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Abstract

We describe a method for the streaming evalua-
tion of XPath queries that have subqueries in pred-
icates. Our method rewrites XPath queries into a
set of predicate-free labeled linear-form expressions
(LFEs). These LFEs are used to generate a push-
down transducer that enables efficient management
of a buffer and hierarchical index at runtime. To
the best of our knowledge, our method is the first
to support XPath subqueries in a streaming environ-
ment. Our method also provides optimal buffering,
minimum-latency output, and optimal predicate eval-
uation. The method has been fully implemented and
publicly released in the XSQ system. We present an
experimental study of XSQ and related systems on
both real-life and synthetic datasets, and investigate
how subqueries and other features affect the perfor-
mance of these systems.

1 Introduction

XML is now widely used as a standard format of in-
formation exchange in distributed computing envi-
ronments such as Web services, data integration, and
information dissemination. In many cases, data is
transmitted among applications in streaming form.
In streaming XML query evaluation, serialized XML
is parsed by a SAX parser to generate a sequence of
SAX events. The query engine processes the SAX
events and emits the results as the data is stream-
ing in. Streaming query evaluation usually requires
less memory and provides higher throughput than the
traditional approach, which evaluates the query on
materialized data in main memory. However, stream-
ing evaluation is also more difficult due to the restric-
tion that every data item can be seen only once. Since
seeking back in the streams is usually not feasible, we
have to explicitly buffer data items that may be used
in the future.
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XPath is a succinct yet powerful path language
used to address parts of an XML document. For
example, the XPath expression //book[price=10
and quantity>1]//author selects the authors of
all the books whose price is 10 and quantity is
larger than 1. The predicate, such as [price=10 and
quantity>1], specifies the conditions that an ele-
ment has to satisfy to be selected by the path ex-
pression. Each clause in the predicate is essentially
a subquery that is evaluated within the context spec-
ified by the original query, e.g., the price element
matched in the subquery price=10 has to be a child
of a book element that is selected by the original
query. A subquery may be a complex XPath query
itself. Unlike the main query, a subquery always re-
turns a boolean result: true if the result set is not
empty and false otherwise.

Our goal of this paper is to support subqueries in
streaming XPath evaluation. Moreover, our method
provides three very important guarantees for stream-
ing XPath processors: optimal buffering, minimum-
latency output, and optimal predicate evaluation.
Optimal buffering requires the XPath processor
only buffers the data items whose membership in the
result set cannot be determined based on currently
available data, and therefore must be buffered by
all streaming systems. Minimum-latency output
means the available result items are returned to the
user as early as possible, i.e., at the exact moment
when its membership in the result item can be de-
termined by any streaming system. Optimal pred-
icate evaluation means that only we only evaluate
those undetermined subqueries whose evaluation may
change the result of the predicate, which we call nec-
essary subqueries. For example, if one of two sub-
queries that are connected by an OR operator has
been evaluated to true, the other subquery becomes
unnecessary.

It is a challenging task to evaluate XPath queries
with predicates and closure axes (such as //, which



denotes the descendant-or-self relation between two
elements) over streaming XML data. First, we may
need to buffer the potential result items (called can-
didates) since the order in which the data arrives
may not permit the query engine to immediately de-
termine whether a data item belongs to the query re-
sult. We also have to keep track of the partial pred-
icate results of every candidate since each of them
may be pending on different predicates. Moreover,
the combination of the closure axes and the predi-
cates may result in multiple matchings between an
element and the query, each of which may lead to
different predicate results. Only when all the match-
ings fail the query can we decide the element is not
in the result.

Providing the three guarantees poses extra chal-
lenges for streaming evaluation. Without the three
guarantees, we can buffer arbitrary amount of data
or determine at any time whether an element is in the
result. Given enough memory or relax the latency
requirement, such an approach may be suitable for
bounded streams. However, even given enough mem-
ory, this approach may lead to smaller throughput for
larger datasets (see Figure 24 and Figure 26). More-
over, it also leads to larger latency than streaming
evaluation in general. In contrast, to satisfy these
guarantees, we have to maintain the state for every
candidate and always take action at the earliest mo-
ment a decision for a candidate can be made. More-
over, it is inefficient to record the partial result of
every candidate separately, otherwise we have to up-
date the candidates separately when a predicate is
evaluated. With the presence of subqueries, such an
approach is even more difficult since it is not straight-
forward to locate the candidates that are affected by
the new evaluation result.

1.1 Motivating examples

The following examples highlight some of the diffi-
culties of supporting subqueries in streaming evalua-
tion. To denote the partial results of a predicate of
an element, we use the term state of an element
to denote which subqueries in its predicate are nec-
essary, and therefore also implies which subqueries
have been evaluated. Note that since subqueries may
themselves be partially evaluated, the exact defini-
tion of the state is recursive (and will be given in
Section 4).

Example 1 [Multiple Matchings] Consider eval-
uating the following XPath query (separated into four
lines) on the XML stream in Figure 1. (For now, we

1. <store>

2. <name>Amazon</name>

3. <book>

4. <price type="sale">15</price>
5. <title>XML</title>

6. </book>

7. <book>

8. <title>Java</title>

9. <author>John</author>

10. <price>10</price>

11. <related>

12. <store>

13. <name>BN</name>

14. <book>

15. <quantity>1</quantity>
16. <author>Mike</author>
17. <author>John</author>
18. <title>JDBC</title>

19. <price>15</price>

20. </book>

21. </store>

22. </related>

23. <price type=’sale’>8</price>
24. <quantity>2</quantity>

25.  </book>

26.</store>

Figure 1: Example XML Data

can think of the query engine as reading the docu-
ment line by line. Later, we will introduce the SAX
model.)

//store[//name="BN"]
//book [not (author!="John")
and (//quantity=1 or //price=10)]
//title

The above query asks for the title descendants of
the books that do not have an author child that is not
”John” and either have a quantity descendant with
value 1 or a price descendant with value 10. The
book element should be the descendant of a store
element who has a name descendant with value ”BN”.

The title element in line 18 has three matchings
with the query, as shown in Figure 2. In each match-
ing, for each matched store element, there are 3 pos-
sible states. For each matched book element, there
are 3% possible states since the predicate consists of
three subqueries and each has three possible states.
Therefore, we have 3% possible state combinations for
every matching of this title element. Some of the
combinations cannot be used in the evaluation since



store book title
line | [//name="BN”] | line | [not(author!="John”)| | [//quantity=1] | [//price=10] | line
1 TRUE 7 NA NA TRUE 18
1 TRUE 14 FALSE TRUE NA 18
12 TRUE 14 FALSE TRUE NA 18

Figure 2: Combination of predicate results

the store element has to be the ancestor of the book
element. Figure 2 lists the current state combinations
for the three matchings at the time we encounter this
title element in line 18.

For every possible combination of states, we have
to define proper operations to satisfy the three guar-
antees. For example, if we want to guarantee opti-
mal predicate evaluation, then: When we encounter
the quantity element in line 15 we have to evaluate
the predicate quantity=1 since this quantity is the
descendant of the book element in line 14, of which
the three subqueries are all pending. Although this
quantity element is also the descendant of the book
element in line 7 we do not evaluate this predicate
for that book since it is not necessary. We have seen
a price with value 10 and these two subqueries are
connected by an OR operator. (Therefore, the result
is shown as NA in the first line in Figure 2 although
it is TRUE at the time.)

We have to define all these operations for all the
state combinations, since we cannot predict the fu-
ture input. A small difference in the input may re-
quire a different set of operations for the same query.
For example, if we exchange line 15 and line 16, we no
longer need to evaluate subquery quantity=1 when
we encounter this quantity element. Although it
is a descendant of two book elements, the subquery
quantity=1 is needed neither for the first book in line
7 (since we have seen a price with value 10), nor the
second book in line 14 (since we have seen an author
that is not ”John”). The key challenge here is to de-
fine all these operations in a dynamic and systematic
manner so that no matter in which combination of
states, we can decide the proper operation. [

We also have to know the correct scope of a el-
ement e that evaluates a subquery to true or false.
The scope of e is the set of elements to which the
evaluation result will be applied. We also say that
these elements in the scope are affected by e. If
we limit the predicate to use a single descendant, the
scope of a matched element is either its ancestors or
its descendants. With the presence of subqueries, it is
not easy to determine the scopes of an element, espe-
cially during runtime. Following example illustrates

some of the difficulties.

Example 2 [Scopes of Elements] Consider the
query used in Example 1. When we encounter the
name element in line 13, we have to know that the
predicate [//name="BN"] of both store elements in
line 1 and 12 evaluates to true. Accordingly, we have
to know the scopes of these two store elements. At
this time, there are two items in the buffer: the title
elements in line 5 and 8. These two elements are both
in the scope of the first store element. However, only
the first title should be sent to output at the time
since the book element (in line 3) in the matching
has satisfied the predicate. The second title will
remain in the buffer since the book element (in line
7) in the matching still has the first part of the query
[not (author!="John")] pending. [

Not only is it inefficient to maintain the states sep-
arately for every candidate, it is also difficult to do
so in the presence of subqueries. Since the data may
be nested, a subquery may be matched by an ele-
ment e and one of its descendants ¢’. In this case,
we have to keep track of the states for both e and e’
when we evaluate the query. If either e or €’ evalu-
ates the subquery to true, we know that the result for
the other element will no longer affect the result of
the predicate. The following example illustrates the
complexities.

Example 3 [Multiple Matchings in the Sub-
query] We modify the previous example query to
use the book element in the predicate of the store
element:

//store[//name="BN" and
//book[not (author!="John")

and (//quantity=1 or //price=10)1]

//title

For the store element in line 1, it has two book
descendants that matches the second subquery in its
predicate. When we encounter the book element in
line 14, another book element in line 7 also matches
the second subquery and has not been determined
yet. To denote this fact, we cannot simply record that



this store element may satisfy its subquery. We have
to record the fact that it has two book descendants
that may satisfy this subquery. Otherwise when one
of them fails the subquery, we will erroneously de-
termine that the store element fails the predicate.
Essentially, even for a single element, its partial pred-
icate results have to be organized as a tree to incor-
porate all the open and undecided elements matched
by the subqueries. [

To address all the difficulties illustrated above, a
novel approach is proposed in this paper using a finite
state transducer augmented by a queue with a hier-
archical index. The transducer is transformed from
an XPath query after we decompose it into a set of
simple queries free of predicates. The operations in
the transducer carry out the semantics of the origi-
nal query and provide the three guarantees for any
incoming data.

