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ABSTRACT
We motivate and present a definition of optimal buffering
for streaming evaluation of XPath queries. We consider a
large fragment of XPath that includes multiple (correlated)
subqueries and reverse (up the document tree) axes. We de-
scribe a method for XPath evaluation with optimal buffer-
ing. We present the results of an experimental evaluation of
our methods based on our implementation, which is freely
available.

1. INTRODUCTION
XPath [5] is an important query language for XML, which
is now used as a standard data format in a wide range of
application such as data integration and information dis-
semination. XPath is a succinct yet powerful path language
that can used to address parts of the XML documents. In
most database systems that support XML, XPath is sup-
ported either as a standalone query language such as in the
native XML databases [32, 16], or used together with SQL
such as in the XML-extended relational databases [27, 17].
Moreover, it is a key component of other higher level XML
query or transformation languages such as XQuery [4] and
XSLT [31]. These languages usually use XPath to select a
subset of the document tree and apply higher level opera-
tions, such as transformation rules and joins, on the selected
subset. As XPath being such an important component of
these database systems and languages, efficient evaluation
method of XPath queries will benefit their performance.

An XPath query consists of a path expression called the lo-
cation path that contains a sequence of location steps. For
example, the following query returns the authors who wrote
a book about XML:
/descendant-or-self::book[subject="XML"]/child::author.
There are two location steps in the query which are sepa-
rated by ”/”: descendant-or-self::book[subject="XML"]
and child::author. Each location step contains an axis
before the ”::” which specifies the relation between the cur-
rent element and elements selected by previous location step,

e.g., the author element should be a child of the book ele-
ment in the previous location step, a nodetest which spec-
ifies the name of the element that is selected by this step,
and an optional predicate such as child::subject="XML"

that is enclosed in the brackets and specifies the conditions
the selected elements have to satisfy. In XPath’s abbrevi-
ated form in which the default axis is the child axis and the
descendant-or-self axis can replaced by ”//”, the above
query becomes much shorter: //book[subject="XML"]/author.

Although its form looks like the regular expressions, XPath
is more powerful since it can use arbitrary XPath queries in
the predicate and boolean operators to connect those sub-
queries. Moreover, XPath provides a set of thirteen axes
that allows the query specify almost arbitrary pattern in
the document tree. Since the predicates could be themselves
complex patterns, traditional pattern matching algorithms
can hardly be applied in XPath evaluation. Only recently
did a polynomial evaluation algorithm for XPath is proposed
in [10], which separates the path query into pairs of tags con-
nected by parent-child or ancestor-descendant relations and
joins the intermediate results after the pairs are retrieved
from the data.

However, current evaluation methods are very inefficient
when evaluating reverse axes such as parent and ancestor,
as we will illustrated in the experimental results. The fun-
damental difficulty caused by the reverse axes is that they
incur bottom-up traversal in the document tree while the
tree is usually traversed in pre-order. In streaming environ-
ment, since seeking-back in the stream is usually not allowed
or very expensive, this difference seems to be irreconcilable,
or even claimed by some researcher ”impossible”.

Nevertheless, reverse axes are important for the users. Firstly,
it empower the user to specify more complex patterns. With-
out reverse axes, XPath queries can only specify tree pat-
terns, while with reverse axes the pattern could be a graph
instead of tree. The details are explained further in this
paper and a simple example here will show the difference.

Example 1. Some queries cannot be easily specified with-
out reverse axes. Suppose we have a book dataset in which
books are grouped by the publishers, which means that the
book elements are children of the publisher elements. If we
want to find a book that is either about XML or is published
by O’Reilly, we have to use the parent axis:
//book[subject="XML" or parent::pub="O’Reilly"]. For



such queries that the ancestor is optional, reverse axes are
needed.

The reverse axes are also very convenient for user to specify
query that can fit data of various DTDs or schema. For
example, in the scenario of information dissemination, it is
very likely a query issued by the user will be applied to
heterogeneous data sources.

Example 2. It is very likely different book datasets orga-
nize the books differently. Suppose we want to find the book
that is written by W3C and published by O’Reilly. How-
ever, the books can be grouped by the publisher, by the au-
thor, by both (in either order), or not grouped at all in
which case the author and the publisher are children of the
book instead of ancestors. With reverse axes, we can issue
this query as: //book[pub="O’Reilly" or author="W3C"

or ancestor::pub="O’Reilly" or ancestor::author="W3C"].

Moreover, some queries are more naturally composed using
reverse axes. Since it is always the last location step that
specifies the elements desired by the user, it is sometime
more naturally think the ancestors as the prerequisites of
the desired elements, which can be specified in the predicate
instead of in the location path.

Example 3. In natural language processing, it is usually
more straightforward to specify a child element in a parse
tree of a sentence and refer to its ancestors. For exam-
ple, the following query asks for the noun phrase that has a
noun ”book” and appears in a top level verb phrase (whose
parent is the root of parse tree of the sentence) and contains
a verb ”read” and: //NP[ancestor::VP[parent::root and

//V=read] and //N=book]] (Here N is for noun, NP for
noun phrase, and etc.) This query can be written without
reverse axes, but its semantics are retained more explicitly
using the current form.

If the user cannot use reverse axes directly in the XPath
query, the user has to either specify equivalent queries with-
out these features or program on the intermediate result
to get the final result. These approaches usually cause more
management overhead and hard to maintain afterward. There
are methods proposed such as in [26] to rewrite the XPath
queries with reverse axes into equivalent queries without
reverse queries. However, the method will either generate
equivalent queries with join operations, which are difficult to
evaluate (especially in streaming environment), or generate
exponential number of queries (connected by disjunctions)
with respect to the size of the query.

A solution to process the reverse axes in streams is to buffer
all the data needed to evaluate the query and postpone the
evaluation, which is used in the XAOS system [3]. There are
three limitations of this approach. First, in the case of infi-
nite stream, the evaluation may be unnecessarily postponed
infinitely. Second, even if the predicate for an element is
already evaluated, the method will still buffer the elements
that are used in the predicate. Third, even the results of
the predicates are all known, the correct result will not be

sent to output and the items that has been proved not in
the result are still buffered. Because of these limitations,
this type of solution is inefficient and not viable for environ-
ments that need to process infinite streams or desire eager
output.

We addressed the problem of streaming evaluation of XPath
with predicates and closure axes in [28]. As we show in [28],
multiple predicates and closure axes make it non-trivial to
evaluate XPath queries over streaming XML data. As we
tried to extend the work to handle reverse axes, the ”irrec-
oncilable” difference between the semantics of the reverse
axes and the restrict of pre-order traversal made it difficult
to apply the HPDT-based approach in the presence of re-
verse axes. An important assumption used in the HPDT ar-
chitecture is that every predicate can be determined before
the end of the element, which no longer holds with reverse
axes in the predicate. However, after analyze the semantics
of the more complex XPath queries with reverse axes, we
found that it is still possible to process them in the stream-
ing environment, which will be presented in this paper.

