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ABSTRACT
We present the design and implementation of the XSQ system for
querying streaming XML data using XPath 1.0. Using a clean de-
sign based on a hierarchical arrangement of pushdown transduc-
ers augmented with buffers, XSQ supports features such as multi-
ple predicates, closures, and aggregation. XSQ not only provides
high throughput, but is also memory ef£cient: It buffers only data
that must be buffered by any streaming XPath processor. We also
present an empirical study of the performance characteristics of
XPath features, as embodied by XSQ and several other systems.

1. INTRODUCTION
XML is becoming the de facto standard for information exchange

and the amount of XML data is growing rapidly. Some of the data is
accessible only instreamingform. That is, data items are presented
in a £xed serialization; the application cannot seek forward or back-
ward in the data, nor can it revisit a data item encountered earlier
unless it is explicitly buffered. In addition to data that occurs na-
tively in streaming form (e.g., stock market updates, real-time news
feeds, network statistics), it is useful to process large XML datasets
in streaming form because of the greater ef£ciency of streaming
systems (which use a sequential scan instead of non-sequential data
access on disk). In the sequel, we use the termstreaming XML to
refer to both data that occurs naturally in streaming form and data
that is best accessed in streaming form.

We address the problem of evaluating XPath queries over stream-
ing XML [23]. XPath is a well-accepted language for addressing
parts of an XML document. It is often used in a host language
such as XQuery and XSLT. However, it also serves a stand-alone
query language for XML. Methods for ef£cient evaluation of XPath
queries bene£t not only XPath query engines, but also systems for
more powerful languages (e.g., XQuery) which incorporate XPath.

An XPath query consists alocation path and anoutput ex-
pression. The location path is a sequence oflocation steps that
specify the path from the document root to a desired element. The
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output expression speci£es the portions or functions of a match-
ing element that form the results. Each location step has anaxis,
a node test, and an optionalpredicate. For example, the loca-
tion path of the query//book[year>2000]/name/text() is //

book[year>2000]/name. The location path matches the elements
reachable from the document root using a path consisting of zero or
more elements with arbitrary labels, followed by a book element, in
turn followed by a name element. The output expression,text(),
indicates that only the text content of the matching name appears
in the result. In the £rst location step,//book[year>2000], //
is theclosure axis denoting descendant-or-self,book is thenode
test, andyear>2000 is thepredicate. The predicate restricts the
results to the name subelements of books that have a year subele-
ment whose content has a value greater than 2000.

Automaton-based methods for processing streaming data are at-
tractive due to their ef£ciency and clean design. A challenging
task in building automaton-based systems for XPath queries is the
generation of the automaton from the query. The dif£culties (ex-
plained further by the examples below) are due to XPath features
such as closures and predicates in conjunction with the read-once
nature the streaming data. Brie¤y, when the automaton encounters
an item in the stream, the data required to determine whether this
item is in the query result may be unavailable. The unavoidable
buffering introduces complexities of buffer management (¤agging
buffered data based on subsequent satisfaction or falsi£cation of
predicates, duplicate avoidance, etc.).

Much of the previous work [1, 12, 7] using this paradigm fo-
cuses on£ltering a collection of XML documents using restricted
XPath expressions. Since XPath expressions without predicates are
essentially regular expressions, they can be transformed into £nite
state automata (FSA) that accept exactly the documents that sat-
isfy the expressions. If the FSA accepts the document, the £ltering
system returns the identi£er of the current document to the user.
Thus, such systems do not need to buffer individual elements of the
documents. However, as we shall explain shortly, general XPath
queries cannot be evaluated in a streaming system that lacks buffer-
ing capabilities. The XMLTK system [2] is a closer match to our
work, because it supports XPath expressions that retrieve only parts
of a document. However, XMLTK does not support predicates in
XPath expressions. Therefore, whenever it encounters an element
that matches the path expression in a query, it can write it to output.
In contrast, if the query includes predicates, the membership of an
element in the query result cannot be decided immediately in gen-
eral. The XSM system [19] handles predicates in the query but it
does not handle the closures and aggregations. (It assumes that the
query does not contain the closure axis// ). As we describe below,
closures pose signi£cant challenges to query evaluation.

We note that XPath features such as (multiple) predicates, clo-
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1. <root>
2.<pub>
3. <book id=”1”>
4. <price> 12.00</price>
5. <name> First</name>
6. <author> A </author>
7. <price type=”discount”> 10.00</price>
8. </book>
9. <book id=”2”>
10. <price> 14.00</price>
11. <name> Second</name>
12. <author> A </author>
13. <author> B </author>
14. <price type=”discount”> 12.00</price>
15. </book>
16. <year> 2002</year>
17.</pub>
18. </root>

Figure 1: Example 1

1. <root>
2. <pub>
3. <book>
4. <name> X </name>
5. <author> A </author>
6. </book>
7. <book>
8. <name> Y </name>
9. <pub>
10. <book>
11. <name> Z </name>
12. <author> B </author>
13. </book>
14. <year> 1999</year>
15. </pub>
16. </book>
17. <year> 2002</year>
18. </pub>
19. </root>

Figure 2: Example 2

Q ::= N+
[

/O
]

N ::=
[

/
∣

∣

∣
//

]

tag
[

F
]

F ::= [FO
[

OP constant
]

]

FO ::= @attribute
∣

∣

∣
tag

[

@attribute
]∣

∣

∣
text()

O ::= @attribute
∣

∣

∣
text()

∣

∣

∣
count()

∣

∣

∣
sum()

OP ::= >
∣

∣

∣
≥

∣

∣

∣
=

∣

∣

∣
<

∣

∣

∣
≥

∣

∣

∣
6=

∣

∣

∣
contains

Figure 3: BCNF for a Subset of XPath

sures, and aggregations are important usability advantages, espe-
cially if the data is semistructured or has a structure unknown to
the query formulator. It is dif£cult to write a useful query on data
whose structure is (partly) unknown without using closure. Simi-
larly, predicates permit a more accurate delineation of the data of
interest, leading to smaller, and more usable, results. The chal-
lenges posed by these features are exacerbated by data that has a re-
cursive structure, as explained below. (A survey of 60 real datasets
found 35 to be recursive [10].)

This paper makes the followingcontributions:
• To the best of our knowledge, our method for evaluating XPath
queries over streaming data is the £rst one that handles closures,
aggregations, and multiple predicates. As the examples below il-
lustrate, these features, especially in conjunction, pose signi£cant
implementation challenges.
• Our methods use a very clean design based on a hierarchi-
cal arrangement of pushdown transducers augmented with buffers.
The system is easy to understand, implement, and expand to more
complex queries.
• We present a detailed empirical study of XSQ and several re-
lated systems (Section 6). Our study illustrates the costs and ben-
e£ts of different XPath features and implementation trade-offs as
embodied by these systems.
• All the methods described in this paper are fully implemented
in the XSQ system, which will be released under the GNU GPL
license. In addition to serving as a testbed for further work on this
topic, our system should be useful to anyone building systems for
languages that include XPath (e.g., XQuery, XSLT).