The main contributions of this paper may be
summarized as follows:

e We outline the challenges of streaming XPath
subquery evaluation in a streaming environment.
We characterize pure streaming evaluation of
XPath queries using three properties: (1) Op-
timal buffering: At each point in time, every
item in the buffer is necessary (for any method
of query evaluation). (2) Minimum-latency out-
put: As soon as it is logically possible to deter-
mine that an item belongs to the query result,
it must be emitted as output. (3) Optimal pred-
icate evaluation: No query engine can evaluate
the query by skipping one or more predicate eval-
uations performed by this method.

e To the best of our knowledge, our method is the
first pure streaming method to support XPath
subqueries.

e The methods described in this paper are fully
implemented in the XSQ system, which is
freely available at http://www.cs.umd.edu/
projects/xsq under the GNU GPL license.

e We provide a detailed experimental study of our
method and those in several publicly available
XPath processors. The study highlights the ef-
fects of not only system designs but also features
of XPath queries (e.g., multiple predicates, sub-
queries) and XML datasets (e.g., depth, recur-
sive elements).

Outline of the rest of the paper: In Section 2, we
cover the basics of XPath, SAX, and XSQ. Section 3

outlines the system architecture that uses the push-
down transducers to evaluate the XPath queries on
XML streams. In Section 4, we describe how to de-
compose an XPath query with subqueries into linear-
form expressions. Section 5 presents our method for
organize buffer items and partial predicate results.
Section 6 describes how to map these linear-form ex-
pressions to a transducer that is used at runtime.
Related work is discussed in Section 7. Section 8
presents the results of our experimental study of our
method and several related systems. We conclude in
Section 9.

2 Preliminaries

In this section, we first present a brief overview of
the XPath query language, focusing on subqueries.
Next, we outline the features of the SAX model used
by our method. Finally, we briefly describe the XSQ
streaming XML query system that is used by our im-
plementation.

2.1 XPath with subqueries

An XPath expression consists of a sequence of lo-
cation steps, which is called the location path,
and an optional output function, which specifies
the contents or functions of the selected elements that
form the result. The ith location step is in the form of
A;N;[P;]. In this form, A; denotes the axis, which is
either the child axis (/ for short) or descendant-or-self
axis (// for short) in this paper. The N; component
denotes the node test, which is the name matching
elements are required to have. The optional P; com-
ponent denotes a predicate that matched elements
are required to satisfy.

In general, an XPath expression is of the form
of AiN1[P1] ... ApNg[Pi]O. We call the expres-
sion A1 N7 ... AN (obtained by ignoring predicates)
the main trunk of the query. It specifies the pat-
tern that result elements are required to match. A
matching between an element e; and the query de-
termines a sequence of elements eq,...,e; such that
(1) e; matches the node test N; of the ith location
step and (2) e;_; is the parent of e; if A; is / and
the ancestor of e; if A; is // (using ey to denote the
document root).

Each optional predicate P; consists of either sim-
ple tests on the elements matching the location step
to which it is attached (e.g., [@type="sale", which
tests the type attribute of matching elements) or a
complex expression that may include boolean combi-
nations of subqueries. There are two kinds of sub-



queries: Absolute subqueries begin with a / and
are standalone XPath queries and are evaluated using
the document root as the context. Relative sub-
queries begin with either no explicit axis or the //
axis. A relative subquery is evaluated in the con-
text of the elements that match the node-test of the
location step to which it is attached. For exam-
ple, the subquery book/author in the XPath query
//related/store [book/author] is evaluated start-
ing at one of the store elements that match match
//related/store. (For the data of Figure 1, the
subquery is evaluated starting at the store element
in line 12, and matches the author elements in lines
16 and 17. Absolute and relative subqueries in XPath
are analogous to uncorrelated and correlated sub-
queries, respectively, in SQL. Each absolute subquery
is evaluated as a standalone XPath query. If its result
is nonempty, the subquery is conceptually replaced
with the true() predicate; otherwise, it is replaced
with the false() predicate. Thus, such subqueries
do not pose significant implementation challenges and
we henceforth focus on relative subqueries.

Recall that, as illustrated by Example 1, the
matching between an element and a query is not
unique. Such multiple matchings also apply to pred-
icates and subqueries. XPath semantics specify that
an element belongs to the result if there is some
matching (of elements to components in the main
trunk as well as in the predicates) that evaluates to
true.

The item in the query result generated for each
matched element is specified by the output function
O. For example, /text () denotes that the text con-
tent of each matched element forms the query result.
Other choices for the output function include /@attr,
denoting the value of the named attribute of each
matched element, and functions such as count(),
with the usual semantics. The output function may
also be a boolean operation. For example, the query
//name="BN" returns true if there is a name element
with text content "BN". If no explicit output function
specified, the query result consists of each matched
element, including its subelements (recursively).

Output functions in the subqueries have se-
mantics different from those of output functions
in the main query. For example, in query
//storel[//book[author]/@id], the output func-
tion @id does not specify that the value of the id
attribute is to be in the query result. Instead, it tests
for the existence of the id attribute. Henceforth, we
refer to output functions in predicates as test func-
tions.

An XPath predicate may contain multiple sub-

type | depth | name | attributes
begin | 1 store

begin | 2 name

text | 2 name | (TEXT, ” Amazon”)
end 2 name

begin | 2 book

begin | 3 price | (type, ”sale”)
text | 3 price | (TEXT, ”15”)
end 3 price

begin | 3 title

text 3 title | (TEXT, "XML”)

Figure 3: Sequence of SAX events

queries connected using boolean operators, with the
usual semantics. However, negation is supported
as a function instead of as an operator; thus, we
write [not(P)] instead of [not P]. Further, pred-
icates [P!=5] and [not(P=5)] have different seman-
tics. The former evaluates to true if and only if there
is at least one item in the result set of P that does
not equal 5, while the later evaluates to true if and
only if all items in the result set of P are unequal to
5.

2.2 SAX

Streaming XML data is usually modeled using the
SAX (Simple API of XML) model [20]. For each
opening and closing tag of an element, the SAX
parser generates, respectively, a begin and end
event. The begin event of an element comes with
an attribute list that encodes the names and values
of attributes associated with the element. The text
contents enclosed by opening and closing tags result
in the SAX parser generating a text event. The se-
quence of the SAX events corresponds to a preorder
traversal of the tree representation of the XML data,
with attribute nodes combined with their parents.

Each SAX event is a 4-tuple consisting of event
type, event depth, element name, and attribute
(name,value) pairs. The first ten SAX events gen-
erated for the data of Figure 1 are depicted in Fig-
ure 3. We define the depth of an event to be the
depth (in the XML tree) of the element that trig-
gers the event. Standard SAX events do not include
depth information. However, it is easily computed by
maintaining a single counter in the SAX event han-
dler code. For ease of presentation, we will henceforth
assume that this depth information is part of the SAX
event itself.



2.3 XSQ

XSQ [21], supports streaming evaluation of XPath
queries that may include closures and multiple pred-
icates, but predicates are restricted to using only one
descendant or attribute. The method is based on
mapping each location step of a query to a finite-
state automaton augmented with a buffer (BPDT).
Intuitively, the BPDT for a location step stores ele-
ments matching the location step’s axis and node-test
in its buffer. If the elements satisfy the location step’s
predicate, the BPDT enters a TRUE state; otherwise,
it enters a na state. A copy of the BPDT for the
k’th location step, k > 1, of a query is attached to
each of the TRUE and NA states of the BPDT for the
k — 1’th location step. In the resulting hierarchically
structured automaton (HPDT), each state’s identi-
fier encodes the predicates in the query that have
been satisfied by items in the corresponding buffer
and the predicates that remain to be satisfied. As el-
ements satisfy additional predicates, they are propa-
gated from a BPDT’s buffer to the buffer of an ances-
tor BPDT with an unsatisfied predicate (or marked
for output if all predicates are satisfied).

The above method cannot be easily extended to
support subqueries. The mapping of location steps
to BPDTs in XSQ is based on templates that use the
fact that there are only a few different combinations
of axis, node-test, and predicate. When predicates
include subqueries, there is a much greater variety
of location steps and this template-based approach is
not practical. Further, an HPDT encodes the set of
predicates satisfied by an element in a BPDT buffer
using that BPDT’s position in the hierarchy. Again,
this approach is not practical when predicates con-
tain subqueries. The naive generalization would be
to include recursive HPDTs within BPDTs. However,
the interconnection of such automata and the proper
management of buffer items would be very complex.

3 Outline of Subquery Evalua-
tion

In this section, we present a high-level description of
our solution and introduce the main subtasks, which
are described in the following sections.

3.1 Query evaluation by flag-marking

We use a finite state transducer (FST) augmented
with a queue to evaluate XPath queries over XML
streams. The transducer receives the SAX events
generated from the incoming stream as the input.

/Istorelname="BN"] | false| | false|| true
/book[price<10] ﬁ ﬁ ﬁ

[quantity=1] (false] ( faise] | true |
[title true | | true || true
Candidates——> XML Java JDBC

Figure 4: Marking flags

When the transducer recognizes an element that
matches the pattern specified by the main trunk of
the query (with the predicates are trimmed off) with
some predicates pending, it first enqueues this ele-
ment as a candidate. Each candidate in the queue
is associated with n flags where n is the number of
location steps in the query. The ith flag denotes the
state of the predicate in the i¢th location step. Only
when all the n flags are true do we conclude that the
candidate is in the result.

This transducer, which we call a QT, is con-
structed from an XPath query. The operations in
a QT include enqueuing a candidate, marking a flag
of a candidate with new (partial) predicate results,
emitting a candidate if all its flags are true, and so
on. All these operations are assigned to the QT tran-
sitions during the construction of the QT. They con-
vey the semantics of the original XPath query. The
following example illustrates the basic idea of query
evaluation by flag-marking.

Example 4 [Query evaluation by marking
flags] Consider evaluating the following query over
the data depicted in Figure 1:
//store[name="BN"] /book [price<10 and
quantity=1]/title.
There are three title elements that match the main
trunk of the query (//store/book/title). We
associate three flags for each of them, as illustrated
in Figure 4. Since the third location step does
not have a predicate, the third flag is always true.
Also, since the second predicate has two subqueries,
we split the second flag of every element into two
parts and denote the result of each part separately.
Figure 4 illustrates the final results of all the flags
(and parts). We can see that an element is in the
result if and only if all the flags (not parts) are
marked true.

