAT), while XPath queries can be answered
in polynomial time [Gottlob et al. 2002]. Intuitively, the reason the inclusion
problem is harder than the XPath problem is that the former does not permit
multiple nodes in the pattern tree to be mapped to the same node in the data
tree. Most of the algorithms for these problems require a postorder (bottom-up)
traversal of the data trees and are thus unsuitable for streaming data that is
provided in preorder. As an exception, an algorithm described for the classical
tree pattern matching problem [Hoffmann and O’Donnell 1982] needs only a
preorder traversal of the data tree. However, it allows only parent-child (not
descendant) edges in patterns and finds only matches for which the order of
siblings in the data matches the their order in the pattern. In contrast, tree
patterns corresponding to XPath queries include ancestor-descendant edges
(for the closure axis) and XPath semantics require that the sibling order in the
pattern (order of nodes mentioned in predicates) be ignored.

6. EXPERIMENTAL EVALUATION

The goals of this experimental study include validating the XSQ implementa-
tion, characterizing its features and performance, and providing an exploratory
description of the features and performance of systems that are related to XSQ.
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Fig. 11. System features.

We stress that our experiments are not designed for a head-to-head micro-
benchmark-style comparison of the systems we study. Given the diversity of
the systems in goals, supported query languages and features, implementation
language and environment, state of development, etc., such a comparison would
not be easy. Rather, we wish to gain some qualitative insights into the cost of
supporting certain XPath features such as closures and to study which systems
and features are best suited to a given environment.

We begin by describing our experimental setup in Section 6.1. We describe
results on throughput in Section 6.2, latency in Section 6.3, and memory usage
in Section 6.4. Section 6.5 presents a broader study of a set of query engines
aimed at characterizing their features and performance. Section 6.6 presents
an experimental characterization of XSQ.

6.1 Experimental Setup

In order to facilitate our experimental evaluation of the effects of different
XPath features, we have implemented two versions of XSQ: XSQ-NC supports
multiple predicates and aggregations, but not closures; XSQ-F supports clo-
sures in addition to multiple predicates and aggregations. The former imple-
mentation uses a deterministic automaton leading to performance benefits. We
conducted our experiments on a PC-class machine with an Intel Pentium III
900 MHz processor with 1 GB of main memory running the Redhat 7.2 distribu-
tion of GNU/Linux (kernel 2.4.9). To ensure the evaluation is performed only in
the main memory, the maximum amount of memory the Java Virtual Machine
(JVM) could use was set to 512 MB. For the purpose of comparison, we selected
a set of systems that process XPath or XPath-like queries. These systems are
outlined in Figure 11. As the figure suggests, these systems vary considerably
in their design goals and features. Many do not support streaming evaluation,
and many are main memory systems that evaluate the query on the document
tree of the data built in memory. We have discussed XQEngine [Katz 2002] (ver-
sion 0.56) and XMLTK [Avila-Campillo et al. 2002] (version 0.9) in Section 5.
An implementation of STX, Joost [Becker 2002] (version 20020828), and an im-
plementation of XSLT, Saxon [Kay 2002] (version 6.5.2), are also studied here.
Some systems use query languages that are supersets or variations of XPath.
For such systems, we issued queries that are equivalent to the XPath queries in
our experiments. In many cases, the results are enclosed by different container
elements but the contents are the same.
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Fig. 12. Dataset descriptions.

In our experiments, we use both real and synthetic datasets that differ in
size and characteristics. We use four real datasets [Avila-Campillo et al. 2002]:
an XML-ized version of Shakespeare’s plays (SHAKE); the NASA ADC XML
dataset (NASA) [Borne 2002], bibliographic records from the DBLP site (DBLP)
[Ley 2003], and the PIR-International Protein Sequence Database (PSD) [Wu
et al. 2002]. Since these datasets have relatively shallow structures, we gener-
ated two synthetic datasets, RECURS and RECURB, using IBM’s XML Gener-
ator with deeper document structure to explore features related to such data.
Some characteristics of these datasets are listed in Figure 12. In Section 6.5,
We also use Toxgene [Barbosa et al. 2002] to generate synthetic datasets that
contain specified number of designated elements.