The rest of thispaper is organized as follows. In the rest of
this section, we use examples to highlight some of the dif£culties
in evaluating XPath queries over XML streams. Some preliminar-
ies, including the SAX data model and the XPath language, are
covered in Section 2. The design of a basic pushdown transducer
(BPDT), which corresponds to an XPath location step, is presented
in Section 3. Section 4 describes our method for composing BPDTs
to generate the hierarchical pushdown automaton (HPDT) corre-
sponding to an XPath query. Related work is summarized Sec-
tion 5. Section 6 presents some results from our empirical study of
XSQ and related systems. We conclude in Section 7.

EXAMPLE 1. Consider the following query for the XML data in
Figure 1: /pub[year=2002]/book[price<11]/author. When

we encounter the £rstauthor element in the stream, we know that
it satis£es the path/pub/book/author. However, the predicate
in the £rst location step,[year=2002], cannot be evaluated yet,
since we have not encountered all theyear subelements. We have
encountered the £rstprice subelement of thebook element. How-
ever, we cannot determine whether thebook fails the predicate
[price<11], since there may be moreprice subelements. There-
fore we need to buffer thebook element. When we encounter the
secondprice element of thebook, the second predicate evaluates
to true. Since we still do not know theyear of thepub element,
the author A must continue to be buffered. When we encounter
the twoauthor subelements of the secondbook, we need to buffer
the authors A and B as well. Now there are twoAs and oneB
in the buffer. Next we encounter the secondprice element of the
secondbook, and it does not satisfy the predicate. When we reach
the end of the secondbook element, we know that the predicate
[price<11] evaluates to false, since there are no moreprice

subelements. Thus, the twoauthor elements of the secondbook
should be removed from the buffer. Note that oneauthor, A, is still
in the buffer since it belongs to the £rstbook. Later, we determine
that theyear element of thepub element satis£es the £rst predi-
cate. By noting that theauthor A in the buffer has already satis£ed
the other predicate, we determine that theauthor A should be sent
to the output immediately.

As suggested by the example, we need to solve the following
problems in order to evaluate even this relatively simple query.
First, we may encounter data that is potentially in the result be-
fore we encounter the items required to evaluate the predicates to
decide its membership. We need to buffer the potential result items.
Second, items in the buffer have to be marked separately so that, af-
ter the evaluation of a predicate, we can process only the items that
are affected by the predicate. Third, we have to encode the logic of
the predicates in the automaton. In the above example, only when
all the price children fail to satisfy the predicate (and we reach
the end of thebook element) does thebook element fail to satisfy
the predicate. In the mean time, if one of the children satis£es the
predicate, we should know that the predicate is true and perform
the operations accordingly. Finally, predicates access different por-
tions of the data. Some should be evaluated when the begin tag is
encountered, while others should be evaluated upon encountering
the text content. There are other forms of predicates, which will be
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discussed in detail later.
Let us now consider a more complex example, using a query with

closures, and data with recursive structure. Figure 2 suggests data
with recursive structure: thepub element in line 2 has a grandchild
namedpub in line 9.

EXAMPLE 2. Consider the following query for the XML data
in Figure 2: //pub[year=2002]//book[author]//name. This
example introduces some new problems, in addition to those dis-
cussed in the previous example. Since the closure axis// is used in
the query, a node and its descendants may match the same location
step at the same time. For instance, thepub elements in both line
1 and line 9 match the node test in the £rst location step. Consider
thename element in line 11. There are three ways it can match the
query, and each of the matches gives different results of the predi-
cates:

pub [year=2002] book [author] name
line 2 true line 7 false line 11
line 2 true line 10 true line 11
line 9 false line 10 true line 11

As indicated by the table, only the match in the second row re-
sults in both predicates evaluating to true. When we encounter the
end tag of thepub element in line 15, we know that thepub element
in line 9 fails the predicate[year=2002]. However, we cannot re-
move thename Z from the buffer since it is still possible that this
item satis£es the query. The same situation occurs again when we
encounter the end tag of thebook element in line 16. Only when
all the possible matches have evaluated the predicates to false can
we remove the item from the buffer. We also have to be careful with
the other cases where multiple matches evaluate all predicates to
true. For example, if we add anauthor element between line 8
and line 9 for thebook element in line 7, the match in the £rst row
would also evaluate both predicates to true. In such cases, we have
to avoid duplicates (outputting the same element twice) as well.

These examples illustrate the dif£culties encountered in design-
ing an automaton for evaluating XPath queries systematically. Dif-
£culties arise due to the fact that elements in an XML stream may
come in an order that does not match the order of the corresponding
predicates in the query, and due to recursive structure in the data.
When the query contains the closure axis and multiple predicates,
it is even more dif£cult to keep track of all the information needed
for proper buffer management.

2. PRELIMINARIES

2.1 Data Model for XML Streams
Parsers based on the SAX API process an XML document and

generate a sequence of SAX events. For each opening (and closing)
tag of an element, the SAX parser generates abegin(respectively,
end) event. The begin event of an element comes with a list of
(attribute name, attribute value) pairs with the attribute name as the
key. For text contents enclosed by the opening and closing tag, the
SAX parser generates atextevent.

The streaming XML data is modeled as a sequence of SAX events,
extended with the depth of the event. That is, an XML stream is a
sequence{e1,e2, ...ei , ...} whereei ∈ B∪T ∪E:

• B = { (a,attrs,d)}. (a,attrs,d) is the begin event of an element
with the tag “a” that is at depthd in the XML data andattrs
is a list of the attribute name-value pairs.

• E = { (/a,d)}. (/a,d) is the end event of an element with tag
“a” at depthd.

$1 $3$2

$4

$6

$8

<root> </root>
$1 $3$2

$4

$6

$8

<root> </root>

<pub> </pub>

<book> </book>

</name><name>

(b)

</author>

<year>

</year>
$5

$7

</pub>

<author>

</name>

</book>

<name>

<pub>

<book>

</price>

<price>
$9

(a)

Figure 4: A simple PDA and a simple PDT for the XML stream
in Figure 1

• T = { (a,text(),d)}. (a,text(),d) is the text event in the element
with tag “a” at depthd. The content of the text event can be
retrieved using text().

2.2 XPath
As noted earlier, XSQ implements all of XPath 1.0 [23] (includ-

ing closures, aggregations, and multiple predicates) except reverse
axes (such aspreceding-sibling) and position functions (such
aspos() andlast()). For the rest of this paper, we will focus on
the core subset of XPath described by the grammar shown in Figure
3. An XPath query is in the form ofN1N2 . . .Nn/O, which consists
of a location path,N1N2 . . .Nn, and an output expressionO. An
element matches the location path if the path from the document
root to that element matches the sequence of labels in the loca-
tion path, and satis£es all predicates (speci£ed syntactically using
square brackets). For each matching element, the result of applying
the output function to the element is added to the query result. The
output expression can specify an attribute of the element, or its text
value. It may also be an aggregation function (e.g., sum()) applied
to the element’s content. If no output expression is speci£ed in the
query, the query returns all the elements in the result set.