Suppose we are evaluating this query in a stream-
ing environment. For every candidate, all the flags
that correspond to a non-null predicate are initially
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marked NA, which stands for pending results. These
flags are updated dynamically during the evaluation.
For example, when we encounter a price child of
the book element with value less than 10, the first
subquery of the second predicate evaluates to true.
We then mark the first part of the second flag as
TRUE for the title candidates that are the children
of this book element, which may have been put in
the queue or will be encounter in the stream later.
If we encounter a quantity child of this book with
value 1 later in the stream, we mark the second part
of the second flag of those title descendants of this
book. Those title candidates should be sent to out-
put right away if the first flag of them (which corre-
sponds to the first predicate in the query) has already
been marked TRUE.

n

Given the basic idea, there are several tasks needed
to be solved. The first is to transform an XPath query
into a transducer that responses to the input XML
stream and emits the result of the query. Second,
we want the transducer to buffer the least amount
of data and emit the result as early as possible to
provide the three guarantees we proposed in Sec-
tion 1. Third, given the transformed transducer, we
also need to implement the marking operations effi-
ciently.

3.2 System Architecture

The architecture for our method, which is imple-
mented in the XSQ query engine, is illustrated in
Figure 5. The actions that occur at query compila-
tion time are enclosed in the dotted boundary box

and those that occur at run time (stream processing
time) are enclosed in the solid boundary box. The
bold lines and arrows indicate the data flow at run
time.

We first decompose an XPath query with sub-
queries into a set of linear-form expressions
(LFEs) that convey the semantics of the query. An
LFE is an XPath expression free of predicates, which
is easy to evaluate over streaming data since it is es-
sentially a regular expression and can therefore be
recognized by an FSA. A unique producer LFE is
generated from the main trunk of the query to specify
the pattern that the candidates should match. In Ex-
ample 4, the producer LFE is //store/book/title.
A set of marker LFEs are generated to specify the
conditions that the candidates should satisfy. Each
marker LFE represents a part of a predicate. For ex-
ample, a marker LFE for the query in Example 4
is //store/book/quantity=1. When this LFE is
matched in the stream, we will mark the second
flags of the title descendants of the book element
matched by this LFE. How to locate those title ele-
ments that we should mark, however, is not a trivial
problem and will be addressed later in Section 6.

We use a global queue to store all the candi-
dates to ensure the document order is preserved in
the result. We also need to distinguish the candidates
based on the predicates that they have satisfied. For
this purpose, we use a hierarchical index that en-
codes the set of satisfied predicates for each candidate
in the queue.

A producer QT is constructed from the producer
LFE. It is used to create the index nodes and the can-
didates when it encounters elements that match the
main trunk. A set of marker QTs are constructed
from the marker LFEs. Each marker QT is respon-
sible for evaluating a predicate or a part of a pred-
icate. It marks an index node with the evaluation
result. For each incoming event, this apparatus en-
ables efficient determination of several facts, such as
(1) whether any new data needs to be buffered; (2)
which, if any, pending predicates are satisfied, and
the candidates to which they apply; and (3) which,
if any, candidates may be sent to output, and which
may be purged from the buffer.

4 XPath Decomposition

4.1 Flatten the XPath query

We first flatten an XPath query into a set of queries
free of predicates. During this process, we need
to maintain the semantics of the query among the
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separate queries so that we can obtain the correct
query result through the evaluation of the decom-
posed queries.

The flattening process builds the pattern tree of
the XPath query and creates a linear-form expression
(LFE) for every path in the pattern tree from the root
node to a leaf node. Each node test X in the query
corresponds to a node labeled with X in the pattern
tree. For each segment X/a::Y in the query, we set
node X as the parent of node Y and the edge between
them is labeled with a. Child axis is the default axis
and not labeled in the tree. The transformation from
a path in the pattern tree to an LFE is straightfor-
ward. From the root node and using an empty string,
we append the label of the next axis and the label of
the next node to the string, whose value is the LFE
after the leaf node is visited.

A single producer LFE is created from the path
from the root to the leaf node that is in the main
trunk, which will match the candidates. The LFEs
that are created from other paths in the tree are
called marker LFEs. If a marker LFE is matched in
the stream, we know that a part of a predicate is sat-
isfied and therefore we mark the candidates that are
affected by this new result. We describe how to de-
termine which candidates to mark and how to mark
them in Section 4.2. Figure 6 displays a pattern tree
of an XPath query and the LFEs are listed as follows:

Producer LFE: //R//S//T

Marker LFEs: //R//S/X//A
//R//S/X//B
//R//8/X/C
//R//S/Y/D
//R//S/Y//E

4.2 Two-flag marking scheme

We use a two-flag marking scheme in our method.
For each predicate of a candidate, we associate two
flags with it: a TRUE flag that is a bitmap that
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[X[(//A and //B) or C] and Y[D or //E]]|

Figure 7: The Syntax Tree for a Predicate

records which clauses in the disjunctive normal form
(DNF) of the predicate have been evaluated true,
and a FALSE flag which is a bitmap that records
which clauses in the conjunctive normal form (CNF)
of the predicate have been evaluated false. Each LFE
is associated with a TRUE map that indicates which
clauses it appears in the DNF and a FALSE map that
indicates which clauses it appears in the CNF. When
an LFE that does not use not () function is matched,
we mark its TRUE map in the TRUE flag to denote
that those clauses are satisfied. When an LFE with
a not() function is matched or an LFE evaluates to
false at the end of an element, we mark the TRUE
map of the FALSE flag to denote that those clauses
are failed.

Note that currently each candidate can be deemed
as being associated with n pairs of flags, each of which
corresponds to a location step. For location steps
without predicate, the TRUE flag is always all set and
the FALSE flag is always all zeros. In Section 5 we
organize these flags such that common flags are stored
together.

Why do we need two flags? Consider a predi-
cate with two simple subqueries in the query //X[A
and B]. We associate a two-bit flag with every X el-
ement, which initially is set to all zeros. When the
LFE //X/A (//X/B) is matched, we set the first (sec-
ond) bit of the predicate. It is easy to see that the
predicate of the X element evaluates to true if and
only if both bits of its TRUE flag are set.

However, using only TRUE flags is not enough when
there are not () functions in the predicate. Consider
the query //X[A and not(B)]. When the LFE //X/B
is matched in the stream, we should mark the flag of
the X element to denote that it is not in the result.
Since the initial value of the flag is all zeros (which
denotes all the subqueries are pending), we cannot
denote such fact using only one flag.

We can associate a three-valued flag for each LFE



for a candidate. However, a drawback for such an
approach is that the relations among the LFEs are
lost. For example, for query //X[A or B], we cannot
determine whether the LFE //X/A and //A/B needs
to be evaluated based on their own flags. We compute
the maps using the CNF and DNF of the predicate
so that we can determine from the flags that which
LFEs need to be evaluated.

Marking operations When a subquery in the ¢th
predicate is evaluated, i.e., an LFE is matched in the
stream, we mark the ith pair of flags of the candidates
to reflect the state change. The marking operations
are performed using following rules (AND, OR, and
XOR used in the rules are bitwise operators):

e Marking rule: When a subquery P; evaluates
to TRUE, we perform the following bitmap oper-
ations (tf stands for the TRUE flag, tm; stands
for the TRUE map of P;, and etc.):

tf — (tf OR tm;)
If P; evaluates to FALSE:
ff — (ff Or fm;)

(Note: we will show which candidates to mark
in Section 5.)

e Checking rule: When we want to evaluate
subquery P;, we first perform the following two
bitmap operations:

(tf AND tm;) XOR tm;

(ff AND fm;) XOR fm;
If either result is all zeros, we do not evaluate
this subquery, otherwise evaluate it.

e Assessing rule: A predicate evaluates to TRUE
if and only if all bits in the TRUE flag are set to
1. Tt evaluates to FALSE if and only if all bits in
the FALSE flag are set to 1.

The marking rule ensures that if a subquery evalu-
ates to true (or false), the corresponding clauses in
the DNF (or CNF) are marked accordingly. The
checking rule ensures that if all the clauses in the
DNF (or CNF) that a subquery appears in have
been true (or false), we do not to evaluate this sub-
query. The following example illustrates these ideas.
Note that this decomposition scheme of the marking
tasks can only work when each subquery in the pred-
icate has a single location step. When a subquery
in the predicate itself contains subqueries, we need
to further decompose the marking tasks among those
nested subqueries, which will be described next.

Example 5 [CNF and DNF]
cate

Consider a predi-

[((A and B) or C) and ( D or E )]:

Its CNF is:

(A and B and D ) or (A and B and E) or (C
and D) or (C and E)

and its DNF is:

(Aor C) and (Bor C) and ( D or E )
Therefore, the maps for each of the subqueries in the
predicate are:

true map false map
A 100 1100
B 010 1100
C 110 0011
D 001 1010
E 001 0101

If we want to evaluate subquery C, we first check the
current flags. If the TRUE flag’s first two bits are 1’s,
the only possibility is that both A and B are true,
and therefore C does not need to be evaluated. If the
FALSE flag’s last two bits are 1’s, the only possibility
is that both D and E are false, therefore C does not
need to be evaluated either. L]

Bottom-up decomposition If the subqueries in
a predicate may be complex queries themselves, we
need to further decompose the marking tasks to those
nested subqueries.

When we compute the maps, we first remove all the
non-leaf nodes in the syntax tree that are not boolean
operators. The DNF and CNF are computed for the
expression generated from the reduced syntax tree.
For each leaf node, its map is determined based on
which clauses it appears in the DNF and the CNF.
Then the maps are aggregated bottom-up in the orig-
inal syntax tree to compute the maps for the non-leaf
nodes. For example, for the predicate [//X[//A and
//Bl or //Y[//C and //D]], we first remove the X
and Y nodes from its syntax tree and compute the
maps for the remaining syntax tree. The results are
then aggregated to compute the maps for X and Y.
The process is illustrated in the right part of Fig-
ure 8.

We have to compute the maps bottom-up in the
syntax tree. A top-down decomposition makes indi-
rect boolean relations among the leaf nodes direct,
which leads to wrong evaluation result. An example
of the top-down decomposition is illustrated in the
left part of Figure 8. We can see that the OR relation
between the X node and theY node is passed on to the
leaf nodes. Therefore, when we see an X element with
only an A child and a Y element with only a C child,
the predicate evaluates to true, which is not correct.
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Figure 9: A Labeled Pattern Tree

4.3 Labeled pattern tree

The pattern tree depicts all the patterns specified by
the query. To include the boolean relations among
these patterns, we label the nodes in the pattern tree
with the TRUE and FALSE maps of the nodes in the
syntax tree of every predicate. Such a labeled pat-
tern tree is uniquely defined by an XPath query and
conveys the semantics of the query. If we compute
the maps bottom-up for query in Figure 7 and label
every node in the pattern tree with the result maps,
the result labeled pattern tree is depicted in Figure 9.
The labels of the non-leaf nodes in the pattern tree
are used to ensure that no partial result in a subquery
will affect the final result. For example, for query
in Figure 9, consider an S element that has two X
children. The first X child has only one A child, while
the second X element has only one B child. It is easy
to see that this S element does not match the query,
but it will be marked true since the A child of the first
X child will set the first bit of its TRUE flag and the B
child of the second X child will set the second bit. The
correct operation is to clear the partial result when
the first X element is ending since it cannot satisfy the
subquery. Therefore, we have the following resetting
rule:
Resetting rule: When the evaluation of the sub-
query P; is finished, i.e., at the end of the element
that matches the last location step in P;, we perform
the following bitmap operations:

10

(tf and tm;) zortm;
(ff and fm;) zor fm,

If none of the results is 0, we perform the following
bitmap operations:

tf — tf and (not tm;)
ff « ff and (not fm;)

Essentially the resetting rule states that all the sub-
query in a predicate of an element should be com-
puted as a whole. If at the end of the element the
predicate is only partially true (or false), the partial
result should be blocked and not affect the future
evaluation.