In this paper we propose a new method to evaluate XPath
queries with reverse axes in the streaming environment. Based
on a novel rewriting method that rewrites any XPath query
into an equivalent single step XPath query and a compact
dependency graph that encodes the relations among the un-
determined elements for the query, the new method is proved
to be efficient for both queries with and without reverse axes.
Moreover, it needs only one pass of the data, even if there are
arbitrary number of reverse axes in the query. Another de-
sirable feature, especially useful in streaming environment,
is that the results are emitted as soon as they are avail-
able. The memory usage of our approach is optimal since
it buffers only the undecided potential result items. When
evaluating complex predicates that may contain arbitrary
subqueries connected by boolean operators, the algorithm
terminates the evaluation of the predicate at the time the
result is determined.

We may summarize our main contributions in this paper as
follows:

• We define optimum buffering for streaming evaluation
of XPath queries. Although the basic idea is simple,
XPath features such as subqueries and reverse axes
make a precise definition non-obvious. We note that it
is very easy to generate query-stream pairs that require
an unbounded buffer. Thus, we cannot hope to de-
sign algorithms with any fixed constraint on the buffer
size.1 Thus, this definition provides a guide for de-
signing space-efficient algorithms for streaming XPath
evaluation.

• We describe an efficient method for the streaming eval-
uation of XPath queries with optimum buffering. Our
method supports a large fragment of XPath, includ-
ing features such as multiple subqueries and reverse
axes. (The main feature not included in this fragment
is positional and sibling axes. ) We provide a detailed
justification of our claim of optimum buffering.

1We do not consider approximate query evaluation in this
paper.
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• We describe the implementation of our method in the
XSQ streaming XML engine. Our implementation is
freely available at http://www.cs.umd.edu/projects/
xsq/.

• We present an experimental evaluation of our methods.
Our results suggest that the analytical properties of
our method map well to practical benefits.

The paper is organized as follows. In Section 2, we intro-
duce the XPath language and the SAX model used in the
paper. We then define the problem of optimal buffering in
Section 3. Our approach and the algorithms are then in-
troduced in Section 4. The correctness of the approach is
briefly discussed in Section 5. Some implementation related
discussion is presented in Section 6. In Section 7 we dis-
cuss some of the related works. The experimental results
are illustrated in Section 8.

2. PRELIMINARIES
2.1 XPath
XPath queries consists of a sequence of location steps of
form a::n[p] where a is an axis whose value can be one of
{self,child, descendant, descendant-or-self, parent,

ancestor, ancestor-or-self} in this paper, n is a node-
test that specifies the tag of the elements that may match
this location step, and p is an optional predicate that spec-
ifies the condition the element has to satisfy to match this
location step. The condition can be a single XPath query,
which we call a subquery, or several subqueries connected
using boolean operators (and, or, and not).

An axis is always evaluated on a context. The context con-
tains an element, together with the size of the ordered result
set where the element resides and the position of the element
in the result set, If we do not refer the position of the element
in the query, which is the case in the queries considered in
this paper, we can ignore the size and position components
if the context. Therefore, we can consider that an axis is
always evaluated on a current element.

The axes child (which is the default axis if no axis is spec-
ified), descendant, and descendant-or-self (abbreviated as
//) are called forward axes since they refer to the set of el-
ements that are visited later than the current element in pre-
order traversal of the document tree. Their counter parts
parent, ancestor, and ancestor-or-self (abbreviated as aos)
are called reverse axes since they refer to the set of ele-
ments that have been visited earlier than the current element
in the pre-order traversal. We denote ar as the counterpart
of an axis a, e.g., childr is parent . Note that the axis self
refers to the current element, and self r is still self.

2.2 Single-step XPath query
Every XPath query can be rewritten into an equivalent XPath
query that contains only one location step and returns the
same result set. Each subquery in the predicate can also
be rewritten into a single step without changing its seman-
tics. We call such an XPath query as a single-step query,
in which the query itself and every subquery in it has only
one location step. The rewritten process is based on the
following two rules.

Subquery collapse For every subquery that has two or
more location steps in the query in the form of /a1::n1[p1]/q,
we rewrite it into /a1::n1[p1 and q]. If p1 or q has two or
more steps, this rule is applied again until every subqueries
contains only one location step.

Step wrapping The following two XPath queries are
equivalent:
/A1::N1[P1]/A2::N2[P2]/Q

//N2[P2 and Ar
2::N1[P1 and Ar

1::ROOT]]/Q

Since we can always append the implicit step /self::ROOT

(ROOT nodetest matches the document root of every XML
document), this rule can be applied to every XPath query. A
single-step XPath query such as /child::N is rewritten into
//N[parent::ROOT]. Therefore, for an XPath query (not
subquery) in SSNF /A::N[P], A is always //.

Note that ancestor::ROOT (or aos::ROOT) are true for ev-
ery element in the document. Therefore, we can remove all
ancestor::ROOT and aos::ROOT from the rewritten query
and only keep parent::ROOT that are used in the query.

In an single-step query /A::N[B], we call N as the unique
selecting nodetest of it. B is in the form of f(p1, p2, ...pk)
where pi is a single-step query and f is a boolean function.

Example 4. Consider the following query:
/Z//X[ancestor::Y[R]//S or //W[not(aos::T//K)]]

First, the subquery collapse rule can be applied on the sub-
query ancestor::Y[R]//S, and the result if ancestor::Y[R
and //S]. The Step wrapping can be applied to the query
and the result is //X[P and aos::Z[parent::ROOT], where
P is the original predicate of X.

2.3 Evaluation Tree
We model the XPath queries as a evaluation tree extended
with a node predicate at each node. To distinguish the
nodes in the evaluation tree and the nodes in the document
tree, we refer the latter as elements in following discussion.

Unlike the syntax tree used by XPath evaluation algorithms,
the evaluation tree separates the structure information and
the logical information contained in the query. Therefore,
for each element that may be matched in the query, we
can determine easily which elements may affect its matching
with the query, and which elements may be affected by the
matching between this matching.

In a evaluation tree, each node is associated with a string
as its label and a node predicate of all its children. We refer
a node with label n as node n. (A simple rename process
can solve conflicts caused by multiple nodes labeled with
the same string.) Pn is used to denote the parent of node
n. The edge between Pn and n is labeled with an axis a,
denoted as An. The node predicate of node n, denoted as
Bn, is a boolean function in which every child node of n is
used exactly once.

To build the evaluation tree of query Q, we first transform
Q into an equivalent single-step query Q′. We then trans-
form Q′ into a evaluation tree as follows. For a single-step
query /A::N[f(p1,p2,...pk)], the root node of Q, denoted
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as Qr is labeled as N and the evaluation function BQr
is

f(n1, n2, ..., nk) where ni is the selecting nodetest in sub-
query pi. In the sequel, we also call the subquery pi as sub-
query ni since the former is essentially the subtree rooted at
ni. Note that the nodetest ni is also used as a variable name
here. Assigning value true to subquery ni means that the
variable ni is set to true in the evaluation of Bn.

An example of the evaluation tree of the example query used
in Example 4 is depicted in Figure 1. The node-predicate
are depicted as boolean expressions enclosed by the boxes.
Nodes without explicit node predicate are either leaf nodes
whose node predicates are empty or nodes with only one
child C and the node predicates are f(C) = C.