3. BASIC PUSHDOWN TRANSDUCER
A pushdown transducer (PDT) is a pushdown automaton (PDA)

with actions de£ned along with the transition arcs on the automa-
ton. It has a £nite set of states which includes a start state and a set
of £nal states, a set of input symbols, and a set of stack symbols.
At each step, it fetches an input symbol from the input sequence.
Based on the input symbol and the symbols in the stack, it changes
the current state and operates the stack according to the transition
function. Besides the state transition and stack operation, the tran-
sition function also de£nes an output operation which could gener-
ate some output during the transition. Note that traditional PDTs
do not have an extra buffer and the operations for the buffer. How-
ever, as discussed in Section 1, evaluating XPath queries over XML
streams requires buffering potential results.

3.1 A Simple PDA for XML Streams
First we introduce a PDA that accepts XML streams that have

certain string. Figure 4(a) shows the state transition diagram of a
PDA that accepts the XML stream in Figure 1. Text events that are
not shown in the diagram map to self-transitions.

For each of the SAX events generated for the XML stream in
Figure 1, the PDA in Figure 4(a) makes a state transition according
to the state transition diagram. For eachbeginevent, it also puts the
tag of the element into the stack. For eachendevent, it will match
the tag of the current element and the tag at the top of the stack. If
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these two tags match, it pops the tag from the stack. Otherwise the
XML stream is not well-formed. After the PDA has processed all
the events generated from the stream, the PDA should be in the £nal
state$3 and the stack should be empty. In the following discussion,
we assume the XML stream is always well-formed.

Such a PDA can be adapted to a £ltering system for XML docu-
ments using the following method. Suppose we want to £nd all
the documents that contain some elements that have the pattern
//pub//book//name. We can just remove all the branches in Fig-
ure 4(a) to make it a £lter PDA shown Figure 4(b). Note that if the
state transition of the next event is not de£ned in the £lter PDA,
the £lter PDA just stays in the same state. Whenever the £lter PDA
reaches state$8, we know that the current XML document contains
an element that satis£es the £lter expression and we can return the
document to the user. Moreover, if we put output functions in state
$8 such that it can output the content ofnameelement, the £lter
PDA becomes a PDT that can answer the XPath query.

However, it is not straightforward to extend this simple PDA to
a PDT that answers XPath queries. The main reason is that the
PDA has no memory for the previously processed data (the stack
of the PDA is used exclusively to keep track of matching the begin
and end tags). However, we need the results for all the predicates,
which may come in any combinations of sequences, to determine
state transitions and the actions. A direct solution is to remember
the current results for every predicate, and mark every item with
a ¤ag that indicates which predicates are satis£ed and which are
not yet. Such methods signi£cantly degrade the performance. For
instance, every time we evaluate a predicate, such a method would
need to go through the whole buffer to check if some items are
affected by its result. Further, the system becomes complex and
uses ad-hoc methods to keep track of all the information needed.
In Example 1, if the £rstyear element has satis£ed the predicate
[year=2002], the otheryear element of the samepub element
should not be tested anymore. Then we need to explicitly set a ¤ag
for this predicate and reset it appropriately. Considering different
semantics of the predicates, we need to set all these operations (set
or reset, check or do not check, etc.) separately. If there are closures
in the query and the data is recursive, the naive approach becomes
even more complex.

3.2 Building the BPDT
Our solution to this problem is based on our observations on the

following example.

EXAMPLE 3. For the following XPath query, consider the sec-
ond location step (/book[author]):

Q: /pub[year>2000]/book[author]/name/text()

In a PDT for this query, we need to perform at least three tasks for
this location step: 1. If thebook element does have anauthor
subelement, we need to remember the fact for future use.
2. If thebook element does not have anauthor subelement, we
need to make sure that if thename of the currentbook element has
been in the buffer, it is deleted from the buffer.
3. If thebook element does have anauthor subelement, we need
to make sure that if thename of the currentbook has been in the
buffer, it is sent to the output if all the predicates have evaluated to
true. If some of the predicates have not been evaluated, we should
hold the content in the buffer and handle it later.
The event upon which we can perform the £rst task is the the begin
event of theauthor element. The event upon which we can perform
the second task is the end event of thebook element since until then
we cannot be sure that thebook element does not have anauthor

subelement. At the begin event of theauthor element, we also
need to perform the third task since we know now the predicate in
the current location step is true.
Intuitively, these observations suggest associating a PDT similar
to the one suggested by Figure 8 with a location step of this form.
(The buffer operations will be explained in detail shortly.)

Using similar analysis to the above example for the predicates used
in XPath , the location steps in any XPath queries can be catego-
rized into the following classes based on the events upon which the
predicates are evaluated.
1. Test whether the current element has a speci£ed attribute, or
whether the attribute satis£es some condition, (e.g.,/book[@id],
/book[@id ≤ 10]).
2. Test whether the current element contains some text, or whether
the text value satis£es some condition, (e.g.,/year[text() =

2000]).
3. Test whether the current element has a speci£ed type of child,
(e.g.,/book[author]).
4. Test whether the the current element’s speci£ed child contains
an attribute, or whether the value of the attribute satis£es some con-
dition, (e.g.,/pub[book@id ≤ 10]).
5. Test whether the speci£ed child of the current element has a
value that satis£es some condition, (e.g.,/book[year ≤ 2000]).

Based on the above categorization, we design a template for each
category of location steps. Figure 5 to Figure 9 summarize these
templates. In each template, there is aSTART state, aTRUE state
that indicates the predicate in this location step has evaluated to
true, and anNA state that indicates the predicate has not yet been
evaluated. The PDT generated from a location step using the tem-
plate is called a basic pushdown automaton (BPDT). The BPDT
has two important features:
1. The result of the predicate is encoded in the states. It is easy to
show that whenever the BPDT is in theTRUE state, the predicate
has evaluated to true; whenever the BPDT is in theNA state, the
predicate has not yet been evaluated.
2. The logic of the predicate is encoded in the BPDT. For exam-
ple, in Figure 9, we can see the exact logic we want for location
steps such as/pub[year=2002] in Example 1. If one of the chil-
dren satis£es the criterion, the BPDT will move to theTRUE state.
Only if all the children fail the predicate does the BPDT return to
theSTART state from theNA state, signifying that the predicate has
evaluated to false.

3.3 Buffer operations in BPDT
In contrast to the simple PDA, each BPDT has a buffer of its

own that is organized as a queue. The operations on the buffer are
as follows:
1. Q.enqueue(v): addv to the end of the queue;
2. Q.clear(): remove all the items in the queue;
3. Q.¤ush(): send all items in the queue to the output in FIFO
order;
4. Q.upload(): move all the items in the queue to the end of the
queue of the BPDT that is the parent of this BPDT in the HPDT
network, as explained further in Section 4.

