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ABSTRACT output expression specifes the portions or functions of a match-
ing element that form the results. Each location step haaxem

a node test, and an optionapredicate. For example, the loca-
tion path of the query /book [year>2000] /name/text () is //

book [year>2000] /name. The location path matches the elements
reachable from the document root using a path consisting of zero or

We present the design and implementation of the XSQ system for
guerying streaming XML data using XPath 1.0. Using a clean de-
sign based on a hierarchical arrangement of pushdown transduc
ers augmented with buffers, XSQ supports features such as multi-

le predicates, closures, and aggregation. XSQ not only provides . X .
P P ggreg Q yp more elements with arbitrary labels, followed by a book element, in

high throughput, but is also memory effcient: It buffers only data tollowed b | Th )
that must be buffered by any streaming XPath processor. We also,tug.] 0 OWE y ? n:;l]me element. fe ?lutput eﬁpresmemt(),
present an empirical study of the performance characteristics of " icates that only the text content of the matching name appears

XPath features, as embodied by XSQ and several other systems. " the result. In the £rst location step/book [year>2000], //
' is the closure axis denoting descendant-or-setfpok is the node

test, andyear>2000 is thepredicate. The predicate restricts the
1. INTRODUCTION results to the name subelements of books that have a year subele-
XML is becoming the de facto standard for information exchange ment whose content has a value greater than 2000.
and the amount of XML data is growing rapidly. Some ofthe datais  Automaton-based methods for processing streaming data are at-
accessible only istreamingorm. That is, data items are presented tractive due to their effciency and clean design. A challenging
in a £xed serialization; the application cannot seek forward or back- task in building automaton-based systems for XPath queries is the
ward in the data, nor can it revisit a data item encountered earlier generation of the automaton from the query. The difEculties (ex-
unless it is explicitly buffered. In addition to data that occurs na- plained further by the examples below) are due to XPath features
tively in streaming form (e.qg., stock market updates, real-time news such as closures and predicates in conjunction with the read-once
feeds, network statistics), it is useful to process large XML datasets nature the streaming data. Brieay, when the automaton encounters
in streaming form because of the greater efEciency of streaming an item in the stream, the data required to determine whether this
systems (which use a sequential scan instead of non-sequential dataem is in the query result may be unavailable. The unavoidable

access on disk). In the sequel, we use the ®reaming XML to buffering introduces complexities of buffer management (magging
refer to both data that occurs naturally in streaming form and data buffered data based on subsequent satisfaction or falsifcation of
that is best accessed in streaming form. predicates, duplicate avoidance, etc.).

We address the problem of evaluating XPath queries over stream- Much of the previous work [1, 12, 7] using this paradigm fo-
ing XML [23]. XPath is a well-accepted language for addressing cuses orEltering a collection of XML documents using restricted
parts of an XML document. It is often used in a host language XPath expressions. Since XPath expressions without predicates are
such as XQuery and XSLT. However, it also serves a stand-aloneessentially regular expressions, they can be transformed into £nite
query language for XML. Methods for efEcient evaluation of XPath  state automata (FSA) that accept exactly the documents that sat-
queries bene£t not only XPath query engines, but also systems forisfy the expressions. If the FSA accepts the document, the £ltering
more powerful languages (e.g., XQuery) which incorporate XPath. system returns the identifer of the current document to the user.

An XPath query consists docation path and anoutput ex- Thus, such systems do not need to buffer individual elements of the
pression. The location path is a sequencelo€ation steps that documents. However, as we shall explain shortly, general XPath
specify the path from the document root to a desired element. The queries cannot be evaluated in a streaming system that lacks buffer-

*This material is based upon work supported by the National Sci- ng capab|l|t|es: The XMLTK system [2] sa closer match to our
ence Foundation under grants 11S-9984296 (CAREER) and IIS- WOrk, because it supports XPath expressions that retrieve only parts

0081860 (ITR). of a document. However, XMLTK does not support predicates in
XPath expressions. Therefore, whenever it encounters an element
that matches the path expression in a query, it can write it to output.
In contrast, if the query includes predicates, the membership of an

Permission to make digital or hard copies of all or part of thirkwfor element in the query result cannot be decided immediately in gen-
personal or classroom use is granted without fee providatdbpies are eral. The XSM system [19] handles predicates in the query but it
not made or distributed for pro£t or commercial advantage artcctipes does not handle the closures and aggregations. (It assumes that the
bear this notice and the full citation on the £rst page. To ahgrwise, to query does not contain the closure aitjs As we describe below,

republish, to post on servers or to redistribute to listguies prior specifc L .
permission and/or a fee. closures pose signi£cant challenges to query evaluation.

SIGMOD?2003, June 9-12, 2003, San Diego, CA. We note that XPath features such as (multiple) predicates, clo-
Copyright 2003 ACM 1-58113-634-X/03/06%$5.00.



1. <root>
2. <pub>
3. <bookid="1"> 2. <pub> Q == N7 [/O]

) ) 3. <book>

4 <price> 12.00</price> 2 X </
5. <name> First </name> 5 <natmh® A< ?an:r;& N = M//]tag M
6 <author> A </author> 6. /Eauk>0l> </author>
7 <price type="discount> 10.00</price> - </boo F == [FO {OPconstant]]
8. </book> ; <book Y </
9. <bookid="2"> 9 <n3g]>e> </name> FO = @attribute)tag {@attribute} ‘text()
10. <price> 14.00</price> l'o <p<book>
11. <name> Second</name> ’ O = @attribute|text()|count()|sum()
12. <author- A </author> E <na$e> ZB</?a":;’> ) ‘ ‘
13. <author- B </author> 13' </§gcl)jk>0’> </author> OoP = > ‘ > ) = ‘ < ‘ > ‘ £ ‘contains
14.  <price type="discount® 12.00</price> ’