2.4 Evaluation of XPath Queries
The problem of XPath evaluation is defined as follows. Given
an XML data tree T , an XPath evaluation tree Q, an ele-
ment e in T matches (or unconditionally matches) a node
n in Q if and only if e’s name equals the label of n, and the
node predicate of n Bn (if non-empty, otherwise always true)
evaluates to true given the following assignment: child node
c of n (the edge between them is labeled as Ac) is assigned to
true if and only if an element e′ can be reached via axis Ac

from e and e′ matches c; otherwise c is assigned to false.
We use Bn(e) to denote the result of evaluating boolean
function Bn given the assignment for every subquery in the
predicate of e.

It is not hard to illustrate that the elements that match Qr

consist of the result set of the query. The process of the
computing the matching is a bottom-up evaluation of the
single-step query.

The above definition of matching is recursive. To determine
the matching between an element e and an evaluation tree
node n, we need to know for every child node c of n, whether
there is an e′ that matches c. In streaming XPath evalua-
tion, we are limited to a single pre-order traversal of the
document tree, and therefore such information is not always
available.

In streaming XPath evaluation, an element e can condi-
tionally matches an evaluation tree node n: if e has the
same name as n, and Bn(e) evaluates to na (stands for pend-
ing results) with the following assignment for every child
node c of n: c is assigned to true if and only if an element
e′ can be reached via axis Ac from e and e′ unconditionally
matches c; c is assigned to false if and only if there is not
such element e′; if we cannot decide whether such element
e′ exists, c is assigned with na, in which case we also say
e is pending on subquery c. The evaluation of boolean
expression with value nafollows the three-valued logic.

There are two situations that c is assigned with value na.
Consider the time when we first encounter element e in the
stream. For every child node c of n, if Ac is a forward axis,
c should be set na. Although there is not any descendant
elements of e that matches c, it is possible that such element
may come in the future. If Ac is a reverse axis, and c is con-
ditionally matched by an ancestor of e, c should be assigned
to na as well.

R and S not(T)

(Y or W) and ZX

parent

/Z//X[ancestor::Y[R]//S or //W[not(aos::T//K)]]

ancestor

S ROOT

aos

W

child

R T

K
//

//

Y Z

//aos

Figure 1: Sample query and evaluation tree

Therefore, we distinguish the child nodes of n into two sets:
the forward set that contains all the child nodes that con-
nected to n via forward axes, and the reverse set that
contains all the child nodes connected to n via reverse axes.

In the sequel, we explicitly distinguish the unconditional
matching as in our original definition from the conditional
matching. When we say element e matches node n, we mean
only e’s name is the same string as n’s label.

3. OPTIMAL BUFFERING
In this section, we define what we mean by optimal buffering.
The key idea is that a buffering strategy is optimal if, at any
position in the stream, all elements in the buffer are elements
that must appear in the buffer of all XPath query engines
(that evaluate queries exactly). We refer to these elements
as useful elements, and characterize them below.

To simplify the presentation, we will use a very simple model
of the buffer in which each element is either entirely buffered
(all information stored) or completely discarded (no infor-
mation retained). Thus, the buffer may be thought of as a
subset of the elements seen so far in the input. As discussed
in later section, our method uses a more flexible model, per-
mitting, for example setting bitmaps based on the presence
of elements of a certain type. (In particular, our method
buffers only a flag for each useful element that matches a
non-root node of the query tree.) The definitions we present
below can be easily adapted to that model and others like
it.

We use S(e) (and E(e)) to denote the positions of the at
which the start (respectively, end) tag of an element e in
the input stream. At any point in time, the prefix of the in-
put data stream that has been encountered forms a partial
document tree. We say an element is open if we have
encountered its start tag but not its end tag. The rest of
the elements in the partial document tree are closed. We
maintain a stack of the open elements in the usual manner
(push on start tag, pop on end tag). If T is a partial docu-
ment tree of document tree T ′, we say T ′ is an extension
of T (and T is a prefix of T ′) and use X(T ) to denote the
set of all extensions of T .

We denote the result of evaluating an XPath query Q on tree
T by Q(T ). For a partial document tree T and an XPath
query Q, we use D(Q, T ) to denote the definite result of
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Q on T . Intuitively, D(Q, T ) is the set of elements that are
known to belong to the result based only the information in
T , irrespective of the rest of the document tree. Similarly,
we use P (Q, T ) to denote the potential result of Q on T .
Intuitively, P (Q,T ) is the set of elements whose membership
in Q(T ′), for some extension T ′ of T , cannot be determined
(positively or negatively) using only T .

Definition 1. For an XPath query Q and a partial doc-
ument tree T , the definite result is defined as

D(Q, T ) = {e ∈ T | ∀T ′ ∈ X(T ) : e ∈ Q(T ′)}
The potential result is defined as

P (Q,T ) = {e ∈ T | ∃T ′ ∈ X(T ) : e ∈ Q(T ′) − D(Q, T )}

We note D(Q, T ) 6= Q(T ). For the query Q = A[not(B)]

and the tree T = (R((A(B))(A))), Q(T ) consists of the sec-
ond A element, but D(Q, T ) is empty because there are
extensions of T in which that element is not in the result
(e.g., T ′ = (R((A(B))(A(B))))).

We define a null tag ⊥ that does not match any node-
test in any XPath query. We use T − e to denote the tree
obtained by renaming e to ⊥ in T . (In Section 4, we use the
subroutine setUseless(e) to transform the current tree T to
T−e.) The idea here is that if we replace all useless elements
in a document tree by ⊥, the evaluation of the query is not
affected. To formalize what we mean by not affected, we
define the future results for query Q, partial document
tree T , and T ′ ∈ X(T ) as F (Q,T ′) = Q(T ′)−D(Q,T ). The
useful nodes for evaluation tree Q at a time t when partial
tree T has been encountered are defined as follows:

Definition 2. (Useful and useless elements for par-

tial document tree T and evaluation tree Q.) The root
of T is useful. Let F (Q,T ′) = Q(T ′)−D(Q, T ). An element
e ∈ T is useless iff ∀T ′ ∈ X(T ) : F (Q,T ′ − e) = F (Q, T ′);
otherwise e is useful.

From the definition, it follows that once an element e is
deemed useless, it cannot become useful at some later point
in the stream. The expiration point for an element e, de-
noted by K(e), is the earliest point (in the stream) at which
e is useless. A related concept is the decision point of
an element. Suppose element e matches query-tree node n.
The stream position, if any, at which e satisfies n’s predi-
cate is called the positive decision point of e. Similarly, the
stream position, if any, at which e falsifies its predicate is
called the negative decision point of e. If e does not match
any evaluation tree node, its negative decision point is taken
to be B(e), its begin event.

Definition 3. The buffering performed by a streaming
query evaluation method is optimal iff at each position in
the stream the buffer contains only useful elements.

We may detect an element is useless at various points in
the stream. For some elements, we may detect that it is
useless at time S(e) (e.g., the element that does not match

ROOT

X1 Z1

Y1

T1

W1

T2

W2

K1

R2

Y2

X2

X3

X4

X5

S1

S3

S2

R1

Figure 2: Sample data tree

ROOT

Z1

X2

X3

X4

Figure 3: A modified partial tree

any node in the query tree). An element Y for query //X/Y

is useless at point S(Y ) if we detect that the stack top is
not an X element. For other elements, we may only detect
that it is useless at a later time. For example, an element X

for query //X/Y becomes useless only at E(X) after which
there can be no Y children of this X element can appear.
As a slightly more complex example, consider the query
X[ancestor::Z[not(T)] on the stream depicted in Figure 2.
Consider the point in time just before element T1 is encoun-
tered. The partial tree at this point is depicted in Figure
3. At point S(T1), all elements Z1, X2, X3, and X4 become
useless because they cannot contribute to future result set
any more.