To the best of our knowledge, there are no standard or widely used bench-
marks for XPath queries. Therefore, following other work on this topic (e.g.,
Ludascher et al. [2002] and Barton et al. [2003]), we conduct our experimental
study using queries that vary in a variety of features that are likely to influence
performance, such as query length, number of predicates, and types of axes. The
queries used for each experiment are listed near the figures summarizing the
results.

For a text-based data format such as XML, parsing the input typically ac-
counts for a substantial fraction of the running time. The last two columns of
Figure 12 list the parsing times for our sample datasets. We also note that
parsing times vary widely across systems, depending on the parser and pro-
gramming environment. In order to prevent these differences from masking
the effects of query processing, we normalize the running time of each system
using its parsing time.

In our experiments, we executed each query on a dataset 30 times to get the
mean value of the result we need. We also computed the 95% confidence in-
tervals of the values to make sure our comparisons are statistically significant.
We found that in all cases the 95% confidence interval is of width less than 1%
of the mean value being measured (throughput, memory usage, etc.). Since it is
difficult to display such tight confidence intervals graphically, the conventional
error-bars are omitted in the graphical results that follow.

6.2 Throughput

We measure throughput as the rate at which a streaming query engine con-
sumes input data (megabytes per second). Since this rate may vary over time
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Fig. 13. Relative throughputs for different queries on the SHAKE dataset.

Fig. 14. Relative throughputs for different queries on the DBLP dataset.

(perhaps depending on the structure of the data, or as a result of periodic
reorganization of data structures in a streaming system), we measure the aver-
age throughput as the size of the input divided by the time required to process
it. (For infinite streams, the average throughput at a point in the stream is ob-
tained by dividing the amount of data processed up to that point by the amount
of processing time expended up to that point.)

As noted earlier, parsing often accounts for a significant fraction of the pro-
cessing time and may mask the differences due to query processing proper.
Therefore, we define relative throughput of a system to be its throughput
divided by the throughput of the parser used by that system.

Figures 13, 14, 15, 16, 17, and 18 summarize our experiments comparing the
relative throughputs of the systems over different datasets and queries. Results
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Fig. 15. Relative throughputs for different queries on the NASA dataset.

Fig. 16. Relative throughputs for different queries on the PSD dataset.

for several combinations of queries and datasets are missing for one or more sys-
tems because either the system does not support queries with certain features
(e.g., closures, predicates) or the dataset is too large for the implementation.

We observe that, in general, XMLTK and XSQ-NC are the two fastest systems
when we use simple queries that they support. XMLTK supports only predicates
that can be evaluated at the time a potential result element is encountered, such
as a predicate on that element’s attribute. Therefore, XMLTK can always output
a result item at the time it appears in the stream. The HPDT used in XSQ-NC
is deterministic, which means there is only one active matching record and
at most one matching transition for the incoming event. It is one reason that
XSQ-NC is faster than XSQ-F since XSQ-F may have multiple active matching
records and multiple matching transitions for an incoming event.

However, even for the same query without closure, XSQ-NC is faster than
XSQ-F although XSQ-F also has only one active matching record in this case.
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Fig. 17. Relative throughputs for different queries on the RECURS dataset.

Fig. 18. Relative throughputs for different queries on the RECURB dataset.

One reason is that XSQ-NC does not need mechanisms such as depth stacks to
keep track of possible multiple matchings. Moreover, XSQ-F always buffers a
potential result item bfirst even if b is known to be in the result when it comes in.
XSQ-F then marks bas output, checks the queue, and outputs b if b is at the head
of the queue. This mechanism is used only in XSQ-F since, due to the existence of
closure axes, there may be other undecided items in the buffer before the current
buffer item. Without closure axes, if we can determine b is in the result, we can
always output b right away. In this case, we conclude that every b’s ancestor
matches a location step in the query and satisfies the predicate. Therefore, there
cannot be any undecided buffered items, since a buffered item can only wait for
an open element whose predicate is pending. We study these issues further in
Section 6.5.

Figures 13, 15, and 17 suggest that Saxon is faster than XSQ-F when they
process XML data that can fit into main memory. Saxon loads all the data
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Fig. 19. Latency on the SHAKE dataset.