14. <year- 1999</year>
15. </book> 15 Joubs
16. <year> 2002</year> - <pu

16. </book>
17</pub>
18. </root> 17. <year- 2002</year-

' 18. </pub>
19. </root>
Figure2: Example 2 Figure 3: BCNF for a Subset of XPath

Figure 1: Example 1

sures, and aggregations are important usability advantages, espewe encounter the £rstuthor element in the stream, we know that
cially if the data is semistructured or has a structure unknown to it satisEes the patirpub/book/author. However, the predicate
the query formulator. It is difEcult to write a useful query on data in the £rst location step[year=2002], cannot be evaluated yet,
whose structure is (partly) unknown without using closure. Simi- since we have not encountered all thear subelements. We have
larly, predicates permit a more accurate delineation of the data of encountered the £r3trice subelement of theook element. How-
interest, leading to smaller, and more usable, results. The chal-ever, we cannot determine whether theok fails the predicate
lenges posed by these features are exacerbated by data that has a réprice<11], since there may be mogeice subelements. There-
cursive structure, as explained below. (A survey of 60 real datasetsfore we need to buffer theook element. When we encounter the
found 35 to be recursive [10].) secondprice element of thé ook, the second predicate evaluates
This paper makes the followirgpntributions: to true. Since we still do not know thgar of the pub element,
e Tothe best of our knowledge, our method for evaluating XPath the author 4 must continue to be buffered. When we encounter
gueries over streaming data is the £rst one that handles closuresthe twoauthor subelements of the secobheok, we need to buffer
aggregations, and multiple predicates. As the examples below il- the authors 4 and B as well. Now there are twds and oneB
lustrate, these features, especially in conjunction, pose signi£cantin the buffer. Next we encounter the secand ce element of the
implementation challenges. secondbook, and it does not satisfy the predicate. When we reach
e Our methods use a very clean design based on a hierarchi-the end of the secontook element, we know that the predicate
cal arrangement of pushdown transducers augmented with buffers [price<11] evaluates to false, since there are no mereice
The system is easy to understand, implement, and expand to moresubelements. Thus, the twathor elements of the secortdok
complex queries. should be removed from the buffer. Note that anéror, 4, is still
e We present a detailed empirical study of XSQ and several re- in the buffer since it belongs to the £rséok. Later, we determine
lated systems (Section 6). Our study illustrates the costs and ben-that theyear element of theud element satisEes the £rst predi-
efts of different XPath features and implementation trade-offs as cate. By noting that theuthor 4 in the buffer has already satisfed
embodied by these systems. the other predicate, we determine that thethor 4 should be sent
e All the methods described in this paper are fully implemented to the output immediately.
in the XSQ system, which will be released under the GNU GPL
license. In addition to serving as a testbed for further work on this ~ As suggested by the example, we need to solve the following
topic, our system should be useful to anyone building systems for Problems in order to evaluate even this relatively simple query.
languages that include XPath (e.g., XQuery, XSLT). First, we may encounter data that is potentially in the result be-
The rest of thispaper is organized as follows. In the rest of fore we encounter the items required to evaluate the predicates to
this section, we use examples to highlight some of the difEculties decide its membership. We need to buffer the potential result items.
in evaluating XPath queries over XML streams. Some preliminar- Second, items in the buffer have to be marked separately so that, af-
ies, including the SAX data model and the XPath language, are ter the evaluation of a predicate, we can process only the items that
covered in Section 2. The design of a basic pushdown transducerare affected by the predicate. Third, we have to encode the logic of
(BPDT), which corresponds to an XPath location step, is presentedthe predicates in the automaton. In the above example, only when
in Section 3. Section 4 describes our method for composing BPDTs all the price children fail to satisfy the predicate (and we reach
to generate the hierarchical pushdown automaton (HPDT) corre- the end of thebook element) does theook element fail to satisfy
tion 5. Section 6 presents some results from our empirical study of Predicate, we should know that the predicate is true and perform

XSQ and related systems. We conclude in Section 7. the operations accordingly. Finally, predicates access different por-
tions of the data. Some should be evaluated when the begin tag is

ExampPLE 1. Consider the following query for the XML datain  encountered, while others should be evaluated upon encountering
Figure 1: /pub [year=2002] /book [price<i1]/author. When the text content. There are other forms of predicates, which will be



. . . t /root: t /root:
discussed in detail later. @ <root> ® </root> @ <root> ) </root>

Let us now consider a more complex example, using a query with <pub> | | </pub> <pub> | | </pub>
closures, and data with recursive structure. Figure 2 suggests data V| <year> v |
with recursive structure: theub element in line 2 has a grandchild @W $4
namedpub in line 9. <book3 | </book> <book>| | </book>
<price> v | <author> v
ExampPLE 2. Consider the following query for the XML data @) <Iprice> 89 ators (@ %
in Figure 2: //pub [year=2002]//book [author]//name. This <name> | </name> <name> | | </name>
example introduces some new problems, in addition to those dis- @ @
cussed in the previous example. Since the closure/aisisised in
the query, a node and its descendants may match the same location @) (b)

step at the same time. For instance, fhe elements in both line

1 and line 9 match the node test in the £rst location step. Consider Figure4: A simple PDA and a simple PDT for the XML stream
the name element in line 11. There are three ways it can match the in Figure 1

query, and each of the matches gives different results of the predi-

cates:
pub | [year=2002] | book | [author] | name o T={(atext(),d)}. (a,text(),d) is the text event in the element
line 2 true line 7 false | line 11 with tag “a” at depthd. The content of the text event can be
line 2 true line 10 true line 11 retrieved using text().
line 9 false line10 | true line 11

As indicated by the table, only the match in the second row re- 2.2 XPath
sults in both predicates evaluating to true. When we encounter the  As noted earlier, XSQ implements all of XPath 1.0 [23] (includ-
end tag of theub element in line 15, we know that theb element  ing closures, aggregations, and multiple predicates) except reverse
in line 9 fails the predicatdyear=2002]. However, we cannotre-  axes (such agreceding-sibling) and position functions (such
move thename Z from the buffer since it is still possible that this  aspos () and1ast (). For the rest of this paper, we will focus on
item satis£es the query. The same situation occurs again when wethe core subset of XPath described by the grammar shown in Figure
encounter the end tag of theok element in line 16. Only when 3, An XPath query is in the form df;N,. .. N, /O, which consists
all the possible matches have evaluated the predicates to false canof a location pathN;N,...Ny, and an output expressidd. An
we remove the item from the buffer. We also have to be careful with element matches the location path if the path from the document
the other cases where multiple matches evaluate all predicates toroot to that element matches the sequence of labels in the loca-
true. For example, if we add amuthor element between line 8 tion path, and satis£es all predicates (specifed syntactically using
and line 9 for thebook element_ln line 7, the match in the £rstrow  square brackets). For each matching element, the result of applying
would also evaluate both predicates to true. In such cases, we havethe output function to the element is added to the query result. The
to avoid duplicates (outputting the same element twice) as well.  output expression can specify an attribute of the element, or its text
) ) ) ) _value. It may also be an aggregation function (e.g., sum()) applied
These examples illustrate the difEculties encountered in design- g the element’s content. If no output expression is specifed in the

ing an automaton for evaluating XPath queries systematically. Dif- query, the query returns all the elements in the result set.
Eculties arise due to the fact that elements in an XML stream may

come in an order that does not match the order of the corresponding

predicates in the query, and due to recursive structure in the data.3' BASIC PUSHDOWN _T RANSDUCER

When the query contains the closure axis and multiple predicates, A pushdown transducer (PDT) is a pushdown automaton (PDA)
it is even more diffcult to keep track of all the information needed With actions de£ned along with the transition arcs on the automa-

for proper buffer management. ton. It has a £nite set of states which includes a start state and a set
of £nal states, a set of input symbols, and a set of stack symbols.
At each step, it fetches an input symbol from the input sequence.