5 Queue with Hierarchical In-
dex

We use a global queue to store all the candidates
encountered in the stream. A hierarchical index is
used to store the flags for the candidates and encodes
the matching information. The basic idea is to group
the candidates that always share the same flags. If
we update the flags in an index node, all the candi-
dates affected by it are processed. We have a simple
fact that if two candidates have the same ancestor
matched at the ith location step, they also have the
same ancestor matched at the jth (j € [0, — 1])
location step. Therefore, we can group them hierar-
chically.

The hierarchical index is a DAG (Directed Acyclic
Graph) with a root node which always represents the
document root. Each index node corresponds to an
open element (for which we have seen the start tag
but not the end tag) in the stream. It has a unique
key as a quadruple (i,d,t, f), which denotes an ele-
ment e at depth d that matches the ith location step
and has TRUE flag t and FALSE flag f. An index node
is also associated with a buffer that contains the links
to the items in the queue who are descendants of e,
and therefore are affected by the predicate result of
e. An index node is said to be true (false) if its TRUE
(FALSE) flag is marked with all 1’s.

We construct the hierarchical index dynamically
during runtime. When we encounter an element that
matches a node test in the main trunk, we create an
index node corresponding to this element. It is cre-
ated as a child (in the DAG) of a parent index node
that corresponds to an element that matches the pre-
vious node test in the main trunk. Since the new ele-
ment may be the descendant of several elements that



match the previous location step, the structure is a
DAG instead of a tree. When a candidate is encoun-
tered in the stream, it is put into the global queue. A
link to the queue item is put into a buffer in the index
node that corresponds to the element that generates
the result. The index nodes are created using flags
that are initially set to all 0’s. If the matched node
test does not have a predicate in the query, the initial
TRUE flag is set to true.

The index nodes are transitional, which means at
the end of an element, its corresponding index node
will also be removed from the DAG. The links to the
candidates should also be processed based on the re-
sult of the predicate, which is always determined at
the end of the element it adorns. Therefore, we de-
fine two special operations to ensure that the links
to the queue items are always included in the index
node whose predicate they are pending on.

The first special operation on the hierarchical in-
dex is the upload operation. When we find that an
index node is marked true, we upload the links (to
the queue items) in its buffer to its nearest ances-
tor index node that is not marked true. The upload
operation removes the set of links from the origin in-
dex node and add it to the set of links in the target
index node. If all the ancestors of the index node
are marked true, the queue items linked by this in-
dex node should be send to output since they have
satisfied all the predicates.

A finalize operation is defined for every index node
when it is removed from the DAG: If neither of its
flags is marked with all 1’s, we set all its pending
subqueries to false and compute the predicate result.
If the result is false, remove all the links, otherwise
upload the links to its nearest pending ancestor.

Marking the index One benefit of using the hier-
archical index is that every time an LFE is matched,
we mark only one index node. Such a marking scheme
is more efficient than storing n pairs of flags with each
candidate and mark them one by one. We describes
below an example of the hierarchical index and the
upload operation performed on it.

Example 6 [Hierarchical index]
Consider the following query Q:

//store[//name="BN" or //price=10]
//book[not (author!="john") and quantity]
//title/text ()

The LFEs for the query, together with the [TRUE
map, FALSE map] label for each marker LFE, are
listed as follows. We name the LFEs for future
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Figure 10: Example for hierarchical index

reference.

MLFE4.)

producer LFE:
//store//book//title/text ()
marker LFEs:
//store//name="BN" [1,10] ( )
//store//price=10 [1,01] ( )
//store//book/not (author!="John") [10,1] (MLFE3)
//store//book/quantity [01,1] ( )

(Note that we keep the not function in

Figure 10 illustrates a snapshot of the hierarchical
index when we evaluate this query over the XML data
depicted in Figure 1. The snapshot is taken when we
just encounter the end event of the book element in
line 20. In the figure, we put the tags of the elements
at the left of each layer since they are shared by the
index nodes in the same layer. The index nodes en-
closed by bold boxes are nodes that are marked true.
The index nodes enclosed by dotted boxes are nodes
that are marked false. The dotted links are links that
were created during the evaluation but have been re-
moved.

Consider the title in line 18 whose value is
7JDBC”. It has three matchings with the query:

1. store in line 1, book in line 7;
2. store in line 1, book in line 14;
3. store in line 12, book in line 14;

All the matchings will be recognized by the pro-
ducer LFE. Each of them corresponds to a path from
the root to the candidate. Note that although the
book in line 14 satisfy the second part of the pred-
icate [quantityl, its TRUE flag is 00 instead of 01
since before we encounter the quantity child in line
24 (and MLFE4 is matched) , the first part of the
query not (author!="John") has evaluated to false,
and therefore the second part will never be evalu-



ated (according to the checking rule described in Sec-
tion 4.2).

We note that the link between node (3,6,1,0) and
candidate ”JDBC” is dotted, and there is a solid link
between node (2,2,01,0) and "JDBC”. The dotted
link is created initially when we enqueue the item
"JDBC” (when PLFE is matched) and link it to
the node (3,6,1,0). However, since this index node
is marked TRUE, we upload the buffer item to its
parent (2,2,01,0) (right after we enqueue the item).
Although item (2,5,00,1) was also a parent of node
(3,6,1,0), the link between them was removed when
its false flag is marked as 1.

The first matching described above will satisfy the
query when we encounter the end event of the book
element in line 25. Since all the authors (only one
here) equal to ”John”, the first part of the second
predicate evaluates to true then. (Although the sub-
query //store//book/author!="John" evaluates to
false at the time, the not () function will reverse the
result.) All the candidates that are affected by this
index node but not by any of its descendant index
nodes have been uploaded to this index node. There-
fore, we can output all the candidates this index node
links to since it is the last pending index node in the
path from the root to those candidates. [

Multiple matchings Another benefit of the hier-
archical index is that, as we shown in Example 6,
given the above method to create the index, each
matching between a candidate and the query is rep-
resented by a path from the root index node to the
candidate. A candidate is in the result if and only
if there exists a path from the root index node to
it where all the index nodes in the path are marked
true. Since the index node contains only a link to
the candidate, a path that fails the query will only
remove the link but not the candidate in the queue.
We keep a reference count for every candidate so that
only when the count is zero do we remove it from the
queue. An output flag is associated with each candi-
date so that the first path that satisfy the query will
set the flag to true and no further operations will be
applied to this candidate. Moreover, to preserve the
document order of the elements in the final result,
only when the candidate has its output flag set to
true and it is the head of the queue do we output the
candidate.
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Figure 11: The producer QT

6 QT

We describe in this section how to transform an LFE
into a transducer that responses to the input streams
and operates on the hierarchical index and the queue
that holds the candidates.

A QT is a non-deterministic finite state transducer
that receives the SAX events generated from the
XML streams as the input. For every SAX event, we
determines for each current state whether it has an
outgoing transition that accepts the event. If so, the
transition takes place and the target state is added to
the current state set. If there are operations defined
along with the transition, the operation is executed
as well.

Besides the above features that are similar to tra-
ditional FSTs, the QT is extended in the following
perspectives. First, its state is dynamically com-
puted. Second, there are different types of transitions
in the automaton that accepts the inputs using dif-
ferent rules. Third, its operations are defined on a
queue with a hierarchical index. The result of the
operation may be used to compute the target state.

Section 6.1 describes the states and transitions of
the QT. Then we specify how to create a QT from
an LFE and assign operations to the generated QTs
in Section 6.2. An example that uses the QTs to
evaluate a query is shown in Section 6.4. The query
@ used in Example 6 is used as a running example in
this section.

6.1 Definition

Each state in the QT is a tuple (id,d, in), where id
is a unique base identifier as in an FSA, d is the depth



of the events that lead to the current state, and in is
the index node that is linked to this state. Only id
is determined at compile time, while other two com-
ponents are computed dynamically. A state in a QT
definition may generate multiple runtime copies with
same base identifiers but different depths or index
nodes.

The input of the QT is the SAX events in the form
of (g, e,d, al), where g is the name of the element that
triggers the event, e is the type of the event which is
one of BEGIN, END, or TEXT, d is the element’s depth
in the document tree (the document root has depth
0), and al is an attribute name-value list that stores
the value of all the attributes (for END events, it is
always empty; for TEXT events, it stores the contents
of the event).

There are two types of transitions based on the
depth of the input that they accept. The first is
the regular transition that accepts either a BEGIN
event whose depth is the depth of the source state
plus one, or a END and TEXT event whose depth is
equal to the depth of the source state. The second
is the closure transition, which is marked with a
7=" sign in the transition diagram. It accepts BEGIN
events at any depth that is larger than the depth of
the source state. Moreover, taking a closure transi-
tion will add the target state to the current state set,
and keep the source state active.

Closure and non-closure axes are also distinguished
by the depth variables in the static states. For exam-
ple, a non-closure begin transition accepts the event
at depth x + 1 if the depth variable for the source
state is x, and the depth variable of the target state
should be set to x+1 as well. For a closure transition,
which could only be a begin transition, the depth of
the event should be a new variable that denotes an
event at any larger depth, and the target state should
have the same new variable. The new variable should
be larger than the depth of the source state, which
we do not explicitly specify in the state transition
diagram.

At run time, the initial current state set contains
only the start state, (0,0, Ry) where Ry is the root
of the hierarchical index. For every incoming event,
we check every current state to see whether it accepts
the events: if yes, we process the event according to
the transition function, including perform the state
transition and execute the operations defined along
with the transition; if no, the state is kept in the cur-
rent state set, unlike in an FSA in which we usually
report error when no current set accepts the input.