Fig. 20. Latency on the SHAKE dataset.

into the memory to build the DOM-tree before it evaluates the query. After
parsing the data, Saxon performs all the processing in main memory. Such in-
memory processing is efficient and can support more complex features such
as the whole set of XPath axes. However, the main memory approach is not
suitable for streaming data in general.

6.3 Latency

Output latency is an important property of streaming systems, and we measure
it as follows. We let every system output the result to standard output. For a
query that returns an element with name N, we monitor the standard output
to detect the start-tag <N> and record the elapsed time when we receive each
such tag. (The clock is started at the time the system begins evaluation.) For
each result item, we refer to this time as its latency and define the latency of
the query result to be the average latency for all items in the result.

Figures 19, 20, 21, and 22 summarize our results on the output latency. In
the first three figures, the left parts illustrate the time when the first result
elements are returned. The right parts of the figures illustrate the average
output latency of result elements. We note from Figure 19 that the streaming
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Fig. 21. Latency on the NASA dataset.

Fig. 22. Latency on the NASA dataset.

systems usually output the first result item earlier than the nonstreaming
systems. (XSQ-NC and XMLTK returned the first element immediately after
the systems were invoked.) This result is as expected since the nonstreaming
systems need to load all the data and build the document tree in memory before
actual query evaluation begins. The average latency for the nonstreaming
system Saxon is very close to its latencies for the first returned element. The
reason is that it always evaluates the whole query first and then returns the
result when the whole result set is available. Since the XQEngine version
we tested cannot handle documents with more than 32,767 elements, we
divided datasets into a sequence of smaller documents as needed to satisfy this
constraint. Therefore, XQEngine returned the first result item after it finished
processing the first small document. Also, we note that the bar depicting av-
erage latency for XQEngine has been scaled down 10-fold in order to fit in the
chart.

In Figure 20, we used a query that contains a predicate testing whether the
text content contains a string. Besides results similar to those in Figure 19, we
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Fig. 23. Preprocessing time, query processing time, and total querying time.

notice that XQEngine returns the first result very quickly and that its average
latency is also lower than that in Figure 19. This result is explained by recalling
that XQEngine builds a full-text index for the XML document, and can therefore
efficiently evaluate queries that require string lookups of this kind.

We used the NASA dataset for the next set of experiments. Figure 21 illus-
trates that for this larger (23MB) dataset, the latencies of the first result items
in the streaming systems are much smaller than those in the nonstreaming
systems. This result is as expected since the nonstreaming systems now need
to load a larger dataset before they output the first result item. We also observe
that the average latencies of XSQ and XMLTK are much smaller than those
of the nonstreaming systems, while the average latency of Joost is still almost
the same as that of Saxon. After examining the result, we discovered that Joost
uses buffered output. Since the result size of this query is twice the buffer size,
the result items are emitted in two groups.

We note that the nonstreaming systems may return results faster. In Fig-
ure 22, we used a query that returns a single element. By selecting the element
at different positions in the stream, we observe that the latency for XSQ is
almost proportional to the size of data before the result element. In contrast,
Saxon’s latency is almost constant since the position of the element is not im-
portant for its main-memory query evaluation.

Figure 23 illustrates the result of measuring the components of the overall
query-processing time. Although the figure depicts the result for one query, the
results are similar for other queries we used. The dark bar represents the query
compilation time, which usually includes parsing the query and building the
data structures used by the runtime query engine. The gray bar represents
the preprocessing time. For example, the preprocessing stage of Saxon loads all
the data into memory to build the DOM-tree before it can evaluate the queries.
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Fig. 24. Memory usage for DBLP-based datasets of different sizes.

Fig. 25. Memory usage for synthetic datasets of different sizes.

Similarly, XQEngine preprocesses data by building a full-text index on the data
before evaluating any queries.

In general, one benefit of the nonstreaming systems is that, as long as the
preprocessed data in these systems remains in memory, subsequent queries can
be evaluated very efficiently by reusing the preprocessed data.