2. PRELIMINARIES Based on the input symbol and the symbols in the stack, it changes

21 DataModd for XML Streams the current state and operates the stack according to the transition

function. Besides the state transition and stack operation, the tran-
Parsers based on the SAX AP process an XML document and it function also de£nes an output operation which could gener-

generate a sequence of SAX events. For each opening (and closinge some output during the transition. Note that traditional PDTs
tag of an element, the SAX parser generateegin(respectively,  4g not have an extra buffer and the operations for the buffer. How-

eng event. The begin event of an element comes with a list of g\ er a5 discussed in Section 1, evaluating XPath queries over XML
(attribute name, attribute value) pairs with the attribute name as the giraams requires buffering potential results.

key. For text contents enclosed by the opening and closing tag, the
SAX parser generatestextevent. 3.1 A SimplePDA for XML Streams

The streaming XML data is modeled as a sequence of SAX events, pjrst e introduce a PDA that accepts XML streams that have
extended with the depth of the event. Thatis, an XML stream is @ ¢eain string. Figure 4(a) shows the state transition diagram of a
sequencee, e, ..&,...} wheree ¢ BUT UE: PDA that accepts the XML stream in Figure 1. Text events that are
not shown in the diagram map to self-transitions.

For each of the SAX events generated for the XML stream in
Figure 1, the PDA in Figure 4(a) makes a state transition according
to the state transition diagram. For eddginevent, it also puts the
e E={(/a,d)}. (/a,d) is the end event of an element with tag tag of the element into the stack. For eaetdevent, it will match

“a” at depthd. the tag of the current element and the tag at the top of the stack. If

e B ={(a,attrs,d)}. (a,attrs,d) is the begin event of an element
with the tag “a” that is at deptt in the XML data andattrs
is a list of the attribute name-value pairs.



these two tags match, it pops the tag from the stack. Otherwise thesubelement. At the begin event of thethor element, we also

XML stream is not well-formed. After the PDA has processed all need to perform the third task since we know now the predicate in

the events generated from the stream, the PDA should be in the £nalthe current location step is true.

state$3 and the stack should be empty. In the following discussion, Intuitively, these observations suggest associating a PDT similar

we assume the XML stream is always well-formed. to the one suggested by Figure 8 with a location step of this form.
Such a PDA can be adapted to a £ltering system for XML docu- (The buffer operations will be explained in detail shortly.)

ments using the following method. Suppose we want to £nd all

the documents that contain some elements that have the patter

//pub//book//name. We can just remove all the branches in Fig-

AJsing similar analysis to the above example for the predicates used
in XPath , the location steps in any XPath queries can be catego-

ure 4(a) to make it a £lter PDA shown Figure 4(b). Note that if the rized into the following classes based on the events upon which the

state transition of the next event is not defned in the £lter PDA, Ere?cateshari evarlluated. | h ifed ib

the £lter PDA just stays in the same state. Whenever the £lter PDA ™ est whet er the cur_rent element as a Specize atj[rl ute, or

reaches stat#8, we know that the current XML document contains whether j[he attribute satisEes some condition, (¢igrok [@1d],

an element that satis£es the £lter expression and we can return the P00k [@id < 101). .

document to the user. Moreover, if we put output functions in state 2. Test whether thg current element .c.ontalns some text, or whether

$8 such that it can output the content mémeelement, the £lter the text value safisEes some condition, (edyear [text() =

PDA becomes a PDT that can answer the XPath query. 3001(_)]). hether th | h iced f child
However, it is not straightforward to extend this simple PDAto - est whether the current element has a specited type of child,

a PDT that answers XPath queries. The main reason is that the(€-J::/book[author]). , . . .

PDA has no memory for the previously processed data (the stack4' Test whether the the current element’s specifed child contains

of the PDA is used exclusively to keep track of matching the begin an attribute, or whether the value of the attribute satisEes some con-

and end tags). However, we need the results for all the predicates dition: (€-9../pub[bookeid < 10]).

which may come in any combinations of sequences, to determines' Test whet_her the spe0|£ed_ _Ch"d of the current element has a

state transitions and the actions. A direct solution is to remember Valu€ that satistes some condition, (e/ggok [year < 2000]).

the current results for every predicate, and mark every item with Based on the apove categorlzatlon, we Qe3|gn atemplat.e for each

a oag that indicates which predicates are satisEed and which arecateglory of Ilocatlohn stepls. F'g#re 5_to Figure 9 summarize these

not yet. Such methods signifcantly degrade the performance. Forlémplates. In each template, there ISRRT state, arrUE state

instance, every time we evaluate a predicate, such a method would:hat |nd|§ates th? tpr?:'ie_‘tz.'n :hlstlhocatlog_ St?p hhas e\;alu?tl;ed to
need to go through the whole buffer to check if some items are rue, and ama state that indicates the predicate has not yet been

affected by its result. Further, the system becomes complex andevalu,::lted. The PDT generated from a location step using the tem-
uses ad-hoc methods to keep track of all the information needed.Elati IS palledta ??S"; pus.hdown automaton (BPDT). The BPDT
In Example 1, if the £rsyear element has satisEed the predicate as two important features: - . .
[year=2002], the otheryear element of the samgub element 1. The result of the predicate is encoded in the states. It is easy to
should not be tested anymore. Then we need to explicitly set a nagrS]hOW th?t whdenever t.he E’PDT IS It:] tg%UDETsFat.e’ t;ee predlcr?te

for this predicate and reset it appropriately. Considering different asd_eva uﬁte to true,bw enevlert z IS Intthestate, the
semantics of the predicates, we need to set all these operations (s reTlhcatle 1as ?ct)rt]yet ?fn tevg uate d din the BPDT. F

or reset, check or do not check, etc.) separately. If there arerelosu € logic of the predicate Is encoded In he - For exam-

in the query and the data is recursive, the naive approach become?{e’ In Flghure 9,bvx[/e cagzsoeezjth_e Exact Icl’g'f vl\;e wantf Iﬁr Io'(ﬁtlon
even more complex. steps such agpub [year=2002] in Example 1. If one of the chil-

dren satis£es the criterion, the BPDT will move to tiRUE state.
3.2 Buildingthe BPDT Only if all the children fail the predicate does the BPDT return to
the START state from thenA state, signifying that the predicate has

Our solution to this problem is based on our observations on the
evaluated to false.

following example.

EXAMPLE 3. For the following XPath query, consider the sec- 33 Buffer operationsin BPDT

ond location stepfbook [author]): In contrast to the simple PDA, each BPDT has a buffer of its

Q: /pub [year>2000] /book [author] /name/tezt () own that is organized as a queue. The operations on the buffer are
as follows:
In a PDT for this query, we need to perform at least three tasks for 1. Q.enqueus(): addv to the end of the queue;
this location step: 1. If théook element does have atuthor 2. Q.clear(): remove all the items in the queue;
subelement, we need to remember the fact for future use. 3. Q.oush(): send all items in the queue to the output in FIFO

2. If the book element does not have amthor subelement, we order;
need to make sure that if thesme of the currentbook element has 4. Q.upload(): move all the items in the queue to the end of the

been in the buffer, it is deleted from the buffer. queue of the BPDT that is the parent of this BPDT in the HPDT
3. Ifthe book element does have aruthor subelement, we need  network, as explained further in Section 4.
to make sure that if theame of the currentbook has been in the Note that we do not have ttiequeueoperation for the queue

buffer, it is sent to the output if all the predicates have evaluated to since all the items in the queue will be operated on together: either
true. If some of the predicates have not been evaluated, we shouldto beclearedor to becushedo output.

hold the content in the buffer and handle it later. .. .