4. STREAMING XPATH EVALUATION
The evaluation algorithm is described as a pair of event han-
dlers that respond to begin and end events in the stream.
The pseudocode for these handlers is listed as Listings 1 and
2, with pseudocode for the propagation and pruning subrou-
tines appearing as Listings 3 and 4. For ease of presentation
only, we ignore the text contents of elements in the following
description. The actions for such events are very similar to
those described here. (Our implementation supports such
events and predicates on text contents.)

During the evaluation, consider the arrival of an element e

in the stream. If e’s label does not match any node in the
evaluation tree, then e is not useful for query evaluation in
any form (neither as potential result data nor as data that
satisfies predicates in the query). Thus, no actions need be
taken for e. (However, we need to process e’s descendants
separately.) Such useless elements are immediately removed
from the buffer. We use setUseless(e) to denote the oper-
ation of removing a useless element from the buffer. This
subroutine is also called when a useful element becomes use-
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less, as described later (e.g., line 8 of Listing 1).

With every useful element e, we associate two arrays: An
assignment array, e.assignment, records which subqueries
in e’s predicate have been satisfied. Let n be the query-tree
node that is matched with e. For each child c of n, if the sub-
query represented by c is satisfied for e, then e.assignment[c]
refers to the element matching c that yields a true evaluation
of this subquery. (If multiple elements yield a true evalua-
tion, only the one encountered earliest is referenced.) If the
subquery represented by c is not satisfied, e.assignment[c]
holds the truth value false if the subquery is known to be
false and na otherwise (if the subquery cannot be deter-
mined to be true or false at this point in the stream). When
we evaluate Bn(e) (the node-predicate of n, for element e)
the variable c in Bn is assigned true, false, or na depending
on whether e.assignment[c] refers to an element, stores false,
or stores na, respectively. (Recall, from Section [ To do ],
that the node-predicate associated with a node of the evalua-
tion tree is different from the predicate of the corresponding
location step of the query. For example, for the location step
X[Y//Z and //R/S]], BX is [Y and //R].) The second ar-
ray associated with each element e is the pending array,
e.pending. This array indicates, for each pending subquery
c of e, the elements (possibly none) that can be used to sat-
isfy c. For all c, e.pending[c] is initially the empty set and is
nonempty iff e.assignment[c] is na.

In the event handler BeginHandler (Listing 1), we pro-
cess an element e whose label matches the label of evalua-
tion tree node n. Element e is useful only when n’s node-
predicate for e, Bn(e), evaluates to true or na and e can
be used by some useful elements (either current or future).
We evaluate Bn(e) as follows. All subqueries in Bn that
test e’s descendants are set to na. The value of each sub-
query c in Bn that tests e’s ancestors is determined using
the checkStack(c) subroutine. This subroutine first checks
the stack for an ancestor e′ of e that matches c (uncondi-
tionally). If such an e′ is found, checkStack(c) returns true.
Otherwise, the subroutine checks whether there is an ances-
tor e′ that conditionally matches c. If such an e′ is found,
it returns na. Otherwise, it returns false to denote that no
ancestor satisfies the subquery c for element e. A similar
subroutine pendingInStack(c) returns elements from the
stack (which are all ancestors of the current element e) that
conditionally match c.

If Bn(e) evaluates to false, we can ignore element e since it
falsifies its predicate. If the result is either true or na, e can
be useful if one of the following conditions holds: (1) Node
n’s axis An (connecting n to its parent Pn in the evaluation
tree) is a forward axis and some ancestor (in the document
tree) e′ of e requires e in its predicate. In more detail, we use
the requiredInStack(n) subroutine to scan the stack for
an ancestor that may use e to evaluate its subquery, n. For
each element e′ in the stack whose label matches n’s label,
e is added to e′’s pending array iff e′.assignment(e) is na

(implying e′’s subquery n is unsatisfied). (2) Axis An is a
reverse axis. In this case, e may be used by its descendants,
which have not yet been encountered because of the preorder
serialization of the document tree.

The event handler EndHandler is mainly used to address

the existential quantification semantics of XPath predicates.
At the end event of element e, every e’s pending subquery c

that tests e’s descendants will be set to false(unless some
pending descendants conditionally matches c and is waiting
for result from e’s ancestors).

Consider an element e that unconditionally matches a evalu-
ation tree node n. If n is Qr, the root node of the evaluation
tree, e is a definite result item. We can simply set e as use-
less (as illustrated in line 5 in Listing 2) since all we cannot
generated new result content from e and e will not be used
in the predicate of future elements. If n is not Qr, e must
be used in the evaluation of the predicate of other element
that matches Pn, the parent node of n. If the axis connects
n to its parent Pn (An) is a forward axis, e must be used in
the predicate of its ancestor elements. At least one of the
ancestors is a useful element, otherwise e cannot be useful.
Since e is still used by its ancestor, we do not need to per-
form any action for this event. If An is a reverse axes, e is
used in its descendants. Unless there are descendants of e

are still useful, e can be deemed as useless, as in line 9 in
Listing 2) .

At the end of a pending element e, every pending subquery
that tests a descendant of e should be falsified. However, in
the presence of reverse axes, it is possible that a descendant
of e is waiting for the result from an ancestor of e that is
still undecided at the end of e. This event handler deals
with both cases and re-evaluates predicates for e as needed.

In Listing 2, from line 13 to line 17, we set to false every
subquery that is still unsatisfied and not depend on any
descendant elements (and therefore cannot be satisfied in
the future). The predicate of e is evaluated if there are
subquery changed form na to false in the previous step. If
the result is: (1) true the processing is very similar to the
case when we encounter an element that unconditionally
matches a node, except that the new result needs to be
propagated; (2) false, e has been proved to be useless; (3)
na, e is still useful since e is useful before this event and its
predicate result is unchanged. These cases are handled in
Listing 2 from line 18 to line 36.

When an element e reaches its positive decision point, we
emit it as a result item if e matches Qr, the root of the eval-
uation tree. If e matches a non-root interior node n then
it either (1) is currently used by some other element whose
subquery n is pending (when An is a forward axis) or (2)
will be used in the future (when An is a reverse axis). (Oth-
erwise e would not be useful.) In the first case, e satisfies the
subquery n for those elements, which may change the pred-
icate result for those elements. The change may make those
elements reach their decision point and perhaps become use-
less. The propagation subroutine (Listing 3) outlines how
usefulness information is updated in this manner.

Using the arrays assignment and pending, we can also de-
termine the used-by relationships between useful elements.
Only open useful elements (elements whose end tags have
not been encountered) can be used directly to satisfy a sub-
query for any future element. Closed useful elements are
useful only because they are used by other useful (buffered)
elements. Therefore, when a useful element e becomes use-
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less, all the useful elements used only by e also become use-
less. The pruning subroutine (Listing 4) outlines how use-
lessness information is updated in this manner.