Note that we do not have thedequeueoperation for the queue
since all the items in the queue will be operated on together: either
to beclearedor to be¤ushedto output.

3.4 State transitions in BPDT
When we need to process closures and multiple predicates in the

XPath queries, the BPDT is non-deterministic. (Recall Example 2
from Section 1.1.) At runtime, it has to keep a current state setS.
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Figure 5: Template BPDT for: /tag[@attr=val]
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Figure 6: Template BPDT for: /tag[text()=val]
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Figure 7: Template BPDT for: /tag[child@attr=val]
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Figure 8: Template BPDT for: /tag[child]
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Figure 10: BPDT for query: /pub[year>2000]

At each step, the BPDT makes the transition based on each current
states∈S, the input symbole that is a SAX event, and the predicate
f . Note that the predicates, the operations, and the new states are
stored with the transition arcs.

The BPDT £rst matchese with the labels on all the transition
arcs. If it does not £nd a match, it ignorese. If it £nds a matched
arc, it £rst checks the predicatef . If f is notnull, the BPDT eval-
uates thef usinge. If f evaluates tof alse, it does nothing. Other-
wise, it replacess with a new states′ determined by the transition
arc. In addition to the state transition, it may also operate on the
buffer and produce output.

If we do not need to process closures, the BPDT is deterministic.
It always has a single current state. Moreover, there is at most one
transition arc that matches the current event. Thus, after it £nds one
match of the incoming event it can terminate the searching process
immediately and process the next incoming event. Moreover, since
we do not need to visit every transition arc, we can use a more ef£-
cient data structure to store the arcs to make the matching process
more ef£cient.

In addition to the regular transitions used in PDTs, the BPDT
can have the following special transitions denoted by these special
labels://, ∗, and∗̄. // stands forclosure. It will match any incom-
ing beginevent and labels a self-transition.∗ stands forwildcard.
<∗> will match any incomingbeginevent and< /∗> will match
anyendevent.∗̄ stands for acatchallsymbol. It is used when there
is no output expression speci£ed in the query. In this case, we need
to output the whole element if it is in the result set.∗̄ will match
any incoming event that corresponds to a descendant of the current
element.

EXAMPLE 4. The BPDT shown in Figure 10 uses the catchall
symbol. It can answer the query with a single location step:/pub

[year>2000]. We can see in Figure 10 that in state$2 and $6,
there are two catchall transitions that are responsible to get all the
descendants of thepub elements. The difference is that in state
$2, we do not know whether thepub element is in the result or
not, thus we have to put the descendants in the queue £rst. As
soon as we know the predicate is true ( when the BPDT performs
the state transition$3→ $5), the items in the queue are ¤ushed to
output. Only when all theyear elements fail the predicate does
the BPDT clear the queue. Note that there is an ¤ush operation on
the transition arc from$5 to $6, which takes care of all the items
that are enqueued between the text event and end event of theyear

element if there are any.

4. HIERARCHICAL PDT
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The BPDTs are combined into one hierarchical pushdown trans-
ducer (HPDT), in the form of a binary tree, to process XPath queries.
The key idea is to use the position of the BPDT in the HPDT to en-
code the results of all predicates. The BPDT can determine whether
a predicate has been evaluated or not by its own position, which is
£xed and easy to get in a binary tree. Therefore, the buffer opera-
tions in the BPDTs can be determined accordingly. Due to space
limitation, we only give a brief description of the algorithms in this
section1.

4.1 An example of HPDT
The state transition diagram shown in Figure 11 is generated for

the query//pub[year>2000]//book[author]//name/text().
However, if we ignore the special transition arcs in the diagram, it
can answer a simpler query without closures:/pub[year>2000]

/book[author]/name/text(). When theuploadfunction in the
diagram is called, the contents in the buffer of the current BPDT is
moved to the end of parent BPDT’s buffer. We describe the process
that the HPDT evaluates the query over the stream shown in Fig-
ure 1. Each box in the £gure denotes a BPDT. The number on the
shoulder of the box is the name of the BPDT.

EXAMPLE 5. The HPDT starts from state$1. It follows the
rule as the usual PDT. When it encounters thename “£rst”, it is in
state$14, thus it enqueues the text content “£rst” into the buffer of
bpdt(3,4). At the end event of thename element, the item is up-
loaded to the buffer of bpdt(2,2). The next event is begin event of
theauthor element, thus the HPDT goes from state$8 to state$9
and uploads the item to the buffer of bpdt(1,1). The same process
applies to the item “second”, which is thename element of the sec-
ondbook. Then at the begin event of theyear element, the HPDT
is in state$3 and the buffer of bpdt(1,1) contains two items: “£rst”
and “second”. When the HPDT encounters the text event of the
year element, it evaluates the predicate[year.text()>2000].
The result is true. Thus the HPDT goes from state$4 to $6 and
¤ush the content in its buffer to the output. Therefore, the HPDT
returns the right result for the query. From this example, we see
that in each BPDT, the buffer operations can be determined based
on its position in the HPDT. For example, for bpdt(3,4), we know
it is the right child of bpdt(2,2). This fact indicates it is connected
to the NA state of bpdt(2,2). Thus, when the HPDT reaches the
bpdt(3,4), the predicate in bpdt(2,2) has not been evaluated yet.
Similarly, since bpdt(2,2) is the right child of bpdt(1,1), we know
that when the HPDT reaches bpdt(2,2), the predicate in bpdt(1,1)
has not been evaluated yet. Combine these facts, when the HPDT
is in bpdt(3,4), we know that both predicates have not been evalu-
ated yet. Notice that these information can be obtained solely from
the positions of the BPDTs, it is easy to determine the buffer op-
erations in the BPDTs systematically. The details are described
below.

4.2 Building HPDT from XPath Queries
We now describe how to build an HPDT from an XPath query.

Since the BPDT decides its own buffer operation based on its posi-
tion in the HPDT, we denote the position of each BPDT by a unique
ID (l ,k), wherel ≥ 0 is the depth for the BPDT in the HPDT sys-
tem andk≥ 0 is its sequence number within the layer (right to left).
Given an XPath queryN1N2...Nn/O, the BPDTs, together with the
IDs, are generated as described as follows. We £rst generate aroot
BPDT as in Figure 12. The root BPDT is used to consume the

1For details, please see our longer version of technical report at
www.cs.umd.edu/~pengfeng/xsq

$1 $2
<root>

</root>

Start State TRUE State

Figure 12: Template for the root BPDT

<root>, </root> events, which are generated by the SAX parser
for the document root for every XML document. The root BPDT
has an ID (0,0). For location stepNi , we go through all the BPDTs
bpdt(i−1,k), which are generated fromNi−1 (N0 could be thought
as/root). For each existingbpdt(i − 1,k), if it has anNA state,
we generate abpdt(i,2k) as its right child, which use theNA state
of bpdt(i −1,k) as itsSTART state. Ifbpdt(i −1,k) does not have
an NA state, we setbpdt(i,2k) to NULL . Similarly, we generate a
bpdt(i,2k+1) as the left child of ofbpdt(i −1,k), which uses the
TRUE state ofbpdt(i−1,k) as itsSTART state.