6.4 Memory Usage

The main memory required by a streaming query engine is an important metric
and often determines its feasibility for an application. Figures 24, 25, 26, 27,
28, and 29 summarize the results of our experiments comparing the memory
usage. We observe that, as expected, the streaming systems typically use much
less memory than the nonstreaming systems. We also note that, for different
datasets, the streaming systems use almost the same amount of memory. This
fact suggests that the amount of memory used by the streaming systems is
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Fig. 26. Memory usage for different queries on the NASA dataset.

Fig. 27. Memory usage for different queries on the PSD dataset.

only weakly dependent on the size of the datasets. For systems such as XMLTK
and Joost, this observation is always true since no data is buffered during
the evaluation. However, systems that support predicates, such as XSQ-NC
and XSQ-F must buffer data and the amount of buffered data may be large,
depending on the dataset and query. Further experiments studying this aspect
of XSQ are described in Section 6.6.

We also used the XML Generator program to generate datasets of varying
size and recursiveness. For example, for the dataset of size 13 MB, the nested
level parameter of the XML Generator program is set to 15 and the maximum
repeats parameter is set to 20. From Figure 25 we note that even with highly
recursive data and queries with closures, the memory used by XSQ-F is al-
most constant. Since all the items in the buffers can be determined when we
encounter the end event of the element matching the first location step, the
maximum amount of memory that XSQ needs does not exceed the size of the
largest element in the stream.
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Fig. 28. Memory usage for different queries on the RECURS dataset.

Fig. 29. Memory for different queries on the RECURB dataset.

6.5 Characterizing the XPath Processors

Since streaming query engines need to buffer potential results items, the rela-
tive ordering of XML elements in a dataset may influence the amount of buffer
space needed. To study the effect of element order, we generated a 10 MB dataset
using Toxgene, by applying the template of Figure 30 repeatedly to generate
new elements with successive id attributes. The result dataset contains 128 A
elements, each of which has a non-zero id attribute, a prior child with value 1,
a posterior child with value 1, and up to 10,000 foo children. There are 700,771
foo elements in total. We used the three queries in Figure 31. All three produce
empty results on the dataset. However, the data items that are used to evaluate
the predicates come from different locations in the element.
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Fig. 30. Toxgene template.

Fig. 31. Synthetic queries.

Fig. 32. Effect of data ordering on throughput.

Figure 32 summarizes the results of running XSQ-NC, XSQ-F, and Saxon on
these queries. Saxon’s throughput is essentially the same for all three queries
since it always builds the whole DOM tree before the evaluation. When it tra-
verses the DOM tree to evaluate the query, the document order of the elements
is not important. However, the throughput of XSQ-NC is about 30% higher for
Q3 than for Q1 and Q2. For Q3, XSQ-NC can determine at the beginning of an
A element that all the contents in it should be ignored. For Q1 and Q2, on the
other hand, the content of every A element must be buffered because the prior
and posterior child elements may occur anywhere before the </A> tag. We also
observe that XSQ-F is not as sensitive as XSQ-NC to the element order. Even
if XSQ-F determines that an incoming item is in the result set, XSQ-F cannot
output it right away since there may exist undecided queue items. Thus, XSQ-F
must first mark the item as “output” and then check the queue, which reduces
its sensitivity to the order of the elements.

We also studied the sensitivity of throughput to the result size, which varies
across the systems. For example, XQEngine is slower than the other systems
in Figure 23 where the query returns a large portion of the dataset. However, if
a node test in the query is not in the data, XQEngine returns the empty result
set very quickly because it builds an inverted-file index on all the strings in the
data. The other systems, lacking such an index, spend similar amount of time on
the query irrespective of whether the node tests in the query appear in the data.
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Fig. 33. Effect of the result size on throughput.

We used Toxgene to generate a 10-MB dataset consisting of a mix of three
types of elements (besides a few top level elements): 10% of the elements have
name red, 30% green, and 60% blue. The content of each such element is a
single character. We used this dataset with three queries: /a/red, /a/green, and
/a/blue, generating query results that are roughly 1 MB, 3 MB, and 6 MB in
size, respectively. Figure 33 illustrates the relative throughputs of the systems
on these queries. (XQEngine is not tested for the same reason as described in
the previous experiment.)