The event upon which we can perform the £rst task is the the begin3-4 Statetransitionsin BPDT

event of thesuthor element. The event upon which we can perform  When we need to process closures and multiple predicates in the
the second task is the end event ofghek element since untilthen ~ XPath queries, the BPDT is non-deterministic. (Recall Example 2
we cannot be sure that the ok element does not have anthor from Section 1.1.) At runtime, it has to keep a current stat&Sset
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Figure5: Template BPDT for: /tag@attr=val]
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Figure 6: Template BPDT for: /tag[text()=val]
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Figure 7: Template BPDT for: /tag[child@attr=val]
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Figure 8: Template BPDT for: /tag[child]

Start State
$1

</tag>
<tag>
{queue.clear()}
</tag>

<child.text()>
‘ext() == val

quetie.uplod()} <child>

</child>
$4

@
</child>

TRUE State NA State

Figure9: Template BPDT for: /tag[child=val]

</pub>
{output(</pub>)} <pub>| | </pub>

{queue.clear()}

@
<year.text()> \@
[text()>2000]

</¥|earr1> flush
ﬁ {queue.flush()} ® {queue.flush()}

<year>

<lyear>

* *

{output( = )} {queue.enqueug( )}

@ {queue.enqueue(<pub>)}

Figure 10: BPDT for query: /pub[year>2000]

At each step, the BPDT makes the transition based on each current
statese S the input symboéthat is a SAX event, and the predicate

f. Note that the predicates, the operations, and the new states are
stored with the transition arcs.

The BPDT £rst matches with the labels on all the transition
arcs. If it does not £nd a match, it ignoreslf it £nds a matched
arc, it £rst checks the predicate If f is notnull, the BPDT eval-
uates thef usinge. If f evaluates tdalse it does nothing. Other-
wise, it replaces with a new states’ determined by the transition
arc. In addition to the state transition, it may also operate on the
buffer and produce output.

If we do not need to process closures, the BPDT is deterministic.
It always has a single current state. Moreover, there is at most one
transition arc that matches the current event. Thus, after it Ends one
match of the incoming event it can terminate the searching process
immediately and process the next incoming event. Moreover, since
we do not need to visit every transition arc, we can use a more eff-
cient data structure to store the arcs to make the matching process
more efEcient.

In addition to the regular transitions used in PDTs, the BPDT
can have the following special transitions denoted by these special
labels://, , andx. // stands foclosure It will match any incom-
ing beginevent and labels a self-transition stands fowildcard.
<*> will match any incomingbeginevent and< /+> will match
anyendevent.x stands for @atchallsymbol. Itis used when there
is no output expression specifed in the query. In this case, we need
to output the whole element if it is in the result setwill match
any incoming event that corresponds to a descendant of the current
element.

ExampPLE 4. The BPDT shown in Figure 10 uses the catchall
symbol. It can answer the query with a single location stémb
[year>2000]. We can see in Figure 10 that in sta@ and $6,
there are two catchall transitions that are responsible to get all the
descendants of theud elements. The difference is that in state
$2, we do not know whether theud element is in the result or
not, thus we have to put the descendants in the queue £rst. As
soon as we know the predicate is true ( when the BPDT performs
the state transitior$3 — $5), the items in the queue are cushed to
output. Only when all thejear elements fail the predicate does
the BPDT clear the queue. Note that there is an aush operation on
the transition arc from$5 to $6, which takes care of all the items
that are enqueued between the text event and end eventgfdhe
element if there are any.

4. HIERARCHICAL PDT



Start State TRUE Stat

The BPDTSs are combined into one hierarchical pushdown trans-
ducer (HPDT), in the form of a binary tree, to process XPath queries. </root>
The key idea is to use the position of the BPDT in the HPDT to en-
code the results of all predicates. The BPDT can determine whether
a predicate has been evaluated or not by its own position, which is Figure 12: Template for theroot BPDT
£xed and easy to get in a binary tree. Therefore, the buffer opera-
tions in the BPDTs can be determined accordingly. Due to space
limitation, we only give a brief description of the algorithms in this ~ <root>, </root> events, which are generated by the SAX parser

sectiort. for the document root for every XML document. The root BPDT
has an ID (0,0). For location stéjs, we go through all the BPDTs
4.1 Anexampleof HPDT bpdt(i — 1,k), which are generated froh_1 (No could be thought
The state transition diagram shown in Figure 11 is generated for &s /root). For each existingpdt(i — 1,k), if it has annA state,
the query/ /pub [year>20001 //book [author] //name/text (). we generate apdt(i, 2k) as its right child, which use thea state
However, if we ignore the special transition arcs in the diagram, it of bpdt(i —1,k) as itssTART state. Ifbopdt(i —1,k) does not have
can answer a simpler query without closurggtib [year>2000] anNA state, we sebpdt(i, 2k) to NULL. Similarly, we generate a

/book [author] /name/text (). When theuploadfunction in the bpdt(i,2k+ 1) as the left child of obpdt(i — 1, k), which uses the
diagram is called, the contents in the buffer of the current BPDT is TRUE state ofbpdt(i — 1,k) as itSSTART state.

moved to the end of parent BPDT'’s buffer. We describe the process After we connect the BPDTs using the above method, the buffer
that the HPDT evaluates the query over the stream shown in Fig- operation inbpdt(l,k) can be determined as follows. First there
ure 1. Each box in the £gure denotes a BPDT. The number on theis the fact that ik = (kokz...kn)2, when the HPDT reaches a state

shoulder of the box is the name of the BPDT. (not including thesTART state) in this BPDT, thetl predicate has
evaluated to true if and only K = 1. We can prove this fact by
EXAMPLE 5. The HPDT starts from stat$l. It follows the induction since the left child is connected to thrUE state of the
rule as the usual PDT. When it encounters tame “Erst”, it is in parent, which means that the predicate in the parent has evaluated to

state$14, thus it enqueues the text content “Erst” into the buffer of TRUE when the HPDT reaches the states in this BPDT. Therefore,
bpdt(3,4). At the end event of theame element, the item is up-  the buffer operations of this BPDT can be determined given the
loaded to the buffer of bp@,2). The next event is begin event of  results of the predicates. Note thatdpdt(i,2' — 1), we know that

the author element, thus the HPDT goes from st@eto state$9 all the predicates in higher layer BPDTs have evaluated to true.
and uploads the item to the buffer of bptltl). The same process ~ Thus, inevenbpdt(i,2' — 1) i=1,...,n, the BPDT sends the content
applies to the item “second”, which is thexme element of the sec-  in the buffer to the output if the predicate in itself evaluates to true.
ond book. Then at the begin event of thear element, the HPDT After generating the new BPDT based on the templates, we also
is in state$3 and the buffer of bpdt, 1) contains two items: “Erst” modify the resulting BPDT if the axis is a closure axis. We

and “second”. When the HPDT encounters the text event of the add a self-transition marked witty on its START state. Then the
year element, it evaluates the predicafgear. tezt ()>2000]. transition arc fobeginevent that come out from theTART state