After we connect the BPDTs using the above method, the buffer
operation inbpdt(l ,k) can be determined as follows. First there
is the fact that ifk = (k0k2...kn)2, when the HPDT reaches a state
(not including theSTART state) in this BPDT, the ith predicate has
evaluated to true if and only ifki = 1. We can prove this fact by
induction since the left child is connected to theTRUE state of the
parent, which means that the predicate in the parent has evaluated to
TRUE when the HPDT reaches the states in this BPDT. Therefore,
the buffer operations of this BPDT can be determined given the
results of the predicates. Note that inbpdt(i,2i −1), we know that
all the predicates in higher layer BPDTs have evaluated to true.
Thus, in everybpdt(i,2i −1) i=1, ...,n, the BPDT sends the content
in the buffer to the output if the predicate in itself evaluates to true.

After generating the new BPDT based on the templates, we also
modify the resulting BPDT if the axis is a closure axis//. We
add a self-transition marked with// on its START state. Then the
transition arc forbeginevent that come out from theSTART state
and reach a lower layer BPDT are marked with=. These arcs are
calledclosure transitions. The usage of these two transitions will
be described shortly.

We then add the output functions to the lowest layer BPDTs.
In bpdt(n,2n − 1), the value is sent to the output directly. In all
the other BPDTs in layern, the output will be sent to the buffer.
If the output expressionO is speci£ed, the corresponding attribute
or function is added to the transitions in the lowest layer BPDTs.
Otherwise, a catchall transition is added to the lowest layer BPDTs.

4.3 Running the HPDT
Since XSQ handles XPath queries with closures and multiple

predicates, it needs additional mechanisms to ensure that the cases
such as in Example 2 are handled correctly. As we show in Ex-
ample 2, when the HPDT encounters thename element on line 11,
there are three ways that the path to the element matches the query
because of the closures in the query. Each of the matches evaluates
the two predicates in the query differently. Although we can get the
result of the predicates by the position of the current BPDT as de-
scribed earlier, we need to solve the problem of multiple matches
so that if one of the matches evaluates all the predicates to true,
the HPDT keeps the element in the result. Example 6 depicts the
scenario when the HPDT is processing the multiple matches.

EXAMPLE 6. Consider the stream in Figure 2. We use the HPDT
in Figure 11 to process it. When the HPDT encounters thename el-
ement on line 11, it is in state$14. However, there are three paths
from$1 to$14: 1→2→7→11, 1→2→10→11, and 1→9→10→11.
All the three paths lead into the same state since the predicates of
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//

$7

//

$1

////

$10 $8$9

// //

<root> </root>

<year>
$6

[te
xt

()
<=

20
00

]

<y
ea

r.t
ex

t()
>

$4
</year>

</year>

<pub> </pub>
{queue.clear()}

$2

$5

//
{queue.flush()}
[text()>2000]
<year.text()>

</pub>

$3

</year>
{queue.flush()}

bpdt(2,2)

$12 $11

{queue.clear()}
</book> <book>

$13

</author> <author>
{queue.flush()}

bpdt(3,7) bpdt(3,6)

{queue.flush()}

$15 $14

{queue.clear()}
</book></book>

{queue.enqueue(name.text()}
<name.text()>

{queue.upload()}
</name>

{queue.enqueue(name.text()}
<name.text()>

</name><name>
{queue.upload()}

</book>

</author>
{queue.upload()}

<author>
{queue.upload()}

<book>

bpdt(3,5) bpdt(3,4)

bpdt(0,0)
HPDT for query:

//pub[year>2000]//book[author]//name/text()

<name>

{queue.enqueue(name.text()}

$16

{output(name.text())}
<name.text()> <name.text()>

$17

</name> <name> <name>
{queue.upload()}

</name>

bpdt(2,3)

bpdt(1,1)

Figure 11: HPDT generated for query: //pub[year>2000]//book[author]//name/text()

all of them have not been evaluated. Since the current BPDT has
the ID (3,4), 4 = (100)2, we know that only the £rst predicate is
true while the other two are unknown (the £rst predicate is in/root

which is always true). However, we cannot simply enqueue the item
Z at the text event of the current element. Otherwise, for the £rst
path, the item will be cleared at the state transition from state$8
to $3 when the HPDT encounters the end of thebook element on
line 16 (which corresponds to thebook on line 7). Since thisbook
element does not have anauthor child, the predicate in the second
location step evaluates to false. Similarly, for the third path, the
HPDT will clear the item when it goes from state$3 to state$2,
since theyear child of thepub element on line 9 fails the predi-
cate in the £rst location step. If HPDT follows the second path, it
will output the item when it goes from state$4 to state$6 where it
encounters theyear element on line 17. Even if the elements are
in different order, the HPDT in Figure 11 can always returns the
correct result.

We use adepth vector to keep track of the path to each current
state. At runtime, each current states is associated with a depth
vectordv. It records the depths of the events that trigger the state
transitions that lead to the current state. Thedvof every state is ini-
tialized as empty. Supposee is the incoming event ands′ is the new
state. In the case thate∈ B, if s′ 6= s (the state transition occurs),

s′.dv = s.dv+ e.d (e.d is appended to the end ofdv), otherwise
s′.dv = s.dv. In the case thate∈ E, if s′ 6= s, s′.dv = s.dv− e.d
(e.d is removed from the end ofdv), otherwises′.dv= s.dv. Text
events do not change the depth vectors. In addition to the append
and remove operations, the operationtop returns the last depth in
the vector. The depth vector essentially simulates the stack opera-
tions for every possible path that the element matches the query.

When we enqueue an item, we associate the depth vector of the
current state with the item as well. Thus, the same item may have
more than one depth vector since it may be enqueued by different
states. Accordingly, when we perform the other buffer operations,
we also only operate the items with the depth vector that is equal
to the depth vector of the current state. For example, in Example
6, when the HPDT goes from state $3 to $2 where it encounters
the end of thepub element on line 15, it will clear the buffer. Note
that the item of the correct match is also in the same buffer at the
same time. However, since the the BPDT only operates the items in
the buffer with the same depth vector as the current state, which is
(1,9), the item of the corrected match, whose depth vector is(1,2),
is not deleted.

Though the operations on the items in the buffer are not as a
whole now, we organize the items so that items with the same depth
vector are kept in a group, which will be operated together. Note
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that the operations on depth vector are implemented using bitmap
vectors. All the operations and comparisons are done using integer
and bit operations. It is quite ef£cient in the implementation.