5. PROOF OUTLINE
Detecting new useful elements Once an element is
deemed useless, it remains useless. Therefore, new useful
elements appear only at begin events. Consider the arrival
of the begin tag B(e) of element e assuming that only useful
elements are currently in the buffer. If e does not match any
node in the evaluation tree then e does not affect the query
evaluation in any way and is simply ignored with no changes
to the buffer. If e does match an evaluation tree node n, e

is useful in three cases: (1) e is a result item or a potential
result item; (2) e is used in the predicate of some current
pending useful elements to satisfy their pending subquery n;
(3) e may be used in the predicate of future useful elements.
All three cases are handled by the procedure in Listing 1.
For the first case, it is only possible if n is the root of the
evaluation tree. This case is handled from line 3 to line 15.
For the second case, only the ancestors of e (since e’s de-
scendant cannot come before e) can use e in their predicate
if they conditionally match evaluation tree node Pn, which
is the parent node of n. Since e is the new element, all its
ancestors should be open and therefore in the stack. As il-
lustrated in line 23, we deem this new element as useless if
no element in the stack requires it. For the third case, since
e is used in the predicate of future element, e must be used
an ancestor in the predicate (since we do not allow sibling
or following axis). This case is handled in 16. In all cases,
we need to evaluate the predicate for e. Only when the eval-
uation result is true or na can we deem the new element as
useful. As we described before, an element that falsifies its
predicate will not be used in the evaluation because of the
existential semantics of XPath.

Detecting expiration points After we detect the useful
element at the time we encounter them, we need to illustrate
that we properly detect their expiration point, i.e., the point
a useful element becomes useless.

A useful element e that unconditionally matches a node n

(i.e., e has already reached its positive decision point) may
reach its expiration point in the following cases: (1) e is a
result item and e is closed; (2) e is used in another useful
element e’s predicate and e′ is no longer useful; (3) e may be
used in future element’s predicate, but e is closed and not
used by any current useful element.

The first case is simple and handled in line 5 in Listing 2.
The second case can be only caused by propagated results.
It will be discussed in more detail later in this section. We
now only discuss the expiring elements not caused by the
propagated results. The third case is handled in line 9 in
Listing 2. In this case, no future element will use e in their
predicate since e may only be used in its descendant ele-
ments. We do not need to prune the other current useful
elements because none of them is using e in their predicate
evaluation (i.e., in their assignment array.) Otherwise e will
not be deemed as useless.

A useful element e that conditionally matches a node n (i.e.,
e has not yet reached its decision point) also reach its ex-

Listing 1 Handler for begin events

1: {Process the begin event of element e whose label matches
that of query-tree node n.}

2: BeginHandler(Element e, Node n)
3: if n = Qr then {n is query-tree root}
4: getInitAssignment(e, n);
5: if Bn(e) = true then
6: emit e; {e is a result item}
7: else if Bn(e) = false then
8: setUseless(e); {ignore e henceforth}
9: else {Bn(e) = na}
10: for every c in n.ReverseSet do
11: if checkStack(c) = na then
12: e.pending[c] ← PendingInStack(c);
13: end if
14: end for
15: end if
16: else if An is a reverse axis then {An is n’s axis}
17: {e is useful for future elements}
18: getInitAssignment(e, n);
19: if Bn(e) =false then
20: setUseless(e);
21: end if
22: else {An is a forward axis}
23: if not requiredInStack(n) then
24: setUseless(e);
25: else
26: getInitAssignment(e, n);
27: if Bn(e) = false then
28: setUseless(e);
29: else if Bn(e) = true then
30: for every e’ in stack pending on n do
31: checkPending( e, e’, n );
32: e’.assignment[n] ← e;
33: end for
34: propagation(e, n);
35: else {Bn(e) = na}
36: for every e’ in stack pending on n do
37: e’.pending[n] = e’.pending[n] ∪ e;
38: end for
39: end if
40: end if
41: end if
42:
43: {Scan the stack for e’s ancestors that are used in n’s predi-

cate.}
44: getInitAssignment(Element e, Node n)
45: for every c in n.ReverseSet do
46: e.assignment[c] ← checkStack(c);
47: end for
48: for every c in n.ForwardSet do
49: e.assignment[c] ← na;
50: end for
51:
52: {When a subquery n of e′ is satisfied by e, the previous ele-

ments in e′.pending[n] may become useless.}
53: checkPending( Element e, Element e’, Node n)
54: for ∀e′′ ∈ e′.pending[n], e′′ 6= e do
55: if 6 ∃x : x 6= e′ ∧ e′′ ∈ x.pending[n] then
56: setUseless (e”);
57: pruning( e”, n );
58: end if
59: end for
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Listing 2 Handler for end events

1: {Process the end event of an element e that matches query-
tree node n.}

2: EndHandler(Element e, Node n)
3: if Bn(e) = true then
4: if n = Qr then {root of the evaluation tree.}
5: setUseless(e);
6: pruning(e, n);
7: else if An = reverse axis then
8: if 6 ∃e′ : e′.assignment[n] = e then
9: setUseless (n); {no pruning}
10: end if
11: end if
12: else if Bn(e) = na then
13: for every c in n.ForwardSet do
14: if e.assignment[c] = na ∧ e.pending[c] = ∅ then
15: e.assignment[c] ← false

16: end if
17: end for
18: if e.assignment is changed then
19: if Bn(e) = false then
20: setUseless (e);
21: pruning(e , n);
22: else if Bn(e) = true then
23: if n =Qr then
24: emit e;
25: setUseless(e);
26: pruning(e, n);
27: else {n is used in other predicates.}
28: propagation(e, n);
29: if An = reverse axis then
30: if 6 ∃e′ : e′.assignment[n] = e then
31: setUseless (e);
32: end if
33: end if
34: end if
35: end if
36: end if
37: end if

Listing 3 Propagation of usefulness information

1: {n is not the query-tree root and Bn(e) = true.}
2: Propagation(Element e, Node n)
3: for every e’ such that e ∈ e’.pending[n] do
4: {e’ matches n’s parent Pn in evaluation tree}
5: checkPending(e, e’, n);{subquery n for e′ is satisfied by e}
6: e′.assignment[n]← e; {eval. for e’ uses e}
7: if BPn

(e’) = true then
8: if Pn = Qr then
9: emit e’ as a result item;
10: setUseless(e’);
11: pruning(e’, Pn); {propagate uselessness from e’}
12: else
13: propagation(e’, Pn); {recurse up evaluation tree}
14: end if
15: else if BPn

(e’) = false then
16: setUseless(e’);
17: pruning(e’, Pn);
18: end if{skip case BPn

(e’) = na}
19: end for

Listing 4 Pruning useless elements

1: {Element e is falsified or deemed useless and n is a non-leaf
query-tree node}

2: Pruning(Element e, Node n)
3: for every c ∈ n.ForwardSet ∪ n.ReverseSet do
4: x ← e.assignment[c];
5: {e uses x}
6: if ((∀e’ matching n : (e′ 6= e → x 6= e′.assignment[c])) ∧

(c ∈ n.ForwardSet ∨ x is closed)) then
7: setUseless (x); {x is not used for anything else}
8: pruning(x, c); {recursive pruning of subtree}
9: end if
10: end for
11: for every x that matches Pn do
12: x.pending[n] ← x.pending[n] − {e};
13: if x.pending[n] = ∅ and An = reverse axis then
14: x.assignment[n] ← false;
15: end if
16: if BPn

(x)=false then
17: x . setUseless(x);
18: pruning(x, Pn);
19: else if BPn

(x) = true then
20: propagation(x, Pn);
21: end if
22: end for

piration point in the above three cases. The difference in
the processing of case (1) and case (3) is that we need to re-
evaluate the predicate for e. Since e is closed, every pending
subquery of e that tests the descendant of e is now falsified.