Example 7 [QT example] The state transition di-
agram of a QT is shown in Figure 11, which is
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the QT generated for the producer LFE in Ex-
ample 6. We use variables for the depths and
index nodes in the states to denote the relation
among them. For example, the transition from state
(0,0, Ry) to state (1,z, IN;) is labeled with the input
"<store>,x", which stands for the BEGIN event of
the store element at any depth x, and an operation
IN=create(Ry,1,%x,0,00) (which will be explained
in Section 6.2).

Suppose we use this QT to process the data in Fig-
ure 1. When we encounter the start tag of the store
element in line 1, the QT first execute the opera-
tion, which creates and returns an index node in (as
the child of Ry) that is bound to variable IN;. The
state transition is then taken place, which generates
a new current state (1, 1,4n). Since the transition is a
closure transition, the source state of the transition,
(0,0, Ryp), is kept active.

When we encounter the start tag of the store ele-
ment at depth 4 in line 12, since (0,0, Rp) is still in
the current state set, it accepts this event. After a
new index node in’ is created, a new state (1,4, in’)
is added to the current state set. As we will describe
next in Section 6.2, these two index nodes are chil-
dren of the root index node Ry and will be parents
of other index nodes created later, as illustrated in
Figure 10.

6.2 Operations

We have described the upload operation and the fi-
nalize operation on the hierarchical index in Sec-
tion 5. We now define the operations that are spec-
ified explicitly in the QT: create, enqueue, finalize,
and mark, while the following operations are exe-
cuted automatically when certain condition is satis-
fied: check, upload, clear, and output.

The create operation generate a new index node
in the hierarchical index. It is specified in the form of
create(in,i,d,t,f), where in is the parent index node,
1 is the layer of the new index node, d is the depth
of the event, t is the initial TRUE flag, and f is the
initial FALSE flag. This operation creates and returns
an index node in’ with the key (4,d,t, f). The new
index node in’ is set as the child of in, which should
be specified in the source state of this transition.

The enqueue operation is specified in the form
of enqueue(in, v). It enqueues the value v into the
global queue and put a link in the buffer of index
node in.

The finalize operation is specified in the form of
finalize(in, ¢, f), where t is the default TRUE flag
and f is the default FALSE flag. This operation will



compare the current flags of in to see whether either ¢
or f are all set in it. If yes, which means this subquery
has been satisfied and no further action is required; if
no, which means this subquery is either partially true
or never evaluated at all, we should set this subquery
to false (i.e., mark the false map f of the false flag
of 4n ). The finalizing operations in the LFEs that
are generated from the same predicate will set every
pending subquery as false and compute the result of
the predicate. If the result is true, it either output
or upload the buffer items that are linked from index
node in; if the result is false, the links are removed
from the index node.

The mark operation is specified in the form of
mark(in, t, f, v). It will mark the TRUE flag of index
node in using map ¢ if v is true, or FALSE flag using
map f if v is false.

The following operations that are not specified in
the transition diagram are executed implicitly by the
QT. Whenever the flag of an index node is changed,
the check operation is executed. We first check
whether the index node is true or false. If it is true,
we use the output operation to emit the contents in
its buffer to output if there is a path from the root
to this index node in which every index node is true;
otherwise we use the upload operation to upload the
links in the buffer to the nearest ancestor node in ev-
ery path that is pending. If a node is marked false,
we use the clear operation to remove the links in the
buffer, i.e., the reference count of those queue items
are decreased by one. If the count is zero. the queue
item is removed from the global queue.

6.3 QT Construction

For an LFE A1 N;...A,N,/O, we generate an au-
tomaton that has n + 1 states. Two transitions are
created between state ¢ and i+ 1: the transition from
i to i + 1 is labeled with <N;>, which is called the
begin transition of N; and accepts the BEGIN events
that has name N;; the transition from i+ 1 to i is la-
beled with </N;>, which is called the end transition
of N; and accepts the END events with name NV;.

We then assign the operations to the transitions to
carry out the semantics of the query. For the pro-
ducer LFE A1 N7 ... A,N, /O, two types of opera-
tions are assigned to the transitions as follows:

e For every begin transition of IV; that accepts the
BEGIN event of an element e (with tag N;) at
depth d, we assign to it a create(in,i,d,t,f) op-
eration. For the corresponding end transition of
N;, if the ith location step has a predicate, we
assign a finalize(in, t, f) operation.
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Figure 12: QT for LFE1

e For the output function O, we create the follow-
ing operations:

— If O is text(), we create a self-transition
from state (n + 1,x,n) to itself, where the
index node in should be already associated
with the state n + 1. The new transition is
labeled with N,,.text(), z, which means that
it accepts the text event of elements with
tag N,,. The new transition is assigned with
an enqueue(in, N,.text()) operation.

— If O is @a in which a is an attribute name,
we assign an enqueue(in, @a) operation
to the begin transition of IV,, which means
that it enqueues the content of attribute a
and connect it to index node in. The en-
queued buffer item is linked to the index
node that is associated with the state n+1.
This operation must be executed after the
create() operation on the same transition,
otherwise the index node in would not ex-
ist.

— If there is no output function assigned, we
create a self-transition from state n+1 to it-
self. The new transition is labeled with <x>,
which is called a catchall transition and ac-
cepts every event that is generated from the
descendants of the element matching NV,,.
An enqueue(in, *) operation, which en-
queues every event in its serialized form, is
assigned to this new begin transition of N,,,
and the end transition of N,,.

The operations in the marker LFEs are used
to mark the index nodes created by the pro-
ducer QT. For the marker LFEs in the form of
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AlNl AkNTak+1Nk+1 AmNm/O, where the
first k£ location steps are from the main trunk and
the remains are from the predicate in the ith location
step. The create operations are similarly assigned to
the transitions between the states that are created
from the node tests in the main trunk. Note that al-
though we duplicate these operations here, they will
be performed only once since we will combine all the
QTs at run time.

For transitions that are created from the node tests
from the ith predicate, the assignment is as follows:

e For the test operation O in the marker LFE, we
need to create a mark operation.

— If O uses text (), we create a new transition
from state (m + 1,d, in) to itself, as shown
in Figure 12. The new transition is labeled
with N,,.text(),d, which means that it ac-
cepts the TEXT event of element that has
node test N,, at depth d. It is also labeled
with the condition specified in O and as-
signed with the mark operation, which de-
notes that if the condition is satisfied by the
event, it will perform the mark operation.

If O uses @a in which a is an attribute name,
we label the begin transition of N,, with
the condition specified in O and assign the
mark operation to the transition.

If there is no output function assigned, we
assign the mark operation to be begin tran-
sition of N,,, as shown in Figure 15. There
will be no conditions assigned to this tran-
sition, which means that the mark opera-
tion is executed when the transition is per-
formed.

e For every node test N;, j € [k+1,n—1],add a
reset(INy,t, f) operation on the end transition

Figure 14: QT for LFE3

<quantity>,y+1
mark(IN,,01,1,true

33,y+1,IN

</quantity>,y+1

1="John"

Figure 15: QT for LFE4

from state j + 1 to j.INy is the index node in
state k. The ¢t and f are the true and false maps
labeled with the node test N;;; in the LFE. As
we described in Section 4.3, this operation resets
the flags if the current subquery is neither true
nor false and therefore prevent partial result af-
fect future evaluation.

6.4 A test run for the QT

We now evaluate the query @ in Example 6, using the
producer QT depicted in Figure 11 and the markers
QTs depicted in Figure 12 to Figure 15. We illus-
trate some highlights during the evaluation in Fig-
ure 16. The hierarchical index are shown at the left
of each figure, and the current state set is shown in
the box at the right. We use I; to uniquely identify
an index node, whose key (I,d,t, f) is shown inside
the box under I;. In the following discussion, we use
S(id,d, I) to denote a state with identifier id, depth
d, and index node I. When the context is clear, we
also use the id to denote a state.

First consider the item ”XML” in line 5. As shown
in step 1 in Figure 16, it is enqueued by the transi-
tion from state 2 (S(2,2, I1) to state 3 (5(3,3,13)) in
Figure 11. Since the index node I3 is always true, the
item is uploaded to the nearest ancestor index node
I5. Although the price element in line 4 is process
by marker LFE in Figure 13 from state 1 to state 22,
the QT does nothing since the condition text()=10
is not satisfied.

The step 2 in Figure 16 illustrates that at the end
event of the book element in line 6, the QTs returns
to state 1 from state 2 and the finalize(I5) is executed.
Although both parts of the predicate in the second
location step is pending, the first part is evaluated
to true then since it uses the not() function, and
we then set the TRUE flag of I to ”10”. Since the
second part [quantity] is evaluated to false then,
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Figure 16: A test run for QT
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according to the marking rule, we set its FALSE map
in the FALSE flag the index node. The key of the result
index node is (2,2, 10, 1), which means that I5 is now
marked false, and we remove the link to ” XML” from
I and remove itself from its parent. Since there is
no other links to this ”XML” item in the queue, it is
removed from the queue.

The item ”Java” in line 8 is enqueued to the index
node I first, following a similar procedure for the
item "XML”. Step 3 in Figure 16 shows that when
we encounter the price element is line 10, the self-
transition from state 22 to itself is performed and the
condition is satisfied. Therefore the TRUE flag of Iy
is set and the key of I; becomes (1,1,1,00).

We then encounter the store element in line 12.
Since the state (0,0, r) is still in the current set, the
transition from state 1 to state 2 is executed again:
a new index node I, with key (1,4,0,00) is created
and becomes the child of r; another state (1,4, I4) is
created and put in the current state set. The process
is shown in step 4 of Figure 16.

When we encounter the name element in line 13,
there are two states that accept this event: S(1,1,17)
and S(1,4,I4. According to the checking rule, the
first state will ignore this event since its index node
has already been marked true. The second state will
process this name element, as in the step 5 in Fig-
ure 16, and the key of I is updated to (1,4, 1,00).

As shown in step 6 in Figure 16, for the book
element in line 14, the two states S(1,1,I;) and
S(1,4, I4) both accept this BEGIN event, but will cre-
ate the same new state associated with a new index
node I5 in the current state set: S(2,5, I5).

When we encounter the author element in line
16, only the state S(2,5,I5) will accept the begin
event since the other state S(2,2,I2) does not have
a matched depth, i.e., the author element has to be
the book element’s direct child. As shown in step 7
in Figure 16, this author element satisfies the con-
dition in marker QT in Figure 14, and the QT will
mark the index node I5. Since the last parameter of
the mark operation is "false”, which means that this
mark operation will mark the FALSE flag of the index
node with the FALSE map of the LFE, the result key
of the index node I5 is (2,5,00,1). Therefore, index
node I5 is removed from the hierarchical index, and
so is the state S(2,5,I5).1

The state S(2,2, I5) will accept the title element
in line 18 since the transition from state 2 to state 3
is a closure transition and will accept title elements
at any depth. Step 8 in Figure 16 shows that when
we encounter the quantity element in line 24, the
first part of the TRUE flag of index node I5 is set to
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1, as defined in the QT in Figure 15.