It is possible that one item is enqueued or sent to output multiple
times if more than one matches satisfy the query. The solution is
as follows. Since we only operate on the reference of the item in
the system, we mark the item as “output” as soon as one match
satis£es the query. If the item marked as “output” is at the head of
the queue, it is sent to the output immediately. Otherwise, it will
remain unchanged no matter what the later operations are, until it
becomes the £rst item in the queue. This operation is an important
factor that affects the performance compared with the deterministic
HPDT as we will show in the experimental results in Section 6.
In a deterministic HPDT, the result items are always determined in
document order. When we perform thef lush or out put function,
we can directly write to output. Thus, we do not need to buffer these
items and check the buffer later, which improves the throughput of
the XSQ system.

We also need additional rules for the state transitions due to
the closures. Usually a transition arc that starts from states ac-
cepts an evente if its depth e.d satis£es the criterion: ife∈ B,
e.d = s.dv.top()+1, otherwisee.d = s.dv.top(). However, for the
special labels, we have the following different rules. Transition arcs
labeled with// accept any incomingbeginevent ofanydepth. The
closure transitions that are marked with= signs, accept the speci£ed
beginevent at any depth.̄∗ matchesanyevente if e.d > s.dv.top(),
which indicates that the element corresponding to the event is a
descendant of the element that leads to the current state.

Now we can de£ne thequeue.upload() function as to move all
items in the current BPDT tothe nearest ancestor that has the cur-
rent BPDT in its right subtree. We de£ne the upload function in
this way such that it uploads the items in the buffer directly to the
BPDT that is still in anNA state. For any ancestor of the current
BPDT, if the current BPDT is in its left subtree, the predicate in
this ancestor must have evaluated totrue (since it has reached the
TRUE state). The de£nition ensures that thef lush function for the
results are called before theclear function.

EXAMPLE 7. Consider the same example in Example 6. Sup-
pose we put the f lush function on the transition arc from state$7
to $2 instead of the current one that is de£ned together with the
end event ofyear element. What happens if a resultname ele-
ment comes after the text event ofyear element on line 17 but
before its end event? If we do not have the f lush function on the
arc from state$6 to $7. Then when the HPDT reaches state$7,
there will be two current states with the same depth vector(1,2):
$3 (because of the self-transition on state$3) and$7. How can
we guarantee that the result item will not be cleared by mistake?
The de£nition of the upload function will ensure that the result item
after the text eventyear element will be uploaded to bpdt(1,1) be-
fore it performs the¤ush()function from state$6 to state$7. For
example, bpdt(3,5) would upload its content to bpdt(1,1) instead
of bpdt(2,2) because the predicate in bpdt(2,2) has evaluated to
true. Notice that this de£nition also prevents that the item will not
be cleared by the clear function from state$8 to$5. cleared by

4.4 Aggregations
The XSQ system is augmented with a statistics bufferstat to

handle aggregations. In thestat buffer, there is one item for each
aggregation function with initial value tonull. The operations for
the stat buffer are: 1. stat.update(aggr,value): update the
item for aggregation functionaggr in stat with thevalue. For ex-
ample,stat.update(COUNT,2) will add 2 to the number instat.
2. stat.output(aggr): output the value instat.

Figure 13: Screenshot of the XSQ system

For example, consider the query:
//pub[year>2000]//book[author]//name/count()

The HPDT will keep the same except that we replace allqueue.

flush()with stat.update(COUNT, number of items in the

queue), output(value)with stat.update(COUNT,1), and place
stat.out(COUNT) on the transition arc from state $2 to $1 where
the document ends. The resulting HPDT can answer this aggre-
gation query. We also modify the semantics ofstat.update()

such that it emits a new value whenever the number in the buffer
is updated. Thus we can always get the aggregation value for the
data we have seen so far. This feature is useful when we process
aggregation queries over unbounded streams.

5. RELATED WORK
Due to space constraints, we restrict our attention to the work

that is most closely related to XSQ, and systems that are studied
further in Section 6. For a more general discussion of stream pro-
cessing, we refer the reader to a number of recent papers on the
topic: For example, stream processing in the context of theDSMS
system is discussed in [3]. Methods for dynamically grouping sim-
ilar queries to increase system throughput inNiagaraCQare dis-
cussed in [9]. Methods for validating streaming XML using push-
down automata are presented in [22]. Rewriting XPath queries with
reverse axes into equivalent queries with only forward axes is stud-
ied in [21].

A k-pebble tree-walking tree-transducer model is de£ned for XML
transformation in [20]. However, since streaming XML is traversed
in depth-£rst order, some transition combinations, such as visiting
previous siblings, are not always applicable. It is also not easy to
apply techniques such as the alternating automaton [8] to process
streaming XML. For example, for auniversalstate in an alternat-
ing automaton, we need to get the results for all its children to label
it as acceptance or rejection, which is not always applicable in the
streaming environment.

Systems for£ltering XML document focus on searching a col-
lection of XML documents for those that match a query. The out-
put is thus restricted to a set of document identi£ers. Further, such
systems typically either do not handle predicates or handle only
predicates restricted to structural matching. TheXFilter system
uses £nite-state automata to £lter XML streams; performance is
improved by indexing and by combining similar FSAs [1]. The
YFilter system uses one FSA to evaluate all concurrently submit-
ted £lter expressions [12]. It supports only predicates that do not
reference other elements. Such predicates can be evaluated imme-
diately when the element to which the apply is encountered. Fur-
ther, £ltering systems such as YFilter do not need to handle situa-
tions in which predicates must be evaluated in different sequences
(as in Example 2). Methods for indexing common subexpressions
of XPath queries using a data structure calledXTrie are presented
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in [7]. Another related topic ofquery labelingis studied in [18].
The authors propose a notion of arequirements indexas a dual to
the traditional data index. A framework is provided to organize the
index ef£ciently and to label the nodes in streaming XML docu-
ments with all the matched requirements in the index.

Recall, from Section 4, that supporting closure and other fea-
tures of XPath requires nondeterminism in automaton-based ap-
proaches (or, equivalently, a combinatorial explosion in the number
of states). TheXMLTK system uses a lazy deterministic £nite state
automaton to which new states are added as needed (at runtime) [2,
14]. The determinism results in higher system throughput. The
trade-off is that the deterministic automaton requires more mem-
ory than its nondeterministic counterpart. (The authors provide a
bound on its size.)

A transducer-based approach is presented in [19] to answer queries
written in XQuery. Its main idea is to decompose the query into
subexpressions, each of which is mapped to anXML Stream Ma-
chine(XSM). The XSMs are arranged in a network by chaining the
output of one to the input of another, based on the query semantics.
Techniques for transforming this XSM network into a single XSM,
and for optimizing XSMs based on DTDs, are provided. The key
differences between XSQ and XSM are the following: First, XSM
does not handle queries with aggregations and closures (such as the
queries in Example 2 and Figure 13). Second, the chaining method
used by XSM is not always suitable for streaming queries. For
example, the semantics of aggregation functions is not easy to ex-
press using the chaining method. Third, the XSMs after combina-
tion and optimization are very complicated. It is dif£cult to group
similar queries. In contrast, the HPDT used by XSQ has a sim-
ple and regular structure, so that multiple HPDTs can be grouped
using methods suggested by [12]. Currently the XSQ system is
schema-unaware. It is an interesting topic to automatically incor-
porate schema information , if available, into the system for opti-
mization. (Since a release version of XSM was unavailable at the
time of writing, XSM does not appear in the empirical studies of
Section 6.) This network-of-transducers approach is also used by
SPEX [11], which evaluates regular path expressions with quali-
£ers against well formed XML streams.