We observe that XSQ-NC is quite sensitive to the result size. The different
performance is due to the different handling of data items based on whether
they are in the result. Items that are not in the result can be ignored by XSQ-NC.
If there are more items in the result set, XSQ-NC will perform more matching
record activations and output operations, which constitute a large portion of the
running time of XSQ-NC. We also note that XSQ-F is not as sensitive as XSQ-
NC. XSQ-F always keeps the item first since there may be multiple transitions
that process the item. Even if the item is not in the result, only when all the
transitions finish can we throw it away. The difference between the treatment
of elements in and not in the result is therefore not as large as the difference
in XSQ-NC. Saxon’s throughput is not very sensitive to the result size because,
after it loads all data into main memory, all query evaluation is performed in
main memory except for the output process, which constitutes only a small
amount of the total execution time. Similarly, the low sensitivity of XMLTK’s
throughput to the result size is because the difference is only in the time re-
quired to output the result. However, it is not clear why Joost’s throughput is
not sensitive to the result size.

6.6 Characterizing XSQ-F

In this section, we study the effect of different query features on the performance
of XSQ-F. In particular, we study the effect of the number of closure axes in the
query, the number of predicates in the query, and the query length (number of
location steps).

In the first experiment, we executed a set of queries that return the same
result set but have different number of closure axes. In Figure 34, Q S , where
S ⊆ {1, 2, 3, 4, 5}, is the query in which the ith location step has a closure axis for
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Fig. 34. Effect of closure axes in the queries on NASA dataset.

all i ∈ S. For example, the query Q123 has closure axes in the 1st, 2nd, and 3rd
location steps. (The remaining location steps have the child axis.) The memory
usage of XSQ-F when evaluating these queries is summarized in Figure 36.
The HPDT generated for the query /dataset/reference/source/other/name is
depicted in Figure 35. The HPDTs for other queries have a similar structure,
with self-closure transitions and closure transitions in the appropriate places,
following the scheme of Section 3.1.

Figure 36 indicates that the memory used for the different queries does not
vary much. This insensitivity is due to the fact that the memory used for stor-
ing the HPDT and matching records is only a very small amount in the total
memory used by the system. The buffers are responsible for most of the memory
usage. Therefore, although different number and position of closure axes lead
to different number of matching records at runtime, the difference in overall
memory usage is very small.

Figure 34 summarizes the throughput on the above queries. We observe that
the throughput is lower for queries with a starting closure axis than for queries
with a starting child axis. The DTD of the dataset [Borne 2002] suggests that
all the top level element are dataset elements. (The datasets element in the
DTD is treated as the document root.) qIf the first location step has a closure
axis, after the runtime engine (Figure 34) makes the transition from state $1
(with depth stacks omitted here) to $2, $1 keeps active. Then, the engine needs
to check for every incoming element whether it is a dataset element, which
involves string comparisons. In contrast, if the first location step uses a child
axis, $1 does not remain active after the transition. Therefore, only for all the
child elements of the dataset elements does the engine check their names. Any
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Fig. 35. HPDT generated for query /dataset/reference/source/other/name.

Fig. 36. Memory usage of queries with closure axes on NASA dataset.

element that is not a descendant of both dataset and reference is ignored after
the engine checks its depth, which is much faster than string comparison.

It is not the position of the closure axes in the query alone that determines the
throughput. On examining the dataset closely, we note that the evaluation time
is significantly affected by the selectivities of each location step. Let S be the set
of elements that match the (i − 1)th location step and S′ the set of children of
nodes in S. We define the selectivity of the ith location step (for a given dataset)
to be the fraction of the nodes in S′ that match the ith location step. If the ith
location step uses the closure axis, we use descendants instead of children in
identifying S′. For the query and dataset of this experiment, each dataset
element contains one reference child, which corresponds to 10%–20% of the
total number of events for one dataset element. We also ran these queries on a
dataset obtained by removing all child elements of dataset elements other than
reference (which means the selectivity of the second location step changed from
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Fig. 37. Experiment of Figure 34 using a modified NASA dataset.