At the end of the book element in line 25, the final-
ize operation is executed and the second part of the
TRUE flag of index node I5 is set to 1 (since we have
not seen any author child of this book element that
is not ”John”). Since I5 is marked true now and all
the index nodes in the path from the root Ry to this
index node are true, the two items in the buffer are
sent to output.

7 Related Work

Generally speaking, evaluation methods of XPath
queries can be categorized into two main flavors: join-
based and navigation-based [6]. The prior [16] usually
evaluates all the steps separately and join the inter-
mediate results later. It can make use of the index
of data, which could be created on th fly or offline,
to speed up the evaluation. The latter (such as the
method we propose in this paper) usually needs to
parse the data and navigate through the document
tree every time it evaluates a path query. The nav-
igation could be step-based where a location step is
always evaluated on the result set of previous loca-
tion step, such as the method used for XPath pro-
cessing in the XSLT processor SAXON. The naviga-
tion could also be pattern-based, in which the pattern
specified by the query is matched dynamically during
the traversal of the document tree [7]. The traver-
sal could be mixed as well: pattern-based traver-
sal is used for simpler pattern or sub-pattern, while
complex patterns involves backward traversal usually
need to be evaluated step by step.

Many recent research on streaming XPath pro-
cessing focus on filtering applications such as
subscription-publishing systems [1, 12, 17]. The fil-
tering systems use XPath expressions as filters and
focus on grouping large number of XPath filters to
share the computation on common segments. Unlike
our querying system, the filtering systems does not
need to handle the buffering problems since any non-
empty result set will satisfy the filter expression and
the whole document or document id is returned to
the user. Therefore, an XPath query in a filtering
system always degrades to a simpler boolean query.
For example, filter expression //R//S is equivalent to
filter expression //R[//S], which returns true if one
R element has an S descendant. However, in a query-
ing system, we have to output all the S descendants
of all the R elements.

The XPush machine [17] uses a bottom-up tree
pattern matching algorithm to match the patterns
specified by XPath queries with the XML streams.



Each subquery is evaluated bottom-up in its syntax
tree, which is converted to an alternating automaton
[9]. Tt is efficient in the filtering setting, but not easy
to be applied in the querying system that needs to
return the required portion of the document. More-
over, since it matches the patterns bottom-up and
thus predicates are evaluated at the end of the ele-
ments, it is not straightforward to extend the method
to return the result as early as possible.

In the information broker system [14] that can eval-
uate large number of XQuery queries by path shar-
ing, an automaton-based method is used to match the
path expression with the data and an iterator-based
approach is used to evaluate the predicate and con-
struct the result. It is a novel approach to evaluate
XQuery queries on streams, but the system has to
perform join operations on the intermediate results
to evaluate the predicates. To avoid such join oper-
ations, we can use our method to directly return the
results for the path expression with the predicates
and then use an iterator-based method to construct
the final result.

The XAOS system [3] handles reverse axes in
XPath expressions in streaming environment. It uses
two data structures called X-tree and X-dag to fil-
ter out the irrelevant nodes in the stream and store
only the relevant nodes in a matching structure. At
the end of the stream, the XAOS system traverses
the matching structure and output the results. As
far as we know, XAOS is the first streaming XPath
evaluation system that handles the reverse axes. It
also allows subqueries (without value comparisons
and not () function) in the predicate. Although we
can modify the algorithm to check the data struc-
tures periodically to output the results that are cur-
rently available, it is not clear how we can extend
the method to guarantee the minimum-latency out-
put and optimal buffering. Moreover, if the not ()
function is allowed in the predicate, the relevant el-
ement used inside the not () function may actually
falsify the predicate, which means store the relevant
elements may not be a good choice.

The XQuery query engine [15] uses an iterator-
based approach in which each function and operator
is implemented as an iterator. An iterator consumes
the output streams from its input iterators and pro-
duces a single stream, which may used as the input
of the other stream. XPath expressions are also im-
plemented in the form of XPath steps using iterators.
The paper does not specifically distinguish between
the subqueries in the XPath predicates and the whole
XPath queries.

Unlike the above streaming XML processing sys-
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tems that mainly deal with the complexities caused
by XML queries in a streaming environment (such as
tree pattern matching in a restricted pre-order traver-
sal of the document tree), there are several streaming
systems that focus on general streaming processing.
Designed for monitoring applications, the Aurora sys-
tem [8, 10] processes data streams using a large trig-
ger network where each trigger is essentially a data-
flow graph and generated from a persistent query.
The original application that issues the query obtains
the result of the query from the trigger network, also
in streaming form. The Fjords architecture [19] con-
sists of a queuing system and a set of sensor proxies to
manage multiple queries over streaming sensor data.
The queues are used to route data between the oper-
ators in a query plan. The sensor proxy can adjust
the sample rate of the sensor based on the queries and
permit different users share data from the sensor.

These system architectures are designed to be
working with operators in query plans. Instead of
letting the operator retrieves data from the stream di-
rectly, they provide mechanisms (such as the trigger
network in Aurora and the queuing system in Fjords)
to handle the stream in an aggregated manner and
provide those operators with the data they need (usu-
ally in streaming form as well). Such mechanisms are
the key to support large number of queries simultane-
ously while keeping high throughput. These architec-
tures are easier to be applied on iterator-based XML
query processor. It is an interesting problem to study
whether we can use the automaton-based approach in
these architectures to process XML streams.

8 Performance Evaluation

8.1 Experimental Setup

We have implemented the methods presented in ear-
lier sections in the XSQ system using Java (SDK
1.4.0.01) and the Xerces2 parser (2.4.0). We re-
fer to this implementation as XSQ-S. We have re-
leased our system under the GNU GPL license at
http://www.cs.umd.edu/projects/xsq/. We con-
ducted our experiments on a PC-class machine with
an Intel PIIT 900MHz processor and 1GB of RAM
running the Redhat 7.2 distribution of GNU/Linux
(kernel 2.4.9). The memory limit for the Java virtual
machine was set to 750MB.

Systems We compared XSQ-S with the five other
systems listed in Figure 17. For each system, we used
the latest version available at the time of experimen-
tation. (At that time, we were unable to obtain the



Name Version Environment Query | Subquery | Method Parser
XSQ 2.0 streaming XPath | yes navigation | Xerces
XMLTK | 1.01 streaming XPath | no navigation | xparse
Joost 20030914 streaming STX manually | navigation | Xerces
Saxon 6.5.2 main memory | XSLT | yes navigation | Xerces
XALAN | 2.4.0 main memory | XSLT | yes N/A Xerces
XXTF 2003-01-30 | main memory | XPath | yes join Expat
Figure 17: Systems
Name Size Text | Elements | Elements | Avg Max Throughput (MB/s)
(MB) | (MB) (K) per MB | depth | depth | Xerces Expat xparse
NASA 25 15 477 19,028 | 5.58 8 5.59 16.8 21.5
DBLP 119 56 2,990 25,032 | 2.90 6 4.44 15.9 18.8
PSD 716 286 21,300 29,757 | 5.57 7 4.83 14.4 16.5
XMark-s 29 20 417 14,276 | 5.55 12 6.52 20.6 27.0
XMark-m 117 81 1,666 14,242 | 5.55 12 8.47 20.6 26.7
XMark-1 1172 811 16,703 14,251 | 5.19 12 9.23 20.3 26.2
Figure 18: Datasets

XAOS and BEA systems, discussed in Section 7.)
The systems differ considerably in their goals and
features. Here, we highlight only the features rele-
vant to streaming XPath processing. XML toolkit
(XMLTK) [2] is a set of XML tools developed at the
University of Washington. The xrun program in this
toolkit evaluates an XPath query using a DFA gener-
ated from the query. Joost is an implementation of
the streaming XML transformation language STX [4],
which uses XSLT-like stylesheets. XMLTK and Joost
do not support queries that need buffering. XMLTK
does not accept queries whose semantics may require
buffering at runtime (e.g., a predicate that tests the
existence of a child element). In Joost, if an item in
the stream matches the pattern but some of the pred-
icates cannot be determined by the current available
data, we have to manually program the stylesheet to
buffer the contents and set flags for the result of the
predicate. We did not consider this manual buffer-
ing approach in our evaluation. Saxon and Xalan
are two widely used high-performance XSLT proces-
sors. XPATH from XMLTaskForce (XXTF) is an
implementation of the algorithms of Gottlob, Koch,
and Pichler [16]. These systems (Saxon, Xalan, and
XXTF) are non-streaming systems that need to build
a DOM tree in main memory before query evaluation
commences.

Datasets Some properties of the principal datasets
used in our experiments are summarized in Figure 18.
We used three real datasets that vary in size and
other characteristics: (1) the ADC astronomy re-
search dataset from NASA [5], (2) the DBLP bib-

liographic dataset [18], and PIR-International Pro-
tein Sequence Database (PSD) [23]. We also used
three synthetic datasets, generated using the XMark
benchmark [22]. The small (Xmark-s), medium
(Xmark-m), and large (Xmark-1) datasets were
generated using XMark scale factors of 0.25, 1, and
5, respectively.

Metrics We study three main metrics for stream-
ing query processors: throughput, memory footprint,
and output latency. We define the normalized
throughput of a system as the ratio of its raw
throughput (rate of input consumption) to the raw
throughput its parser. We use normalized through-
put instead of raw throughput in order to factor out
the effect of varying parser efficiency, which is not
the focus of our study. As depicted in Figure 18, the
Xerces Java parser [24], used by the systems imple-
mented in Java, is much slower than the C parsers:
expat [11] used by XXTF and xparse [2] used by
XMLTK. (The xparse program in XMLTK counts
the number of elements in a document using the same
parser as xrun. Its throughput should be close to that
of the pure parser.)

We measure the memory footprint of each sys-
tem using the ps program. The maximum amount
of memory that each system allocated during the
streaming evaluation of the entire dataset is recorded.
For Java-based systems, this footprint includes the
memory used by the Java virtual machine.

We also measure the output latency of each sys-
tem, defined as the time elapsed after the system
starts query evaluation and before it returns the re-
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sult. We measure both response time, which is the
elapsed time before first result element is produced,
and average latency, which is the average of the
latency of each element in the result. The response
time and average latency is measured as follows. The
result of every system is directed to the standard out-
put. For a query that returns an element with name
N, we monitor the standard output to detect the start
tag <N> and record the elapsed time when we receive
each such tag. The clock is started at the time the
system begins evaluation. The time we receive the
first result element is the response time of the sys-
tem. For each result item, we refer to this time as its
latency, and the average latency of the system is the
average of the latency of all result items.