The result is true. Thus the HPDT goes from stfeto $6 and and reach a lower layer BPDT are marked withThese arcs are

aush the content in its buffer to the output. Therefore, the HPDT calledclosuretransitions. The usage of these two transitions will
returns the right result for the query. From this example, we see be described shortly.

that in each BPDT, the buffer operations can be determined based We then add the output functions to the lowest layer BPDTSs.
on its position in the HPDT. For example, for bi§dt4), we know In bpdt(n,2" — 1), the value is sent to the output directly. In all
itis the right child of bpd¢2,2). This fact indicates it is connected  the other BPDTs in layen, the output will be sent to the buffer.

to the NA state of bpdf2,2). Thus, when the HPDT reaches the If the output expressio@ is specifed, the corresponding attribute
bpdt(3,4), the predicate in bpd®, 2) has not been evaluated yet. ~ or function is added to the transitions in the lowest layer BPDTs.
Similarly, since bpd®, 2) is the right child of bpdfl, 1), we know Otherwise, a catchall transition is added to the lowest layer BPDTSs.
that when the HPDT reaches bg@t2), the predicate in bpdt, 1 .

has not been evaluated yet. Crg)mb)ine thgse facts, Whgg the) HPD'|4'3 Runnmg the HPDT

is in bpdt{(3,4), we know that both predicates have not been evalu- ~ Since XSQ handles XPath queries with closures and multiple
ated yet. Notice that these information can be obtained solely from predicates, it needs additional mechanisms to ensure that the cases
the positions of the BPDTSs, it is easy to determine the buffer op- such as in Example 2 are handled correctly. As we show in Ex-
erations in the BPDTs systematically. The details are described ample 2, when the HPDT encounters th#e element on line 11,

below. there are three ways that the path to the element matches the query
o ] because of the closures in the query. Each of the matches evaluates
4.2 Building HPDT from XPath Queries the two predicates in the query differently. Although we can get the

We now describe how to build an HPDT from an XPath query. fesult of the predicates by the position of the current BPDT as de-
Since the BPDT decides its own buffer operation based on its posi- Scribed earlier, we need to solve the problem of multiple matches
tion in the HPDT, we denote the position of each BPDT by a unique SO that if one of the matches evaluates all the predicates to true,
ID (1,k), wherel > 0 is the depth for the BPDT in the HPDT sys- the HP_DT keeps the element in the_result. Exa_mple 6 depicts the
tem andk > 0 is its sequence number within the layer (right to left). Scenario when the HPDT is processing the multiple matches.
Given an XPath queriiN,...N,/O, the BPDTSs, together with the
IDs, are generated as described as follows. We £rst generate a
BPDT as in Figure 12. The root BPDT is used to consume the

EXAMPLE 6. Consider the stream in Figure 2. We use the HPDT
in Figure 11 to process it. When the HPDT encountersitiee el-
ement on line 11, it is in statgl4. However, there are three paths
1For details, please see our longer version of technical report atfrom$lto$l4: 1-2—7—11, 1-2—10-11, and 1-9—10—11.
www.cs.umd.edu/ "pengfeng/xsq All the three paths lead into the same state since the predicates of




HPDT for query:
/Ipublyear>2000]//book[author]//name/text()
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{output(name.text())} {queue.enqueue(name.text()} {queue.enqueué(name.text()} {queue.enqueue(name.text()}

Figure 11: HPDT generated for query: //pub[year>2000]//book [author]//name/text ()

all of them have not been evaluated. Since the current BPDT hass'.dv= s.dv+ed (ed is appended to the end ofdv), otherwise

the ID (3,4), 4 = (100),, we know that only the £rst predicate is
true while the other two are unknown (the £rst predicate igribot

s.dv=sdv. Inthe case tha¢ € E, if § #s, §.dv=sdv—ed
(ed is removed from the end ofdv), otherwises'.dv= s.dv. Text

which is always true). However, we cannot simply enqueue the itemevents do not change the depth vectors. In addition to the append

Z at the text event of the current element. Otherwise, for the £rst
path, the item will be cleared at the state transition from sifge

to $3 when the HPDT encounters the end of thex element on
line 16 (which corresponds to theok on line 7). Since thigook
element does not have amnthor child, the predicate in the second
location step evaluates to false. Similarly, for the third path, the
HPDT will clear the item when it goes from sta$d to state$2,
since theyear child of thepud element on line 9 fails the predi-
cate in the £rst location step. If HPDT follows the second path, it
will output the item when it goes from sta$é to state$6 where it
encounters thgear element on line 17. Even if the elements are
in different order, the HPDT in Figure 11 can always returns the
correct result.

We use alepth vector to keep track of the path to each current
state. At runtime, each current staés associated with a depth
vectordv. It records the depths of the events that trigger the state
transitions that lead to the current state. @hvef every state is ini-
tialized as empty. Supposss the incoming event argl is the new
state. In the case thate B, if S # s (the state transition occurs),

and remove operations, the operattop returns the last depth in
the vector. The depth vector essentially simulates the stack opera-
tions for every possible path that the element matches the query.

When we enqueue an item, we associate the depth vector of the
current state with the item as well. Thus, the same item may have
more than one depth vector since it may be enqueued by different
states. Accordingly, when we perform the other buffer operations,
we also only operate the items with the depth vector that is equal
to the depth vector of the current state. For example, in Example
6, when the HPDT goes from state $3 to $2 where it encounters
the end of thepub element on line 15, it will clear the buffer. Note
that the item of the correct match is also in the same buffer at the
same time. However, since the the BPDT only operates the items in
the buffer with the same depth vector as the current state, which is
(1,9), the item of the corrected match, whose depth vect(t,B),
is not deleted.

Though the operations on the items in the buffer are not as a
whole now, we organize the items so that items with the same depth
vector are kept in a group, which will be operated together. Note



that the operations on depth vector are implemented using bitmap[
vectors. All the operations and comparisons are done using intege

and bit operations. Itis quite efEcient in the implementation.
Itis possible that one item is enqueued or sent to output multiple

times if more than one matches satisfy the query. The solution is

as follows. Since we only operate on the reference of the item in

the system, we mark the item as “output” as soon as one match
satisEes the query. If the item marked as “output” is at the head of

the queue, it is sent to the output immediately. Otherwise, it will

remain unchanged no matter what the later operations are, until it
becomes the £rst item in the queue. This operation is an important
factor that affects the performance compared with the deterministic

HPDT as we will show in the experimental results in Section 6.
In a deterministic HPDT, the result items are always determined in
document order. When we perform tfiish or out put function,

we can directly write to output. Thus, we do not need to buffer these
items and check the buffer later, which improves the throughput of
the XSQ system.