For the case (1), if the evaluation result is true, e is now
a definite result item and is returned to the user. It is also
deemed as useless afterward. If the result is na, e must be
still pending on some ancestors since we have assigned all
pending subqueries testing descendants to false. Therefore,
e is still possible to be a result item, and thus till useful. If
the result is false, e reaches its negative decision point and
is deemed as useless.

In case (3), e is always useless after the evaluation since it
is not needed after the evaluation, and it can not be used in
the predicates of future elements. The evaluation is needed if
there are elements pending on e, i.e., have e in their pending
array.

Moreover, a useful element e that conditionally matches a
node n may become useless if e reaches its negative decision
point. Since we do not consider the propagated result, we
consider every element that reaches its negative point in its
own begin event or end event. For elements that are falsified
in its begin event, the case is simple since no other useful
element will be affected by this new element, as in line 19
and line 27in Listing 1. (Recall that an element is useful for
all possible extension of the current partial document tree.)
For element that is falsified in the end event because of the
new assignment for pending subqueries testing descendants,
we also need to prune other elements that are falsified by
this fact, as illustrated in line 19 in Listing 2.

Decision Propagation Consider a useful element e that
matches a node n and Bn(e) evaluates to na reaches its de-
cision point. The decision point could be either the positive
decision point when Bn(e) evaluates to true, or negative de-
cision point when Bn(e) evaluates to false. In either case
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some current useful elements may become useless. Here we
only locate those elements directly affected by e’s decision
point. Other affected elements can be located recursively in
similar manner.

The pruning process is performed when an element e condi-
tionally matches evaluation tree node n reaches its negative
decision point. An other useful element e′ may also reach its
decision point (either negative or positive) because of this
fact. First, e cannot be matching a leaf-node n: since n has
no predicates, e’s decision point is always at time B(e) (and
therefore cannot conditionally match n at first and reach the
decision point later).

When e matches a non-leaf node n reaches its negative point,
first we consider n’s child nodes in the evaluation tree. Since
e is useful before the current point, Bn(e) evaluates either
to true or na.

The first set of useful elements that may be affected by the
falsifying e are elements that match n’s child node and there-
fore are used in the evaluation of Bn(e). If an element in
this set is e’s descendant, it becomes useless as well since it
is used only in e’s predicate and can no longer affect other
elements. This case is handled from line 3 to line 10 in
Listing 4. Note that it is possible that some descendant ele-
ments of e used in the evaluation of Bn(e) are used by some
ancestor e′ of e that matches the same node n. These de-
scendant elements will stay useful. If an element in this set
is e’s ancestor, they are still useful if either they are open in
which case they may be used by future siblings of e that also
match n, or they are closed but are used in the evaluation of
Bn(e′), where e′ is a useful element that matches n as well.
This case is handled from line 3 to line 10 in Listing 4.

The second set of useful elements that may affected by the
falsifying e are the elements that match n’s parent in the
evaluation tree and thus use e in their predicate evaluation.
This case is handled from line 11 to line 22 in Listing 4.

Since e is useful before this point, there must exists an ele-
ment e′ that matches Pn must be waiting for the result of
Bn(e) (otherwise e is useless). e′ may also waiting for other
useful elements that also matches n. If there exists such e′′

that matches n and is depended by e′, Bn(e′′) should also be
na, otherwise e becomes useless at the point when Bn(e′′)
evaluates to true (processed in the Listing 3 at line 5). In this
case, e′ is still useful and waiting for the result of Bn(e′′). If
there does not exist such e′′, i.e., e′ is only waiting for e for
the result of subquery n. We have to examine the axis An

that connects n and Pn. If An is a reverse axis, e′ cannot
have future ancestor that matches n, therefore subquery n

is set to false for e′ and bPn
(e′) is reevaluated. If An is a

forward axis and e′ is still open, e′ may have future descen-
dant that matches n. Therefore, subquery n for e′ is still
na and e′ is still useful (since bPn

(e′) is not re-evaluated). If
An is a forward axis and e′ is closed, e′ can not have future
descendant that matches n. Therefore, subquery n is set to
false for e′ and bPn

(e′) is reevaluated.

The above prune process is applied recursively to all ele-
ments that are once useful and now reach their negative
decision point. It termination is guaranteed by the simple

fact we visit every element at most k times, each time when
one of its subqueries is satisfied.

Consider a useful element e that matches a node n and Bn(e)
evaluates to na. When it reaches its positive decision point,
some useful element may become useless as well.

There are two sets of element that are affected by e’s positive
decision point. The first set is elements that use e in their
predicate evaluation. The second set is elements that are
used by e in e’s predicate evaluation.

For an element e′ in the first set, e must in e′.pending[n]
since e is previously pending. We can determine two facts
here: (1) Every other element in e′.pending[n] is no longer
required for e′ to evaluate its predicate. Therefore, they
should become useless if they are not used by other elements.
This fact is handled from line 54 to 59 in Listing 3. (2)
The predicate of e′ needs to be re-evaluated since one of its
subquery is newly satisfied. Based on the new evaluation
result, e′ should be processed accordingly and the result
may need to be further propagated. This fact is handled
from line 6 to line 18 in Listing 3.

Consider an element e′ in the second set that matches a
child node c of node n. e′ must be in e.assignment[c]. e′ will
be useful if e is still useful. e′ will become useless when e

becomes useless and e′ is not used by other useful elements,
which is handled by the pruning process described earlier.

Note that the propagation and pruning process may be in-
terleaved. As we show during the reasoning, a falsifying ele-
ment may evaluate the predicate of some pending elements
to true, and a satisfying element may evaluate the predicate
of some pending elements to false. In any case, we can see
that the useful elements are correctly identified.

6. IMPLEMENTATION
Matching Stack An important operation in our method
is to scan the stack to look for ancestors with certain fea-
tures. For example, in line 46 in Listing 1, we have to check
the stack for every child node c of n, whether there is an
ancestor in the stack matches c (conditionally or uncondi-
tionally). Such checking requires O(d) time in the stack,
where d is the depth of the stack. In the implementation,
we store a matching stack for every node c in the evalu-
ation tree. In the matching stack of node c , we store the
pointers to the elements in the global stack that match c

(both conditionally and unconditionally) and keep a flag to
denote whether any of them unconditionally matches c. As
a result, the stack checking operation requires only constant
time. The space requirement is O(d + q) where q is the size
of the query.