We brie¤y mention some work on queryingnon-streamingXML
documents that is discussed further in Section 6.Galax is a full-
¤edged implementation of theXQuerylanguage, with static typing
guarantees [13]. TheOCaml implementation is based on a DOM
materialization of an XML document.XQEngine is a full-text
search engine and uses an XQuery-based query language that sup-
ports boolean combinations of keywords in order to querycollec-
tionsof XML documents. XQEngine must preprocess a document
collection to create a full-text index that is used in query process-
ing. Saxon provides a system for transforming XML data [17].
Transformations are speci£ed using XSL, which uses XPath ex-
pressions to specify patterns. Saxon, like other XSLT processors,
needs to build a DOM tree of the entire XML document in main
memory before performing any operations, restricting its utility in
streaming systems.

Simple Transformations for XML (STX), implemented by theJoost
system, is a transformation language designed for streaming XML
[6, 5]. STX is more procedural than XSLT, and uses boolean pro-
gram variables to store the results of each predicate in a query.
Predicate evaluation sets the appropriate variables, which must be
cleared explicitly. At any time, these predicates may be examined
to determine appropriate actions (such as output). For any element
in an XML stream, only the data that precedes it can be used to
determine the actions on the element. This restriction simpli£es
the implementation, since many of the complexities illustrated by
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Figure 14: System features

Name Size Text size Number of Avg/Max Average
(MB) (MB) elements (K) depth tag length

SHAKE 7.89 4.94 180 5.77/7 5.03
NASA 25.0 15.1 477 5.58/8 6.31
DBLP 119 56.4 2,990 2.90/6 5.81
PSD 716 286 21,300 5.57/7 6.33

Figure 15: Dataset descriptions

Examples 1 and 2 do not occur.

6. IMPLEMENTATION AND EXPERIMENTS
We have implemented the XSQ system in Java using Sun Java

SDK version 1.4. The XML parser used is Xerces 1.0 for Java. We
have implemented two versions of the XSQ system: XSQ-NC sup-
ports multiple predicates and aggregations, but not closures; XSQ-
F, supports multiple predicates, aggregations, and closures. Figure
13 shows a screenshot for the GUI of the XSQ-F system. In the
screenshot, we query themacbeth.xmlin the Shakespeare play col-
lection with an XPath query that contains two closure axes, two
predicates, and an aggregation function.

6.1 Experimental Setup
We conducted the experiments on a Pentium III 900MHZ ma-

chine with 1 GB memory running the Redhat 7.2 distribution of
GNU/Linux (kernel 2.4.9-34). The maximum amount of memory
the Java Virtual Machine could use was set to 512 MB.

We compare the XSQ system with the systems in Figure 14,
which process XPath queries or XPath-like queries. We have de-
scribed Galax [13] (version 0.1α), XQEngine [16] (version 0.56),
XMLTK [2] (version 0.9), Saxon [17] (version 6.5.2), and Joost
(version 20020828) [5]in Section 5. Figure 14 summarizes the
query language and some basic features of these systems.

Not all the systems can handle all sizes of datasets and all XPath
queries. However, our goal is not simply to compare their perfor-
mance. Through our study of these XPath processors, we want
to get more insights of the cost to support certain XPath features
such as closures and to predict which system will perform better
in what kind of environment. For example, if we only want to use
simple XPath fragment without predicates, we do not need full-
¤avored XQuery engine such as Galax. However, if we need to ex-
press complicated queries that involve constructing new elements,
we have to resort to systems such as Galax.

Since some systems use query languages that are supersets of
XPath, or variations of XPath, we modify the XPath queries as
needed to ensure that queries convey the semantics remain unchanged.
In most cases, the results are enclosed by different container ele-
ments but the contents are the same.

In our experiments, we use the above systems to evaluate queries
over datasets that differ in size and characteristics, including real
and synthetic datasets. We use four real datasets [2]: the Shake-
speare play collection (SHAKE), NASA ADC XML repository (NASA),
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Figure 16: Relative throughputs of the systems of different
queries on the SHAKE dataset

Q1: /PLAY/ACT/SCENE/SPEECH[LINE%love]/SPEAKER/text()
Q2: /PLAY/ACT/SCENE/SPEECH/SPEAKER/text()
Q3: //ACT//SPEAKER/text()

DBLP records (DBLP), and PIR-International Protein Sequence
Database (PSD). Some characteristics of these datasets are listed in
Figure 15. We also use synthetic datasets that are generated using
IBM XML Generator [15] and Toxgene [4]. The characteristics of
the synthetic datasets are described later with related experimental
results.

6.2 Throughput
Throughput is an important metric for streaming systems since

the data size varies and could be unbounded. All the systems in Fig-
ure 14 use the SAX API to parse the data. Therefore, the through-
put of a SAX parser, which parses the XML data but does nothing
else, gives an upper bound of the throughput for any XML query
system. We wrote two parsing programs, namedPureParsers,
in C and Java. ThePureParser in C uses the Expat 1.2 parser
used by XMLTK. The PureParser in Java uses Xerces 1.0 for Java,
which we specify to use in XSQ-NC, XSQ-F, XQEngine, Saxon,
and Joost in the experiments. C parsers are generally faster than
Java parser since parsing involves a large number of string opera-
tion, which is more ef£cient in C parsers. For the 119MB DBLP
dataset, the C PureParser £nises parsing in 10.6 seconds and the
Java PureParser uses 28.2 seconds. Instead of raw throughput, we
use the normalized throughput of the systems with respect to the
throughput of the corresponding PureParser, calledrelative through-
put, to measure the performance of the systems written in different
programming languages and using different parsers. Galax imple-
ments its own parser in Ocaml. Here we use the Java PureParser
instead since we do not have an Ocaml SAX parser, which we be-
lieve is faster than the Java PureParser.