- %5Q version 1.0
File Help

|| File.
Input XPath query: [/ ACT[TITLE="ACT I'|{{SPEECH[SPEAKER]//LINE/count() || Execute

Root Tag: [PLaY J Reset
(“Query result(File [ HFDT. |/ Sampie Queies

Target filename; |macbeth. wiril

| HEDT Figure |

SACT [ TITLE="ACT I" ] §f SPEECH [ SPEAKER. ] /f LINE [ count()
he result is

535

Filename is  : macheth.xm
he gueny is:

Figure 13: Screenshot of the XSQ system

For example, consider the query:
//pub [year>2000]//book [author] //name/count ()
The HPDT will keep the same except that we replacejate .
flush() with stat.update (COUNT, number of items in the

We also need additional rules for the state transitions due to queue), output (value) with stat.update (COUNT, 1), and place

the closures. Usually a transition arc that starts from state-
cepts an eveng if its depth e.d satisfes the criterion: i € B,

ed =sdvtop() + 1, otherwisee.d = s.dvtop(). However, for the
special labels, we have the following different rules. Transition arcs
labeled with// accept any incomingeginevent ofanydepth. The
closure transitions that are marked witkigns, accept the specifed
beginevent at any depths matchesinyeventeif ed > s.dvtop(),

which indicates that the element corresponding to the event is a

descendant of the element that leads to the current state.

Now we can defne thgueueupload() function as to move all
items in the current BPDT tthe nearest ancestor that has the cur-
rent BPDT in its right subtree We de£ne the upload function in
this way such that it uploads the items in the buffer directly to the
BPDT that is still in anNA state. For any ancestor of the current
BPDT, if the current BPDT is in its left subtree, the predicate in
this ancestor must have evaluatedrae (since it has reached the
TRUE state). The de£nition ensures that thash function for the
results are called before tlebear function.

EXAMPLE 7. Consider the same example in Example 6. Sup-
pose we put the flush function on the transition arc from sf&te
to $2 instead of the current one that is deEned together with the
end event ofyear element. What happens if a resuléme ele-
ment comes after the text eventyfar element on line 17 but

stat.out (COUNT) on the transition arc from state $2 to $1 where
the document ends. The resulting HPDT can answer this aggre-
gation query. We also modify the semanticssakt .update ()

such that it emits a new value whenever the number in the buffer
is updated. Thus we can always get the aggregation value for the
data we have seen so far. This feature is useful when we process
aggregation queries over unbounded streams.

5. RELATED WORK

Due to space constraints, we restrict our attention to the work
that is most closely related to XSQ, and systems that are studied
further in Section 6. For a more general discussion of stream pro-
cessing, we refer the reader to a number of recent papers on the
topic: For example, stream processing in the context oDX8MS
system is discussed in [3]. Methods for dynamically grouping sim-
ilar queries to increase system throughpulNiagaraCQare dis-
cussed in [9]. Methods for validating streaming XML using push-
down automata are presented in [22]. Rewriting XPath queries with
reverse axes into equivalent queries with only forward axes is stud-
ied in [21].

A k-pebble tree-walking tree-transducer model is de£ned for XML
transformation in [20]. However, since streaming XML is traversed
in depth-£rst order, some transition combinations, such as visiting

before its end event? If we do not have the flush function on the previous siblings, are not always applicable. It is also not easy to

arc from state$ to $7. Then when the HPDT reaches st&g
there will be two current states with the same depth ve(io2):

$3 (because of the self-transition on st&) and $7. How can
we guarantee that the result item will not be cleared by mistake?
The de£nition of the upload function will ensure that the result item
after the text evenjear element will be uploaded to bpdt 1) be-
fore it performs thezush()function from state# to state$7. For
example, bpdB,5) would upload its content to bp(it, 1) instead

of bpdt(2,2) because the predicate in bg@2) has evaluated to
true. Notice that this de£nition also prevents that the item will not
be cleared by the clear function from st to $5. cleared by

4.4 Aggregations

The XSQ system is augmented with a statistics bustat to
handle aggregations. In ttetat buffer, there is one item for each
aggregation function with initial value toull. The operations for
the stat buffer are: 1.stat.update(aggr,value): update the
item for aggregation functioaggr in stat with thevalue For ex-
ample,stat .update (COUNT, 2) will add 2 to the number istat
2. stat.output (aggr): output the value istat

apply techniques such as the alternating automaton [8] to process
streaming XML. For example, for aniversalstate in an alternat-

ing automaton, we need to get the results for all its children to label
it as acceptance or rejection, which is not always applicable in the
streaming environment.

Systems foiEltering XML document focus on searching a col-
lection of XML documents for those that match a query. The out-
put is thus restricted to a set of document identifers. Further, such
systems typically either do not handle predicates or handle only
predicates restricted to structural matching. i€lter system
uses £nite-state automata to £lter XML streams; performance is
improved by indexing and by combining similar FSAs [1]. The
YFilter system uses one FSA to evaluate all concurrently submit-
ted £lter expressions [12]. It supports only predicates that do not
reference other elements. Such predicates can be evaluated imme-
diately when the element to which the apply is encountered. Fur-
ther, £ltering systems such as YFilter do not need to handle situa-
tions in which predicates must be evaluated in different sequences
(as in Example 2). Methods for indexing common subexpressions
of XPath queries using a data structure cakektie are presented



in [7]. Another related topic ofuery labelingis studied in [18].
The authors propose a notion ofequirements indea&s a dual to
the traditional data index. A framework is provided to organize the
index efEciently and to label the nodes in streaming XML docu-
ments with all the matched requirements in the index.

Recall, from Section 4, that supporting closure and other fea-
tures of XPath requires nondeterminism in automaton-based ap-
proaches (or, equivalently, a combinatorial explosion in the number
of states). ThXMLTK system uses a lazy deterministic £nite state

automaton to which new states are added as needed (at runtime) [2,

14]. The determinism results in higher system throughput. The
trade-off is that the deterministic automaton requires more mem-
ory than its nondeterministic counterpart. (The authors provide a
bound on its size.)

Atransducer-based approach is presented in [19] to answer queri
written in XQuery. Its main idea is to decompose the query into
subexpressions, each of which is mapped tXBtL Stream Ma-
chine(XSM). The XSMs are arranged in a network by chaining the

Name | Support Streaming| Mutiple | Closure Aggregation Buffered
predicates predicate
evalaution
XSQ-F | XPath X X X X X
XSQ-NC| XPath X X X X
XMLTK | XPath X X
Saxon | XSLT X X X —
XQEngine| XQuery X X X —
Galax | XQuery X X X —
Joost STX X X X
Figure 14: System features
Name Size Text size | Number of Avg/Max | Average
(MB) | (MB) elements (K) | depth tag length
SHAKE | 7.89 4.94 180 5.77/7 5.03
b NASA 25.0 15.1 477 5.58/8 6.31
DBLP 119 56.4 2,990 2.90/6 5.81
PSD 716 286 21,300 5.57/7 6.33
Figure 15: Dataset descriptions

output of one to the input of another, based on the query semantics.