Queries We used a large set of test queries in our
experiments. Since the performance of the systems
depends on the query, the dataset, and the relation
between them, we varied the features of the tested
queries for every system on every dataset (that it can
handle). Figure 19 lists the organization of our ex-
perimental results and shows the varied features of
the queries.

Two important features of the queries we studied
are the element-selectivity and event-selectivity of a
query (or a specific location step in a query). The
element-selectivity stands for the number of ele-
ments that are used in the evaluation of a query,
which could be matched by either the main trunk
or a subquery of the query. The event-selectivity
stands for the number of SAX events that the query
engine has to response to evaluate the query. For
example, consider the query /sites for the XMark
dataset, where the sites element is the only top-
level element. Its element-selectivity is 1 since it se-
lects only one element. However, its event-selectivity
is the number of SAX events generated from the
dataset since a query engine has to respond to ev-
ery event to construct the result. As we illustrate in
this section, in general, streaming systems are more
sensitive to the event-selectivity of the query while
the navigation-based main-memory systems are more
sensitive to the element-selectivity.

Main results We highlight here the main results of
the experimental study. They are explained in more
detail later.

e XSQ can evaluate XPath queries with complex
subqueries on datasets as large as a few giga-
bytes, using almost constant amount of main-
memory, and providing very high throughput
(usually 50% of the throughput of a parser).
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e For XPath queries with subqueries, XSQ can
output the results as soon as they are available,
while other systems that support such queries
cannot return the result until the evaluation is
finished. Therefore, even given enough mem-
ory so that we can evaluate the query using the
main-memory systems, the streaming evaluation
approach still has the benefit of smaller output
latency.

e Navigation-based systems and join-based system
are sensitive to different query features. The
join-based XXTF system requires larger amount
of memory for the intermediate result if the
query contains value comparisons in the sub-
query. Main-memory navigation-based Saxon
and Xalan’s performances degrade when the
query contains closure axes in location steps with
large element-selectivity. For the streaming sys-
tems (XSQ, XMLTK, and Joost), their perfor-
mance is affected mostly by the event-selectivity
of the queries.

e The streaming systems perform worse in denser
datasets that have smaller elements than in
datasets that have larger elements since the prior
generate fewer SAX events for data of the same
size. Performance of main-memory systems is
not sensitive to the density of the dataset (al-
though they use SAX parser to parse the data).

e Shortcutting the evaluation of the subqueries can
improve the performance significantly in certain
queries. However, not all the systems are taking
the advantage of the shortcuts.

8.2 Subqueries
datasets

on  main-memory

We first compare the performance of the systems
when they evaluate XPath queries with subqueries
on main-memory datasets, whose whole DOM tree
can fit in the main memory. In our experiments,
although main-memory systems (Saxon, Xalan, and
XXTF) use different amount of memory to build the
DOM tree, they can all process the XMark-s, XMark-
m, NASA, and DBLP datasets. Since XMLTK and
Joost do not support complex subqueries, we do not
include them in the experiments in this section.

We first tested the scalability of the systems when
applied to different sizes of datasets given enough
main memory. We used XMark to generate 10
datasets with the scale factor set from 0.05 to 0.5
stepping 0.05 (sizes from 5.7MB to 58MB). Fig-



Section | Subquery Datasets Supporting Systems Varied features
8.2 yes NASA XMark-s | XSQ,Saxon,Xalan, XXTF | selectivity, number of location steps,
DBLP,XMark-m number of closure axes
8.3 yes PSD ,XMark-L XSQ selectivity, number location steps,
number of closure axes
8.4 no NASA XMark-s | XSQ,Saxon,Xalan, XXTF | selectivity, number of location steps
DBLP,XMark-m | XMLTK, Joost number of closure axes
8.5 no PSD,XMark-L XSQ, XMLTK, Joost selectivity, number of location steps
number of closure axes
8.6 yes NASA XSQ,Saxon,Xalan, XXTF | boolean operators

Figure 19: Organization of experimental study
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Figure 20: Throughputs of query on XMark datasets

Q2://site//regions//samerical//payment and
//mailbox[//mail//from]l]//item[quantity or shippingl//name
Q3://regions//samerical//payment="Creditcard" and
//mailbox[//mail//from]]//item[quantity=1 or shippingl//name
Q4://regions//samerica//item[quantity=1 or shipping and

//payment="Creditcard" and //mailbox[//mail//from]]//name

Figure 22: Complex queries on XMark-s dataset
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Figure 21: Memory usage of experiments in Figure 20

Query
Queries are the same as in Figure 22.

Figure 23: Complex queries on XMark-m dataset
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Figure 24: Complex queries on NASA dataset

ure 20 depicts the normalized throughput of the sys-
tems when querying the datasets. Figure 21 depicts
the maximum memory usage during the evaluation.
The linear memory usage for the three main-memory
systems, who need to load all the data into main
memory, is as expected. It is not clear why Saxon
uses almost the same amount of memory for datasets
from 29MB to 47MB, and then uses around 150MB
more memory for 5MB size increase from 47MB to
52MB. Since XSQ does not need store all the data
in main memory, its memory usage is almost con-
stant. From Figure 20 we can see the normalized
throughputs of Saxon, XSQ, and XXTF are almost
constants, while Xalan’s performance degrades when
the size of the dataset increases. We also tested (not
included here) larger XMark datasets generated using
larger scale factors. Xalan fails to evaluate the query
in our experiments when the factor becomes larger
than 0.9. For dataset with scale factor 0.8, it evalu-
ated the query in around 65 seconds; with factor 0.9,
it ran for more than three hours and we terminated
the process. The reason why Xalan did not scale up
in our experiment is not clear, but should not be in-
sufficient memory since the memory usage was stable
at around 360MB during the three hours’ running.

We also tested other complex queries on the XMark
datasets. For the same set of queries, Figure 22
and Figure 23 depict the throughput of the systems
on XMark-s(29MB) and XMark-m(117MB) datasets.
We chose the queries so that Q1 contains only child
axes in the main trunk while Q2 replaces all the child
axes with descendant-or-self axes. Q3 has similar

22

structure as Q2 but has two value comparisons in two
of the subqueries. Q4 is transformed from Q3 by move
two subqueries from the second location step to the
third location step. The two moved subqueries in Q4
need to be evaluated for every item elements insides
the samerica element. In contrast, they need to be
evaluated once in Q3 for the only samerica element
in the document. All the predicates evaluate to true
for these queries, and the result sets are the same.
The normalized throughput of XSQ and Saxon are
almost the same for both datasets. XSQ has almost
the same throughput for all the four queries since
they involve almost the same set of elements. As a
support for our previous speculation, Xalan can an-
swer the queries over the XMark-s dataset but not
over the XMark-m dataset.

Performance of navigation-based systems is not af-
fected as much as the join-based systems by the com-
parisons required by subqueries. Since they compare
the values during the traversal of the data, either in
main memory or streaming form, usually the inter-
mediate result set is small. Figure 25 depicts the
memory usage for the queries in Figure 24. XXTF
is slower and uses more memory in query Q1 and Q3
than in Q2 and Q4 since evaluating Q1 and Q3 in-
volves value comparisons. Moreover, evaluating Q1
requires less memory and is faster than Q3. In the
NASA dataset, there are 14,512 initial elements
whose value are tested by Q3, while there are only
5,935 year elements whose value is tested by Q1.

We also tested complex queries on the DBLP
dataset. The results are illustrated in Figure 26.
The previous conclusions are supported by this set of
experiments as well.
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Q3: /dblplinproceedings[url and booktitle="B"] and
phdthesis[school and year=1984]]/article/title

Q4: /dblplinproceedings[url and booktitle="B"]]
//article[journal and year=1989]//title

Figure 26: Complex queries on DBLP dataset

8.3 Subqueries on large datasets

We also tested XSQ for complex queries on large
datasets. Since the systems that support such queries
(XXTF, Saxon, and Xalan) need to build the entire
DOM tree in the main memory, we cannot test them
using our current setting. Therefore, we only used
the XSQ system to test complex queries over the PSD
dataset (716MB) and the XMark-1 dataset(1172MB).
The results are illustrated in Figure 27 and Fig-
ure 28.

For queries on the XMark-1 dataset, we used sev-
eral queries different than the queries in Figure 22
and 23. Those queries lead to similar results as il-
lustrated in those two figures. In this experiment
we varied the structure of the queries, e.g., Q1 and Q3
have four location steps and three of them have pred-
icates, two predicates in Q2 use all the boolean oper-
ators and the first predicate is deeply nested, and Q4
has only two location steps and the first location step
has a very complex predicate. For all these complex
queries, XSQ achieves consistent high throughput.

XSQ’s performance is affected by event-selectivity
of the query, i.e., how many SAX events XSQ has to
response in order to evaluate the query. For example,
in the PSD dataset, each of the first three queries se-
lects only a small amount of elements as the result.
The last three queries have similar structures as the
previous three but with much larger result set, since
they do not specify value comparisons in the predi-
cates in the subqueries. The result sizes (in bytes)
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//mailbox[//from]l]//item[quantity>=2 or shippingl/name
Q2:/site[regions[africa or //mailldate]]]//item[//shipping
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Q3://regions[africal/asial//location]//item[//shipping and
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Q4:/site[//seller and //price>10 and //item[//shipping and
not (//quantity=2)11//name

Figure 27: Complex queries on XMark-1 dataset
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Ql: //referencel[//refinfol[year=1981 and citation]]//author
Q2: //ProteinEntry[organism/source="human" and
header/accession="A31764"]//protein//name

Q3: //ProteinDatabase[//referencel[refinfo[//volume=238 and
year=1963]11//ProteinEntry [header/uid="CCCZ"]//genetics

Q4: //referencel[//refinfol[year and citation]]//author

Q5: //ProteinEntry[organism/source and
header/accession]//protein//name

Q6: //ProteinDatabase[//reference[refinfo[volume and

year]]]//ProteinEntry[header/uid]//genetics

Figure 28: Complex queries on PSD dataset



are listed below.

Ql: 98,229 | Q4 161,058,001
Q2: 37| Q5 12,936,858
Q3: 44 | Q6: 16,106,474

As Figure 28 illustrates, the throughput of XSQ is
not affected by the result size as much as one may
expected. One reason is that the first three queries
need to test the value comparisons against the in-
coming data, while the last three do not need to per-
form such value comparisons. When evaluating Q2
and Q3, since XSQ has to perform string comparison
for all the ProteinEntry elements, the throughputs
are even slightly slower than those of Q5 and Q6 who
have larger result set.