Dependency Graph For every useful element e that
matches a evaluation tree node n, we have used explicit
arrays e.assignment and e.pending and an implicit depen-
dent set e.dependents = {e′|e ∈ e′.pending[n]}, which indi-
cates the elements that depend on e. Maintaining the depen-
dent set incurs a very small overhead because whenever we
add e to e′’s pending array, we add e′ to e’s dependent set.
The two arrays and the implied dependent set encode all the
dependencies among the useful elements. These dependen-
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cies form a directed acyclic graph, called the dependency
graph, with a node for each useful element and edges de-
noting dependencies. There is an edge from element e to
element e′ iff e is in the assignment array or the pending
array of e′, i.e., e is used or may be used in e′’s predicate
evaluation. In other words, the evaluation tree node n that
e matches is the child of the evaluation tree node n′ that e′

matches, i.e., n′ = Pn. Moreover, whether e′ matches Pn is
depending on whether e matches n. The matching between
e and n may be conditional, in which case Bpn

(e′) must
evaluate to na, and e ∈ e′.pending[n]; or unconditional, in
which case e = e′.assignment[n].

7. RELATED WORK
XPath evaluation has been the focus of much recent atten-
tion. Gottlob, Koch, and Pichler recently presented a poly-
nomial time algorithm for evaluating XPath [11]. Their algo-
rithm, based on dynamic programming, provides an O(D5Q2)
time bound and O(D4Q2) space bound (where D and Q de-
note data and query sizes, respectively). They also provide
a linear-time algorithm for an XPath fragment they call core
XPath, which includes structural and logical constraints on
the document tree but does not include value comparisons.
These algorithms use the fact that an XPath query can be
rewritten in O(Q) time into an equivalent, simpler XPath
query that uses only two types of axes: first-child and next-
sibling. These two axes, including their reverse axes and
their combinations, can be evaluated over any document
tree in O(D) time. However, these methods are difficult to
extend to streams because the necessary tuples of the next-
sibling relation are, in general, not available in a stream
when needed. In follow up work [9], these authors improved
the time bound to O(D4Q2) and space bound to O(D2Q2).
They also provide a method to evaluate a larger and very
practical fragment of XPath that can process arithmetic and
position functions (called Extended Wadler Fragment) in
O(D2Q2) time and O(DQ2) space.

There has also been work exploring the complexity of differ-
ent subsets of XPath [12]. Core XPath, although it can be
evaluated in linear time, is P-hard and therefore difficult to
parallelize. Further, without negation, an even larger frag-
ment, with arithmetic and position functions, can be evalu-
ated with logcfl combined complexity. Segoufin has stud-
ied the complexity of typing XML documents and querying
XML documents using core XPath with both DOM- and
SAX-like encodings [29]. The data complexity is proved
to be uTC0 for a SAX-like encoding, and logspace for a
DOM-like encoding. The paper also proves that the com-
bined complexity for core XPath without negation is logcfl.

Neven and Schwentick have demonstrated the use of monadic
second-order logic (MSO) for specifying complex patterns
over trees [25]. Gottlob and Koch have pointed out that
MSO is able to capture the node-selecting function of XPath
and can be used to investigate properties of XPath queries
[8]. The paper shows the analogies between XPath and MSO
queries and illustrate how to transform MSO queries into
simple acyclic rules.

Neven and Schwentick propose the use of a query automa-
ton (QA), which is a tree automaton extended with a se-
lecting function, to evaluate queries over ranked and un-

ranked trees [24]. The query automaton can capture all
unary queries expressible using MSO, and require a special
stay transition for unranked trees. In a query automaton,
the state of a parent may be changed only when the state
of all children is known, and states for all the children are
assigned at the same time when the down transition takes
place. For streaming data, these two transitions may not
be applicable directly. We may specify a dummy child that
corresponds to all unknown children, and thus allow both
transitions in the incomplete document tree.

Frick, Grohe, and Koch have proposed a bottom-up tree
automaton with a selection function, called selecting tree
automaton (STA) to evaluate XPath queries over binary
trees that encode the original trees using the standard first-
child/next-sibling method [20]. Koch has also provided a
two-pass evaluation algorithm for XPath [19]. This algo-
rithm first translates an XML document into a binary tree
and the XPath query into a tree-marking normal form pro-
gram. The program is then evaluated over the binary tree
using an STA in two passes: In a bottom-up pass, all possi-
ble reachable accepting states for every node are computed.
In the top-down pass, the conditions specified by the pro-
gram are computed for every node in order to prune the
states. Such a two-pass algorithm is a useful relaxation of
the single-pass methods we study, and merits further study.

Another automaton that has been studied in an XML con-
text is the tree-walking transducer. Although it is has not
been used to evaluate XPath query (to the best of our knowl-
edge), it has been applied to model programs in XML trans-
formation languages such as XSLT. Milo, Suciu, and Vianu
have defined a k-pebble tree-walking tree-transducer model
for XML transformation that can be used to check whether
the result of a transformation conforms to a DTD [22]. Neven
has proved that tree-walking automaton to be not relational
complete [23] even with relational storage (rather than sim-
ple registers) and look-ahead operation. However, such au-
tomaton is also proved to be able to catch all unary MSO
queries, and thus may be used in XPath evaluation. Al-
though streaming XML is traversed in depth-first order,
some transition combinations such as visiting previous sib-
lings, are not always applicable. We speculate that the tree-
walking machine, given some extensions, may be a good tool
for evaluating more complex XPath queries over streams.

Several systems have developed for streaming XPath pro-
cessing. Broadly, they fall into two categories: filtering and
querying. In a filtering system, often used in a publisher-
subscriber scenario, an XML document (in its entirety) in
the stream is returned to a user if the document matches
the XPath query specified by the user. Thus, no buffering
is needed to store potential result items. (More precisely,
such systems either return document identifiers, in which
case no buffering is needed, or documents, in which case
at most one document needs to be buffered at any time.)
The key challenge in a filtering system is evaluating a very
large number of queries simultaneously. The XFilter system
[1] translates XPath queries (without predicates) into finite-
state automata that are are indexed to permit efficient fil-
tering for all queries simultaneously. The YFilter system [6]
extends Xfilter’s method to use common prefixes of XPath
queries to combine the automata into a single automaton.
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It also supports conjunctive subqueries in predicates. The
XPush machine [14] uses an alternating automaton to evalu-
ate XPath queries with predicates. By training the machine
using sample documents, the throughput of the system can
scale up very well to support a very large number of queries.
Segoufin and Vianu have proposed mapping DTDs to push-
down automata for validating streaming XML [30]. This
problem can be considered as a filtering problem as well,
since the pushdown automaton can filter out documents that
satisfy the DTD.

Several XPath querying systems have also been developed.
XMLTK [13] is a set of XML tools developed at University
of Washington. The xrun program in the toolkit can eval-
uate XPath queries on large XML datasets. It uses a DFA
generated from the XPath query that takes the SAX events
as input and return the results of the query. The XAOS
system [3] can evaluate XPath queries with reverse axes and
predicates without negations over streaming data. It uses
two data structures called X-dag and X-tree to filter out the
related elements that may be used in the evaluation of the
query. At the end of a document, the query is evaluated
by traversing the two data structures. Our method, unlike
XAOS, focuses on the optimal buffering and optimal pred-
icate evaluation. On the other hand, the XAOS method is
simpler.