Techniques for transforming this XSM network into a single XSM,
and for optimizing XSMs based on DTDs, are provided. The key
differences between XSQ and XSM are the following: First, XSM
does not handle queries with aggregations and closures (such as th
queries in Example 2 and Figure 13). Second, the chaining method
used by XSM is not always suitable for streaming queries. For
example, the semantics of aggregation functions is not easy to ex-
press using the chaining method. Third, the XSMs after combina-
tion and optimization are very complicated. It is diffEcult to group
similar queries. In contrast, the HPDT used by XSQ has a sim-
ple and regular structure, so that multiple HPDTs can be grouped
using methods suggested by [12]. Currently the XSQ system is
schema-unaware. It is an interesting topic to automatically incor-
porate schema information , if available, into the system for opti-
mization. (Since a release version of XSM was unavailable at the
time of writing, XSM does not appear in the empirical studies of
Section 6.) This network-of-transducers approach is also used by
SPEX [11], which evaluates regular path expressions with quali-
£ers against well formed XML streams.

We brieay mention some work on queryingn-streamingKML
documents that is discussed further in SectiorG@lax is a full-
aedged implementation of théQuerylanguage, with static typing
guarantees [13]. Th®Camlimplementation is based on a DOM
materialization of an XML documentXQEngine is a full-text
search engine and uses an XQuery-based query language that su
ports boolean combinations of keywords in order to quetec-
tionsof XML documents. XQEngine must preprocess a document
collection to create a full-text index that is used in query process-
ing. Saxon provides a system for transforming XML data [17].
Transformations are specifed using XSL, which uses XPath ex-
pressions to specify patterns. Saxon, like other XSLT processors
needs to build a DOM tree of the entire XML document in main
memory before performing any operations, restricting its utility in
streaming systems.

Simple Transformations for XML (ST,Xnplemented by théoost
system, is a transformation language designed for streaming XML
[6, 5]. STX is more procedural than XSLT, and uses boolean pro-
gram variables to store the results of each predicate in a query.
Predicate evaluation sets the appropriate variables, which must b
cleared explicitly. At any time, these predicates may be examined

to determine appropriate actions (such as output). For any element

in an XML stream, only the data that precedes it can be used to
determine the actions on the element. This restriction simplifes
the implementation, since many of the complexities illustrated by

Examples 1 and 2 do not occur.

6. IMPLEMENTATIONAND EXPERIMENTS

We have implemented the XSQ system in Java using Sun Java
SDK version 1.4. The XML parser used is Xerces 1.0 for Java. We
have implemented two versions of the XSQ system: XSQ-NC sup-
ports multiple predicates and aggregations, but not closures; XSQ-
F, supports multiple predicates, aggregations, and closures. Figure
13 shows a screenshot for the GUI of the XSQ-F system. In the
screenshot, we query timacbeth.xmin the Shakespeare play col-
lection with an XPath query that contains two closure axes, two
predicates, and an aggregation function.

6.1 Experimental Setup

We conducted the experiments on a Pentium [l 900MHZ ma-
chine with 1 GB memory running the Redhat 7.2 distribution of
GNU/Linux (kernel 2.4.9-34). The maximum amount of memory
the Java Virtual Machine could use was set to 512 MB.

We compare the XSQ system with the systems in Figure 14,
which process XPath queries or XPath-like queries. We have de-
scribed Galax [13] (version 0o, XQEngine [16] (version 0.56),
XMLTK [2] (version 0.9), Saxon [17] (version 6.5.2), and Joost
version 20020828) [5]in Section 5. Figure 14 summarizes the
query language and some basic features of these systems.

Not all the systems can handle all sizes of datasets and all XPath
queries. However, our goal is not simply to compare their perfor-
mance. Through our study of these XPath processors, we want
to get more insights of the cost to support certain XPath features
such as closures and to predict which system will perform better
in what kind of environment. For example, if we only want to use
simple XPath fragment without predicates, we do not need full-
aavored XQuery engine such as Galax. However, if we need to ex-
press complicated queries that involve constructing new elements,
we have to resort to systems such as Galax.

Since some systems use query languages that are supersets of
XPath, or variations of XPath, we modify the XPath queries as

needed to ensure that queries convey the semantics remain unchanged

q

n most cases, the results are enclosed by different container ele-
ments but the contents are the same.

In our experiments, we use the above systems to evaluate queries
over datasets that differ in size and characteristics, including real
and synthetic datasets. We use four real datasets [2]: the Shake-
speare play collection (SHAKE), NASA ADC XML repository (NASA),
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Figure 16: Relative throughputs of the systems of different Figure 17: Relative throughputs of the systems when querying
queries on the SHAK E dataset different datasets

Dataset | Query

1: PLAY/ACT/SCENE/SPEECH [LINE%1 SPEAKER/text
Q ! /act/ / ; #lovel/ /rext( SHAKE: /PLAY/ACT/SCENE/SPEECH/SPEAKER/text ()

Q2:  /PLAY/ACT/SCENE/SPEECH/SPEAKER/text ()

. NASA: /datasets/dataset/reference/source/other/name/text ()
3: ACT//SPEAKER/text
Qs //hct// /rext( DBLP: /dblp/article/title/text ()
PSD: /ProteinDatabase/ProteinEntry/reference

/refinfo/authors/author/text ()

DBLP records (DBLP), and PIR-International Protein Sequence

Database (PSD). Some characteristics of these datasets are listed in

Figure 15. We also use synthetic datasets that are generated usinghe item will not be outputted twice due to the non-determinism.
IBM XML Generator [15] and Toxgene [4]. The characteristics of We can see from Figure 16 and Figure 17 that Saxon is faster
the synthetic datasets are described later with related experimentathan XSQ-F when they process XML data that can £t into main

results. memory. Saxon uses the SAX parser to load all the data into the
memory and build the DOM tree before it evaluates the query. Af-
6.2 Throughput ter parsing the data, Saxon does all the process in main memory.