Figure 16 shows the relative throughputs of the systems when
they evaluate different queries on the SHAKE dataset. Figure 17
shows the relative throughput when they query different datasets.
We can see that XMLTK and XSQ-NC are the fastest two systems
when applying queries that they can handle. An important reason is
the determinism in both systems. Although XSQ-NC has to buffer
some of the data sometime, its underlying PDT is deterministic.
Even when processing the same query without closure, XSQ-NC
is faster than XSQ-F since XSQ-F uses a non-deterministic PDT.
When searching for a matching transition arc in the automaton,
XSQ-NC can stop searching after it £nds one match. In contrast,
XSQ-F has to go through all the transition arcs of the current state
to make sure every arc is handled. Moreover, as we have shown in
Example 2, when an item is in the result, the XSQ-NC can output
it immediately, while XSQ-F needs to do extra work to ensure that
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Figure 17: Relative throughputs of the systems when querying
different datasets

Dataset Query
SHAKE: /PLAY/ACT/SCENE/SPEECH/SPEAKER/text()
NASA: /datasets/dataset/reference/source/other/name/text()
DBLP: /dblp/article/title/text()
PSD: /ProteinDatabase/ProteinEntry/reference

/refinfo/authors/author/text()

the item will not be outputted twice due to the non-determinism.
We can see from Figure 16 and Figure 17 that Saxon is faster

than XSQ-F when they process XML data that can £t into main
memory. Saxon uses the SAX parser to load all the data into the
memory and build the DOM tree before it evaluates the query. Af-
ter parsing the data, Saxon does all the process in main memory.
In memory processing is ef£cient and can support more powerful
queries. However, it is not suitable for streaming data in general.
Moreover, as we will see next, the amount of memory it needs is
usually 4 to 5 times of the £le size. Thus, it cannot scale up to
process large XML £les.

We also study the time the systems spend on each phase of query
evaluation. The dark bar in Figure 18 represents the query compi-
lation time, which usually includes parsing the query and building
the query engine. The gray bar represents the preprocessing time.
For example, Saxon loads all the data into memory to build the
DOM tree before it can evaluate the queries. XQEngine builds the
full-text index before it can query the data.

From Figure 18, we see that an advantage of the streaming sys-
tems is that they can return the available results as soon as the data
is available, which is crucial if the response time of the system is
important. The non-streaming systems have to wait until all the
preprocessing £nish to begin evaluating. However, as long as these
systems remain in memory, the subsequent queries can be evalu-
ated much faster since the results of the preprocessing can be reused
then.

6.3 Memory Usage
Memory usage is critical for the scalability of the streaming sys-

tem. Non-streaming systems need memory linear in the size of the
input since they need to load the whole dataset into memory. In
contrast, streaming systems need to store only a small fraction of
the stream. Figure 19 shows the memory usage reported for the
queries over the datasets size from 5MB to 50MB. All the datasets
are excerpts of the DBLP dataset. For example, the 10MB dataset
contains the £rst 10MB data in the dataset. (The size is an approxi-
mate since we have to include the closing tag of the elements at the
10MB offset.) From Figure 19, we see that Saxon and Galax use
memory roughly linear in the size of the input data. Linear mem-
ory usage, with a constant factor of 4 to 5, makes the DOM-based
system unsuitable for large XML £les.

We also use the XML Generator program to generate datasets of
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1. The query for XMLTK : /dblp/inproceedings/title/text()

2. XQEngine is not tested since it currently supports only 32K elements perdocument.

varying size and recursiveness. For example, for the dataset of size
13MB, the nested level parameter of the XML Generator program
is set to 15 and the maximum repeats parameter is set to 20. From
Figure 20 we can see that even the highly recursive data and queries
with closures, the amount of memory XSQ-F uses is still constant.
Recall from Section 4 that XSQ needs to buffer more data if there
are closures in the query. However, since all the items in the buffers
can be determined when we encounter the end event of the element
speci£ed in the £rst location step (the HPDT returns to the high-
est level BPDT), the maximum amount of memory the XSQ needs
cannot exceed the maximum size of the elements in the stream.

6.4 Characterizing the XPath Processors
Some systems are sensitive to the order of the elements in the

data if the elements are involved in the query. We generate a 10MB
dataset using Toxgene, in which the following template is applied
repeatedly to generate new elementsawith increasingid attributes.
<a id="1"> <prior> 1 </prior>

<foo> 1 </foo> (repeat 10,000 times)

<posterior> 1 </posterior> </a>

Though all the queries/a[prior=0], /a[posterior=0], and
/a [@id=0] return null result set, different systems behave dif-
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Figure 20: Memory usage of the systems when querying syn-
thetic datasets of different sizes
Query: //pub[year]//book[@id]/title/text()

1. The system cannot handle the query in the dataset.

2. Galax reports “stack over¤ow” error when we try the query.

ferently in our experiments. In Figure 21, the throughputs of the
Saxon system are almost the same, since it always loads all the data
into the memory before it evaluates the queries. When it traverses
the DOM tree in the main memory to evaluate the query, the docu-
ment order is not important. However, the throughput of XSQ-NC
is 30% larger in the last query than the other two queries. For the
last query, XSQ-NC can decide at the beginning of thea element
that all the contents in this element can be ignored. In the other
two queries, all the data in the current element have to be buffered
until the closing tag of thea element is met, which makes XSQ-NC
much slower. XSQ-F is not as sensitive as XSQ-NC to the order.
Recall from Section 4 that even if XSQ-F knows an item is in the re-
sult set, it marks the item as “output” £rst and output the item until
it handles all the possible transitions due to the non-determinisms.

We also study the sensitivities to the result size of the systems.
Most systems are sensitive to the result size, but in different de-
grees. For example, the XQEngine is slower than the other systems
in Figure 18 since the query returns a large portion of the dataset.
But if the query contains a tag that is not in the data, XQEngine
returns the empty result set immediately. The other systems spend
similar amount of time on the query no matter whether the tags in
the query appear in the document or not.

We use Toxgene to generate a test dataset of 10MB consisting of
three types of elements (besides a few top level elements): 10% of
the elements have tagred, 30%green, and 60%blue. The content
of each such element is a character. Figure 22 shows the relative
throughputs of systems when the query returns the three different
types of elements.

We can see that XSQ-NC is sensitive to the result size. The
difference in the performance is due to the different handling of
data items based on whether they are in the result. Items that are not
in the result can be ignored and XSQ-NC stays in the same state.
If there are more items in the result set, the XSQ-NC will make
more state transitions and output operations, which consist a large
portion of the running time of XSQ-NC. XSQ-F is not as sensitive
as XSQ-NC. As described in Section 4, it always keeps the item
£rst, no matter it is in the result or not, and checks the queue after all
transition arcs are handled. The difference between the handlings
is not as large as in XSQ-NC. Saxon is less sensitive to the result
size since after it loads all data into main memory, the evaluation
process is done in main memory except the output process, which
constitutes only a small amount of the total execution time. The
smaller difference in XMLTK might be caused only by the I/O cost
as well. However, it is not clear why Joost is not sensitive to the
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Figure 22: Effect of the result size on throughput

result size.

7. CONCLUSION
In this paper, we have described the design and implementation

of the XSQ system for evaluating XPath 1.0 queries on streaming
XML data. A distinguishing feature of XSQ is that it buffers only
data that must be buffered byanystreaming XPath query processor.
Further, XSQ has a clean design based on a hierarchical network of
pushdown transducers augmented with buffers. The XSQ system
is fully implemented, and supports features such as multiple pred-
icates, closures, and aggregation. We also presented an empirical
study of XSQ and related systems in order to explore the costs and
bene£ts of XPath features and implementation choices.
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