Fig. 38. Effect of predicates in the queries on NASA dataset.

around 20% to 100%). The result is summarized in Figure 37. We observe that
the closure axis in the first location step no longer has a significant impact on
the throughput. (The throughput of query Q1 is not significantly smaller than
throughputs of queries Q2, Q2, Q3, and Q5, all of which contain one closure axes
but in different location steps.) The reason is that the extra work done for Q1
(checking descendants of child elements other than reference) on the original
dataset no longer exists since the dataset elements in the new dataset have
only reference child elements. In general, when the selectivity of a location
step is small, closure axes preceding this step result in a performance penalty
because the descendants that are not in the result set cannot be eliminated by
depth comparisons and incur the cost of more expensive string comparisons.

In the previous experiment, we used queries with only closure axes but with-
out predicates. In the next experiment, we used queries on the NASA dataset
with predicates of different types and in different positions in the query. The
results are summarized in Figure 38. We abbreviate the node test dataset as
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d in the queries. Similarly, we abbreviate other node tests by their first letter.
The first eight queries have the same result although they have different types
and numbers of predicates. The last three queries have empty results. We note
that the throughputs for the first eight queries are similar because the number
of comparisons needed to determine the results of their predicates does not
vary much across these queries. For example, although the dataset elements
typically have several altname child elements, the first altname child element
usually has the attribute type that has value ADC. Therefore, the queries Q3
and Q4 both check the first altname child element and ignore the remaining
altname elements. However, for query Q10, although the result set is empty,
resulting in less time spent on output operations, all the altname child elements
of dataset elements must be checked. Therefore, its throughput is lower than
those of queries Q3 and Q4. We also observe that the query Q9 has the largest
throughput among all the queries used in the experiment. The reason is that
the predicate in this query [@subject=test] can be evaluated to false at the
beginning of the dataset elements. Thus, all the descendants of the dataset
elements can be ignored. This experiment demonstrates that XSQ is able to
save on comparisons for predicates that have already been evaluated.

7. CONCLUSION

The XSQ system provides an efficient implementation of XPath for streaming
XML data. It supports XPath queries that have multiple predicates, closure
axes, and output functions that permit extraction of portions of the stream. We
have illustrated the challenges posed by these XPath features to query process-
ing in a streaming environment and described the solution used by XSQ. All
the methods described in this article have been fully implemented in the XSQ
system, which is freely available at http://www.cs.umd.edu/projects/xsq/.
The implementation is based on a clean system design that centers on a hier-
archical arrangement of pushdown transducers augmented with buffers and
auxiliary stacks. A notable feature of XSQ is that at any point during query
processing, the data that is buffered by XSQ must necessarily be buffered by
any streaming XPath query engine. We have described the results of a detailed
experimental study of XSQ and similar systems. In addition to demonstrat-
ing the ability of XSQ to maintain a high throughput with modest memory
requirements, even for large datasets and complex queries, our experimental
study provides a valuable characterization of the performance implications of
XPath features and system designs, as embodied in the systems we studied.

In continuing work, we are extending XSQ to support the simultaneous eval-
uation of multiple queries on a stream. The main idea is to use simple state
machines to evaluate common segments among a group of queries and route
the partial results among the smaller machines to construct the result of each
query. Each segment consists of a pair of adjacent node tests (in a query) and
the axis between them. For example, both A/B and A[B] contain segment A/B. A
segment s may serve different roles in different queries. For instance, A/B can be
used in the main trunk of the query, or B can be used in the predicate of A in the
form of A[B]. For every (s, r) combination, where r is a role such as main-trunk
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or predicate, the system records in a segment table a list of queries to indicate
that the segment s is used in these queries as the role r. Given a large number
of XPath queries, it is likely that a segment is used in many queries as the
same role. The above operations can be performed for a large group of queries
simultaneously. In our implementation, most of the bookkeeping information
is stored using bitmaps, allowing efficient operations. Further details of this
method appear in a technical report [Peng and Chawathe 2004]. We are also
extending XSQ to take advantage of structural information (such as DTDs or
XML Schemas) when it is available. Finally, we are investigating methods for
reducing the overhead of parsing XML by using a framework in which the data
source augments streams with hints that permit a consumer to skip uninter-
esting portions of the stream.

ACKNOWLEDGMENTS
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