Throughput is an important metric for streaming systems since In memory processing is effcient and can support more powerful
the data size varies and could be unbounded. All the systems in Fig-queries. However, it is not suitable for streaming data in general.
ure 14 use the SAX API to parse the data. Therefore, the through- Moreover, as we will see next, the amount of memory it needs is
put of a SAX parser, which parses the XML data but does nothing usually 4 to 5 times of the £le size. Thus, it cannot scale up to
else, gives an upper bound of the throughput for any XML query process large XML £les.
system. We wrote two parsing programs, nanResiePar sers, We also study the time the systems spend on each phase of query
in C and Java. ThéureParser in C uses the Expat 1.2 parser evaluation. The dark bar in Figure 18 represents the query compi-
used by XMLTK. The PureParser in Java uses Xerces 1.0 for Java, lation time, which usually includes parsing the query and building
which we specify to use in XSQ-NC, XSQ-F, XQEngine, Saxon, the query engine. The gray bar represents the preprocessing time.
and Joost in the experiments. C parsers are generally faster tharFor example, Saxon loads all the data into memory to build the
Java parser since parsing involves a large number of string opera-DOM tree before it can evaluate the queries. XQEngine builds the
tion, which is more ef£cient in C parsers. For the 119MB DBLP full-text index before it can query the data.
dataset, the C PureParser £nises parsing in 10.6 seconds and the From Figure 18, we see that an advantage of the streaming sys-
Java PureParser uses 28.2 seconds. Instead of raw througleput, wtems is that they can return the available results as soon as the data
use the normalized throughput of the systems with respect to theis available, which is crucial if the response time of the system is
throughput of the corresponding PureParser, catadivethrough- important. The non-streaming systems have to wait until all the
put, to measure the performance of the systems written in different preprocessing £nish to begin evaluating. However, as long as these
programming languages and using different parsers. Galax imple-systems remain in memory, the subsequent queries can be evalu-
ments its own parser in Ocaml. Here we use the Java PureParsefted much faster since the results of the preprocessing can be reused
instead since we do not have an Ocaml SAX parser, which we be-then.
lieve is faster than the Java PureParser.

Figure 16 shows the relative throughputs of the systems when 63 M emory Usage
they evaluate different queries on the SHAKE dataset. Figure 17 Memory usage is critical for the scalability of the streaming sys-
shows the relative throughput when they query different datasets.tem. Non-streaming systems need memory linear in the size of the
We can see that XMLTK and XSQ-NC are the fastest two systems input since they need to load the whole dataset into memory. In
when applying queries that they can handle. An important reason is contrast, streaming systems need to store only a small fraction of
the determinism in both systems. Although XSQ-NC has to buffer the stream. Figure 19 shows the memory usage reported for the
some of the data sometime, its underlying PDT is deterministic. queries over the datasets size from 5MB to 50MB. All the datasets
Even when processing the same query without closure, XSQ-NC are excerpts of the DBLP dataset. For example, the 10MB dataset
is faster than XSQ-F since XSQ-F uses a non-deterministic PDT. contains the £rst 10MB data in the dataset. (The size is an approxi-
When searching for a matching transition arc in the automaton, mate since we have to include the closing tag of the elements at the
XSQ-NC can stop searching after it £nds one match. In contrast, 10MB offset.) From Figure 19, we see that Saxon and Galax use
XSQ-F has to go through all the transition arcs of the current state memory roughly linear in the size of the input data. Linear mem-
to make sure every arc is handled. Moreover, as we have shown inory usage, with a constant factor of 4 to 5, makes the DOM-based
Example 2, when an item is in the result, the XSQ-NC can output system unsuitable for large XML £les.
it immediately, while XSQ-F needs to do extra work to ensure that ~ We also use the XML Generator program to generate datasets of
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Query: /dblp/inproceedings[author]/title/text()

1. The query for XMLTK : /dblp/inproceedings/title/text ()

2. XQEngine is not tested since it currently supports only 32K elementigoeiment.
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Figure 20: Memory usage of the systems when querying syn-
thetic datasets of different sizes

Query: //publyear]//book[@id]/title/text ()

1. The system cannot handle the query in the dataset.

2. Galax reports “stack overaow” error when we try the query.

ferently in our experiments. In Figure 21, the throughputs of the
Saxon system are almost the same, since it always loads all the data
into the memory before it evaluates the queries. When it traverses
the DOM tree in the main memory to evaluate the query, the docu-
ment order is not important. However, the throughput of XSQ-NC
is 30% larger in the last query than the other two queries. For the
last query, XSQ-NC can decide at the beginning of dshedement
that all the contents in this element can be ignored. In the other
two queries, all the data in the current element have to be buffered
until the closing tag of the element is met, which makes XSQ-NC
much slower. XSQ-F is not as sensitive as XSQ-NC to the order.
Recall from Section 4 that even if XSQ-F knows an item s in the re-
sult set, it marks the item as “output” £rst and output the item until
it handles all the possible transitions due to the non-determinisms.
We also study the sensitivities to the result size of the systems.
Most systems are sensitive to the result size, but in different de-
grees. For example, the XQEngine is slower than the other systems
in Figure 18 since the query returns a large portion of the dataset.
But if the query contains a tag that is not in the data, XQEngine
returns the empty result set immediately. The other systems spend
similar amount of time on the query no matter whether the tags in

varying size and recursiveness. For example, for the datasetof siz the query appear in the document or not.

13MB, the nested level parameter of the XML Generator program  We use Toxgene to generate a test dataset of 10MB consisting of
is set to 15 and the maximum repeats parameter is set to 20. Fromthree types of elements (besides a few top level elements): 10% of
Figure 20 we can see that even the highly recursive data and querieshe elements have tagd, 30%green and 60%blue The content
with closures, the amount of memory XSQ-F uses is still constant. of each such element is a character. Figure 22 shows the relative
Recall from Section 4 that XSQ needs to buffer more data if there throughputs of systems when the query returns the three different
are closures in the query. However, since all the items in the buffers types of elements.
can be determined when we encounter the end event of the element We can see that XSQ-NC is sensitive to the result size. The
specifed in the £rst location step (the HPDT returns to the high- difference in the performance is due to the different handling of
est level BPDT), the maximum amount of memory the XSQ needs data items based on whether they are in the result. Items that are not
cannot exceed the maximum size of the elements in the stream.  in the result can be ignored and XSQ-NC stays in the same state.
.. If there are more items in the result set, the XSQ-NC will make
6.4 Characterizi ng the XPath Processors more state transitions and output operations, which consist a large
Some systems are sensitive to the order of the elements in theportion of the running time of XSQ-NC. XSQ-F is not as sensitive
data if the elements are involved in the query. We generate a 10MB as XSQ-NC. As described in Section 4, it always keeps the item
dataset using Toxgene, in which the following template is applied £rst, no matter itis in the result or not, and checks the queue after all

repeatedly to generate new elememtgth increasingid attributes.
<a id="1"> <prior> 1 </prior>

<foo> 1 </foo> (repeat 10,000 times)

<posterior> 1 </posterior> </a>

Though all the queriega[prior=0], /a[posterior=0], and

/a [@id=0] return null result set, different systems behave dif-

transition arcs are handled. The difference between the handlings
is not as large as in XSQ-NC. Saxon is less sensitive to the result
size since after it loads all data into main memory, the evaluation
process is done in main memory except the output process, which
constitutes only a small amount of the total execution time. The
smaller difference in XMLTK might be caused only by the I/O cost
as well. However, it is not clear why Joost is not sensitive to the
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In this paper, we have described the design and implementation
of the XSQ system for evaluating XPath 1.0 queries on streaming

XML
data

Further, XSQ has a clean design based on a hierarchical network o

data. A distinguishing feature of XSQ is that it buffers only
that must be buffered byystreaming XPath query processor.
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