The streaming XQuery query engine described in [7] uses
an iterator-based approach in which each function and op-
erator is implemented as an iterator. An iterator consumes
the output streams from its input iterators and produces
a single stream, which may used as the input of the other
stream. XPath expressions are also implemented in the form
of XPath steps using iterators. It would be interesting to in-
vestigate whether we can optimize such iterator-based tech-
niques for the much simpler XPath queries and compare the
performance with other methods (such as our method and
the other automaton-based methods).

The evaluation of XPath queries is closely related to the
problem of tree pattern matching. Miklau and Suciu point
out [21] that XPath evaluation is essentially a different prob-
lem than the classical tree pattern matching [15] and the un-
ordered tree inclusion [18] problems. Most algorithms pro-
vided for the latter problems require post-order traversal of
the data tree. Hoffmann and O’Donnell provide a top-down
algorithm for the classical tree pattern matching problem
[15]. The algorithm needs only a preorder traversal of the
data tree. However, since it allows only parent-child edges in
the pattern and preserves the order of siblings in the pattern,
the algorithm cannot be directly applied to the patterns that
contain ancestor-descendant edges and do not imply orders
between siblings in the patterns (as is the case with XPath).

8. PERFORMANCE EVALUATION
The goal of performance study is to examine the throughput,
memory footprint, and output latency of our method. We
also compare the performance of XSQ with other systems
that can process XPath queries: Saxon (http://saxon.
sourceforge.net/), Xalan (http://xml.apache.org/xalan-j),
XPATH from XMLTaskForce (http://www.xmltaskforce.
com) (XXTF), and XMLTK [2]. XMLTK (version 1.01)
does not support XPath queries that need buffering. There-
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Figure 4: Throughput for XMark
datasets and a query without reverse
axes: //regions/samerica[//payment and

//mailbox[//from]]//item[quantity>=2 or

shipping]/name
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Figure 5: Memory footprints for the results of Fig-
ure 4

fore, we use it only in experiments using queries without
predicates and reverse axes. Saxon (version 6.5.2) and Xalan
(version 2.4.0) are two broadly used high performance XSLT
processor. XXTF is the implementation from XMLTask-
Force of the polynomial algorithms introduced in [10]. All
three systems are main memory systems that need to build
the DOM tree in the main memory before evaluation.

Metrics For each system tested in the experiments, we
measured the normalized throughput and maximum mem-
ory usage.

The normalized throughput of the systems is the raw through-
put of the system normalized by the throughput of the corre-
sponding pure parser that parses the data but does nothing
else. We wrote a pure parser in Java using Xerces2 Java
Parser 2.4.0 Release, which is used as the XML parser for
XSQ, Saxon, and Xalan in the experiments. We also wrote
another pure parser in C using Expat parser, which is used
by the XPATH program. XMLTK 1.01 provides a parser
program named XParse that parses the document and count
the number of elements in the document. Since the counting
process only needs one statement at the begin event of every
element, which should be very fast operation compared to
the parsing process, we use the XParse program as the pure
parser of the XMLTK system.
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query with two reverse axes:
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price>10 or descendant::quantity=1] or

ancestor::annotation[happiness>8]]

The maximum memory usage is the largest size of the mem-
ory that is allocated by the system during the evaluation.
For the Java-based systems, the memory allocated by JVM
is included in this value.

Setup We generated ten datasets using XMark bench-
mark program with the scale factor set to 0.5 to 5, step by
0.5. The sizes of result dataset range from 5.7MB to 58MB.
We ran all the experiments in a Pentium III 900MHz PC
with 1 GB of main memory running Redhat 7.2 distribution
of GNU/Linux (kernel 2.4.9-34). The maximum memory
the Java virtual machine can use was set to 512MB. The
running time is obtained using the GNU TIME(1) tool. Ev-
ery data point presented is obtained from the average of the
results of ten runs.

Varying sizes of the dataset We first tested the sys-
tems on various sizes of data. Figure 4 depicts the normal-
ized throughputs of the systems evaluating an XPath query
without reverse axes. Since XSQ’s running time is linear to
the size of the data, its throughput is usually constant for
different size of data.

Figure 5 depicts the memory usages of the systems in the
same set of experiments. The other three systems are main
memory systems that need to build the DOM tree before
evaluation. The linear memory usage of them is as expected.
(It is not clear why the memory usage for Saxon has the
curve as depicited in the figure.) For XSQ, only in the worst
case, where a predicate can be evaluated at the end of the
document, it is required to buffer all the data.

Figure 6 illustrates the normalized throughput of the sys-
tems evaluating a complex query that contains two reverse
axes in the predicates. We can see that the performance
of Saxon and XXTF degrades because of the reverse axes,
which implies more intermediate result for XXTF and more
document tree traversals for Saxon. XSQ and Xalan, how-
ever, are not affected as much. The figure also illustrates
that, even for complex queries, the running time of XSQ is
still linear to the size of the data.

Varying size of the query As we described in Section 6,
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Figure 7: Simple Query of Various Size.
Q1: /site/regions/samerica/item/name
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Q4: //regions//item//name
Q5: //regions//name
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Figure 8: Memory usage for query with reverse axes
in the main trunk.
Q1: //text
Q2: //listitem/a::parlist/a::site//text
Q3: //listitem/a::parlist/a::description/a::site//text
Q4: //listitem/a::parlist/a::description/a::item/a::site//text
Q5: //listitem/a::parlist/a::description/a::item/a::regions/a::site//text
Note: (1)Dataset size : 5.7MB.

(2)a:: is abbreviation for ancestor::.
(3)Saxon ran out of memory for Q2 and Q3.
(4)For Q4 and Q5, the scale for Saxon is 1/10.
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the throughput of XSQ is not affected by the total size of the
query and the closure axes of the query. Figure 7 illustrates
the throughput of the systems when evaluating queries with-
out predicates but with different number of location steps.
Recall that XSQ always rewrite the query into a single step
query (e.g., //regions//name → //name[aos::regions]),
which seems to complicate the query. However, as Fig-
ure 7 illutrates, XSQ’s throughput does not change much
when the query size increases (which introduces more re-
verse axes). We also note that XMLTK performs best for
queries without closure axes, for which it can use a deter-
ministic automaton.

Varying Number of Reverse Axes We also tested the
systems for various number of reverse axes in the query.
Figure 8 illustrates the memory usage for different systems
when evaluating a set of queries that contain different num-
ber of reverse axes in the main trunk of the query. Figure 9
depicts the throughput of the systems for the set of queries.
XSQ’s running time and memory usage are also not affected
by the number of reverse axes, as illustrated in this two
figures.

For XXTF, since it evaluate the query step-by-step, larger
intermediate result set is created for some queries. A closer
look at the dataset shows that Q4 and Q5 generates sig-
nificantly larger intermediate result set because of the large
number of item element in the dataset which are selected
by the two queries.

For the XSLT engines, they need traverse the document tree
multiple times to evaluate the reverse axes. Therefore, more
reverse axes imply more traversals, which lead to longer eval-
uation time and generates more intermediate result. How-
ever, we also note that Xalan seems to treat reverse axes
in the main trunk and in the predicate differently. For the
latter, the performance of Xalan is much better (cf. Figure
6). The experiments on different number of reverese axes in
the predicate, is not presented here due to the space limit.
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