The performance of XSQ is affected by the se-
lectively of the query, not the result size. XSQ
is significantly slower when evaluating Q1 and
Q4 than the other queries because there are
314,763 reference element and 5,983,050 author
subelements in the dataset. In contrast, there are
only 262,525 ProteinEntry elements and each of
them has only one name and at most one genetics
subelement.

8.4 Simple queries on main-memory
datasets

For simple queries without predicates, the perfor-
mance of different system is influenced by the fea-
tures of the query differently. Streaming systems get
lower throughput for queries with higher selectivi-
ties. Saxon gets lower throughput for queries with
closure axes on location steps that are matched with
large number of elements. Surprisingly, the join-
based XXTF is not affected significantly by the num-
ber of location steps and the number of closure axes.

We first tested a set of queries with different num-
ber of location steps on XMark-s. The results are
depicted in Figure 29. In general, the streaming
systems are not affected much by the number of lo-
cation steps. Their performance, however, is affected
by the event-selectivity of the query. Main-memory
systems are not sensitive to the event-selectivity of
the query. Since they load the whole document tree
into the main memory, the difference between the
evaluation cost of a processed element and the cost
of an unprocessed element is not as significant as in
the streaming system. In this set of experiments,
Xalan and XXTF’s throughputs are similar for all the
five queries. Saxon’s performance, however, degrades
when the query contains closures axes in the location
steps of large element-selectivity. For example, it per-
forms better in query Q1 and Q5 than the other three
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Figure 29: Simple queries on XMark-s datasets
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Figure 30: Simple queries on XMark-m datasets

queries since there are only a few regions elements
but thousands of name elements in the dataset.

We tested the same queries in Figure 29 on the
XMark-m dataset. The results are illustrated in Fig-
ure 30, which are similar to those illustrated in Fig-
ure 29. We note that since the dataset is 117MB,
Xalan fails to evaluate the query Q2 and Q3. How-
ever, it can evaluate query Q1, Q4, and Q5, who either
has no closure axes or has only one location step. If
we compare the queries used in Figure 30 with the
queries in Figure 23 and Figure 26, it seems that
Xalan’s method to handle multiple closure axes can-
not scale up to large datasets.

Simple queries with different number of location
steps and closure axes are also tested in the NASA
dataset and DBLP dataset. The results are depicted
in Figure 31 and Figure 32. Our previous conclu-
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Q1:/datasets/dataset/tableHead/fields/field/name
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Q5://field//name
Q6://name

Figure 31: Simple queries on NASA datasets
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Figure 32: Simple queries on DBLP dataset
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Figure 33: Simple queries on XMark-1 datasets

sions, e.g., XXTF and the streaming systems are not
sensitive to the number of location steps, are sup-
ported in these Figures.

We note here that the throughputs of the streaming
systems on the NASA dataset and DBLP dataset are
smaller than the throughputs on the XMark datasets.
As we illustrated in Figure 18, the NASA data and
DBLP dataset have more elements per megabytes of
data than the XMark dataset, i.e., the datasets are
denser. Denser datasets generate more SAX events
and lead to longer parsing time for the SAX parsers,
as illustrated in Figure 18. Therefore, streaming sys-
tems need to process more events in a denser dataset,
and the throughput will be smaller in the denser
datasets than in the XMark datasets.

8.5 Simple Queries on Large Datasets

We also tested simple queries for the XMark-1 and the
PSD dataset. Since the main-memory systems can-
not process these large datasets due to the memory
limit, we only tested the streaming systems on these
datasets.

For the same set of queries in Figure 29, we apply
them on the XMark-1 dataset of size 1,172MB, which
is generated using XMark with scale factor set to 10.
The results, which are depicted in Figure 33, illus-
trate similar pattern as Figure 29 and Figure 30. For
example, XMLTK performs best for queries without
closure axes.

We also varied the number of location steps and
number of closure axes for queries over the PSD
dataset. The result are depicted in Figure 34. It
also illustrates that these streaming systems are not
sensitive to the number of location steps and closure
axes. Moreover, since PSD is the densest dataset
among the datasets we used (its number of elements
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/authors/author
Q2://ProteinDatabase//ProteinEntry//reference//refinfo
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Q4://ProteinEntry//author

Q5://author

Figure 34: Simple queries for PSD dataset

per megabytes is almost twice as many as the num-
ber for the XMark datasets), the throughput of the
streaming systems are smaller than the throughputs
for other datasets for the queries have similar struc-
tures.

8.6 Processing boolean operators

We use the next set of experiments to explore how
different boolean operators used in the predicates af-
fect the performance of the systems. This set of
queries is executed on the NASA dataset, which is
small (25MB) so that the main-memory system can
evaluate most queries over it. It is also denser than
the XMark-s dataset so that XSQ is not benefited
from less SAX events.

Figure 35 illustrates the normalized throughputs
of the systems when they evaluate queries with AND
operators. All the subqueries evaluate to true ex-
cept //related//related in Q6. Navigation-based
systems seem to be insensitive to the number of
subqueries in the predicate, since they need to tra-
verse the document tree once no matter the pred-
icate contains how many subqueries. For exam-
ple, XSQ performs almost the same for the Q1 and
Q6 although Q6 has two more subqueries. How-
ever, XSQ’s performance degrades in Q5 since the
not(//related//related) subquery can evaluate to
true only at the end of every reference element.
Therefore, XSQ has to buffer every name element and
output them at that time, which is the worst-case sce-
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Figure 35: Queries with AND operators

nario for a streaming system that buffers the candi-
dates. It is expected that the main-memory systems
should not be sensitive to the number of queries con-
nected by the and operators. Saxon performs bet-
ter in the other queries than in Q2 since there are
9,788 name elements in the single datasets element.
with total size 1,349KB (while there are 2,667 name
elements in the reference element with total size
98KB). However, it is not clear why Xalan’s perfor-
mance degrades significantly for Q5 and Q6.

The join-based system XXTF is sensitive to the
number of subqueries, since it needs to generate more
intermediate result. However, for subqueries that
does not involves value comparisons, the intermedi-
ate result set is small (and does not affect the per-
formance as much as the subqueries that generates
larger intermediate result set), since we only need to
record the existence of the tested element. For ex-
ample, although Q4 and Q5 contain more subqueries
than Q1, XXTF’s throughputs for them is similar to
the throughput for Q1. However, XXTF performs
better in Q1 than in Q2 and Q3 since the latter two
contain value comparisons. (XXTF reports runtime
error for Q6.)

Figure 36 illustrates the throughput of the sys-
tems when they evaluate queries with NOT opera-
tors. Since predicates with the NOT operator can
be falsified before the end of the elements, we ex-
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Figure 36: Queries with NOT functions

pected that some predicates that can be decided ear-
lier will affect the performance. In the test queries,
since the datasets element has only dataset chil-
dren, the subquery not(dataset) should be falsi-
fied very early. Navigation-based system can take
advantage of shortcutting the evaluation while the
join-based system seems cannot. For example, the
throughput of Saxon in Q2 is very small (as explained
in the results of Figure 35), but its throughput in-
creases significantly in Q3 where the additional sub-
query not(dataset) can be falsified early in the
traversal of the document tree. XSQ and Xalan also
take this shortcut and evaluate Q3 faster than Q2.
XXTF, however, does not benefit from this fact and
performs almost the same for Q2 and Q3.

The next set of queries are used to illustrate
the performance of the systems when they evaluate
queries with OR operators. The results are depicted
in Figure 37. In the queries, all the subqueries
evaluate to true except for dummy in Q4, which is
a node test that never appears in the dataset, and
//related//related in Q5. XSQ performs almost
the same for all five queries, which are as expected,
since XSQ stops evaluating these predicate as soon
as one of the subqueries is true. It is not clear why
XALAN performs the same for the first four while
degrades significantly for Q5, which is unusual since
the subquery source//publisher should be evalu-
ated to true very early. It is also not clear why Saxon
performs better in Q1, Q4, and Q5 than in Q2 and Q3.
Although XXTF also performs better in Q1, Q4, and
Q5, we believe the value comparisons in Q2 and Q3
degrades the performance of the system.

In general, shortcutting in predicate evaluation can
improve the performance of the system. However, it
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Figure 37: Queries with OR operators

is not straightforward in XPath evaluation due to the
hierarchical structure of the XPath queries. It is clear
that not all systems are taking it into account.

8.7 Output Latency

We also tested the output latency for the systems
on the NASA dataset. The results are illustrated in
Figure 38 and Figure 39. The left part of each
figure illustrates the time every system returns the
first result item, and the right part illustrates the
average time every system uses to return a result el-

ement. (The time to load the JVM is included in
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Figure 38: Output Latency
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both metrics for the Java-based systems.) The query
used in Figure 38 has no predicate. The query used
in Figure 39 has two predicates, and we did not test
the XMLTK and Joost systems in the second exper-
iments.

As we would expect, streaming systems usually
have smaller response time and average output la-
tency than the main-memory systems. Note that in
extreme cases (e.g., set a predicate that cannot be
evaluated until the end of the data), the streaming
system, like XSQ, has to wait until the end to output
result. For main-memory systems, the response time
is usually close to the average latency since they usu-
ally output all the result at the same time after the
evaluation is finished.

9 Conclusion

We addressed the problem of subquery evaluation in
XPath. We focused on streaming data, but our meth-
ods also benefit non-streaming environments because
of the advantages of sequential access. Subquery eval-
uation in a streaming environment is a challenging
problem if one is to avoid naive approaches that lead
to excessive buffering and low throughput. We de-
fined three desirable properties for a streaming XPath
processor: optimal buffering, minimum-latency out-
put, and parsimonious predicate evaluation. These
properties further complicate the query evaluation
task.

Our solution is organized around a pushdown
transducer that is augmented with a queue. Although
such a transducer is not of theoretical interest (since
it is equivalent to a Turing machine), this design re-
sults in a clean design that permits an efficient im-

plementation. Our method supports features such
as nested subqueries with complex predicates, and
are fully implemented in the XSQ stream processor,
which is publicly available. To our knowledge, it is
the only streaming XPath engine that supports sub-
queries.

We characterized the performance of our method
using a detailed experimental study. Although there
are very few systems that are directly comparable
to XSQ in their goals and features (queries instead
of filters, streaming data, complex queries, etc.), we
presented experimental results for several related sys-
tems (many non-streaming) to illustrate the costs of
supporting various XPath features.

In continuing work, we are investigating stream-
ing evaluation for more complex features (e.g., re-
verse axes) and query languages (e.g., XQuery). We
are also working on combined processing of a large
number of XPath queries. We believe that some of
the work on Information Dissemination systems (e.g.,
[13]) may be combined with our method for this pur-
pose.
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